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In the last years, optimal control theory (OCT) has emerged as the leading approach for

investigating neural control of movement and motor cognition for two complementary

research lines: behavioral neuroscience and humanoid robotics. In both cases, there are

general problems that need to be addressed, such as the “degrees of freedom (DoFs) prob-

lem,” the common core of production, observation, reasoning, and learning of “actions.”

OCT, directly derived from engineering design techniques of control systems quantifies

task goals as “cost functions” and uses the sophisticated formal tools of optimal control

to obtain desired behavior (and predictions). We propose an alternative “softer” approach

passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernet-

ics of action.The basic idea is that actions (overt as well as covert) are the consequences of

an internal simulation process that “animates” the body schema with the attractor dynam-

ics of force fields induced by the goal and task-specific constraints.This internal simulation

offers the brain a way to dynamically link motor redundancy with task-oriented constraints

“at runtime,” hence solving the “DoFs problem” without explicit kinematic inversion and

cost function computation. We argue that the function of such computational machinery

is not only restricted to shaping motor output during action execution but also to provide

the self with information on the feasibility, consequence, understanding and meaning of

“potential actions.” In this sense, taking into account recent developments in neuroscience

(motor imagery, simulation theory of covert actions, mirror neuron system) and in embod-

ied robotics, PMP offers a novel framework for understanding motor cognition that goes

beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the

same time a review of the PMP rationale, as a computational theory, and a perspective

presentation of how to develop it for designing better cognitive architectures.

Keywords: optimal control theory, passive motion paradigm, synergy formation, covert actions, iCub, humanoid

robots, cognitive architecture

“Nina: I want to be perfect.

Thomas: Perfection is not just about control. It’s also about

letting go.”

A conversation between Nina Sayers and Thomas Leroy, the stu-

dent and the dance teacher in the movie“The Black Swan”directed

by Aronofsky (2010).

PUTTING THE ISSUE INTO CONTEXT

Since the time of Nicholas Bernstein (1967) it has become clear

that one of the central issues in neural control of movement is

the “Degrees of Freedom (DoFs) Problem,” that is the compu-

tational process by which the brain coordinates the action of a

high-dimensional set of motor variables for carrying out the tasks

of everyday life, typically described, and learnt in a “task-space”

of much lower dimensionality. Such dimensionality imbalance is

usually expressed by the term “motor redundancy.” This means

that the same movement goal can be achieved by an infinite num-

ber of combinations of the control variables which are equivalent

as far as the task is concerned. But in spite of so much freedom,

experimental evidence suggests that the motor system consistently

uses a narrow set of solutions. Consider, for example, the task of

reaching a point B in space, starting from a point A, in a given

time T. In principle, the task could be carried out in an infinite

number of ways, with regards to spatial aspects (hand path), timing

aspects (speed profile of the hand), and recruitment patterns of the

available DoF’s. In contrast, it was found that the spatio-temporal

structure of this class of movements is strongly stereotypical, what-

ever their amplitude, direction, and duration: the path is nearly

straight (in the extrinsic, Cartesian space, not the intrinsic, artic-

ulatory space) and the speed profile is nearly bell-shaped, with

symmetric acceleration and deceleration phases (Morasso, 1981;

Abend et al., 1982). That this stereotypicity should be attributed to

internal control mechanisms, not to biomechanical effects, is sug-

gested by the observation of reaching movements in different types

of neuromotor impaired subjects. For example, in the case of ataxic

patients, although they still can reach the target, spatio-temporal

invariance is grossly violated: paths are strongly curved, with dis-

tortion patterns that change with the direction of movement, and

the speed profile is asymmetric (Sanguineti et al., 2003).

CYBERNETICS OF PURPOSIVE ACTIONS

A movement, per se, is nothing unless it is associated with a goal

and this usually requires recruitment of a number of joints, in

the context of an action. Recognizing the crucial importance of

multi-joint coordination was really a paradigm shift from the
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classical Sherringtonian viewpoint (typically focused on single-

joint movements), to the Bernsteinian quest for principles of

coordination or synergy formation. A coordinated action is a

class of movements plus a goal. Redundancy is a side-effect of

this connection and thus redundancy is necessarily task-oriented,

something to be managed “on-line” and “rapidly” updated as the

action unfolds. As descriptive concepts, coordination and syn-

ergy are equivalent: both refer to the fact that, in the context of

a given set of behaviors, systematic correlations between different

effectors can be observed. However, such correlations are just an

epiphenomenon, determined by a deeper structure, namely the

underlying control mechanisms in the motor system that acti-

vates groups of effectors as single units in different moments of

an action. Shortly, we suggest calling it the “cybernetics of pur-

posive actions.” Generally speaking, we consider actions as opera-

tional modules in which descending motor patterns are produced

together with the expectation of the (multimodal) sensory conse-

quences. Mounting evidence accumulated in the last 30 years from

different directions and points of view, such as the equilibrium

point hypothesis (Asatryan and Feldman, 1965; Feldman, 1966;

Bizzi et al., 1976, 1992; Feldman and Levin, 1995), mirror neurons

system (Di Pellegrino et al., 1992), motor imagery (Decety, 1996;

Crammond, 1997; Grafton, 2009; Kranczioch et al., 2009; Munz-

ert et al., 2009), motor resonance (Borroni et al., 2011), embodied

cognition (Wilson, 2002; Gallese and Lakoff, 2005; Gallese and

Sinigaglia, 2011; Sevdalis and Keller, 2011), etc., suggest that in

order to understand the neural control of movement, the obser-

vation, and analysis of overt movements is just the tip of the

iceberg because what really matters is the large computational basis

shared by action production, action observation, action reasoning,

and action learning.

EQUILIBRIUM POINT HYPOTHESIS – AN EXTENDED VIEW

Let us go back to the issue of stereotypicity of reaching movements:

where is it coming from? A general concept that was in the back-

ground of many studies during the mid-1960s to mid-1980s was

the equilibrium point hypothesis (EPH: Asatryan and Feldman,

1965; Feldman, 1966; Bizzi et al., 1976, 1992; Feldman and Levin,

1995). Its power comes from its ability to solve the “DoFs prob-

lem” by positing that posture is not directly controlled by the brain

in a detailed way but is a “biomechanical consequence” of equi-

librium among a large set of muscular and environmental forces.

In this view, “movement” is a symmetry-breaking phenomenon,

i.e., the transition from an equilibrium state to another. In the

quest for motor modules, studies were carried out with intact and

spinalized animals (Bizzi et al., 1991; Mussa Ivaldi and Bizzi, 2000;

d’Avella and Bizzi, 2005; Roh et al., 2011) showing that motor

behaviors may be constructed by muscle synergies, with the asso-

ciated force fields organized within the brain stem and spinal cord

and activated by descending commands from supraspinal areas.

Muscle synergies were also shown to be correlated to the control

of task-related variables (e.g., end-point kinematics or kinetics,

displacement of the center of pressure; (Ivanenko et al., 2003;

Torres-Oviedo et al., 2006). Using techniques from control theory,

(Berniker et al., 2009) proposed a design of a low-dimensional

controller for a frog hind limb model, that balances the advan-

tages of exploiting a system’s natural dynamics with the need to

accurately represent the variables relevant for task-specific control.

They demonstrated that the low-dimensional controller is capable

of producing movements without substantial loss of either effi-

cacy or efficiency, hence providing support for the viability of the

muscle synergy hypothesis and the view that the CNS might use

such a strategy to produce movement “simply and effectively.”

We emphasize that the additivity of the muscle synergies is

ultimately made possible by the additivity of the underlying force

fields. In the classical view of EPH, the attractor dynamics that

underlies reaching movements is based on the elastic properties of

the skeletal neuromuscular system and its ability to store/release

mechanical energy. However, this may not be the only possibil-

ity. The discovery of motor imagery and the strong similarity of

the recorded neural patterns in overt and covert movements, sug-

gests that attractor dynamics and the associated force fields may

not be uniquely determined by physical properties of the neu-

romuscular system but may arise as well from “similar” neural

dynamics due to interaction among brain areas that are active in

both situations. In this sense, the original EPH viewpoint can be

extended by positing that cortico-cortical, cortico-subcortical, and

cortico-cerebellar circuits associated with synergy formation may

also be characterized by similar attractor mechanisms that cooper-

ate in shaping flexible behaviors of the body schema in the context

of ever-changing environmental interactions. The proposed PMP

framework goes in this direction.

On the other hand, it is still an open question whether or not the

motor system represents equilibrium trajectories (Karniel, 2011).

Many motor adaptation studies, starting with the seminal paper

by Shadmehr and Mussa-Ivaldi (1994), demonstrate that equilib-

rium points or equilibrium trajectories per se are not sufficient

to account for adaptive motor behavior, but this is not sufficient

to rule out the existence of neural mechanisms or internal models

capable of generating equilibrium trajectories. Rather, as suggested

by Karniel (2011), such findings should induce the research to shift

from the lower level analysis of reflex loops and muscle proper-

ties to the level of internal representations and the structure of

internal models. This is indeed the motivation and the purpose of

our proposal: to model the posited internal models in terms of an

extension of the EPH.

OPTIMAL CONTROL THEORY

The first attempt to formulate in a mathematical manner the

process by which the brain singles out a unique spatio-temporal

pattern for a reaching task among infinite possible solutions was

formulated by Flash and Hogan (1985), in the framework of the

classical engineering design technique: optimal control theory

(OCT). The general idea is that in order to design the best possible

controller of a (robotic/human) system, capable of carrying out

a prescribed task, one should define first a “cost function,” i.e., a

mathematical combination of the control variables that yields a

single number (the “cost”): This function is generally composed

of two parts: a part that measures the “distance” of the system

from the goal and a part (regularization term) that encodes the

required “effort.” The design is then reduced to the computation

of the control variables that minimize the cost function, thus find-

ing the best possible trade-off between accuracy and effort. In

the case of Flash and Hogan (1985), the regularization term was
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the “integrated jerk” and they showed that the solution of such

minimization task was indeed consistent with the spatio-temporal

invariances found by Morasso (1981). Other simulation studies

found similar results by choosing different types of cost functions,

such as “integrated torque change” (Uno et al., 1989), “minimum

end-point variance”(Harris and Wolpert, 1998),“minimum object

crackle” (Dingwell et al., 2004), “minimum acceleration criterion”

(Ben-Itzhak and Karniel, 2008). In this line of research, optimal

control concepts were used for deriving off-line control patterns,

to be employed in feed-forward control schemes. A later develop-

ment (Todorov and Jordan, 2002; Todorov, 2004) suggested using

an extension of OCT that incorporates sensory feedback in the

computational architecture. In this closed-loop control technique,

a block named “Control Policy” generates a stream of motor com-

mands that optimize the pre-defined cost function on the basis of a

current estimate of the “state variables”; this estimate integrates in

an optimal way (by means of a “Kalman filter”) feedback informa-

tion (coming from delayed and noise-corrupted sensory signals)

with a prediction of the state provided by a “forward model” of

the system’s dynamics, driven by an “efference copy” of the motor

commands. One of the most attractive features of this formula-

tion, in addition to its elegance and apparent simplicity, is that it

blurs the difference between feed-forward and feedback control

because the control policy governs both. Recent developments

show that OCT has gradually emerged as a powerful theory for

interpreting a range of motor behaviors (Scott, 2004; Chhabra

and Jacobs, 2006; Li, 2006; Shadmehr et al., 2010), online move-

ment corrections (Saunders and Knill, 2004; Liu and Todorov,

2007), structure of motor variability (Guigon et al., 2008a; Kutch

et al., 2008), Fitts’ law and control of precision (Guigon et al.,

2008b) among others. At the same time, the framework has also

been applied for controlling anthropomorphic robots (Nori et al.,

2008; Ivaldi et al., 2010; Mitrovic et al., 2010; Simpkins et al.,

2011).

