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ABSTRACT Wireless communication signal is a kind of coherent illuminator, and it can shed light on

surrounding environments. The mobile terminal receives the signal and estimate the propagation channel,

and can sense the moving objects passively. The localization module and communication module share

the RF front-end and baseband processing, and thus greatly reduce the implementation cost in mobile

terminals. Passive localization is based on the delay estimation of the dynamic reflection path. However,

several practical factors prohibit the accurate estimation of the propagation delays. The multipath reflection

and scattering are abundant in urban and indoor environments, and the signal bandwidth is usually not large

enough to reach a fine delay resolution. The synchronization error, sampling clock drift, frequency offset

and phase noise will severely impact the estimation performance. In this article, we propose a set of methods

to make the practical application of this method possible. We also derive the Cramer-Rao lower bound of the

delay estimation, and analyze the estimation error related with various impact factors. A prototype system

is built to test the performance in real environments, and various experiments have been done to verify its

feasibility. We believe that the fusion of wireless communication and sensing is a potential enhancement of

next generation cellular system, and the capability of passive location will bring interesting applications for

smart phones.

INDEX TERMS Cramer-Rao bound, delay estimation, external illuminator, passive localization,

super-resolution analysis.

I. INTRODUCTION

Wireless communication signals not only carry the informa-

tion of data but also encode the information of propagation

channels [2]. On the signal propagation path, the variations

of reflection, scattering, and diffractionwill affect the channel

response. Through analyzing the acquired channel state infor-

mation (CSI), we can sense the environment changes, such as

detecting the moving object, localizing its position, or follow-

ing its trajectory, whereas it is not required for the object to

carry any device on it [3]. Wireless sensing can be used as a

personal radar for intruder detection, or be used as a human-

computer interaction interface for gesture recognition [4].

It also has potential applications in e-Health, such as fall

detection and real-time assistance for older adults [5].

Many kinds of wireless signals have been used as exter-

nal illuminators, e.g., cellular, Wi-Fi, DAB/DVB, RFID, and

even GPS signals [6], [7]. Among these sources, Wi-Fi signal
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is most widely used, since there is commodity network card

that the channel state information (CSI) can be extracted

easily from the drivers [8].

A ‘‘WiSee’’ system was demonstrated in 2013 and has

attracted a lot of attention [9]. By analyzing the variation of

Doppler shift of the received Wi-Fi signal, it can distinguish

nine human gestures moving indoors. In [10], a ‘‘WiHear’’

system is proposed, which can detect channel changes caused

by mouth movement in the case of non-line of sight, so as to

listen to people’s conversation. In [11], an ‘‘RT-Fall’’ system

is proposed, which can detect human falls comparing with

other daily movement at home. A ‘‘BreathTrack’’ system is

proposed in [12], through calibration by the hardware and

software joint corrections, the phase variation of the CSI is

tracked to estimate the human breath rate. A device-free

human identification system is proposed in [13], the intrinsic

features such as respiration and gait are extracted from the

CSI to identify different peoples.

Wi-Fi signal is not continuously transmitted. When there

is a service requirement, there is a burst of data payload.
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The time intervals among the packets are random, thus there

will be a random initial phase for the synchronization of

each packet. In [14] and [15], the CSI correlation matrices

are used to do moving human detection. Through-the-wall

detection is studied in [16], since the line-of-sight (LOS)

signal and static reflected signal by the wall is much stronger

than the reflection after the wall, eigenvalue analysis at each

subcarrier are executed and the difference of the eigenvectors

are extracted as feature vectors. However, these works only

find the existence or not of a moving human, there is no

location information provided.

Radio and television signals can also be used as external

illuminators. Since these kind of radiation sources have high

power, we can use them to find distant targets [17], [18].

The passive radar system usually uses two receivers work-

ing simultaneously, which may have different beam width,

direction and amplifier gain. One receiver is used to receive

the reference signal and the other is used to monitor the target

echo. By comparing the reference signal and the surveillance

signal, range and Doppler information of the target can be

extracted. The digital audio broadcasting signal (DRM) is

used in [19]. Since the high frequency (HF) signal trans-

mits over-the-horizon in the form of sky wave ionospheric

reflection, the passive receiver can monitor the airspace over

a range of 2000 kilometers. The digital TV signals (DTMB)

from multiple TV stations are used in [20]. Since the DTMB

stations transmit the same signal at the same frequency, it is

difficult to distinguish the reflected signals of the same target

from those of different transmitters. Moreover, demodulating

and reconstructing the reference signal bring great burden of

computation and delay. In [21], OFDM waveform is inves-

tigated and the range and Doppler parameters are directly

estimated from the channel estimation. However, if the target

is close to the terminal and moves slow, as of a human walks

at home, the conventional range-Doppler detection mode will

fail.

In urban and indoor environments, non-line-of-sight

(NLOS) propagation and multipath reflections will cause

severe localization error. Using a signal with ultra-wideband

(UWB) will partly relieve this influence, since UWB signal

has fine delay resolution and can distinguish the reflective

paths of close objects. Passive localization of the reflectors

using UWB signal is studied in [22], [23], where multiple

distributed transmitters and receivers are used. The propa-

gation delays between each pair of transceivers are mea-

sured, including direct path and all reflection paths, and then

the propagation delays of the same reflector from the mea-

surements of multiple pairs of transceivers are correlated to

determine its position. However, the transmit power of UWB

signal is restricted and there is spectrum regulation problem

in many countries, it is difficult to integrate into the existing

mobile terminal architecture.

Back to the narrow band signal with a carrier, in [24]

the interference principle in optics is borrowed to explain

the phenomenon happened between the reflected signal of

a moving object and that of stationary objects. When the

propagation distance of the reflection path changes one wave-

length, the carrier phase of the dynamic reflection signal

changes 2π , the interferenced waveform changes one period.

In fact, the concepts of signal interference effect and Fres-

nel zone have been deeply studied in the field of wireless

communication [25]. However, in recent years, we have

been accustomed to interpreting this interference effect as

‘‘random’’ superposition between multipath signals, consid-

ering small-scale fading of channels as random variables

of Rayleigh or Rice distribution. We have overlooked the

deterministic aspects of the time-varying channel response

that can be analyzed with certainty.

