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Abstract—This paper proposes a mechanism by which
third-order intermodulation distortion, due to self-heating, is
generated in transmission lines. This work shows how trans-
mission lines made of several materials, whose properties are
independent of the electric and magnetic fields, can generate
important levels of intermodulation distortion. A circuit model
supported by finite-element simulations is presented to account
for the temperature generation and also for its impact on the
nonlinear performance. Closed-form expressions are used to
calculate the generated intermodulation products and are derived
from the circuit model and compared with simulations. Finally,
measurements and simulations of different transmission lines are
presented, showing very good agreement.

Index Terms—Intermodulation distortion, nonlinearities,
printed lines, self-heating, temperature, thermal effects, transmis-
sion lines.

I. INTRODUCTION

I
NTERMODULATION distortion and harmonic generation

in passive transmission lines are usually associated with the

dependence of the material properties on the electromagnetic

fields. Such is the case for transmission lines made of super-

conductors [1] or ferroelectric materials [2]. However, several

papers have shown the existence of third-order intermodulation

distortion, even in transmission lines made of inherently linear

materials, such as copper on commercial substrates [3], [4]. In

this case, and depending on the speed of the signal modulation,

self-heating mechanisms can be the cause of third-order inter-

modulation distortion, which can generate serious problems in
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communication systems [5]. This occurs because temperature

oscillations cause variations of the material properties without

generating harmonics.

The dependence of device performance on temperature has

always been a source of concern in the process of designing

microwave devices exposed to temperature variations [6], [7],

and the correct choice of materials plays a vital role. Attention

has usually focused on minimizing the temperature dependence

of material properties, as well as on minimizing the loss that

is responsible for the temperature rise. Significant temperature

dependence of material properties can cause the performance

of the device to change considerably over a given temperature

range and can also generate nonlinear distortion.

While thermally generated intermodulation distortion is

a well-known nonlinear process in power amplifiers where

thermal effects have always been a matter of concern [8]–[10],

only few papers have been published on this topic. This has hap-

pened despite the impact that temperature variations can have

on the linear and nonlinear performance of passive microwave

devices. The effect of resistive heating on intermodulation

distortion generation in electrical contacts is analyzed in detail

in [11]. More recently, [12] has shed light by modeling this

effect in lumped devices such as attenuators, microwave chip

terminations, and coaxial terminations.

Fewer papers have focused on the self-heating process due

to the lossy nature of distributed structures, such as transmis-

sion lines [13], [14]. The approach found in the -method

[15] is a rigorous procedure to extract thermal material proper-

ties by measuring the third-harmonic generated by self-heating

in metallic strips at audio frequencies. The existing nonlinear

transmission line models [16] do not address these underlying

mechanisms of passive intermodulation generation in printed

transmission lines and are based strictly on phenomenological

approaches. Only [17] and [18] analyze the thermal heating con-

tribution to intermodulation in coaxial waveguides and trans-

mission lines, respectively.

This work presents a circuit model to account for the temper-

ature rise due to self-heating in transmission lines and describes

in detail how these temperature variations generate third-order

intermodulation distortion. The distributed electromagnetic cir-

cuit model of a transmission line is coupled to a thermal do-

main that models the heat generation and propagation, yielding

the temperature at each point of the line. The temperature rise

is then used to change the material properties on the electro-

magnetic domain circuit model. We extend the results in [19]

by presenting finite-element thermal simulations to support the

model. In addition, we validate the model with measurements

0018-9480/$26.00 © 2010 IEEE
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Fig. 1. Passive intermodulation distortion generation process in a transmission
line segment of length ��. Resistive losses are responsible for temperature fluc-
tuations that, in turn, change the metal resistivity.

of coplanar waveguides on single crystal sapphire substrates,

made with conductors of three different metals in order to give a

better understanding of the intermodulation generation mecha-

nism. The assumption of weak distributed nonlinearities is made

so that the nonlinearities represent a small perturbation of the

linear performance.

Closed-form expressions that allow prediction of intermodu-

lation levels on matched transmission lines are derived from the

circuit model implementation and compared with circuit simu-

lations. Finally, the model is tested with intermodulation mea-

surements on lines of several lengths fabricated from different

conductor materials with good agreement between modeled and

measured results.