Open challenges in OCT

A basic challenge within this approach is to derive the optimal con-

trol signal with non-linear time-varying systems, given a specific

cost function and assumptions as to the structure of the noise. It is

well known that this process comes with heavy computational costs

and requires challenging mathematical contortions to solve even

the simplest of the linear control problems (Bryson, 1999; Scott,

2004). Recent reformulations (Todorov, 2009) attempt to specifi-

cally address this topic by using concepts from statistical inference

and thereby reducing the computation of the optimal “cost to go”

function to a linear problem. At the same time, how these formal

methods can be implemented through distributed neural networks

has been questioned by numerous authors (Scott, 2004; Todorov,

2006; Guigon, 2011). A seemingly unrelated issue that is also worth

mentioning here concerns the relationship between posture and

movement. OCT based approaches generally speak about “goal

directed” movements and speak very little about the integration

(and interference) between posture and movement (Ostry and

Feldman, 2003; Guigon et al., 2007) in an acting organism. We

believe, all these issues are in fact related to the lack of considera-

tion of the characteristics of the underlying neuromuscular system

that ultimately generates movement.

Optimal control theory is a sophisticated motor control model

directly derived from engineering“servo”theory, extended by inte-

grating internal models and predictors. The“fact”is that such engi-

neering paradigms were designed for high bandwidth, inflexible,

consistent systems with precision sensors. The “difficulty” lies in

adapting these models to the typical biological situation,character-

ized by low bandwidth, high transmission delays, variable/flexible

behavior, noisy sensors, and actuators. In contrast, evolution nat-

urally aided biological systems to establish “soft” mechanisms that

“counteract” these factors and yet produce robust, flexible behav-

iors. Motor control arises from the interplay between processes

both at neural and musculoskeletal levels. Although it is gen-

erally believed that the neural level has a dominant role in the

control of movements, there is evidence that the mechanics of

moving limbs in interaction with the environment can also con-

tribute to control (Chiel and Beer, 1997; Nishikawa et al., 2007). We

believe OCT based approaches that begin with the basic assump-

tion that behavior can be understood by minimization of a cost

function are too general and do very little to exploit specific prop-

erties of the system they intend to control. That such techniques

can be applied to a wide range of problems ranging from “ani-

mal foraging” to “national policy” making speaks rather about the

power of formal mathematical methods. However, when applied

to specific problems like coordination of movement in humans

or humanoids, it may be possible to simplify the computational

machinery by taking into account the properties and constraints of

the physical system that is being coordinated (like, stiffness, reflex,

local distributed processing/learning etc). This may in turn endow

the computational model with greater flexibility, scalability, and

robustness.

Optimality entails the choice of a cost function, which indicates

a quantity to minimize. The nature of the cost function is a highly

debated issue. Part of the confusion arises from the fact that all

the proposed cost functions (jerk, energy, torque change, among

several others) make similar predictions on basic qualitative char-

acteristics of movement, e.g., trajectories, velocity profiles (Flash

and Hogan, 1985; Uno et al., 1989; Harris and Wolpert, 1998;

Todorov and Jordan, 2002; Guigon et al., 2007). Yet, a thorough

quantitative analysis is in general lacking that could provide more

contrasted results. In the standard formulation of OCT, the cost for

being in a state and the probability of state transition depending

on the action are explicitly given (Doya, 2009). However, in many

realistic problems, such costs and transitions are not known a pri-

ori. Thus, we have to identify them before applying OCT or learn

to act based on past experiences of costs and transitions (using

reinforcement learning techniques etc). Similar difficulties also

occur in the robotic version of the “DoFs problem” because, for

robots interacting with unstructured environments, it is difficult

to identify and carefully craft a cost function that may promote the

emergence/maturation of purposive, intelligent behavior. This is

relevant if we want to go “beyond” reach/grasp movements to more

complex manipulation tasks like tool use which in fact “begins”

once an object of interest is reached and grasped. It has been

recently demonstrated ingeniously that it may be possible to learn

the desirability function without explicit knowledge of the costs

and transitions using “Z-learning” (Todorov, 2009). It has also

been shown to converge considerably faster than the popular “Q
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learning” (Watkins and Dayan, 1992). But as Doya (2009) sug-

gests, such learning may be trivial for examples like walking on

grid-like streets, but may turn out to be very complicated for cases

like shifting the body posture by activating several DoFs.

Coming to the topic of redundancy, optimal control can be con-

sidered as a solution for such problems by minimizing the norm

of the control signal, pseudo-inverse can be used to replace the

inverse model block in a non-invertible redundant system. How-

ever, a central issue that still remains to be understood is how

the brain uses different solutions under different circumstances

(Karniel, 2011). Multiple internal models as proposed by different

authors (Wolpert and Kawato, 1998; Haruno et al., 2001; Demiris

and Khadhouri, 2006) might be the key to represent multiple solu-

tions to the same goal. Nevertheless, the criterion for selecting one

of the multiple solutions under various cases is open for future

research. This goes to the contentious issue of “Sub–optimality.” The

issue of sub-optimality in motor planning and the role of “motor

memory” in consolidating the choice of a suboptimal strategy has

been recently addressed by Ganesh et al. (2010), by showing the

role of motor memory in the local minimization of task-specific

variables. Zenzeri et al. (2011) have addressed this issue in rela-

tion with bimanual stabilization of an unstable task. The ability

of expert users to switch between control strategies with strongly

different cost functions was explored recently by Kodl et al. (2011),

who showed that in suitable behavioral conditions subjects may

randomly select from several available motor plans to perform a

task. Generally speaking, the investigation of tasks that attempt to

address activities of daily life, rather than artificial lab experiments,

shows that the traditional approach to motor control, in the frame-

work of a single plan, characterized by regular patterns related to the

minimum of a cost function, can only offer a narrow view of the issue.

In contrast, what is needed is a mechanism to hierarchically structure

and modulate motion plans “on-line,” in a multi-referential frame-

work, in such a way to allow to mix goals and constraints in a variety

of task-related reference systems.

All this is not to say that optimal control concepts are not

relevant for addressing motor control and synergy formation in

humans and humanoid robots, set aside the successful application

of optimization techniques and Bayesian modeling to multisen-

sory and sensorimotor integration (Ernst and Banks, 2002; Kord-

ing and Wolpert, 2004; Stevenson et al., 2009). The point is that

most studies on application of OCT to motor control were aimed

at global optimization, where subjects were supposed to search the

unique optimal solution for the given task and the issue of sub-

optimality, if considered at all, was limited to address incomplete

convergence to the unique optimum (Izawa et al., 2008). In con-

trast, real life tasks that require skilled control of tools in a variable,

partially unknown environment are likely to require the ability to

switch from one strategy to another, in the course of an action,

accepting suboptimal criteria, in each phase of the action, provided

that the overall performance satisfies the task requirements. In this

sense, the existence of multiple optima and the ability of the subjects

to access them is a key element of skilled behavior. At the same time,

taking into account the properties and constraints of the physical

(and musculoskeletal) system that is being coordinated can alle-

viate issues related to “computational cost,” posture–movement

integration, local computing principles realized using distributed

neural networks, and motor skill learning. The PMP framework,

analyzed in the following sections, goes in this direction.

PASSIVE MOTION PARADIGM: THE GENERAL IDEA

An alternative to OCT (both versions, feed-forward and feedback)

as a general theory of synergy formation, is the passive motion

paradigm (PMP: Mussa Ivaldi et al., 1988). The focus of attention

is shifted from cost functions to force fields. The basic idea can

be formulated in qualitative terms by suggesting that the process

by which the brain can determine the distribution of work across

a redundant set of joints, when the end-effector is assigned the

task of reaching a target point in space, can be represented as an

“internal simulation process” that calculates how much each joint

would move if an externally induced force (i.e., the goal) pulls the

end-effector by a small amount toward the target. This internal

simulation in turn causes the incremental elastic reconfiguration

of the internal body schema involved in generating the action,

by disseminating the force field across the kinematic chain (more

generally, task-specific kinematic graph) which characterizes the

articulated structure of the human or robot. The mechanism is

labeled “passive” in line with the EPH because the equilibrium

point is not explicitly specified by the brain. Instead, it just con-

tributes to the activation of “task-related”force fields. When motor

commands obtained by this process of internal simulation are

actively transmitted to the actuators, the robot will reproduce the

same motion.

Considering the mounting evidence from neuroscience in support

of common neural substrates being activated during both “real and

imagined” movements (Jeannerod, 2001; Kranczioch et al., 2009;

Munzert et al., 2009; Thirioux et al., 2010), it is not unreasonable to

posit that also real, overt actions are the results of an “internal simu-

lation” as in PMP. We further posit that this internal simulation is a

result of the interactions between the “internal body model” and the

attractor dynamics of force fields induced by the goal and task-specific

constraints involved during the performance of an “Action.” If the

mental simulation converges (i.e., goal is realized), then the move-

ment can be executed. Otherwise, convergence failure may play the

role of a crucial internal event, namely the starting point to break

the action plan into a sequence of sub-actions, by recruiting addi-

tional DoFs, affordances of tools that may allow the realization of

the goal etc. In this sense, PMP can be considered a generalization of

EPH from action execution (“overt actions”) to action planning and

reasoning about actions (“covert actions”).

Passive motion paradigm: the computational formulation

Let q be the set of all the DoFs that characterize the body of a

human or humanoid, possibly extended by including the DoFs of

a manipulated object (like a tool). Any given task identifies one

or more “end-effectors” and is defined by the motion x(t) of one

end-effector with respect to some reference point. The natural ref-

erence frame for x(t) is linked to the environmental (extrinsic)

space and not the joint (intrinsic) space. Moreover, the dimen-

sionality of q is generally much greater than the dimensionality

of x.

The basic idea of the PMP is to express the goal of an action

(e.g.,“reach a target point P”) by means of an attractive force field,

centered in the target position (the target is the “source” of the
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field) and apply it to the body schema, in particular to the task-

related end-effector. The whole body schema will be displaced

from the initial equilibrium configuration to a final configuration

where the force is null (when the end-effector reaches the target).

This relaxation process, from one equilibrium state xA = f (qA) to

another one xB = f (qB)1, is analogous to the mechanism of coor-

dinating the motion of a wooden marionette by means of strings

attached to the terminal parts of the body: the distribution of the

motion among the joints is the “passive” consequence of the vir-

tual forces applied to the end-effectors and the “compliance” of

different joints.