While Wi-Fi signal distributes widely in homes and office

buildings, LTE signal has seamless coverage in all the cities

andmost of the rural areas. Besides, LTE base station has non-

stop broadcasting of the cell-specific reference signals (CRS)

so that we can acquire continuous channel estimation. In [26],

the device-free motion detection via LTE signal is tested

in real environments, where the amplitude fluctuation and

phase variation of the channel response are used as the judg-

ment basis. According to the reflection or scattering models,

the discovery region can be determined by the reflective

strength. In [27], exploiting LTE base stations as illuminators

of opportunity, a Bayesian framework for tracking mobile

targets and estimating their velocity has been developed.

In practice, it has another advantage to use LTE signal for

passive localization. Since the communication module also

need to do channel estimation, the localization module can

reuse the channel estimation results without requirement of

a separate RF front-end, thus can greatly reduce the imple-

mentation cost and power consumption of wireless sensing

in mobile terminals.

Passive localization starts from the estimation of the prop-

agation delay of the dynamic reflection path, where one value

of the delay will determine an ellipse given the positions

of the transmitter and receiver as two focal points. After

obtaining a group of delay estimations from multiple pairs of

transmitters and receivers, we can calculate the intersection

point of these ellipses as the localization result. However,

the estimation accuracy is usually limited by many practical

imperfections. The multipath reflection and scattering are

abundant in urban and indoor environments, and the signal

bandwidth is usually not large enough to reach a fine delay

resolution. The reflections by human bodies and arms are

weak. The synchronization error, sampling clock drift, fre-

quency offset and phase noise will severely impact the esti-

mation performance. In this paper, we design a preprocessing

method to compensate the frequency offset and separate the

weak dynamic reflection path from the strong direct and static

reflection paths. We apply the super-resolution method to

estimate the delay of the dynamic path, and apply the sparse

optimization method to estimate the delays of the static paths.

The impact of synchronization error, sampling clock drift and

phase noise are removed. We also derive the Cramer-Rao

lower bound (CRLB) of the delay estimation, and analyze

the estimation error depending on various impact factors.
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A prototype system is built to test the performance in real

environments, and various experiments have been done to

verify its feasibility.

The main contributions of this paper are in the following

four aspects:

1) we introduce a system model that incorporating

the propagation environment, target characteristic, and

transceiver imperfections, so that build the relationship

between the channel response and the target location;

2) we design the preprocessing method to compensate the

frequency offset and separate the dynamic and static paths,

and design the delay estimation methods with the impact of

phase noise;

3) we derive the Cramer-Rao lower bound of the delay

estimation, and analyze the estimation error related with the

reflection strength, signal bandwidth, integration time and

path distance differences;

4) we implement a prototype to work in real environments,

and carry on various experiments to test its performance.

The rest of this paper is organized as follows. In Section II,

we introduce the system model. In Section III, we propose

the preprocessing method and the delay estimation methods

of the dynamic and static paths, and constitute the com-

plete passive localization algorithm. In Section IV, CRLB is

derived and different factors that impacting on the system

performance are analyzed. In Section V, the prototype imple-

mentation and experiment results are demonstrated. Finally,

Section VI concludes the paper.

II. SYSTEM MODEL

For the propagation of wireless communication signals,

except of LOS channel, there are multipaths caused by reflec-

tion, refraction, diffraction, and scattering. When there is a

moving object appeard in the propagation environment, there

will be a dynamic path reflected or scattered by this object,

and the dynamic reflection signal will combine with other

static reflection signals at the receiver antenna. The channel

response is composed of the amplitude, phase and delay of

every path, and is impacted by the synchronization error,

sampling clock drift, frequency offset and phase noise as

well. If we can correctly estimate the propagation delay of

the dynamic reflection path, we can localize the position of

that reflective object by triangular method using information

from several pairs of transceivers.

A. CHANNEL MODEL

The channel response estimated in the receiver is the superpo-

sition of the static reflection paths and the dynamic reflection

path caused by the moving target. When the moving object

changed its position, the sum distance from the transmitter

to the target and from the target to the receiver will change

accordingly. This will change the amplitude and phase of the

channel response of the reflection path, and will certainly

change the overall channel response. As shown in Fig. 1,

at time t , when the sum distance between the target and

transceivers is di(t), the received baseband signal can be

FIGURE 1. Typical scenario of multipath propagation.

expressed as

r(t) =

L
∑

l=1

ale
−jωc

dl
c s

(

t −
dl

c

)

+ ai(t)e
−jωc

di(t)

c s

(

t −
di(t)

c

)

+ n(t), (1)

where s(t) is the baseband transmit signal, c is the light speed,

ωc = 2π fc and fc is the carrier frequency. The wavelength

of the carrier is λ = c/fc. The summation of L signals in the

first term of the right side represents the summation of signals

from the direct path and all other static reflection paths, and

al is the channel gain of the l-th path. The second term of

the right side is the signal reflected from the moving object.

When di(t) changes within several wavelengths, the vari-

ation of channel gain ai(t) and propagation delay di(t)/c

can be omitted. The significant variation is only the carrier

phase 2πdi(t)/λ. For simplicity, we only consider the

single-hop reflection as the dynamic path, since the multi-hop

reflections would be too weak to be separated.

The amplitude of the reflection path ai(t) depends on the

large-scale path loss and the reflective features of the moving

object. If the surface of the object is large and smooth relative

to the wavelength, and the positions of Tx, Rx and the moving

object agree with the reflection law, the specular reflection

effect will be dominant in the received power [25], i.e.,

PR = PT + 20 log
Ŵrλ

4π (dT + dR)
, (2)

where PT denotes transmit power, and Ŵr is the reflective

coefficient that depends on the incident angle θi, the rel-

ative permittivity of the material ǫr , and the polarization

of the electromagnetic wave. For perpendicular polarization

(E-field not in the plane of incidence),

Ŵr =
sin θi −

√

ǫr − cos2 θi

sin θi +
√

ǫr − cos2 θi
, (3)

and for parallel polarization,

Ŵr =
−ǫr sin θi +

√

ǫr − cos2 θi

ǫr sin θi +
√

ǫr − cos2 θi
. (4)

From (2), we can see that in this situation the large-scale path

loss depends on the sum of dT and dR.
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Otherwise, the scattering effect is dominant. The received

power will be determined by the radar cross section (RCS) of

the object [25], i.e.,

PR = PT + 20 log
λ

dT dR
+ RCS − 30 log (4π) , (5)

where RCS is in units of dB·m2 and is related with the surface

area and scattering characteristic of the object. Note that in

this situation the large-scale path loss depends on the product

of dT and dR.