II. MECHANISM OF PASSIVE INTERMODULATION GENERATION

DUE TO SELF-HEATING IN DISTRIBUTED TRANSMISSION LINES

The scheme in Fig. 1, in which the two-tone test is repro-

duced, shows the generation process of third-order intermodu-

lation distortion due to self-heating in a transmission line along

the -axis. The input signals, and , can also be understood

as an AM modulated signal with carrier suppression centered at

with an envelope frequency so that

and .

If a low-loss substrate is considered, the loss due to the con-

ductor dominates and the dissipated power in each el-

emental segment of transmission line is proportional to the

square of the current through that segment. This results in dissi-

pated power, with frequency components at dc, , , ,

and . Each of the frequency components of the dissi-

pated power gives rise to temperature oscillations , according

to the corresponding thermal impedance at each specific

frequency [9]

(1)

As a result, the steady-state temperature rise changes the ma-

terial properties and, as a result, the linear performance of the

device, as well. On the other hand, the oscillating temperature

generates third-order intermodulation distortion. The slow dy-

namics related with the heat propagation in a media translates

into a low-pass-filter behavior of the thermal impedance [20],

thus making the dissipated signal at the most relevant os-

cillating temperature component. As in the steady-state case,

temperature variations at can change materials properties;

for example, the metal resistivity, resulting in third-order inter-

modulation distortion at and . In this work,

a temperature-independent dielectric is considered. A detailed

scheme of the generation process in an infinitesimal section of

transmission line can be seen in Fig. 1.

As a result of the above-described process, measurements of

the third-order intermodulation signals at different separations

between tones might be used to unveil the low-pass filter shape

of the thermal impedance [10] since

(2)

where is the third-order intermodulation distortion

power.

III. SELF-HEATING MECHANISM MODEL

A circuit model of a transmission line, based on the previ-

ously described mechanism, could be used for the analysis and

simulation of nonlinear effects under any type of input signal.

Further, it could also be used, for example, to predict nonlinear-

ities in more complex devices that make use of these transmis-

sion lines, such as filters [21]. The challenge of such a model,

however, is based on the interaction of two physical domains,

the electromagnetic and thermal domains, both of which must

be properly modeled.

A. Electromagnetic Domain

A distributed implementation of the electromagnetic domain

of a transmission line allows for relating the measured observ-

ables with the material properties [1]. The transmission line is

constructed as a cascade of cells. Each cell contains the dis-

tributed parameters modeling a segment of a transmission line

, , , and . These stand for the temperature-de-

pendent distributed resistance and the distributed inductance,

capacitance, and conductance, respectively [22]. The resulting

nonlinear telegrapher equations are

(3)

(4)

The distributed resistance has contributions from each

of the conductors in the transmission line, which act as heat

generators. This allows us to simulate the temperature rise at

each conductor independently and also to simulate the contri-

bution to the intermodulation arising from each conductor. In a

coplanar waveguide, the center conductor resistance

and the ground planes resistance can be considered

separately, as shown in Fig. 2

If a low-loss nondispersive substrate is used, is negligible

and is constant over frequency. On the other hand,

and are frequency-dependent and need to be properly de-

scribed at each frequency point.

Each contribution to the distributed resistance and

can be expanded by use of a first-order Taylor’s series,
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Fig. 2. Electromagnetic-domain model of an infinitesimal section of a trans-
mission line.

Fig. 3. Dimensions of the coplanar waveguides used in this work.

and casting it into a temperature-invariant term and a tempera-

ture-dependent term

(5)

where or stand for the center conductor and ground

planes, respectively, and set the distributed resistance

at room temperature . The relation between the parameter

and the temperature-dependent resistivity of the con-

ductors is detailed in Appendix I.

B. Thermal Domain

A thermal model implementation of a transmission line

should be able to predict the steady-state temperature rise and

temperature oscillations that lead to intermodulation genera-

tion. Moreover, a physical relation with the material thermal

properties and device geometry is necessary to allow the model

to predict the nonlinear distortion of a device in the design

stage.

1) Heat Generation in a Transmission Line: The geometry of

a regular coplanar waveguide consists of two ground planes on

each side of a center conductor. The metal layer varies, gener-

ally, from tens to thousands of nanometers thick and is deposited

on a low-loss substrate. In such a structure, the generated heat

in the metal strip is mostly dissipated by conduction through the

substrate. This is because of its low thermal resistance to heat

flow when compared to radiation and convection effects [20].