It is possible to express the dynamics of PMP by means of a

graph as in Figure 1 (top panel). In mathematical terms the PMP

can be expressed by the following equations:

⎧

⎪

⎨

⎪

⎩

F = K (xP − x)

T = J T F

q̇ = Γ(t) A T

(1)

F is the force field, with intensity and shape determined by the

matrix K. In the simplest case, K is proportional to an identity

matrix and this corresponds to an isotropic field, converging to

the target along straight flow lines. J is the Jacobian matrix of the

kinematic mapping from q to x. This matrix is always well defined,

whatever the degree of redundancy of the system. For humanoid

robots, it can be easily computed analytically. In biological organ-

isms, in which x and q are likely represented in a distributed

manner, J can be learnt through“babbling”movements and repre-

sented by means of neural networks (Mohan and Morasso, 2007).

An important property of kinematic chains is that while the Jaco-

bian matrix maps elementary motions (or speed vectors) from the

intrinsic to the extrinsic space, the transpose Jacobian maps forces

(or force fields) from the extrinsic to the intrinsic space.

The bottom panel of Figure 1 illustrates the process of map-

ping the task-oriented “force field” defined in the extrinsic space

into a “torque field” in the intrinsic joint space: this is the crucial

step in solving the DoF problem because the former field generally

has a much smaller dimensionality than the latter and still they are

causally related in a flexible way. The dimensionality imbalance

implies that each point in the extrinsic space (a given position of

the task-selected end-effector) corresponds to a whole manifold

in the intrinsic space, what is also known as the “null space” of

the kinematic function x = f (q). In the example of Figure 1, this

manifold is a curved line that stores all the possible joint configu-

rations compatible with a given position of the end-effector. The

shape of the torque field implicitly determines which configura-

tion is chosen. A is a virtual admittance matrix that transforms

the torque field to the degree of participation of any individual

joint to the collective relaxation process. The fact that trajectories

generated according to this mechanism tend to be straight is implicit

in the shape of the force field and is not explicitly “programmed.”

Γ(t) is a time-varying gain, or time base generator, that imple-

ments “terminal attractor dynamics” (Zak, 1988). A terminal

1x = f (q) is the kinematic function that determines the position of any end-effector

given the values of the DoFs, i.e., the forward kinematics of the coordinated body

chain.

attractor is an equilibrium point which is reached in a specified,

finite time, in contrast with the asymptotic behavior of standard

attractor systems. Informally stated, the idea behind terminal attrac-

tor dynamics is similar to the temporal pressure posed by a deadline

in a grant proposal submission. A month before the deadline, the

temporal pressure has low intensity and thus the rate of document

preparation is scarce. But the pressure builds up as the deadline

approaches, in a markedly non-linear way up to a very sharp peak

the night before the deadline, and settles down afterward. The

technique was originally developed by Zak (1988) for associative

memories and later adopted for the PMP both with humans and

robots (Morasso et al., 1994, 1997, 2010; Tsuji et al., 2002; Tanaka

et al., 2005; Mohan et al., 2009, 2011a). It should be remarked that

the mechanism, in spite of its simplicity, is computationally very

effective and can be applied to systems with attractor dynamics of

any complexity. From the conceptual point of view, Γ(t) has the

role of the GO-signal advocated by Bullock and Grossberg (1988)

for explaining the dynamics of planned arm movements.

Equation 1 expresses the “Inverse Internal Model” of the com-

putational architecture that generates synergetic activations of all

the joints q(t), to be sent to the motor controller. But this is only

part of the machinery which is necessary for carrying out mental

simulations of virtual and real actions. The missing part is a “For-

ward Internal Model,” driven by an efference copy of the flow of

motor commands. This model generates a prediction of the tra-

jectory of the end-effector which can be compared with the (fixed

or moving) target in order to update the driving force field applied

to the end-effector:

ẋ = J q̇ (2)

With this prediction, the loop is closed, defining the PMP as an

integrated, multi-referential system of action representation and

synergy formation, with a Forward and an Inverse Internal Model.

Task-specific PMP networks: extracting general principles

Passive motion paradigm is a task-specific model. PMP networks

have to be assembled on the fly based on the nature of the motor

task and the body segment (and tool) chosen for its execution.

We believe that runtime creation/modification of such networks

is a fundamental operation in motor planning and action synthe-

sis. In this section, we outline some general principles underlying

the creation of task-specific PMP networks, in order to coordi-

nate body/body + tool chains of arbitrary redundancy. At the same

time, we also discuss how such a formulation can alleviate some of

the open issues with the OCT approach mentioned in“Open Chal-

lenges in OCT.”We illustrate the central ideas using two examples:

(1) a common day to day bimanual coordination task, namely

controlling the steering wheel of a car (Figure 2), which cap-

tures both the modularity and computational organization of the

framework and (2) Whole upper body coordination in the baby

humanoid iCub (Sandini et al., 2004), that captures implemen-

tation aspects of such a network (Figure 3) while coordinating a

highly redundant body.

Motor spaces. Consider the common task of bimanually con-

trolling a steering wheel. One of the first things to observe is
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FIGURE 1 |Top panel. Basic kinematic network that implements the

passive motion paradigm for a simple kinematic chain (as the arm). In this

simple case, the network is grouped into two motor spaces (extrinsic or end

effector space and intrinsic or arm joint space). Each motor space consists

of a generalized displacement node (blue) and a generalized force node

(pink). Vertical connections (purple) denote impedances (K : Stiffness, A:

Admittance) in the respective motor spaces and horizontal connections

denote the geometric relation between the two motor spaces represented

by the Jacobian (Green). The goal induces a force field that causes

incremental elastic configurations in the network analogous to the

coordination of a marionette with attached strings. The network also

includes a time base generator which endows the system with terminal

attractor dynamics: this means that equilibrium is not achieved

asymptotically but in finite time. External and internal constraints

(represented as other task-dependent force/torque fields) bias the path to

equilibrium in order to take into account suitable “penalty functions.” This is

a multi-referential system of action representation and synergy formation,

which integrates a Forward and an Inverse Internal Model. Bottom panel.

The figure illustrates the key element of the architecture of Figure 1 for

solving the degrees of freedom problem, namely the mapping of the “force

field,” defined in the extrinsic space and applied to the end-effector, into the

corresponding “torque field,” defined in the intrinsic space and applied to

the joints. The mapping is implemented by means of the transpose Jacobian

matrix of the kinematic transformation. Dimensionality reduction is obtained

implicitly by letting the internal model “slide” in the torque field. Each point

of the trajectory in the extrinsic space corresponds to a whole manifold in

the intrinsic space (the “null space” of the kinematic transformation). The

equilibrium point in the force field corresponds to an equilibrium manifold in

the torque field. The selection among the infinite number of possible targets

is carried out implicitly by the combination of different force/torque fields.
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FIGURE 2 | Passive motion paradigm network for a common day to day

bimanual task such as controlling the steering wheel of a car. Note that

the basic PMP sub network (of Figure 1) is repeated for the right and the left

arm. Since the goal is to coordinate bimanually a steering wheel, the network

is grouped into the different motor spaces involved in this action, i.e., tool,

hand, arm joint, and waist space. Each motor space consists of a

displacement (blue) and force node (pink) grouped as a work unit. For

example, the blue node in right hand PMP transmits the instantaneous

position of the right hand, while the pink node transmits the force exerted by

it. Vertical connections (purple) within each work unit denote the impedance,

while horizontal connections (green) between two work units denote the

geometric transformation between them (Jacobian: J). In this complex PMP

network, there are two additional nodes “sum” and “assignment,” that add

or assign (forces or displacements) between different motor spaces. Also

note that the resulting network is fully connected, connectivity articulated in a

fashion that all transformations are “well posed.” Intuitively, as the goal pulls

the tool tip, the end-effectors are being simultaneously pulled to respective

positions so as to allow the tool to reach the goal. At the same time, the joints

(in the two arms and waist) are being pulled to values that allow the two

hands to reach positions that allow the tool to reach the goal. This process of

incremental updating of every node in the network continues till the time the

tool tip reaches the goal (and equivalently the force field in the network is 0).

Also note that all computations are local in the sense that every element

responds to the pull of the goal based on its own impedance and all these

local contributions sum up to create the global synergy achieved by the

network.

the diversity of descriptions that are plausible for any motor

event. For example, we can describe the same task using a

mono-dimensional steering wheel pattern or a 6-dimensional

limb space pattern or a 7-dimensional joint rotation pattern or

multi-dimensional muscle contraction patterns. Figure 2 gives

an explicit PMP network to incrementally derive the 7-D joint

rotation patterns for each arm from the 1-D steering wheel

plan. Since any motor action can be described simultaneously

in multiple motor spaces (tool, end-effector, joint, actuator),

PMP networks are “multi-referential.” The type of motor spaces

involved in any PMP relaxation depends on the task and body

chain responsible for its execution. By default, for action gen-

eration using the upper body of a humanoid robot, there are

three motor spaces: end effector, arm joints, and waist (see

Figure 3A).

Work units. All motor spaces have a pair of generalized force

and displacement vectors grouped together as a work unit (in all

PMP networks, position nodes are shown in blue, force nodes

are shown in pink). For example, x and q denote displacement

vectors, i.e., position of the hand and rotation at the arm and

waist space respectively; f and τ denote force vectors, i.e., force at

the hand space and torques at the joint space, respectively. If a

task involves use of a tool, the tool space is also represented sim-

ilarly with a generalized force and displacement node. Hence, in

Figure 2, ρ denotes a generalized displacement (rotation of the

steering wheel) and ψ denotes a generalized force (i.e., the steer-

ing wheel torque). The scalar work (force × displacement) is the

structural invariant across different motor spaces (thus the name

work unit: WU). Hence, in PMP the invariance of energy by coor-

dinate transformations (principle of virtual works) is used to relate
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FIGURE 3 | Bimanual coordination task of reaching two objects at the

same time. (A) PMP network for the upper body with two target goals

and a single time base generator. The network includes three modules: (1)

Right arm, (2) Left arm, (3) Waist. The dimensionality of JR and J L is 3 × 10

(this includes the seven DoF’s of the arms and the three DoF’s of the

waist). The dimensionality of Aj is 7 × 7 and of AT is 3 × 3. The three

sub-networks interact through a pair of nodes (“assignment” and “sum”)

that allow the spread of the goal-related activation patterns. (B,C) Show

the initial and the final posture of the robot and the two target objects.