In both cases, ai(t) can be calculated as

ai(t) = 10
PR−PT

20 . (6)

From the measurement results in [26], in most cases the

scattering model is more preferable. After all, the reflective

law is hard to be kept when the human moves naturally.

When there are multiple moving objects in the environ-

ment, there are multiple dynamic reflections, the received

signal is then

r(t) =

L
∑

l=1

ale
−jωcτl s (t − τl)

+

K
∑

i=1

aie
−jωcτi(t)s (t − τi(t)) + n(t), (7)

where the time delay di(t)/c is substituted by τi(t). Assuming

the bandwidth of the baseband signal is B, it is worth to note

that the time delay resolution in the time domain is 1/B.When

the delay difference between two reflection paths is less

than 1/B, it is hard to recognize them as two distinct paths.

For example, an LTE signal has a bandwidth of 20 MHz, its

delay resolution is 50 ns.

For LTE signal, we can use CRS to do channel estimation.

In each subframe that with 1 ms duration, there are four

OFDM symbols that contains CRS, and for 20 MHz band-

width configuration, in each symbol there are 200 subcarriers

occupied by CRS.

From the received signal, we can estimate the channel state

information (CSI) through the known CRS subcarriers. Since

the propagation channel is composed by the direct path, static

reflection paths, and the dynamic reflection paths, the CSI can

be separated into two parts, i.e., the static part and dynamic

part, as shown in the following,

H (ω, t) =

L
∑

l=1

ale
−jωcτl e−jωτl

+

K
∑

i=1

ai(t)e
−jωcτi(t)e−jωτi(t) + n(ω, t)

= Hs(ω) + Hd (ω, t) + n(ω, t), (8)

where ω is the angular frequency of the baseband subcarriers,

Hs(ω) is the static channel response and Hd (ω, t) is the

dynamic channel response, n(ω, t) is the received noise.

B. THE EFFECT OF NON-IDEAL FACTORS

In practical system, there are synchronization error, sampling

clock drift, frequency offset and phase noise. Considering

these factors, the baseband received signal will be

r(t) = ej[ωd t+φ(t)]

{

L
∑

l=1

ale
−jωcτ

′
l (t)s

[

t − τ ′
l (t)

]

+

K
∑

i=1

aie
−jωcτ

′
i (t)s

[

t − τ ′
i (t)

]

}

+ n(t), (9)

where ωd is the frequency offset, φ(t) is the phase noise. The

delays τ ′
l and τ ′

i are affected by the synchronization error 1

and the sampling clock drift δ(t), i.e.,

τ ′
l (t) = τl + 1 + δ(t),

τ ′
i (t) = τi(t) + 1 + δ(t). (10)

The drifting speed of the sampling clock is not neglectable

comparing with the the variation speed of τi. For example,

if a human moves with a speed of 1 m/s, the delay τi changes

within 6.6 ns per second. Whereas the clock drift is 10 ns

per second if a very high quality crystal oscillator is used

(assuming its frequency stability is 0.01 ppm). Nowadays,

however the frequency stability of commodity communica-

tion modules is often in between 1 ppm to 10 ppm. The clock

drift can be as large as 10 us in one second.

Correspondingly, the channel estimation result is affected

by these non-ideal factors

H ′(ω, t)= ej[ωd t+φ(t)]

{

L
∑

l=1

ale
−jωcτ

′
l (t)e−jωτ ′

l (t)

+

K
∑

i=1

ai(t)e
−jωcτ

′
i (t)e−jωτ ′

i (t)

}

+ n(ω, t)

= ej[ωd t+φ(t)]{H ′
s(ω, t)+H ′

d (ω, t)}+n(ω, t). (11)

In the process of delay estimation, we must explore various

methods to eliminate the impact of these factors.

C. LOCALIZATION MODEL

From (10) we can see that, in the delay estimation of the static

and dynamic paths, the bias terms caused by synchronization

error and sampling clock drift are same, i.e.,

τi(t) − τl = τ ′
i (t) − τ ′

l (t). (12)

Thus the propagation delay of the i-th reflection path can be

calculated as

τi(t) = τ0 + (τ ′
i (t) − τ ′

0(t)), (13)

where τ0 is the real propagation delay of the direct path,

τ ′
0 is the estimated delay of the direct path. The true value of

τ0 is calculated by the known positions of the transmitter and

receiver, where the position of base station is fixed and can be

provided by the telecommunication carrier, and the position

of mobile terminal is obtained by existed techniques such
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FIGURE 2. The localization model.

as satellite and innertial navigations, or localization through

cellular or Wi-Fi signals.

In practice, there might be obstacles between the transmit-

ter and receiver and the direct path is too weak. In this case,

we will try to find the first arrived path, no matter its strength.

However, for the estimation of τ ′
0, if the estimated first arrived

path is a static reflection path rather than the direct path, there

will be extra estimation error.

Once the propagation delay of the i-th reflection path is

estimated, the propagation distance of that path is known,

and we can determine an ellipse given the positions of trans-

mitter and receiver as two focal points. The sum distance

from the transmitter and receiver to the i-th moving object

just equals to the long axis of the ellipse. If we have two

pairs of transceivers, we can use two ellipses determining a

crossover point, which is the location of the moving object.

The localization model is shown in Fig. 2.

Usually there are multiple base stations available for an

LTE terminal to be listened to, although their signal strength

might be different. Passive localization of the moving tar-

get can be achieved for a terminal with only one antenna.

If one terminal is equipped with multiple distributed antennas

(e.g., for some specified equipment), or multiple terminals

can exchange their delay estimations, we can obtain more

precise localization results. In this paper, however, we mainly

study the delay estimation problem of one transceiver pair.

The problems of localization with multiple transceiver pairs

and tracking with consecutive delay estimations will be stud-

ied in future topics.