Fig. 3 shows the dimensions of the coplanar waveguides used in

this work.

The first step toward the construction of a thermal model of

a coplanar waveguide is to identify the heat sources. As previ-

ously mentioned, this work considers negligible dielectric losses

in the substrate so that metal resistivity is the only source of dis-

sipation. Fig. 4 illustrates the simulated current distribution at

the beginning of the line of a coplanar waveguide, of the

same dimensions as in Fig. 3, and made of gold on a sapphire

substrate with a thin titanium adhesion layer. The transmission

line is designed, considering dispersion, to be roughly matched

at 6 GHz by use of an electric resistivity of n m.

The line is driven by two tones of 20 dBm each, where the upper

tone is set at 6 GHz and the lower is 1 kHz apart.

In the simulations of Fig. 4, the current density peaks are at

the edges of the center conductor and at the inner edges of the

ground planes. This has a direct translation in the location of

Fig. 4. Current distribution and joule heat at the beginning of a coplanar wave-
guide, driven by two tones at 20 dBm.

heat sources since the heat generated per unit volume can be

expressed as [12]

(6)

where is the current density in A m and is the electric

resistivity in m. Fig. 4 also illustrates the heat density, ob-

tained by use of finite-element simulations [23], due to (6).

The heat density surface integral on the center conductor re-

sults in an average dissipated power of 9.26 W m versus

3.54 W m for the ground planes, which clearly illustrates

the fact that the center conductor contributes more to the overall

dissipation. This gives an idea of the correspondent contribution

of each metal strip to the distributed resistance, which follows

the relation

(7)

where and are the average dissipated power per unit

length and the root mean square (rms) current, respectively.

For the coplanar waveguide under study, we used finite-ele-

ment software [23] to get the distributed resistance contributions

arising from the center conductor m and the

ground planes m at 6 GHz and at room tem-

perature. Therefore, the center conductor is expected to generate

a higher temperature contribution, given its higher losses.

2) Steady-State Temperature Rise: Temperature rise, as a re-

sult of heat generation, follows a low-pass filter behavior, and

thus is frequency dependent. Therefore, a clear idea of the tem-

perature profile on the cross section of the coplanar waveguide

is necessary to propose a thermal model implementation. Fig. 5

shows the steady-state temperature on the cross section of the

previously presented coplanar waveguide, obtained with finite-

element simulation [23]. Radiation and convection effects were

shown to be negligible through simulations. Table I contains the

material properties used for the finite-element simulations uti-

lized in this work.

The electric resistivity values are obtained by measurements

of the transmission lines, explained in Section V. Other proper-

ties for Au, Pt, and Ti can be found in [24]. Sapphire properties

are found in [25] and PdAu density and thermal conductivity is

found in [26]. The specific heat value of PdAu is inferred from

the Pd and Au specific heat since specific heat values for these

metals are similar.

As shown in Fig. 5, the temperature distribution across the

center conductor can be considered uniform, as it changes by

less than 3% from the edge to the center of the strip. The ground
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Fig. 5. Steady-state temperature rise profile on the cross section of the coplanar
waveguide.

TABLE I
MATERIAL PROPERTIES USED IN THE FINITE-ELEMENT SIMULATIONS

Fig. 6. Steady-state temperature contributions arising from the dissipation in
the center conductor and the ground planes, independently.

planes, though, show a clear temperature gradient. Thus, addi-

tional finite-element simulations, by use of specifically imple-

mented software,1 have unveiled the temperature-rise contribu-

tions arising from the center conductor and the ground planes

independently. Fig. 6 shows the results of the simulation, where

the ground planes contribute less to the overall temperature rise

than the center conductor. A reasonable approximation of the

temperature rise in the center conductor can, therefore, be ob-

tained by considering only its dissipation.

3) Oscillating Temperature: The thermal penetration depth

is defined as , which illustrates the fact that

the resistance to heat propagation through materials depends not

only on the material properties, but also the frequency [20]. In

1Specifically implemented 3-D electro-thermal finite-element software.

the previous equation, is the thermal conductivity, is the den-

sity, is the specific heat, and is the frequency of the temper-

ature oscillations . This translates into locally accentu-

ated temperature distributions at higher frequencies with smaller

maximum values. Fig. 7 shows the oscillating temperature pro-

file at the surface of the cross section of the coplanar waveguide

for different envelope frequencies, obtained by means of simu-

lations.