(D,E) Show the trajectories of the two end-effectors and the

corresponding speed profiles (together with the output Γ(t) of the time

base generator). (F) Clarifies the intrinsic degrees of freedom in the right

arm-torso chain. (G) Shows the time course of the right-arm joint rotation

patterns: J0–J2: joint angles of the Waist (yaw, roll, pitch); J3–J9: joint

angles of the Right Arm (shoulder pitch/yaw/roll; elbow flexion/extension;

wrist prono supination pitch/yaw).
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entities in different motor spaces. The relaxation process achieved

by PMP incrementally derives trajectories in all the nodes (force

and displacement) of the participating WU’s. For example, in a

PMP relaxation for a simple reaching task (like in Figure 3), we

get four sets of trajectories (as a function of time): (1) trajectory

of joint angles given by the position node in the joint space (arm

and waist, see Figure 3G); (2) the resulting consequence, i.e., the

trajectory of end-effectors given by the position node in end effec-

tor space (Figure 3D); (3) the trajectory of torques at the different

joints (arm and waist), given by the force node in the joint space;

(4) the resulting consequence, i.e., the trajectory of forces applied

by the end effector given by the force node in the end effector

space.

Connectivity and circularity. The next thing to observe is that all

PMP networks (Figures 2 and 3A) are fully connected in the sense

that any node can be reached from any other node. In other words,

PMP networks are “circular.” The “goal” can be applied at any node

in the network, based on the task. The connectivity allows the force

fields induced by a goal to ripple across the whole network. As a

simple example, if we deactivate the left arm and the waist space in

Figure 3A and enter the network at the right arm end effector dxr

and exit at right arm joint space dqr, we get the following rule for

computing incremental joint angles: dqr = ARJ TK Rdxr. The rules

become more complex as additional motor spaces participate in

the PMP relaxation.

Analogous to electrical circuits, connectivity in any PMP net-

work are of two types: serial and parallel. In a serial connection,

position vectors are added. For example, links are serially con-

nected to form a limb. In a parallel connection, force vectors are

added. For example, when we push an external object with both

arms, the force applied by individual arms is added. In the steering

task, the two hands are connected in parallel to the device (wheel),

links are connected serially to form the two limbs and muscles are

connected in parallel to a link. The task device, tool or effector

organ to which the “motor goal” is coupled is always the starting

point to build the PMP network. From there we may enter differ-

ent motor spaces in the body model of the actor, hence branching

the PMP network into serial or parallel configurations down to

directly controlled elements relevant for a particular task.

Branching nodes (+/=). In complex kinematic structures, where

there are several serial and parallel connections, two additional

nodes, i.e., Sum (+) and Assignment (=) are used to “add or

assign”displacements and forces from one motor space to another.

For example, in Figure 3A the assignment node assigns the contri-

bution of the waist (to the overall upper body movement toward

a goal), to the right and left arm networks. On the other hand,

the net torque seen at the waist is the “sum” of torques com-

ing from the right and left arm PMP sub-networks (because of

the individual force fields experienced by the right and left arms

respectively). Sum and assignment nodes are dual in nature. If

an assignment node appears in the displacement transformation

between two WU, then a sum node appears in the force trans-

formation between the same WU’s. This can be understood as a

consequence of conservation of energy between two WU’s. Fur-

ther, sum and assignment nodes can also appear at the interface

between the body and a tool, in order to assign/sum forces and

displacements from the external object to the end-effectors and

vice versa (like in Figure 2).

Geometric causality. This is expressed by the Jacobian matrices

that form the horizontal links in the PMP network. They connect

two WU’s or motor spaces together. Whether it is a serial or parallel

connection, the mapping between one motor space to another is

generally “non-linear” and “irreversible.” This mapping can be lin-

earized by considering small displacements (or velocities), whose

representations in any two motor spaces are related by the Jacobian

matrix: for example, dxr = J R(q)dqr. Further, while the Jacobian

determines the mapping of small displacements in one direction,

the transpose Jacobian determines the dual relation among forces

in the opposite direction (principle of virtual works). For exam-

ple, in Figure 3A, the space Jacobians J R and J L map joint rotation

patterns of the two arms and waist into displacements of the two

hands, while the corresponding transpose Jacobians project dis-

turbance forces F applied on the hands into corresponding joint

torques. The tool Jacobian J T forms the interface between the body

and the tool and represents the geometrical relationship between

the tool and the concerned end-effector. While learning to use dif-

ferent tools, it is the tool Jacobians at the interface that are learnt.

Based on the tool being coordinated, it is necessary to load the

appropriate device Jacobian associated with it.

Elastic causality. This is expressed by the vertical links in the PMP

network and is implemented by stiffness and admittance matri-

ces. These links connect generalized force nodes to displacement

nodes (or vice versa) in each WU. Hooke’s law of linear elasticity

can be generalized to non-linear cases by considering differential

variations: dF = K ·dX and dX = A·dF, where K is the virtual stiff-

ness and A is the virtual admittance. In the former case, effort is

derived from position; whereas in the latter, position is derived

from effort. For example, in Figure 3A, the virtual stiffness K e

determines the intensity and shape of the force field applied in the

right and left hand networks. In the simplest case, K is propor-

tional to the identity matrix and this corresponds to an isotropic

field, converging to the goal target along straight flow lines (see

Figure 1, bottom panel, and Figure 3D for the case of bimanual

reaching). Curved trajectories (like in hand-written characters of

different scripts) can be obtained by actively modulating (or learn-

ing) the appropriate values of the virtual stiffness (Mohan et al.,

2011b).

Role of admittance in the intrinsic space. In PMP networks, the

effect of admittance is “local.” Every intrinsic element (for exam-

ple, a joint in the arm) responds to the goal induced “force field”

based on its own “local” admittance. Hence, it is not the precise

values of the admittance of every joint, but the balance between

them that affects the final solution achieved. This balance can be

altered in a local and“task–specific”fashion. In normal conditions,

we consider that all the participating joints are equally compliant.

In this case, the admittance is an identity matrix (for a seven DoF

arm, it is a 7 × 7 identity matrix). On the other hand, by locally

modulating individual values, it is possible to alter the degree of

participation of each joint to the coordinated movement while not
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affecting the solution at the end effector space (see Figure 1 bottom

panel). For example, Figure 4A shows the initial condition with

the goal being issued to reach the large cylinder (placed far away

and asymmetrically with respect to the robot’s body) using both

arms. Figure 4B shows the final solution when the admittance of

the three DoF of the waist is reduced 10 times as compared to the

two arms. Without the contributions of the additional DoF of the

torso, it not possible to bimanually reach the target. Figure 4C

shows the solution when the waist admittance is made equal to the

arms. In this case, note the contributions from all three DoFs of the

torso (Figure 4B), hence enabling iCub to bimanually reach the

cylinder successfully in this case. An alternative way to interpret

this behavior is that, in the former case (Figure 4B) the force field

induced by the goal did not propagate through the waist network.

In other words, the propagation of goal induced force field across

different intrinsic elements of the body can be modified by alter-

ing their local admittance. This relates to the issue of “grounding.”

FIGURE 4 | Effects of modulating the admittance in the intrinsic space

on the final posture achieved through PMP relaxation. (A) Shows the

initial condition with the goal being issued to reach the large cylinder

(placed far away and asymmetrically with respect to the robot’s body) using

both arms. (B) Shows the final solution when the admittance of the three

DoF of the waist is reduced 10 times as compared to the two arms.

Without the contributions of the additional DoF of the torso, it is not

possible to bimanually reach the target. An alternative way to interpret this

behavior is that the force field induced by the goal did not propagate

through the waist network because of its lower admittance (in comparison

with the arm networks). In other words, the propagation of goal induced

force field across different intrinsic elements of the body can be modified

by altering their “local” admittance. (C) Shows the solution when the waist

admittance is made equal to the arms. In this case, note the contributions

from all three degrees of freedom of the torso (B), hence enabling iCub to

bimanually reach the cylinder successfully in this case. (D–F) Show a

simple scenario where the goal is to reach a target using the whole body

but also attain a specific posture as demonstrated by the teacher [(D):

Nearby target, (E,F) far way target]. If the admittance of the hip was

reduced from 2.5 to 0.1 (rad/s/Nm) in (F) (keeping admittance of other joints

constant), and we see two different postures: one that uses the hip more

(E) and the other in which the knees compensate for the low admittance of

the hip (F). This local and modular nature of motion generation is also

evident during injury, when other degrees of freedom compensate for the

temporarily “inactive” element, in reaction to the pull of a goal. This is a

natural property of the PMP mechanism.

Since there are many possible kinematic chains that can be coordi-

nated simultaneously in a complex human/humanoid body, based

on the nature of the motor task it is necessary to identify the start

and end points in the body schema between which the force fields

generated by the goal will propagate, and beyond which the force

fields generated by the goal will not propagate. Such grounding can

be easily achieved by modulating the local admittance of intrinsic

elements in a task-specific fashion. For example, if the waist admit-

tance is very low, this is equivalent to grounding the network at the

shoulders. In the steering wheel task the body is grounded at the

waist. At the same time, additional DoFs can be “incrementally”

recruited in the relaxation process based on the success/failure of

the task.

The issue of generating different solutions by actively modu-

lating the admittance of different joints has been demonstrated

for whole body reaching (WBR) tasks using the PMP (Morasso

et al., 2010). Figures 4D–F show a simple scenario where the goal

is to reach a target using the whole body but also attain a specific

posture as demonstrated by the teacher (Figure 4D: nearby target,

Figures 4E,F far away target). In such cases, it may be “percep-

tually” possible to determine approximately the contribution of

different body parts to the observed movement. Such perceptual

information can “locally” modulate the participation of differ-

ent DoFs, hence influencing the nature of solution obtained. For

example, if the admittance of the hip was reduced from 2.5 to

0.1 (rad/s/Nm) in Figure 4F (keeping admittance of other joints

constant), and we see two different postures: one that uses the hip

more (Figure 4E) and the other in which the knees compensate

for the low admittance of the hip (Figure 4F). This local and mod-

ular nature of motion generation is also evident during injury (for

example, a fracture to elbow), when other DoFs compensate for

the temporarily“inactive” element, in reaction to the pull of a goal.

This is a natural property of the PMP mechanism (and does not

require any additional computation).

Finally, we must note that even though an elastic element is

reversible in nature, in articulated elastic systems like in PMP,

a coherence of representation dictates the “direction” in which

causality is directed.

Directionality. The issue that needs to be understood now is the

“direction” in which information should flow in a fully connected

network like PMP. This is a critical issue not only while control-

ling highly redundant bodies, but also when tools with controllable

DoFs are coordinated. The short answer to the question is that the

direction in which information flows is constrained by the fact

that PMP networks always operate through “well posed” computa-

tions/transformations. In which direction a transformation is “well

posed” depends on the motor spaces involved and the type of

connectivity (i.e., serial or parallel) between them.