III. DELAY ESTIMATION ALGORITHM

To remove the impact of synchronization error and sam-

pling drift, we need simultaneously estimate the propaga-

tion delays of the dynamic path and the direct path. Each

dynamic path has independent fast changing phase, and the

channel responses of multiple dynamic paths are superim-

posed together. Thus the delay estimation of dynamic paths

belongs to the line spectra estimation problem, and we can

use classic super-resolution algorithm to estimate them. The

channel responses of static paths are also superimposed, they

are usually non-distinguishable due to the limited bandwidth,

and in a short duration the amplitudes and phases can be

seemed as fixed. Thus we use optimization-based algorithm

to solve this problem. Of course, some preprocessings on the

channel estimations are required for the first step. We will

compensate the frequency offset and separate the dynamic

and static channel responses.

A. PREPROCESSINGS

From (11), we know that the channel estimation values are

impacted by the frequency offset ωd and phase noise φ(t).

Actually, there is frequency synchronization along with the

frame synchronization. But there must be estimation error for

the frequency offset, thus we can regard ωd as the residual

frequency offset after the frequency synchronization.

A phase locked loop (PLL) is applied to track the phase.

From (11) we can see that, except the frequency offset and

phase noise, each path has a changing phase. We will first

transform the channel responses from the frequency domain

to time domain, and then track the strongest path in time

domain. The strongest path is either the direct path or a strong

reflection path, its phase term ωcτ
′
l (t) only changes with the

timing drift δ(t). This kind of changing is slow and can be

tracked. Meanwhile, the phase changes of the dynamic path

can be kept.

The PLL is a low-pass filter applied on the phase. The fre-

quency offset and the low-frequency components in the phase

noise can thus be compensated. However, the high-frequency

components in the phase noise are still left. We denote this

residual phase noise as φ′(t), with zero mean and variance σ 2
φ .

This residual phase noise is very small, and it usually does not

cause any harm to communication systems. However, through

practical experiments we find that its impact on the delay

estimation problem is serious and must be taken care of. The

channel response is thus expressed as

H ′′(ω, t) = ejφ
′(t)

{

L
∑

l=1

ale
−jωcτl e−jωτ ′

l (t)

+

K
∑

i=1

ai(t)e
−jωcτi(t)e−jωτ ′

i (t)

}

+ n(ω, t)

= ejφ
′(t)[H ′′

s (ω, t) + H ′′
d (ω, t)] + n(ω, t). (14)

Note that the impact of 1 + δ(t) is removed from the phase

terms due to phase tracking, but it cannot be removed from

the delay.

After phase tracking, we need separate the channel

response into dynamic part and static part, and then estimate

the corresponding delays respectively. Compared with the

static reflections, the strength of dynamic reflections gener-

ated by the moving objects are usually much lower. The static

reflections are usually generated by buildings, walls or fur-

niture. But the moving object are usually human bodies,

arms, or even fingers. The RCSs of these objects are usually

small. Thus the SNR of the dynamic channel response is

much lower than the static channel response. If we estimate
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the delays of dynamic paths without separation, the static

paths will behave as strong interferences.

We design a low pass filter to first separate the static

channel response, that is

Ĥs(ω, t) = FLP

{

H ′′(ω, t)
}

≈ H ′′
s (ω, t), (15)

where FLP {·} is a low pass filter. It can be implemented by a

moving average window, and the window length will control

the cutoff frequency. Since the mean value of φ′(t) is 0 and

φ′(t) is very small, the mean value of ejφ
′(t) is 1.

The dynamic channel response can then be separated as

Ĥd (ω, t) = H ′′(ω, t) − Ĥs(ω, t)

= [ejφ
′(t) − 1]H ′′

s (ω, t) + ejφ
′(t)H ′′

d (ω, t) + n(ω, t)

≈ jφ′(t)H ′′
s (ω, t) + H ′′

d (ω, t) + n(ω, t), (16)

where the approximation is because that φ′(t) is very small.

Since the magnitude of H ′′
s (ω, t) is possible to be much

larger than that ofH ′′
d (ω, t), for example 1000 times, the term

jφ′(t)H ′′
s (ω, t) is not neglectable.

B. DELAY ESTIMATION OF DYNAMIC PATHS

In this part, we first estimate the delays of the dynamic

paths, τ ′
i (t). From (14), we know that the channel response

of dynamic paths is

H ′′
d (ω, t) =

K
∑

i=1

ai(t)e
−jωcτi(t)e−jωτ ′

i (t)

=

K
∑

i=1

gi(t)e
−jωτ ′

i (t), (17)

where gi(t) denote the complex coefficient of the i-th dynamic

path. Since the carrier frequency ωc is much higher than the

baseband frequency ω, in a short duration (such as 100 ms),

the term ωcτ
′
i (t) is variant but the term ωτ ′

i (t) can be seemed

as a constant (only depends on ω). We consider the real-

time estimation problem that outputting the delay estimation

results slot by slot, where in each slot the fixed parameter

assumption is satisfied.

At each time instance t , the channel responses at different

subcarrier form a vector

h′
d (t)=











e−jω1τ
′
1 e−jω1τ

′
2 · · · e−jω1τ

′
K

e−jω2τ
′
1 e−jω2τ

′
2 · · · e−jω2τ

′
K

...
...

. . .
...

e−jωN τ ′
1 e−jωN τ ′

2 · · · e−jωN τ ′
K





















g1(t)

g2(t)
...

gK (t)











,

(18)

where ω1 to ωN are the know baseband frequency, τ ′
1 to

τ ′
K are parameters to be estimated.

From (16) we know that, there are also two interference

terms in the separated dynamic channel responses, where

n(ω, t) is circularly symmtric white Gaussian noise, and

jφ′(t)H ′′
s (ω, t) is the frequency-domain channel response

of the static paths multiplied by the residual phase noise.

The separated dynamic channel response can also be written

in vector form, i.e.,

ĥd (t) = h′
d (t) + n′(t), (19)

where the covariance matrix of n′(t) is

Ŵ = σ 2
φE{h′

s(t)h
′H
s (t)} + σ 2I. (20)

The estimation of delay τ ′
i , i = 1, . . . ,K , is a line

spectra estimation problem [28]. We will apply the classical

super-resolution estimation method, i.e., estimating signal

parameters via rotational invariance techniques (ESPRIT),

to solve it. The ESPRIT algorithm is oriented from array

signal processing. When the receiver is equipped with an

antenna array, we can separate the array into two equal-size

subarrays. The offsets of the corresponding antenna elements

in two subarrays are the same, that means, for a given incident

angle the differences of the propagation distances to the

elements of two subarrays are the same. The propagation

distance difference corresponds to a phase difference for the

received signal, and the phase difference is called a rotational

invariance factor. Through solving a generalized eigen-value

equation, the incident angle can be estimated.