Simulations reveal that the temperature rise at the center con-

ductor can be considered totally independent from the dissi-

pation in the ground planes, for this specific geometry, when

the envelope frequency increases. This allows the simplifica-

tion of the model by considering only the center conductor in

the thermal domain. With the equations in Section VI, a com-

parison between the contributions levels to the third-order inter-

modulation distortion, confirm the negligible contribution from

the ground planes.

Fig. 7 also reveals that above a certain envelope frequency, a

uniform temperature distribution in the center conductor, which

is the main contribution to self-heating nonlinearities, can no

longer be considered. The impact that the frequency-dependent

temperature profile has on the distributed resistance is em-

bedded in the frequency-dependent thermal impedance .

Therefore, the model will provide an effective temperature

rise at each frequency. In other words, the change produced in

the distributed resistance by the existing temperature profile

is the same as the change produced by a uniform effective

temperature.

4) Thermal Impedance: A complete thermal-domain circuit

implementation should be 3-D to consider heat flow along

the -axis, laterally and vertically through the substrate. The

thermal domain implementation in Fig. 8 makes use of a series

impedance , which models heat flow along the

center conductor in the axis direction. It also includes a

parallel impedance that models heat flow both lat-

erally and vertically from the center conductor to the substrate.

The steady-state series and parallel thermal impedances are

de-embedded by performing finite-element simulations with

specifically implemented 3-D electrothermal finite-element

software for different line lengths and for all different metals.

The results are shown in Fig. 9, where we can observe that the

parallel thermal impedance is roughly the same for all three

metals. This indicates that the substrate has a dominating effect

and is inversely proportional to length. On the other hand, the

series impedance is different for all metals and is higher for

poorer thermal conductors.

C. Electro-Thermal Coupling

Once the circuit implementations of both electromagnetic and

thermal domains have been explained, the next step is to set

the interaction between them. This interaction is a bidirectional

process in the sense that the generated heat from the electromag-

netic domain changes the temperature. This, in turn, changes the

distributed resistance in the electromagnetic domain and, there-

fore, the generated heat.

The transmission line is implemented in -long elec-

trothermal cell segments. Heat generation by the Joule effect in
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Fig. 7. Temperature distributions at different envelope frequencies. The plots
have been scaled for better visualization purposes.

Fig. 8. Complete electrothermal circuit model of a �� segment of a transmis-
sion line.

Fig. 9. Steady-state series and parallel thermal impedances as a function of
length. The solid line represents Au, whereas the dashed line represents PdAu,
and the dotted line represents Pt.

the center conductor at a certain position of the transmission

line can be expressed as

(8)

Due to the analogy between heat and electric current in the

heat equation, a current source is used to inject the generated

heat in its correspondent thermal domain. Tempera-

ture rise, which is the analog of voltage in the thermal circuit

domain, is then used to change the distributed resistance value

.

The series thermal impedance has been checked to play

a negligible role in the heat flow process by comparing the

steady-state temperature rise along a transmission line with

the model with and with an open circuit instead

of to finite-element simulations with specifically

implemented 3-D electrothermal finite-element software,

as shown in Section V.C-1. Therefore, a simplified model

that makes use of only the parallel impedance will be used

throughout this work.

The parallel impedance has a linear relation with length

so that , where

is the thermal impedance per unit length in the axis direc-

tion. The proposed circuit implementation of

is a resistance in parallel with a frequency-depen-

dent capacitance with and

. The term in K m/W

represents the steady-state distributed thermal resistance to heat

flow. is the distributed volumetric heat capacity that

embeds the frequency dispersive effects.

IV. CLOSED-FORM EXPRESSIONS

Given the model presented in this work, closed-form expres-

sions of the circuit implementation can be derived. In the present

derivation, a matched transmission line is assumed despite ex-

tended expressions for mismatched transmission lines could be

obtained by use of the procedure explained in [27].

A. Heat Generation

We consider a matched transmission line fed with two tones,

and , in close frequency. The current at each of the funda-

mental frequencies could be described as

(9)

with . In (9), and , , and are the

attenuation constant, phase constant, and phase, respectively.