Serial connections. Consider, for example, a serial kinematic chain

like the right arm of iCub, which involves two motor spaces,

namely the end effector and the arm joint space (Figures 2 and

3A). In serial connections, vectors of higher dimensionality are

transformed into vectors of lower dimensionality (joint angles

transform to hand coordinates). Thus the Jacobian matrix has

more columns’ than rows (for example, considering that the end
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effector position is represented in 3D Cartesian space coordinates

and the arm has seven joints, the resulting Jacobian matrix has

three rows and seven columns). What transformations are well

posed in a serial connection? We can observe that given the joint

angles of the arm, it is possible to uniquely compute the position

of the end effector. So the transformation from position node in

joint space to position node in end effector space is well posed. In

contrast, the transformation in the opposite direction is not well

posed, in the sense that given an end effector position it is not

possible to uniquely compute the value of the joint angles. The

reason is that there are more unknowns (joint angles) than the

equations, thus resulting in infinite solutions. Similarly, coming to

transformation between force nodes, note that the transformation

from end effector force to joint torques via the transpose Jaco-

bian is well posed (T = J TF : there are seven equations and seven

unknowns if the arm has seven joints). However, the transforma-

tion in the opposite direction is ill posed, i.e., given a set of joint

torques it is not possible to compute the hand force since there

are more constraint equations than unknowns. This is the reason

that in the PMP networks of figures 2 and 3A we move from the

position node in arm space to the position node in end effector

space and force node in end effector space to force node in joint

space. Further, this also preserves the circularity in the network.

Parallel connections. The parallel connection is a dual version of

the serial connection. A biological example of parallel connection

is the relationship between muscle and skeleton. The problem of

finding the joint torque given the muscle forces is well posed, but

the inverse problem results in infinite solutions (because there

are more unknowns than equations). The connection between the

two arms and the steering wheel (Figure 2) is also an example

of a parallel connection. There can be infinite possible combina-

tions of forces exerted by the two hands “in parallel” to generate a

given steering wheel torque, but the transformation in the opposite

direction is well posed. Similarly, given a steering wheel rotation

it is possible to uniquely compute the position of the two hands.

Hence in Figure 2, there is a position to position transformation

from the steering wheel space to hand space, and force to force

transformation from the hand space to steering wheel space.

In sum, the direction in which causality is directed in a PMP

network is constrained by the fact that all computations in the net-

work should be “well posed.” Operating through well posed com-

putations (and avoiding inversion of a generally non-invertible

redundant system) significantly reduces the computational over-

head. Further, since computations are always “well posed and

linearized,” PMP mechanisms do not suffer from the curse of

dimensionality and can be easily scaled up to any number of

DoFs. This is not the case with OCT where it is well known that

non-linearity and high dimensionality can significantly affect the

computational overhead and numerical stability of the solution

(Bryson, 1999; Scott, 2004).

A more general question can be asked as to “How and Why” com-

putations turn out to be well posed in PMP? The answer is that

they are “constrained” by the physical properties of the system

they intend to model. For example, natural direction of causality

for a muscle is to receive flow and yield force, and the natural

direction of causality for the joint is to receive force and yield

flow (which is the reason the joint space receives the force field as

input and yields joint rotations as output, which in turn uniquely

determines end effector displacement). In fact, a detailed analy-

sis of issues related to modularity and causality in physical system

modeling goes back to a seminal paper by Hogan (1987), with con-

tributions from Henry Paynter (of the Bond graph approach), that

we merely revisit with the PMP model. We think that techniques

that start with the assumption that behavior can be understood

by minimization of a cost function, even though very general and

powerful in explaining observed systematic correlations in wide

range of behaviors, often neglect the specific physical properties

of the system they intend to model (Guigon, 2011) and that in

turn results in unnecessary “costs.”

Local to global, distributed computing. From the perspective of

local to global computing, note that, every element in every “work

unit” involved in any PMP network always makes a local decision

regarding its contribution to the externally induced pull, based on

its own impedance. All such local decisions synergistically drive

the overall network to a configuration that minimizes its global

potential energy. This is analogous to the behavior of well known

connectionist models in the field of artificial neural networks like

Hopfield networks (Hopfield, 1982). Different implementations of

the PMP using back propagation networks (Mohan and Morasso,

2006, 2007) and self organizing maps (Morasso et al., 1997) have

already been conceived and implemented on the iCub humanoid.

Thus, the local, distributed nature of information processing makes it

possible to explain how computations necessary for PMP relaxation

can actually be realized using neural networks, whereas this is still

an open question for the formal methods employed by OCT (Scott,

2004; Todorov, 2006).

Timing. There are always temporal deadlines associated with any

goal. Control over“time and timing”is crucial for successful action

synthesis, be it simply reaching a target in a finite time or complex

scenarios like synchronization of PMP relaxations with multiple

kinematic chains (bimanual coordination), trajectory formation,

multi tasking etc. A way to explicitly control time, without using a

clock, is to insert in the non-linear dynamics of the PMP, a time-

varying gain Γ(t) according to the technique originally proposed

by Zak (1988) for speeding up the access to content addressable

memories and then applied to a number of problems in neural

networks. In this way, the dynamics of the PMP network is char-

acterized by terminal attractor properties (Figure 3E shows the

timing signal). This mechanism can be applied to any dynamics

where a state vector x is attracted to a target xT by a potential

function, such as V (x) = 1/2(x − xT)TK (x − xT), according to a

gradient descent behavior: ẋ = − ∇V (x) , where ▽V (x) is the

gradient of the potential function, i.e., the attracting force field.

Based on the nature of the task, there can either be single or

multiple timing signals, hence allowing action sequencing, syn-

chronization, mixing of force fields generated by multiple spatial

goals, generation of a diverse range of spatio-temporal trajectories.

PMP and bond graphs. PMP networks have some similarity

with bond graphs (Paynter, 1961). Both are graphical represen-

tations of dynamical systems which are port-based, emphasizing
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the flow of energy rather than the flow of information as it hap-

pens in the network diagrams. However, bond graphs represent

bi-directional exchange of physical energy among interconnected

devices in a given application domain (mechanical, electrical, ther-

mal, hydraulic, etc.), with the purpose of simulating the dynamics

of the interconnected system. In contrast, PMP-networks are con-

ceived at a more abstract level, which is concerned with the

internal representation of the body schema, not as a static map

but as a multi-referential dynamical system. Moreover, PMP-

graphs are intrinsically unidirectional, in such a way to restrict

the overall dynamics to well-formed transformations between

motor spaces of different dimensionality (as described under the

“Directionality” subheading).

To sum up, in the example of the steering wheel rotation

task, a small wheel rotation incrementally assigns (through the

assignment node) motion to the two hands connected in parallel,

according to the “weight” J T (this transformation is well posed).

The force disturbance is computed for the imposed displacement

in the end effector space “dx” using the stiffness matrix “K.” The

resultant force vector determines a torque vector which yields a

joint rotation dq via the transpose Jacobian and compliance matrix

A, respectively (this transformation is also well posed). Finally, the

steering wheel torque is the summed contribution coming from

the two arms (through the sum node) and weighted by transpose

of the device Jacobian (this transformation is also well posed).

The timing signal allows smooth synchronized motion of the

two hands, converging to equilibrium in finite time. In sum, the

relaxation process of the PMP network allows us to effectively

characterize this highly redundant task of bimanual coordination

and incrementally derive the multi-dimensional actuator patterns

from a mono-dimensional steering wheel rotation plan.

INCORPORATING TASK-SPECIFIC “INTERNAL AND EXTERNAL”

CONSTRAINTS

Equation 1 can also be seen as the on-line optimization of a cost

function, the distance of the end-effector from the target, compat-

ible with the kinematic constraint given by the kinematic structure

and represented by the admittance matrix A. However, this is just

the simplest situation, which can be expanded easily to include an

arbitrary number of constraints or penalty functions, in the form

of force fields defined either in the extrinsic space or intrinsic

space:

{

F = F1 (x , ẋ) + F2 (x , ẋ) + F3 (x , ẋ) + . . .

T = T1

(

q, q̇
)

+ T2

(

q, q̇
)

+ T3

(

q, q̇
)

+ . . .
(3)

A constraint in the extrinsic space could be an obstacle to avoid,

an appropriate hand pose with which to reach an object so as to

allow further manipulation actions to be performed (like grasp or

push). In the intrinsic space a constraint could take into account

the limited range of motion of a joint, the saturation power or

torque of an actuator etc. Figure 5A shows a composite PMP

network for the right arm kinematic chain, for reaching an object

(Goal) with an appropriate wrist orientation/hand pose to support

further manipulations (constraint 1) and generating a solution

such that the joint angles are well within the permitted range of

motion (constraint 2). Hence, in the PMP network of Figure 5A

there are three weighted, superimposed force fields that modulate

the spatio-temporal behavior of the system: (1) the end-effector

field (to reach the target); (2) the wrist field (to achieve the spec-

ified hand pose); (3) the force field in joint space for joint limit

avoidance. Note that the same timing signal Γ(t) synchronizes

all the three relaxation processes. Figure 5B shows results of

iCub performing different manipulation tasks driven by such a

network.

Recently, this modeling framework was further pursued for

explaining the formation of WBR synergies, i.e., coordinated

movement of lower and upper limbs, characterized by a focal com-

ponent (the hand must reach a target) and a postural component

(the center of mass or CoM, must remain inside the support base;

Morasso et al., 2010). By simulating the network in various condi-

tions it was possible to show that it exhibits several spatio-temporal

features found in experimental data of WBR in humans (Stapley

et al., 1999; Pozzo et al., 2002; Kaminski, 2007). In particular, it was

possible to demonstrate that: (1) during WBR, legs, and trunk play

a dual role: not only are they responsible for maintaining postural

stability, but they also contribute to transporting the hand to the

target. As target distance increases, the reach and postural syner-

gies became coupled resulting in the arms, legs and trunk working

together as one functional unit to move the whole body forward

(see Figures 4D–F); (2) Analysis of the CoM showed that it is pro-

gressively shifted forward, as the reached distance increases, and

is synchronized with the finger’s movement. Posture and move-

ment are indeed like Siamese twins: inseparable but, to a certain

extent, independent. The article on whole body synergy formation

showed how postural and focal synergies can be integrated during

goal directed coordination through the PMP framework. Generally,

we can see the PMP as a mechanism of multiple constraints satisfac-

tion, which solves implicitly the “DoFs problem” without any fixed

hierarchy between the extrinsic and intrinsic spaces. The constraints

integrated in the system are task-oriented and can be modified at

runtime as a function of performance and success.

MOTOR SKILL LEARNING AND PMP

In the context of PMP, when we learn a motor skill, we basi-

cally learn the connecting links in the PMP network associated

with the task (i.e., vertical links or impedances, horizontal links

or Jacobians, and the timing of the time base generators). We will

describe central ideas using a new scenario where iCub learns to

bimanually steer a toy crane in order to position its magnetized tip

at a goal target (Figure 7A). We choose this example because the

task is similar to the bimanual control of the steering wheel, the

steering wheel replaced by the two handles of the toy crane. So the

structure of the PMP network is the same as shown in Figure 2. In

general, while learning to control the toy crane, iCub has to learn:

(a) the appropriate stiffness and timing to execute the required

“spatio-temporal” trajectories using the body + tool chain (for

example, performing synchronized quasi-circular trajectories with

both hands while turning the toy crane) and (b) while performing

such coordinated movements with the tool, learn the Jacobians

that map the relationship between the movements of the body

effectors and the corresponding consequence on the tool effec-

tor (the magnetized tip). The third issue is of course related to

using this learnt knowledge to generate“goal directed”body + tool
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FIGURE 5 | (A) Composite PMP network with three force fields applied to the

right arm of iCub: a field Fr that identifies the desired position of the

hand/fingertip (Goal); a field Fwr that helps achieving a desired pose of the

hand via an attractor applied to the wrist (Constraint 1). Here Jwr is the

Jacobian matrix of the subset of the kinematic chain, up to the wrist; an

elastic force field Fq in the joint space for generating a solution such that the

joint angles are well within the permitted range of motion (constraint 2). Note

that the same timing signal synchronizes all three relaxation processes, hence

allowing the hand to reach the target with a specific pose and posture. (B)

Show three examples of iCub performing manipulation tasks driven by the

composite PMP net of (A). In the case of bimanually reaching the crane toy, a

similar network also applies to the left arm PMP chain. Note that in all these

cases, reaching the goal object with specified hand pose is obligatory for

successful realization of the goal.

movements (given a goal to reach/pick up an otherwise “unreach-

able” environmental object using the toy crane).