For our delay estimation problem, the rotational factor

can be constructed from the multiple subcarriers structure.

We can form two subarrays with fixed subcarrier spacing, and

these two subarrays are related by a rotational factor matrix.

The delay information can be estimated from the rotational

factor matrix.

Concretely, after we get the estimation of the dynamic

channel response ĥd (t), two vectors x1(t) and x2(t) can be

constructed by extracting the elements in even and odd sub-

carriers, respectively, i.e.,

x1(t) =











e−jω1τ
′
1 · · · e−jω1τ

′
K

e−jω3τ
′
1 · · · e−jω3τ

′
K

...
. . .

...

e−jωN−1τ
′
1 · · · e−jωN−1τ

′
K

















g1(t)
...

gK (t)






+ n′

1(t)

= Ag(t) + n′
1(t), (21)

x2(t) = A







e−j1ωτ ′
1 · · · 0

...
. . .

...

0 · · · e−j1ωτ ′
K






g(t) + n′

2(t)

= A8g(t) + n′
2(t), (22)

where x2(t) is obtained from x1(t) through a rotation, and the

diagonal matrix 8 is the rotational invariance factor. We can

see that the delay information of all dynamic reflection paths

are involved in 8. Constructing equations to solve 8, we can

obtain the estimations of delays.

Concatenating x1(t) and x2(t), we obtain a new vector

y(t) =

[

x1(t)

x2(t)

]

=

[

Ag(t) + n′
1(t)

A8g(t) + n′
2(t)

]

=

[

A

A8

]

g(t) +

[

n′
1(t)

n′
2(t)

]

= Ag(t) + z(t), (23)
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where the covariance matrix of z(t) is Ŵz. Note that z(t) is a

rearranged version of n′(t), so that Ŵz is not equal to Ŵ.

Then we can obtain the covariance matrix of y(t),

R = E
{

y(t)yH (t)
}

= E
{

Ag(t)gH (t)A
H

+ z(t)zH (t)
}

= AE
{

g(t)gH (t)
}

A
H

+ E
{

z(t)zH (t)
}

= ARsA
H

+ Ŵz. (24)

Calculate the generalized eigendecomposition of the

matrix pair (R,Ŵz),

RU = ŴzU3, (25)

whereU is the generalized eigen space,3=diag{λ1, . . . , λN }

are generalized eigenvalues. Since there areK dynamic paths,

the first K eigenvalues should be significantly larger than the

latter N − K eigenvalues.

The eigen space U can thus be separated into signal sub-

space Us and null space Un, i.e.,

U = [Us,Un], (26)

where Us is the former K columns of U , and Un is the latter

N −K columns of U . The subspace spanned by ŴzUs should

be consisted with the subspace spanned byA. Thus there must

exist one non-singular matrix T , so that

U ′
s = ŴzUs = AT . (27)

Separating U ′
s into upper and lower half matrices, we can

get

U ′
s =

[

U1

U2

]

=

[

A

A8

]

T . (28)

Thereafter, we can derive that

U2 = A8T = U1T
−18T = U19, (29)

where 9 = T−18T . The eigenvalues of 9 must be equal

to the diagonal elements of 8, and the columns of T are the

eigenvectors of 9. Through solving 9, we can get rotational

factor 8, and then get the delay estimation.

The standard least-squares (LS) solution of 9 is

9 = (UH
1 U1)

−1UH
1 U2. (30)

However, in practical systems the covariance matrix R is

obtained from a finite number of noisy measurements, and

thus there are errors in the estimation of R and its eigen-

vectors. With probability one, the spanned space of U ′
s is

not exactly overlapped with the spanned space of A. In other

words, both U1 and U2 are noisy. In this situation, the total

least-squares (TLS) criterion is preferred to calculate 9.

Calculate the eigenvalue decomposition,
[

UH
1

UH
2

]

[

U1U2

]

= E3EE
H , (31)

and partition E into K × K submatrices,

E =

[

E11 E12

E21 E22

]

. (32)

The TLS solution of 9 is

9 = −E12E
−1
22 . (33)

C. DELAY ESTIMATION OF STATIC PATHS

In this part, we try to estimate the delay of the direct path.

Although in many situations, like in indoor or urban envi-

ronments, densely scattering is present, we are focusing on

the direct path and specular reflections. In a short duration,

the amplitudes and phases of static paths are all keep fixed.

These static paths contribute to the static channel response.

Thus unlike the estimation of dynamic paths, the frequency-

domain channel response vector of static paths will span

a one-dimensional subspace, no matter how many static

reflection existed. The subspace-based super-resolution algo-

rithms are no longer applicable here. To solve this prob-

lem, we consider two optimization based methods. With the

known frequency-domain channel response of the given delay

(i.e., pulse waveform in time-domain), we are looking for

the amplitude, phase and delay of each path to fit the overall

superimposed channel response.

1) DELAY ESTIMATION BASED ON SPARSE OPTIMIZATION

We consider time delay estimation problem of the static

paths in frequency domain. The frequency-domain channel

response is the summation of channel responses of the L static

paths,

Ĥs(ω) =

L
∑

l=1

ale
−jωcτl e−jωτ ′

l + ns(ω), (34)

and the channel responses in different baseband frequency

can form a vector

ĥs =
[

Ĥs(ω1) Ĥs(ω2) · · · Ĥs(ωN )
]T

. (35)

The delay estimation problem can be modeled as a sparse

optimization problem, which is to find the position of those

distinct paths.

Define a dictionary D ∈ C
N×F , in which different atoms

correspond the channel responses with different delays. Then

the delay estimation problem can be formulated as a sparse

optimization problem, i.e.,

α = argmin
α

{

1

2
‖ĥs − Dα‖22 + ‖α‖1

}

, (36)

where the element of α is the weight of the channel response

with different delay. The first term of the right side is to min-

imize the fitting error, i.e., to fit the static channel response

with weighted sum of the channel responses with different

delay. The second term is to minimize the L1 norm of the

weighting vector α. Optimizing the L1 norm is an approxi-

mation of the optimizing of L0 norm, which is to minimize

the number of non-zero elements in α. To minimize the sum
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TABLE 1. OMP based delay estimation.

of these two terms can achieve a balance between the fitting

error and the sparsity of the estimated reflection paths.