Therefore, the instantaneous dissipated power per unit length

, due to resistive losses in the center conductor, is

(10)

where is the instantaneous propagating power, and as

expected for a two-tone test, the quadratic nature of power dis-

sipation leads to several spectral components

(11)

with , where

is the propagation constant of .

As in the -technique [15], we assume that heat flows

mostly perpendicular to the substrate with a negligible heat

flow along the axis of the line so only is consid-

ered.
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Equation (1), in which is the Fourier transform

of at frequency , states the physical relation be-

tween heat dissipation and temperature through the thermal

impedance. Therefore, by use of the dissipated power at the

envelope frequency , the tem-

perature distribution at the envelope frequency is

(12)

We can provide the steady-state temperature along the line

because of its impact on the linear performance of the device,

where

(13)

B. Temperature-Induced Intermodulation Distortion

As previously stated, a temperature-independent dielectric is

considered so that only the term that appears in (5) is

responsible for the nonlinear behavior so long as it quantifies the

temperature dependence of the distributed resistance. Therefore,

for a matched transmission line with negligible heat propagation

along , the nonlinear voltage per unit length can be obtained by

introducing (5) in (3) and separating the resulting equation in a

linear term and a nonlinear term, where the nonlinear term is

(14)

Considering the case of a two-tone test in which the line is driven

by two different tones (9) at frequencies and , the fre-

quency component of (14) would be

(15)

where is the temperature oscillations at the envelope

frequency . By substituting (12) into (15), we obtain

(16)

with . If we combine the teleg-

rapher equations

(17)

which can be rewritten as

(18)

where refers to frequencies and with

(19)

and

(20)

We now substitute (16) in (18) to get

(21)

where the subscript refers to frequency .

Equation (21) can be solved for the nonlinear current along the

line

(22)

with

(23)

Equation (22) can be approximated to

(24)

Thus, if we assume , the power delivered to a matched

load is

(25)

with

(26)

C. Validation of Expressions With Simulations

The above-presented expressions are validated by making

use of circuit simulations with the electrothermal model imple-

mented with 100 cells, such as the one shown in Fig. 8. Both

the equations and electromagnetic domain of the circuit model

use the distributed parameters of the gold line previously used

in the thermal analysis.

Though understanding the intermodulation process is the

final goal of this work, an important preliminary step consists

in checking the temperature rise. Simulations with the model

have been performed by using two tones, at 20 dBm each,

and at variable frequency spacing between them. The upper

tone is fixed at 6 GHz. The same frequency-dependent thermal

impedance is used on both equations and simula-

tion.

Equation (13), which gives the steady-state temperature dis-

tribution along the axis, has been checked with a matched

transmission line, resulting in perfect agreement. To better il-
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Fig. 10. Steady-state temperature rise along the 9.93-mm gold line. Solid line
is using (13) and dashed line represents the results from simulation.

Fig. 11. Temperature rise at � � ���� mm of a 9.93-mm gold line for a wide
range of envelope frequencies. Squares and solid line are simulation and equa-
tion, respectively.

Fig. 12. Power delivered to a matched load at the end of the 9.93-mm gold line.
Circles and solid line are simulation and equation respectively.

lustrate this with a real case, Fig. 10 shows the results for (13)

and the circuit model implementation of a 9.93-mm gold line,

and Hz, where simulations give a small ripple due

to the imaginary part of . For the real

9.93-mm gold line circuit implementation, distributed param-

eters extracted from measurements are used to construct the

transmission line as a cascade of cells.

Additionally, temperature rise oscillations are validated, by

use of (12) and simulations, at different envelope frequencies at

mm (Fig. 11).

Once the equations of the temperature rise have been vali-

dated, the nonlinear signal, generated as a consequence of tem-

perature oscillations, can be evaluated. Fig. 12 shows the result

of (25) and simulations of the intermodulation power delivered

to a matched load at mm for a wide range of envelope

frequencies.

Fig. 13. Extracted distributed resistance (symbols) and polynomial fit (lines)
for the different coplanar waveguides. Circles and solid line represent gold,
squares and dashed line represent platinum, and triangles and dotted line repre-
sent palladium-gold.

V. MEASUREMENTS AND RESULTS

A test wafer has been constructed to validate the model with

measurements. Metals with different temperature coefficients of

resistivity have been selected to construct coplanar waveguides

of different lengths. To check the model, measurements of the

resistivity at different temperatures have been performed. Third-

order intermodulation distortion measurements for a wide range

of envelope frequencies have also been used.