Till now we were dealing with point to point reaching actions

using the PMP network (for example Figure 3). But using a toy

crane is a task that not only requires iCub to reach (and grasp)

the tool but also perform coordinated spatio-temporal move-

ments with the tool (both during exploration and performing

goal directed movements using the tool). Part of the information

as to what kind of movements can be performed with the tool can

be acquired by observing a teachers demonstration. The teacher’s

demonstration basically constrains the space of explorative actions

when iCub practices with the new toy to learn the consequences

of its actions. The basic PMP system on the iCub is presently

being extended to incorporate these capabilities. With the help of

Figure 6, we outline central features of the extended skill learning

architecture.

Learning through imitation, exploration, and motor imagery

Three streams of learning, i.e., learning through teacher’s demon-

stration (information flow in black arrow), learning through

physical interaction (blue arrow), and learning through motor

imagery (loop 1–5) are integrated into the architecture. The imi-

tation loop initiates with the teachers demonstration and ends

with iCub reproducing the observed action. The motor imagery

loop is a sub part of the imitation loop, the only difference being

that the motor commands synthesized by the PMP are not trans-

mitted to the actuators instead, the forward model output is used

to close the learning loop. This loop hence allows iCub to inter-

nally simulate a range of motor actions and only execute the ones

that have high performance score “R.”

From trajectory to shape, toward “context independent” motor

knowledge

Most skilled actions involve synthesis of spatio-temporal trajecto-

ries of varying complexity. A central feature in our architecture is

the introduction of the notion of “Shape” in the motor domain. The

main purpose was to conduct motor learning at an abstract level

and thus speed up learning by exploiting the power of “compo-

sitionality” and motor knowledge “reuse.” In general, a trajectory

may be thought as a sequence of points in space, from a starting
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FIGURE 6 | (A) Motor Skill learning and Action generation architecture of

iCub: Building blocks and Information flows. (B) Scheme of the virtual

trajectory synthesis system (modeled by Eq. 5), that transforms a discrete set

of critical points (shape “type” and its “spatial location”) in the motor goal

into a continuous sequence of equilibrium points that act as moving point

attractor to the task relevant PMP network. An elastic force field is associated

to each spatial location (in the motor goal), with a strength given by the

stiffness matrices (K1 and K2). The two force fields are activated in sequence,

with a degree of time overlap, as dictated by two time base generators (TBG1

and TBG2). Simulating the dynamics with different values of K and γ, results

in different trajectories through the critical points. Inversely, the problem of

learning is to acquire the correct values for K and γ (virtual stiffness and

temporal overlap) such that the shape of the resulting trajectory correlates

with the shape description in the motor goal.
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position to an ending position. “Shape” is a more abstract descrip-

tion of a trajectory, which captures only the critical events in it.

By extracting the “shape” of a trajectory, it is possible to liberate

the trajectory from task-specific details like scale, location, coor-

dinate frames and body effectors that underlie its creation and

make it “context independent.” Using Catastrophe theory (Thom,

1975; Chakravarthy and Kompella, 2003) have derived a set of 12

primitive shape features (Figure 6, bottom right panel) sufficient

to describe the shape of any trajectory in general. As an example,

the critical events in a trajectory like “U” is the presence of a min-

ima (or Bump “B” critical point) in between two end points (“E”).

Thus, the shape is represented as a graph “E–B–E” (see Figure 6).

If the “U” was drawn on a paper or if someone runs a“U” in a play-

ground, the shape representation is “invariant” (there is always a

minima in between two end points). More complex shapes can

be described as “combinations” of the basic primitives, like a cir-

cular trajectory is a composition of four bumps. In short, using

the shape extraction system it is possible to move from the visual

observation of the end effector trajectory of the teacher to its more

abstract “shape” representation.

Imposing “context” while creating the motor goal

The extracted “shape” representation may be thought of as an

“abstract” visual goal created by iCub after perceiving the teacher’s

demonstration. To facilitate any action generation/learning to

begin, this “visual” goal must be transformed into an appropri-

ate “motor” goal in iCub’s egocentric space. To achieve this, we

have to transform the location of the shape critical point com-

puted in the image planes of the two cameras (Uleft, Vleft, Uright,

Vright) into corresponding point in the iCub’s egocentric space (x,

y, z) through a process of 3D reconstruction (see Figure 6, top left

box). Of course the “shape” is conserved by this transformation,

i.e., a bump still remains a bump, a cross is still a cross in any

coordinate frame. Reconstruction is achieved using Direct Linear

Transform (Shapiro, 1978) based stereo camera calibration and

3D reconstruction system already functional in iCub (implemen-

tation details of this technique are summarized in the appendix of

Mohan et al., 2011b). At this point, other task-related constraints

like the scale of the shape, end effector/body chain performing

the action can be added to the goal description. So the motor

goal for iCub, is an abstract shape representation of the teachers

movement (transformed into the egocentric space) and other task-

related parameters that needs to be considered while generating

the motor action. An example of a motor goal description is like:

“use” the left arm-torso chain coupled to the toy crane, generate

a trajectory that starts from point 1, ends at point 2, and has a

“bump” at point 3 (and observe the consequence through visual

and proprioceptive information).

“Virtual trajectories” – motor equivalent action representation

The motor goal basically consists of a discrete set of shape critical

points (their spatial location in iCub’s ego centric space and type),

that describe in abstract terms the “shape” of the spatio-temporal

trajectory that iCub must now generate (with the task relevant

body chain). Given a set of points in space an infinite number of

trajectories can be shaped through them. How can iCub learn to syn-

thesize a continuous trajectory similar to the teacher’s demonstration

using a discrete set of shape descriptors in the Motor goal? The vir-

tual trajectory generation system (VTGS) performs this inverse

operation. It transforms the discrete shape representation (in the

motor goal) into a continuous set of equilibrium points that act

as moving point attractor to the PMP system.

Virtual trajectory generation system preserves the same “force

field” based structure as in PMP (Figure 6B). Let X ini ∈ (x, y, z)

be the initial condition, i.e., the point in space from where the cre-

ation of shape is expected to commence (usually initial condition

will be one of the end points). If there are N shape points in the

motor goal, the spatio-temporal evolution of virtual trajectory (x,

y, z, t ) is equivalent to integrating a differential equation that takes

the following form:

ẋini =

N
∑

i=1

Kiγi (t) ·
(

xCPi − xini

)

(4)

Intuitively, as seen in Figure 6B, we may visualize X ini as connected

to the spatial locations of all shape points by means of virtual

springs and hence being attracted by the force fields generated

by them F CP = K CP(xCP − x ini). The strength of these attractive

force fields depends on: (1) the virtual stiffness “K i” of the spring

and (2) time-varying modulatory signals γi(t) generated by the

respective time base generators that determine the degree of tem-

poral overlap between different force fields. The virtual trajectory

is then the set of points created during the evolution X ini through

time, under the influence of the net attractive field generated by

different CP’s. Further, by simulating the dynamics of Eq. 4, with

different values of K and γ, a wide range of trajectories can be

obtained passing through the discrete set of points described in

the motor goal. Inversely, learning to “shape” translates into the

problem of learning the right set of virtual stiffness and timing such

that the “Shape” of the trajectory created by iCub correlates with the

shape description in motor goal.

So “how difficult and how long” does it take to learn these parame-

ters given the demonstration of a specific movement by the teacher?

It is here we reap the advantage of moving from “trajectory” to

“shape,” since compositionality in the domain of shapes can be

exploited to speed up learning. In other words, the amount of

exploration in the space of “K ”and γ is constrained by the fact that

once iCub learns to generate the 12 movement shape primitives,

any motion trajectory can be expressed as a composition of these

primitive features. The main idea is that since more complex trajecto-

ries can be “decomposed” into combinations of these primitive shapes,

inversely the actions needed to synthesize them can be “composed”

using combinations of the corresponding “learnt” primitive actions.

Regarding learning the primitives, it has been demonstrated in

(Mohan et al., 2011c), that they can be learnt very quickly by just

exploring the space of the virtual stiffness “K ” in a finite range of

1–10, followed by an evaluation of how closely the shape of the

synthesized trajectory (using Eq. 4) matches the shape described

in the goal. Thus effort in terms of motor exploration is required dur-

ing the initial phases to learn the basics (i.e., primitives). During the

synthesis of more complex spatio-temporal trajectories, composition,

and recycling of previous knowledge takes the front stage (considering

that the correct parameters to generate the primitives already exist in

the shape library).
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Finally, we note that “virtual trajectories” must not be inter-

preted as the real trajectories generated by iCub. Instead, the

evolving virtual trajectory acts as moving point attractor to the

PMP system that in turn generates the motor commands necessary

for iCub to actually execute the motion trajectory (it observed). In

human experiments also there is evidence of moving equilibrium

points as demonstrated by (Shadmehr et al., 1993). In this sense,

the VTGS is like a skilled puppeteer who is pulling the task relevant

effector (in the PMP network) in a specific fashion. Based on the

body/tool PMP network to which the virtual trajectory is coupled,

motor commands are generated in that chain. In this sense, virtual

trajectories also characterize a “motor equivalent” representation

of action.

Using past motor “experience” to generate virtual trajectories on

the fly

When iCub learnt to draw trajectories like “U,” “C” etc. (Mohan

et al., 2011b), it acquired the correct parameters (K and γ) to syn-

thesize virtual trajectories for shapes that result in “Bump” critical

points. When the teacher demonstrates iCub to bimanually steer

the toy crane by performing quasi-circular trajectories, the move-

ment“shape”of the teachers“effectors”gives rise to“bump”critical

points, which iCub already knows to generate, from its previous

drawing experience. Using the previously learnt parameters of K

and γ from the shape library, iCub is able to instantaneously gen-

erate virtual trajectories (or attractors) that feed the PMP network

of the iCub upper body. Here, we reap the benefit of moving from

“trajectory” to “shape” and learning actions in a “context indepen-

dent” fashion thus allowing past experience to be exploited in new

contexts.