The optimization result is a sparse vector α with few non-

zero elements, where the positions of these non-zero elements

represent the delay estimations of the static reflection paths,

and the weights represent the amplitudes and phases of them.

Although we only require the delay of the first arrived path,

we can not get this parameter alone without joint estimation

of other information.

The problem (36) is a convex optimization problem, which

can be solved by some standard optimization program, such

as CVX. But the computational burden is high, and it is not

appropriate for realtime processing.

2) DELAY ESTIMATION BASED ON ORTHOGONAL

MATCHING PURSUIT

To reduce the computational burden, we consider a simpler

delay estimation algorithm based on orthogonal matching

pursuit (OMP). OMP is an sparse representation algorithm by

orthogonal decomposition. It uses sparse combinations from

a complete dictionary, and to synthesize the original signal

iteratively through fitting the residual error. The OMP algo-

rithm will orthogonalize the atoms at every decomposition

step, this will greatly increase the convergence speed.

The basic procedure is as follows. First, we construct the

dictionary of channel response vectors, where each vector

corresponds to a possible delay. Then we look for the dic-

tionary atom which has the highest correlation with the over-

all static channel response, and calculate the weight of the

selected atom according to the LS criterion. Next, we calcu-

late the residual error, look for the dictionary atom which has

the highest correlation with the residual error, and update the

sparse matrix with the combination of previous determined

atoms and this new atom. Recalculate the weight vector and

update the residual error. The iteration stopswhen the residual

error is less than a threshold.

The detailed implementation steps of the OMP algorithm

are summarized in Table 1.

IV. SIMULATION AND PERFORMANCE ANALYSIS

In this section, we will first derive the Cramer-Rao lower

bound (CRLB) of the delay estimation problem, and analyze

the relationship between the estimation error and various

parameters, e.g., SNR, signal bandwidth, delay differences.

Then we will simulate the performance of the delay

estimation methods under various configurations and com-

pare with CRLB.

A. CRAMER-RAO LOWER BOUND

According to (17)-(20), if there are K dynamic reflection

paths, the frequency-domain channel response vector at time t

is expressed as

ĥd (t)= h′
d (t) + n′(t)

=

K
∑

i=1

αie
−jϕi(t)

[

e−jω1τ
′
i , · · · , e−jωM τ ′

i

]T
+n′(t), (37)

where n′(t) is the noise and interference vector at time t , and

the covariance matrix of n′(t) is Ŵ.

The CRLB is given by the inverse of the Fisher information

matrix (FIM), i.e.,

Pcr = FIM−1, (38)

where the element of FIM is

FIM k,p = 2

N
∑

t=1

Re

{

(

∂h′
d (t)

∂τ ′
k

)H

Ŵ−1

(

∂h′
d (t)

∂τ ′
p

)}

. (39)

If there is only circular symmetric white Gaussian noise

in n′(t), Ŵ = σ 2I . When k = p,

FIM k,k =
2

σ 2

N
∑

t=1

Re

{

(

∂h′
d (t)

∂τ ′
k

)H (
∂h′

d (t)

∂τ ′
k

)

}

=
2N

σ 2
α2
k

M
∑

i=1

ω2
i . (40)

When k 6= p,

FIM k,p =
2

σ 2

N
∑

t=1

Re

{

(

∂h′
d (t)

∂τ ′
k

)H
(

∂h′
d (t)

∂τ ′
p

)}

=
2

σ 2

N
∑

t=1

Re

{

αkαpe
−j[ϕk (t)−ϕp(t)]

M
∑

i=1

ω2
i e

−jωi(τ
′
k−τ ′

p)

}

.

(41)

Discussion: From (40) and (41) we can see that, FIM k,k is

proportional to the integration time N and the SNR of the

reflection path α2
k/σ

2. With larger bandwidth, FIM k,k will

also increase with ωM . If there is only one path, the CRLB of

the delay estimation τk is the inverse of FIM k,k . Thus larger

FIM k,k implies lower estimation error.

If there are multiple paths, the difference of the delays

will affect the value of FIM k,p, and then affect the value

of Pcr . For example, if τ ′
k − τ ′

p = 2π/ωM , the summation

term
∑M

i=1 ω2
i e

−jωi(τ
′
k−τ ′

p) will be close to zero, thus FIM k,p

is close to zero. On the contrary, if the delays of two paths

are very close, i.e., τ ′
k − τ ′

p ≈ 0, the value of FIM k,p will

further depends on ϕk (t) − ϕp(t). If the phase difference

ϕk (t) − ϕp(t) keeps changing, the summation items inside

the brace will cancel each other out. The worst case is that

ϕk (t) − ϕp(t) keeps unchanged for t = 1 to N , then FIM k,p

is close to FIM k,k , this will decrease the determinant of FIM

and increase the CRLB.
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TABLE 2. Simulation parameters.

If there is also interference caused by the residual phase

noise in n′(t), as shown in (19) and (20), the correlation

between h′
d (t) and h

′
s(t) will also affect the values of FIM.

If their correlation is high, the determinant of FIM will be

small and this will also increase the CRLB.

The CRLB of the estimation error of the static paths can

be similarly derived. Since the SNR of the static path is much

higher than that of the dynamic paths, the CRLB of the delay

estimation of the static paths should be much lower.

B. SIMULATION RESULTS

We first consider the situation that only one moving object

exists. The root mean square error (RMSE) of the delay

estimation of the dynamic path is simulated, and the corre-

sponding CRLB is calculated. The simulation parameters are

listed in Table 2. We assume the LTE signal is transmitted

at 2.3 GHz center frequency. The frequency interval between

CRS subcarriers is 90 KHz, and totally 200 CRS subcarriers

are used, which is the typical configuration in 20MHz band-

width LTE signals.

The position of the transmitter is at (0, 0) m, and the

position of the receiver is at (10, 0) m. The start position of the

moving target is at (5, 10) m, and its moving speed is (1, 1.5)

m/s.Wefix the ratio of the direct path power and the reflection

path power as 10 dB, and change the SNR of the reflection

path power to the white Gaussian noise. The CSI is obtained

from the physical layer every 1 ms, and the integration time

of the covariance matrix for each estimation is 100 ms. The

delay estimation performance of the ESPRIT algorithm and

the CRLB are shown in Fig. 3. For the convenience of readers,

the RMSE of delay estimation is multiplied by the light speed,

so that the unit of measurement error is transformed to meter.