A. Test Wafer

Coplanar waveguides, with the cross-section geometry shown

in Fig. 3, have been constructed following standard fabrication

techniques on a sapphire substrate, chosen for its low dielectric

losses at microwave frequencies. Different metals have been de-

posited, including gold (Au), platinum (Pt), and palladium-gold

(PdAu) with a 55% gold content. The reason for choosing these

metals is that they offer different combinations of resistivity

values and resistivity change with temperature, which translates

into different levels of intermodulation distortion. Three trans-

mission lines, A, B, and C for each type of metal, have been

measured. Their lengths are mm, mm, and

mm, to demonstrate the distributed effects.

B. Linear Measurements and Model

The first step in constructing the linear part of the circuit

model is to obtain the distributed parameters of the fabricated

transmission lines. The procedure used in this work consists

in performing a multiline thru-reflect-line (TRL) calibration to

obtain the propagation constant. It is then used, along with an

impedance comparison method, to obtain the distributed param-

eters , , , and . Details on this procedure can be

found in [28].

The linear measurements have been performed at a low

power, 5 dBm, to ensure the linear regime of the devices.

Results for the extracted distributed resistance and inductance

are shown in Figs. 13 and 14, respectively.

The extracted values of the distributed conductance are

below the sensitivity of the measurements; its impact is, there-
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Fig. 14. Extracted distributed inductance (symbols) and polynomial fit (lines)
for the different coplanar waveguides. Circles and solid line represent gold,
squares and dashed line represent platinum, and triangles and dotted line repre-
sent palladium-gold.

Fig. 15. Measured and simulated �-parameters for line B, made of palladium-
gold. The line length is 4.2 mm. Squares and triangles represent measurements.
Solid lines represent simulation.

fore, considered negligible. On the other hand, the extracted dis-

tributed capacitance, which is constant over frequency due to the

nondispersive nature of sapphire, has a value of pF/m.

The presented extracted distributed resistance and inductance

are fitted to polynomials so that they can be easily used in the cir-

cuit model implementation. Next, the calibrated -parameters

from measurements are compared to the simulated -parame-

ters of the circuit implementation for each line to check that the

extraction procedure is correct.

For example, Fig. 15 illustrates both measured and simulated

-parameters for PdAu line B. Characteristic impedances ob-

tained at 6 GHz are ,

, and .

C. Nonlinear Measurements and Model

Once the linear measurements and modeling are complete,

the thermal impedance that correctly predicts the temperature

along the line is obtained. An accurate temperature simulation is

crucial to properly simulate its effect on the metal resistivity and

also to predict the third-order intermodulation generation. In the

model presented, the thermal resistance and the thermal

capacitance per unit length represent the resistance

to heat flow at steady state and its frequency dependence, re-

spectively. These can, therefore, be solved separately. As stated

TABLE II
ELECTRIC AND THERMAL PARAMETERS OF THE CENTER CONDUCTOR

AT � � � USING TWO TONES AT 20 dBm EACH

in (2), the third-order intermodulation measurements unveil the

frequency dependence of the thermal impedance, which is used

in this work to obtain . On the other hand, finite-ele-

ment thermal simulations are used to obtain .

1) Finite-Element Thermal Simulations: The thermal resis-

tance sets the steady-state temperature, given a certain

heat dissipation in the center conductor. It depends not only on

the material properties of the metal and substrate, but also the

geometry of the strip. Finite-element simulations can be used to

obtain the thermal resistance with (1) as the division of

temperature over heat.

We look at the heat density through the line, shown in Fig. 4,

and perform the surface integral at the center conductor. A

steady-state thermal simulation is done with [23] to obtain the

temperature profile on the cross section of the line. Table II

summarizes the current and heat flux at for all

types of metal transmission lines, the average temperature rise

on the center conductor , and the thermal resistance

obtained.

As can be seen from Table II, the change in the thermal re-

sistance is around 5% for the three metals. This implies

that the upper metal layer plays a negligible role in how the

heat flows to the substrate. Approximate values for might

be obtained with closed-form expressions such as those found

in [13] and [14] to get K m/W and

K m/W, respectively, neglecting the titanium adhesion

layer.