In general, the straightforward advantage of learning one motor

skill in an “abstract” way is that it unlocks the implicit potential to

“perceive, mime, and begin to perform” several other skills (that

share a similar structure). For example, consider actions like turn-

ing a steering wheel, uncorking a bottle, paddling a bicycle, using

a screwdriver, among others, all of which result in formation of

quasi-circular trajectories in the task-space (or movement shapes

of type “E–B–E” which have “bump” as a basic shape point). So

does the capability to perceive the underlying structure in these

similar actions and “spontaneously imitate” someone performing

them with a fair enough “first prototype” becomes possible because

the “seeds” already exist in the form of abstract motor knowledge

(learnt previously)? Abstraction from “trajectory formation” to

“shape formation” could be one possible answer.

At the same time, only being able to synthesize a “virtual trajec-

tory” is not sufficient. What is needed is a system that transforms

the “virtual trajectory” into motor commands for the actuators,

taking into account task-specific constraints and redundancy of

the system (body-tool network) that is generating the action. Fur-

ther it is necessary to learn the consequences of the generated

action in this new “context.” For this we have to rely on the PMP

system that comes next in the information flow.

From virtual trajectory to motor commands using PMP: linking

redundancy to task dynamics, timing, and synchronization

The PMP system transforms every point in the virtual trajectory

into motor commands in the intrinsic space (upper body chain),

hence enabling iCub to mimic the teacher’s action of bimanually

steering the toy crane. Of course, this is just the starting point. iCub

has to now learn the consequence and utility of the action in this

new context (from drawing a “U” shape, to using the toy crane).

As the virtual trajectory pulls the relevant end effector in a spe-

cific fashion, the rest of the body (arm and waist joints) elastically

reconfigure to allow the end effector track the evolving virtual

trajectory. When motor commands synthesized by this process

are actively fed to the robot, it reproduces the movement, hence

enabling iCub to maneuver the toy crane as demonstrated by the

teacher. These coordinated movements of iCub (i.e., Figure 7B)

with the toy crane now generate sequences of sensorimotor data:

1) The instantaneous position of the two hands Q ∈ (xR, yR, zR,

xL, yL, zL) coming from proprioception (and cross-validated

by forward model output of PMP, i.e., position node in end

effector space).

2) The resulting consequence, i.e., the location of the tool effec-

tor X :(x, y, z)Tool, perceived through vision and reconstructed

to Cartesian space (using the same technique to reconstruct

teachers movement).

As iCub acquires this sensorimotor data by practicing with the tool,

a neural network can be trained to learn the mapping X = f (Q).

We used a multilayer feed-forward network with one hidden layer,

where Q = {qi} is the input array (end effector position), X = {xk}

is the output array (tool position), and Z = {z j} is the output of

the hidden units. The mapping can be expressed as shown in Eq. 5,

where Ω = {ωij} are the connection weights from the input to the

hidden layer, W = {w jk} are the connection weights from the hid-

den to the output layer, H = {hj} are the net inputs to the neurons

of the hidden layer. The neurons of the hidden layer are character-

ized by the logistic transfer function; the output layer is composed

of linear neurons.

X = f (Q) ⇒

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

hj =
∑

i

ωij qi

zj = g
(

hj

)

xK =
∑

j

wjkzj =
∑

j

wjk.

(

g

(

∑

ij

ωij qi

))
(5)

The trick here is that once the neural network is trained on

the sequences of sensorimotor data generated by the robot, the

tool Jacobian can be extracted from the learnt weight matrix by

applying chain rule in the following way:

JT =
∂xk

∂qi
=

∑

j

∂xk

∂zj

∂zj

∂hj

∂hj

∂qi
=

∑

j

wjkg′
(

hj

)

ωij (6)

Once the tool Jacobians are learnt by iCub, the PMP network of

Figure 2 is complete and fully connected to allow goal directed

maneuvering of the toy crane. Note that, the tool admittance “AT”

is a property of the tool itself and can be approximately estimated

as the ratio of the total force exerted by iCub with its two hands

and the corresponding displacement of the tool. Since the dis-

placement of two handles of the toy crane (connected to iCub)
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is proportional to the displacement of the iCub’s hands, the tool

admittance is approximated as an identity matrix. Of course, there

is a possibility that the tool is not compliant, in which case the only

way to control it during coordination is to increase the exerted force

(for example, one will need to apply more force to “turn” a steering

wheel that is jammed). This is a natural property of the PMP net-

work, but is out of scope for discussion in this article. At the same time

we note that the admittance of the tool can be controlled during its

design (for example, we apply lubricants to mechanical parts to make

them more compliant, otherwise we end up spending more energy).

During goal directed movements with the toy crane, the goal

now acts on the “tool effector” which is the most distal part of

the PMP chain. The pull of the goal acting on the tool tip is incre-

mentally circulated to the proximal spaces (end effector, joints etc.)

according to information flow in Figure 2. Figures 7C–G show the

trajectories in the tool, end effector, arm joint, and waist spaces,

when iCub performs the bimanual action to position the tool tip

at the goal. Of course, if the internal simulation of the PMP network

does not converge, iCub has a way to know that the toy crane is not

useful to realize the goal (or reach the target). This can be the starting

point to trigger a new level of reasoning and learning.

SUMMARY

In this sub-section, we presented how the basic PMP framework

can be extended to support experiments related to motor skill

learning, tool use, and imitation in embodied robots. We outlined

a scheme through which both observing a “conspecific” as well as

previously acquired motor knowledge (stored in an abstract man-

ner) can speed up the acquisition of a new motor skill. To avoid

open ended motor exploration in the space of “virtual stiffness,” it

is important to “combine and exploit” multiple learning streams

mainly imitation, physical interaction, and motor imagery into the

skill learning architecture. In the demonstrated example, while the

teachers demonstration showed iCub the kind of spatio-temporal

trajectories it should perform on the tool, iCub’s past experience

of learning to draw (and the compositionality in the domain of

shapes) gave iCub the correct parameters to generate the required

spatio-temporal trajectories using the “body + tool” network. Of

course, in addition iCub had to learn the context specific conse-

quences (Tool Jacobian), to complete the PMP network to perform

goal directed actions with the new toy. Note that the learnt tool

Jacobian is further represented in a sub-symbolic “distributed”

fashion using neural networks. At the same time, through the

PMP relaxation there is a way to systematically go down to the

directly controlled elements of the body (actuators in the robot)

both during exploration and goal directed action. In this sense,

our approach is quite different from other attempts of tool use

in robotics like those of Stoytchev (2008), that start with a pre-

defined set of actions (extend arm 2′′, 5′′, forward, backward, right,

and left), create a look table of the observations and conduct iter-

ations of greedy heuristic search in the look up table, to obtain

goal-oriented behavior. Coming back to OCT, how optimal control

laws can be learnt through socio-physical interactions, how they can

be composed and recycled is still an open question. In this section,

we presented a motor skill learning framework using the PMP that

incorporates all these features and at the same time validated on a

complex humanoid platform.

OCT AND PMP AS COMPUTATIONAL THEORIES

Is there any connection between OCT and PMP? As observed by

Diedrichsen et al. (2009), the idea of distributing motor com-

mands across a set of redundant effectors is shared by OCT and

PMP (Mussa Ivaldi et al., 1988). However, the authors wrongly

attribute to PMP the absence of a regularization term in the attrac-

tor dynamics of the network. In contrast, as illustrated in the

previous sections, the possibility of integrating a variety of reg-

ularization or penalty terms “at runtime” and in a task-specific

manner is the defining feature of PMP. It was only briefly hinted in

the 1988 paper, but it was later expanded in great detail (Morasso

et al., 1997; Tsuji et al., 2002; Mohan and Morasso, 2007; Mohan

et al., 2009, 2011a,b). OCT formulates control problems in terms of

scalar cost functions, whereas PMP is based on multi-dimensional

force fields. In general, we think that the force field metaphor is

closer to the biomechanics and the cybernetics of action than the

cost function metaphor if we aim at capturing the variability and

adaptability of human behavior in a changing environment in a

way that allows compositionality, fast learning, and exploitation

of affordances.

In the framework of the Tri-Level Hypothesis2 about the lev-

els of analysis in biological information processing systems (Marr

and Poggio, 1977; Marr, 1982), both OCT and PMP are compu-

tational level theories, i.e., formalizations of what the organism is

computing and why. However, PMP also includes an intermediate

algorithmic/representational level, which tries to answer the question

about how the computational process is actually carried out: the force-

field metaphor characterizes the computational level of PMP and

the kinematic networks characterize the algorithmic/representation

level. We suggest that these two levels of analysis apply equally well

to humans and humanoid robots, whereas they differ for the lowest

implementation level, which includes sensors, actuators, and early

information processing. The importance of integrating these two

levels of analysis is also emphasized by the term “embodiment,”

which is central in the quest for a human-like cognitive capabil-

ity in humanoid robotics, by taking into account that adaptive

behavior is not a “property of the brain” but emerges from the

interactions of the nervous system with body and environment

(Varela et al., 1991; Chiel and Beer, 1997). Generally speaking,

EPH, as well as the study of force field adaptation (Shadmehr

and Mussa-Ivaldi, 1994), suggest that the brain “understands” the

“language of force fields,” also providing a theoretical background

for an approach to robot-therapy of neuromotor patients based

on the use of force fields (Casadio et al., 2009a,b; Vergaro et al.,

2010).

FUNCTIONAL CATEGORIZATION AND THE CYBERNETICS OF

PURPOSEFUL ACTION

In addition to the categorization of “computational levels,” as pro-

posed by Marr (1982), which indeed was primarily conceived

for the study of vision, the cybernetics of action also implies

2The three-level hypothesis is articulated in the following levels: (1) computa-

tional level (what has to be computed and why, given the task); (2) algorith-

mic/representational level (how does the system do what it does and. specifically,

what representations does it use); (3) implementation level (physical realization of

“software” and “hardware”).
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FIGURE 7 | Continued
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FIGURE 7 | Continued

(A) Describes the task. Analogous to controlling a steering wheel, iCub has to

bimanually maneuver the toy crane so that the magnetized tool tip reaches

the goal. (B) Shows snapshots of the dual processes of observing the teacher

to imitate similar spatio-temporal movements with the toy and then

interacting directly with the tool in order to learn the tool Jacobian. (C) Shows

the trajectories in the tool and end effector space, when iCub steers the

crane toy from the initial position to the goal. (D) Shows temporal evolution of

the x and y components of force exerted by right and left hand, to steer the

toy crane toward the goal. (E) Shows the tool tip velocity. Note that the tool

velocity is symmetric and bell-shaped. (F) Shows the temporal evolution of

motor commands/joint angles in the 17 joints of the iCub upper body as iCub

steers the crane toy from the initial condition [(G): top panel] to the Goal [(G):

Bottom panel]. Observe that based on the motion of the two hands (C), the

evolution of joint angles in the right and the left arm are approximately mirror

symmetric (F).

a categorization in “functional planning stages,” that comple-

ments the previous one. We propose the following categorization

which emphasizes the role of generating “goal directed” actions in

unstructured environments:

1. Strategic planning stage: given a goal and a general knowl-

edge of the environmental conditions, this stage involves a

covert analysis3 of “what is doable and useful, in the context

of the goal.” This is an “information foraging” phase where

the cognitive agent mentally attends to the Goal, and assembles

initial chunks of information “extrinsic (environment state)

and intrinsic (task-related memories, current body state),” that

might be relevant in realizing the goal. Certainly it includes

perception of various Affordances (provided by the environ-

ment), retrieval of known Skills (necessary for exploiting the

affordances), estimating the Value of each skill (in the context

of the goal), using past experiences and memories pertaining

to the task;

2. Tactical planning stage: this is a “temporal ordering” or action

sequencing phase where the goal is broken down into a

sequence of sub-goals/sub-actions (to be carried out by differ-

ent internal action models), with a prediction of the resulting

consequences;

3. Plan execution and monitoring stage: in this stage every specific

action/sub-action is translated into a control policy, monitor-

ing the degree of coherence between the predicted and the

actual sensory consequences, obtained through sensory feed-

back, in order to eliminate cognitive dissonance through further

learning.