From Fig. 3 we can see that, in logarithm scale the CRLB

is inversely proportional to the SNR. It is well known that the

ESPRIT algorithm has threshold effect, its performance gets

bad seriously when the SNR is lower than a threshold.We can

clearly see this point in Fig. 3. For the estimation algorithm

with full paths (using all paths in time domain), when the

SNR is lower than−15 dB, the performancewill dramatically

degrade. We also tested the performance of an estimation

algorithm using extracted paths, where the frequency domain

channel response is first transformed into time domain, and

then a 7 samples long window is applied on the channel

response to extract the main paths and set the values of other

paths as zeros. We hope this method can suppress noise,

and we do observe the performance improvement in lower

FIGURE 3. RMSE of the distance estimation of one target with
different SNRs.

FIGURE 4. RMSE of the distance estimations of two targets with different
distance intervals.

SNR region. But in high SNR region, the performance of this

method degrades, and it has an error floor. This phenomenon

is because the pulse shape of the transmitted signal is not

an ideal impulse, it actually has many side lobes. When we

extract the main paths, the information hidden in side lobes

will be lost. This will certainly cause extra estimation error.

Next, we consider the situation where there are twomoving

objects simultaneously existed in the environment. From the

derivation of CRLB, we know that the delay difference of

two paths will affect the performance of the delay estimation.

Thus in this simulation, we change the distance difference

of these two reflection paths, and the other parameters are

keeping fixed. The SNRs of the direct path, the first reflection

path, and the second reflection path is 20 dB, 10 dB, and 3 dB,

respectively. The estimation errors and CRLBs of these two

paths are shown in Fig. 4.

From Fig. 4 we can see that, for target 2 the estimation

error decreases monotonically along with the increasing of

the distance difference of the two reflection paths. However,

for target 1 the estimation error increases first and only turns

down to decrease after the distance difference grows larger

than 7.5 m. Since the first reflection path is stronger than

VOLUME 7, 2019 160037



Y. Tian et al.: Passive Localization Through Channel Estimation of On-the-Air LTE Signals

FIGURE 5. RMSE of the distance estimation with the impact of phase
noise.

the second reflection path, when these two paths are too

close, the ESPRIT algorithm cannot distinguish two paths,

and only the delay of the stronger path is estimated. Thus in

this situation the estimation error of the first path is small, but

the estimation error of the second path is very large. When

the two paths separate a while, the ESPRIT algorithm can

distinguish two paths, but they will cause interference to each

other, thus the estimation errors of both paths are large. Until

after their separation is larger than half of the pulse width,

both estimation errors begin to decrease simultaneously.

In practical system, the residual phase noise will cause

interference due to the residual static channel response. Fig. 5

shows its impact on the estimation error with two situations.

One is that the variance of residual phase noise is larger than

the variance of the Gaussian noise, i.e., σ 2
φ = 10σ 2. The other

is opposite, σ 2
φ = 0.1σ 2. Since the residual static channel

response will cause interference to the estimation of the

delay of the dynamic path, the delay difference between the

dynamic path and the static path will affect the performance.

In this simulation, there is only one moving target, and the

SNRs of the direct path and the reflection path are 20 dB

and 10 dB, respectively.

For both of the high phase noise (high PN) and low phase

noise (low PN) situations, we have tried two estimation meth-

ods. The first one (Method 1) only considers the variance of

Gaussian noise in the covariance matrix of n′(t), as in (20),

even that the residual phase noise is actually existed. The sec-

ond one (Method 2) considers both the impact of Gaussian

noise and the residual phase noise. We can see from Fig. 5

that when the residual phase noise is small, the estimation

error is mainly affected by the Gaussian noise, both methods

have similar performance and we cannot see any variation

when the delay between the dynamic path and static path

changes. However, when the residual phase noise is large,

it will cause obvious influence. The RMSE of the delay esti-

mation changes with the distance difference of the dynamic

and direct paths. Moreover, the variation of the first method

is much larger than that of the second method, means that the

estimation performancewill be greatly impacted if we neglect

the effect of the residual phase noise.

FIGURE 6. RMSE of the distance estimation of the direct path.

At last, let us see the delay estimation performance of the

static paths.We consider that there are three static paths in the

channel, including one direct path and two reflection paths.

The delays of them are randomly set in (0, 100) ns, and the

first arrived path is always the direct path. The amplitude

ratios of these three paths are set as 1 : 0.1 : 0.02. The RMSE

of the delay estimation and the corresponding CRLB are

shown in Fig. 6, where the shown SNR is defined as the SNR

of the direct path. We can see that the RMSE decreases with

the increasing of SNR. The CRLB is quite low when SNR is

greater than 25 dB, say less than 0.01 m. But the performance

of the sparse optimization and the OMP algorithm are not as

good as the bound. It seems that there is an error floor, which

cannot be further reduced even if we reduce the interval of

the atoms in the dictionary. Since the OMP algorithm has

lower computational complexity than the sparse optimization

algorithm, and their performance are similar, we will use the

OMP algorithm to estimation the delay of the static paths in

the following experiments.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENT

RESULTS

A. PROTOTYPE AND MEASUREMENT ENVIRONMENTS

We designed a prototype system to receive LTE signals.

The RF part is implemented on AD-FMCOMMS2, which

is an evaluation board of the RF transceiver chip AD9361.

AD9361 is a popular RF chip used in 4G base stations,

it has adjustable carrier frequency from 70 MHz to 6 GHz.

The baseband processing is on ZedBoard, an evaluation

board of the Xilinx all programmable SoC chip Zynq-7020.

Zynq-7020 involves dual-core ARM processors and pro-

grammable logics, so we can implement our own baseband

processing algorithms on chip. To reduce the implementation

complexity and get real-time results, for each subframe of

LTE signal we only extract one time of channel estimation.

This is equivalent to 1 ms sampling interval to the channel

response.

We use another prototype to transmit LTE signal, so that

the measurement environment is under control. The transmit

power is 10 dBmW and the carrier frequency is 2.3 GHz.
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FIGURE 7. The experiment environment.