The circuit model can also be used to simulate the tempera-

ture distribution along the line. To check this, we performed 3-D

steady-state thermal finite-element simulations with specifically

implemented 3-D electrothermal finite-elelent software. This is

done by use of the current distribution previously obtained with

the circuit model, as shown in Fig. 16.

Results in Fig. 16 show the contribution to temperature rise

due to dissipation in the center conductor for the circuit model

and finite-element simulations. There is total agreement be-

tween them. Moreover, Fig. 16 also shows the total temperature

rise in the center conductor as a consequence of dissipation

in the center conductor and the ground planes obtained with

finite-element simulations. The simulations for the circuit

model have been performed with and without the series thermal

impedance , which totally overlap.

These results confirm that, for the given geometry, the heat

propagation along the axis is negligible and the circuit model

can be used to estimate the total temperature rise in the center

conductor.

2) Third-Order Intermodulation Distortion: Forward third-

order intermodulation distortion measurements, of and

, have been performed on all lines by means of the
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Fig. 16. Steady-state temperature rise profiles along the C lines for the dif-
ferent metals. Solid and dashed lines represent the contribution to temperature
rise in the center conductor, as a consequence of its dissipation, from using the
circuit model and finite elements, respectively. The dotted lines represent the
total temperature rise in the center conductor, as a consequence of dissipation in
both the center conductor and the ground planes, obtained with finite-element
simulations. Simulations using the circuit model, with � ��� and with
an open circuit instead of � ���, overlap.

Fig. 17. Measured and simulated third-order intermodulation in A line, � �
� mm. �� � � (dashed line) and �� � � (solid line) overlap for all the
simulations. Unfilled circles and crosses represent �� � � and �� � � for
Au. Triangles and filled circles represent �� � � and �� � � for Pt. Stars
and diamonds represent �� � � and �� � � for PdAu.

two-tone test [10]. A special measurement setup [28] consisting

of a configuration that cancels the fundamental signals and

after the device-under-test is used to achieve a high-dynamic

range at the spectrum analyzer. For such measurements, the

input power has been fixed at 20 dBm, while the tones spacing

has been taken from 2 Hz up to 1 GHz. Results can be seen in

Figs. 17–19.

High separation between tones measurements are limited by

the baseline intermodulation level of the measurement setup.

On the other hand, small separations between tones measure-

ments can be limited by the phase noise of the sources. The

shortest Au line represents the worst scenario for this type of

measurements because it shows a low intermodulation level.

System nonlinearities easily dominate at intermediate and high

separation between tones Hz and phase noise

Fig. 18. Measured and simulated third-order intermodulation in B line, � �
��� mm. �� � � (dashed line) and �� � � (solid line) overlap for all the
simulations. Unfilled circles and crosses represent �� � � and �� � � for
Au. Triangles and filled circles represent �� � � and �� � � for Pt. Stars
and diamonds represent �� � � and �� � � for PdAu.

Fig. 19. Measured and simulated third-order intermodulation in C line, � �
���� mm. �� � � (dashed line) and �� � � (solid line) overlap for all the
simulations. Unfilled circles and crosses represent �� � � and �� � � for
Au. Triangles and filled circles represent �� � � and �� � � for Pt. Stars
and diamonds represent �� � � and �� � � for PdAu.

dominates for small separation between tones Hz .

The results in Figs. 17–19 unveil the low-pass filter behavior of

the thermal impedance, showing similar results as those found

in [12], which can be used to extract the frequency-dependent

thermal capacitance . Measurements of any of the

metals could be used to extract , as long as the thermal

impedance is dominated by the substrate. The platinum B line is

preferable, though, because it shows the highest dynamic range

above the baseline intermodulation level of the measurement

setup, which is around 100 dBm. The extracted phenomeno-

logical , for the procedure explained in Appendix II,

can be seen in Fig. 20, where its frequency-dependence embeds

the 3-D dissipation effect.

Once the thermal model is completely implemented, the last

step consists of determining the nonlinear variable .

This sets how the distributed resistance of the center con-

ductor changes with temperature. To do that, we use the

relation between and temperature, presented in

Appendix I, so that the temperature coefficient of resistivity

of the metal is used. Since the material properties are process

dependent, we performed resistance measurements at dc of

the fabricated coplanar waveguides at several temperatures.
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Fig. 20. Extracted � ��� from measurements on the platinum B line.