As a comparison, the transmit power of a real macro-BS is

about 46 dBmW, and that of a micro-BS is about 30 dBmW.

We implement the experiments in the hall of a building,

as shown in Fig. 7, where there are plenty of static reflections

by thewalls and facilities.We use a transmitter with one trans-

mit antenna, and a receiver with two receiving antennas. The

receiver can simultaneously processes two incoming signals

from two antennas, thus for the convenience of description

we just call that there are two receivers. The positions of

the transmitter and receivers are as shown in Fig. 8, two

receivers are located on both sides of the right triangle while

the transmitter is at the origin of the coordinate. There is

LOS propagation between the transmitter and receiver, and

their distance is set as 4 m. If we use power amplifier on

the transmitter side, the distance of the measurement envi-

ronment can be correspondingly enlarged. But as we have

clarified, the error of delay estimation depends on the SNR

instead of the propagation distance. This configuration is

just an example to show the performance of the proposed

schemes. In practical situations, we can use one receiver to

receive the signals from multiple surrounding base stations.

This will fully use the opportunity provided by the signals

over the air.

A walking human is tested as the moving object, whose

RCS is about 0.5 m2, and the relative permittivity of the

clothes is about 5. We tested two traces to see the delay esti-

mation and localization results. As shown in Fig. 8, the first

trace is along the diagonal line of the triangle, from (7, 7) m to

(1.4, 1.4) m, the total moving distance is 8 m. The other trace

is on the arc with radius 8 m, the coverage angle is about π/3

and the total moving distance is also 8 m. The walking speed

is about 1.6 m/s.

B. SIGNAL WAVEFORMS AND THE EIGENVALUES

Let us first see the channel response when the human is

moving on trace 1. To see the time-variant effect clearly,

we transformed the channel response from frequency domain

to time domain, and only see the 7 samples around the main

path. From Fig. 9, we can see that when the human is far away

from the transmitter and receiver, the reflection path is weak,

FIGURE 8. The geometric configuration of test scenes.

FIGURE 9. The time-domain channel response.

and the ripples caused by the interference between the direct

path and the reflection path is not obvious. On the contrary,

when the human moves close, the reflection path becomes

strong and the ripples becomes significant.

The overall channel response is the superposition of the

static paths and the dynamic paths. If we separate the dynamic

paths from the static paths, the variation of the channel

response will be clearer. Fig. 10 shows the real and imaginary

parts of the separated dynamic channel response, where only

the main path in time domain is demonstrated. We can see

that when the reflection path is weak, the noise variance in

the imaginary part is larger than that in the real part. This is

actually the impact of the residual phase noise. As we have

derived in (16), the residual phase noise mainly affect the

imaginary part of the dynamic channel response.

With the dynamic channel response, we can form the

covariance matrix R as in (24). Fig. 11 shows the eigenvalues

of R, and Fig. 12 shows the generalized eigenvalues of matrix

pair (R,Ŵz), where the y-axis is in logarithm values. The first

and second largest eigenvalues are shown. In this experiment,

the human moving actually starts at 1.5 second and stops
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FIGURE 10. The real and imaginary parts of the dynamic channel
response.

FIGURE 11. The first and second largest eigenvalues of R.

at 7.5 second. We can see that the eigenvalues change with

the moving states and the reflective strength. In Fig. 11, when

the human is not moving (before 1.5s and after 7.5s), the first

largest eigenvalue is coming from Ŵz, i.e., the interference

caused by static paths and the residual phase noise, and

the second largest eigenvalue is coming from the Gaussian

noise. When the human is moving, depending on the strength

of the reflection path, the first largest eigenvalue might be

caused by the interference or by the dynamic path. Thus if

we only use the eigenvalues of R, there might be mistake

to choose the expected signal subspace corresponds to the

dynamic path. On the contrary, in Fig. 12 we can see that

the largest generalized eigenvalue only corresponds to the

dynamic path. We can always choose the correct subspace

based on the largest eigenvalue.

C. DELAY ESTIMATION AND LOCALIZATION RESULTS

The root mean square error (RMSE) of delay estimation

results are given in Fig. 13, where the human is moving

on trace 1. For the convenience of comparing, the delay

estimation results are multiplied with the light speed, i.e., the

FIGURE 12. The first and second largest generalized eigenvalues
of (R, Ŵz ).

FIGURE 13. The RMSE of delay estimations on trace 1.

values we actually demonstrated are the estimation error

of propagation distances. For each trace, we have repeated

the experiment for 20 times, and then the statistical results

are calculated. Fig. 14 shows the RMSE of the localization

results by using the delay estimations from Rx1 and Rx2.

We can see that when the human is at the far end of the trace,

the delay estimation error is large and thus the localization

error is large. While when the human moves close to the near

end, the delay estimation error reduces and correspondingly

the localization performance improves. The reflection path

is weaker when the propagation distance is longer, and the

performance of delay estimation is greatly affected by the

SNR of the reflection path.

The performance of delay estimation and localization on

trace 2 are shown in Fig. 15 and 16. We can see that the

estimation error is larger in this case. The main reason is that,

on trace 2 the variation of carrier phase is much slower. It is

only about 1/5 of the variation speed on trace 1. Although

the moving speed of the human is the same, the propagation

distance of the reflection path changes with different rates

160040 VOLUME 7, 2019
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FIGURE 14. The RMSE of localization results on trace 1.

FIGURE 15. The RMSE of delay estimations on trace 2.

FIGURE 16. The RMSE of localization results on trace 2.

given different geometry configurations. The slower chang-

ing carrier phase will affect the covariance estimation of the

dynamic channel vector, and then affect the estimation error

of the ESPRIT algorithm.

VI. CONCLUSION

In this paper, a passive localization method using the oppor-

tunistic on-the-air LTE signal is studied. We built a channel

model that incorporate the transceiver imperfections, and

the impacts of timing drift and phase noise are specially

emphasized. Then we designed the preprocessing method

to separate the dynamic and static channel responses, and

proposed corresponding delay estimation methods for the

dynamic and static paths. The CRLB of the delay estima-

tion problem is derived, and simulations are executed to

analyze the impacting factors. A prototype is implemented

and passive localization experiments are carried out in real

environments. The experiment results show the preliminary

feasibility of passive localization via on-the-air LTE signals,

and the performance is mainly restricted by weak reflection

and slow movement.
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