The measured values for the temperature coefficients of re-

sistivity are K , K ,

and K . The resistivity values at room

temperature are shown in Table I.

The complete electrothermal model can now be constructed,

making use of the measured values and the extracted thermal

resistance and capacitance. Simulations of the third-order inter-

modulation distortion with the model are presented, along with

the measurements in Figs. 17–19. These show good agreement

and the predicted dependence on the line length.

VI. DISCUSSION

The good agreement obtained between measurements and

modeling indicates that scaling with the line length is correctly

predicted. From the results above, the high difference between

nonlinear levels on lines made of different metals can also be

observed. The results show that there is not a simple relation

between length and intermodulation level, and this is because

the distributed nonlinearity increases with length, but also gets

attenuated by it. Therefore, depending on the length, a high at-

tenuation transmission line can show more or less nonlinearity

than a lower loss transmission line. In addition, the fact that the

platinum and the palladium-gold lines are highly mismatched

translates into a variable relation between length and intermod-

ulation level [27].

However, several considerations to minimize the intermod-

ulation can be made from (25), in particular that referred

to the correct choice of materials. In this sense, metals and

dielectrics with low losses and weakly temperature-dependent

properties are preferable. Additionally, high thermal conduc-

tivity dielectrics provide the right path for heat, minimizing

temperature rise.

To check that the ground planes have a negligible con-

tribution to the intermodulation distortion generation, we

use (25). We consider that each ground metal strip has the

same thermal impedance of the center conductor, which is

a reasonable approximation. With this assumption, we get a

much lower contribution coming from the ground planes of

dB

when compared with that coming from the center conductor

in the gold lines. For the platinum and palladium-gold lines,

we get dB and dB.

These results confirm the validity of the simplified model.

From the closed-form expressions obtained, we observe that

the third-order intermodulation distortion generation process

might also be described, for a specific separation between tones,

by a phenomenological model of a quadratic current-dependent

distributed resistance of the form

(27)

Several authors have suggested the use of (27) to explain the

relation between losses and intermodulation [16]. However, this

phenomenological model is incorrect, and predicts a nonexistent

third harmonic.

VII. CONCLUSIONS

We have presented the mechanism by which third-order inter-

modulation distortion is generated in transmission lines and its

circuit model. Additionally, closed-form expressions have been

obtained and validated along with the model. The model has

been properly checked with measurements of lines of different

lengths and made composed of different metals.

This work also reveals the negligible impact of the ground

planes when compared to that of the center conductor and in

terms of nonlinear behavior due to self-heating. Additionally,

the envelope frequency-dependent intermodulation cannot be

described by a constant slope of a certain decibel/decade.

The advantage of having such a distributed circuit model for

a nonlinear transmission line is that it can be used for predic-

tion purposes of any device in which transmission lines are used

such as filters or directional couplers. Moreover, its usefulness

is not restricted to a specific kind of input signal and can predict

the nonlinear effects on complex modulated signals like global

system for mobile communication (GSM) or code division mul-

tiple access (CDMA) for example.

APPENDIX I

DISTRIBUTED RESISTANCE TEMPERATURE DEPENDENCE

The distributed resistance at a specific frequency can be de-

scribed as a function of the resistivity increment as follows:

(28)

where is the distributed resistance at ambient tempera-

ture. The resistivity increment due to temperature rise

can be identified in the following relation:

(29)

is the local derivative, at the room temperature resistivity

value, of the function that relates the distributed resistance with

the metal resistivity. Therefore, is a factor that relates the

increment in the distributed resistance, as a consequence of an

increment in the resistivity, for a specific geometry and metal

(30)

By using the Weeks method [29], we obtain the factor for

the center conductor, for the given geometry at 6 GHz to be
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m , m ,

and m .

APPENDIX II

THERMAL CAPACITANCE EXTRACTION PROCEDURE

The procedure starts by converting the intermodulation mea-

surements to a linear scale to get the unscaled magnitude of the

thermal impedance . is then fitted to

a polynomial and scaled to a value previously obtained using

the circuit model to get . A frequency-dependent

thermal capacitance of the form

(31)

is used so that its coefficients can be obtained from the relation

that follows from a simple circuit analysis of Fig. 8:

(32)

The extracted phenomenological has coefficients

, , and .
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