The different stages particularly emphasize the role of mental

rehearsal of actions and their consequences, exploiting available

affordances, “using and learning to use” environmental objects as

tools in the context of the pursued goal (sometimes by imitating a

conspecific). Emerging studies in animal cognition reveal that such

phases of mental planning, leading to purposeful action synthe-

sis, may not be unique to humans. Research in animal cognition

has identified complex goal-oriented behaviors in different animal

species, suggesting a cognitive capability well beyond the brute

force strategy of trial-and-error. Well known examples are the

3This has similarities with the idea of non-linear model predictive control; a nice

review can be found in Camacho and Bordóns (2007). At the same time, we believe

that PMP like mechanisms may be quite compatible with recent anthropomimetic

robots like ECCEROBOT (http://eccerobot.org/), that not only mimic the human

“form” but also its inner structures and mechanisms, i.e., bones, joints, muscles,

and tendons and thus have the potential to replicate human-like “action” and

“interaction” in the world.

n-stick paradigm (Visalberghi, 1993; Visalberghi and Limongelli,

1996); Betty’s Hook shaping task (Weir et al., 2002); the Trap tube

paradigm (Visalberghi and Tomasello, 1997).

In the two-stick paradigm, the animal has the goal of fetching a

chunk of food that cannot be reached with its bare hands. A long

stick that could help to solve the problem is unreachable as well.

What can be reached is a short stick, which can be used to recover

the long stick and ultimately the chunk of food. Chimps can eas-

ily solve this problem of combinatorial tool use (Maravita and

Iriki, 2004) and since the observation of their behavior rules out

the possibility of trial-and-error, the most likely interpretation is as

follows: (1) the chimp has an abstract concept of a stick-like object

which must have similar computational properties to the body

schema in order to be integrated with it, at least temporarily in the

course of the task (Iriki et al., 1996); (2) the recognition of crucial

“affordances,” such as the fact that the food and the long stick are

unreachable and the short stick is reachable and long enough to get

the long stick, is carried out by means of covert,“imagined” move-

ments. In a previous work (Mohan and Morasso, 2007, 2011d) we

have shown how adding a reasoning system on top of the PMP-

based real/mental action generation system can enable a cognitive

robot (GNOSYS) to autonomously generate goal directed plans in

such scenarios (where use of tools is obligatory for achieving the

goal). Figure 8 illustrates the sequences of (real and virtual) actions

initiated by iCub using different task-specific PMP networks (illus-

trated in different examples so far) when it exploits a long green

stick as a tool to reach (an otherwise unreachable) red cylinder.

Summing up, affordances are the seeds of action. Being able to

identify and exploit them opportunistically in the “context” of an

otherwise unrealizable goal is a sign of cognition. Being able to

do this in the mind by performing virtual actions, further allows

an agent to evaluate “what additional affordances” it can create in

its world, hence enabling it to reason about how the world must

“change” such that it becomes a little bit more conducive toward

realization of its internal goals. The posited decomposition of a goal

into a sequence of sub-goals/sub-actions is a natural side-effect of

the mental process of attempting to use tools, exploit environmental

affordances to connect the dots from the initial condition to the goal.

PMP is an appropriate framework for formulating the two top

functional stages of the categorization defined above. The OCT

framework, in our opinion, is less appropriate because covert rea-

soning about actions can hardly be formalized in terms of cost

functions and continuous-time control policies. If we agree that

internal simulation of action is a key element of purposive behavior

(Jeannerod, 2001; Gallese and Lakoff, 2005; Gallese and Sini-

gaglia, 2011), then it is not clear how to use the “cost function”

formalism for treating at the same time overt and covert (imagined)

actions.
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FIGURE 8 | Pictorial illustration of the “Two sticks paradigm” applied to

the iCub robot in the simplified case that a single stick is suitable and

available. The goal of iCub is the reach the large red cylinder, placed out of

reach. As seen, there is a green stick available in the environment. In order to

realize its goal in this situation, iCub performs a sequence of overt and covert

actions: (1) Mentally estimating weather the goal is directly reachable with

either arm using the PMP network for the upper body (Figure 3A); (2)

evaluating the size of the required stick-like tool based on the discrepancy

between the goal and the final reachable position predicted by the forward

model; (3) visually detecting the (green) tool; (4) evaluating whether the long

green stick is reachable with an appropriate wrist orientation (using the

composite PMP network of Figure 5A); (5) reaching and grasping the stick

using the same PMP network; (6) incorporating the stick in the body schema

by updating the Jacobian taking into account the length and orientation of the

stick coupled to the end effector; (7) using the stick to reach the target

cylinder using the PMP network of (A). In (A), since the tool is coupled to the

left arm, the right arm network is shown deactivated (goal = initial condition,

force field in the right arm network is 0). Since the coordinated tool is the

most distal part of the resulting PMP network, goals act on the tool. The field

generated by the discrepancy between goal and tool position is mapped into

an equivalent torque field by the transpose Jacobian (J LTT). This torque field is

mapped into joint rotation patterns for the left arm by the Admittance matrix.

The Jacobian J LT now transforms this information into next incremental

update in the tool position in the end effector space (tool is the end effector

now). This process of incremental updating of every node in the PMP network

continues till the time the force field in the left arm network is also zero (i.e.,

the tool tip reaches the target). (B) Shows snapshots of iCub performing the

sequence of actions, reasoning and exploiting the available tool (green stick)

in order to realize the otherwise unrealizable goal (i.e., reaching the

red cylinder).
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Finally, we wish to emphasize that proposing PMP as an alter-

native to OCT as a global framework in the analysis of purposive

behavior does not rule out the importance of optimality princi-

ples in the field of motor control but, as previously mentioned,

suggests that its domain of influence is local rather than global.

On the other hand, a recent development on efficient methods

of optimal actions (Todorov, 2009; see also the commentary by

Doya, 2009) allows to compose optimal control laws by mix-

ing primitives and thus approaches the philosophy underlying

the PMP.

DISCUSSION

The PMP has been proposed as a general framework for under-

standing the organization of task-oriented actions. Extensions of

the framework in the direction of motor skill learning, imitation

and covert reasoning about actions were presented. How PMP

networks of gradually increasing complexity can be created “on

the fly” while preserving the inherent “modularity,” “connectiv-

ity,” “local,” and “well posed” nature of computations in the basic

model was described with a number of examples, implemented

on the humanoid iCub (like, control of a single kinematic chain,

full upper body coordination, bimanual coordination of a tool,

incorporating multiple constraints, performing covert reasoning).

In this concluding section, we analyze both positive features and

open issues within the framework thereby looking for areas where

future research needs to be directed.

PMP AND UNDEREXPLORED AREAS FOR FUTURE RESEARCH

In this section, we analyze the PMP framework listing out the

under explored areas where novel conceptual developments may

be envisaged in the future.

Learning “extended”

Once upon a time, the barter economy prevailed. Goods or ser-

vices were exchanged for other goods or services. Then someone

invented the concept of “currency.” With this, humans started

conducting trade and economics at one further level of “Abstrac-

tion.” The core idea was to exploit the flexibility resulting from

the establishment of an “abstract measure” of value (and ease

of storage). Simply, based on ones requirements (i.e., the goal),

the right amount of currency can be transformed into any sub-

stance or service. What is the brains “currency” for generating

skilled goal directed “movement”? Can we arrive at a small set

of abstract motor vocabulary that when combined, sequenced,

and shaped to “context” (i.e., the goal), allows the emergence of

the staggering flexibility, dexterity, and range that human actions

possess?

The skill learning architecture based on PMP presented in

Section “Motor Skill Learning and PMP” presents some prelim-

inary results in this direction that needs to be further improved

and validated through more experiments (both in terms of math-

ematical advancements and cross validation through behavioral

studies). The positive feature of the proposed skill learning architec-

ture is that different aspects of motor knowledge gained while learning

a novel task are “distributed” systematically so as to allow task-specific

“compositionality” and task independent “knowledge reuse.” At the

same time there are areas where improvements need to be made.

For example, when we learn a motor skill we learn a number of

things listed below:

To perform specific spatio-temporal movements using the “task–

specific” effectors/tool. This knowledge is stored in the stiffness

and timing parameters that are used by the virtual trajectory

synthesis system (i.e., in the shape library of Figure 6). The

abstraction from “trajectory” to “shape” allows compositional-

ity in this case. For example consider the crucial human skill

of “writing.” It has been shown that 73% of the Latin/English

alphabets and 82% of numerals are composed of “simple”4 shape

features like line, bump, and cusp (Chakravarthy and Kompella,

2003). Inversely, since most letters of the English alphabets and

numerals are “synthesized” with these simple shape features, the

authors argue that the script is very “stable and robust,” from the

“sensory–motor” point of view (i.e., both explaining the diver-

sity in the handwriting of different people and our effortless

ability to perceive/read them). Further, even the task-space tra-

jectories of common tool use actions like screwing, uncorking,

cycling, use of lever, unwinding, use of a tap, cycling, among

many others just require “task–space” trajectories that end up

in “bump,” “line,” and “cusp” shape features, that can be very

easily “described and generated” in formal terms (Mohan et al.,

2011b).

The provocative question is in fact the inverse problem, i.e., not

the “use of a tool” but the “design of a tool” itself. Do we prefer

design tools that “conform” to these specific movement shapes in

the extrinsic space? Is the measure of “user friendliness” of a new

tool related to the fact that we can “recycle” our past knowledge

of movement and learn to move with new tool applying minimal

efforts? Learning the consequence of such movements is another

issue (more task-specific) and our system deals with this at a dif-

ferent level (i.e., the Jacobians). But, does the brain “compose” and

“recycle” task-space motion by mixing “shape” knowledge? This

does seem reasonable from an evolutionary perspective because

all basic “sensorimotor” interactions require “shaping” one’s body

to the shape of the world with which we are interacting (be it

a monkey clinging to a branch of a tree or a couple dancing).

Surprisingly, it is not easy to give a precise mathematical or quan-

titative definition of “shape” or even express it in measurable

quantities like length, angles, or topological structures. In gen-

eral terms, shape is the core information in any object/action

that survives the effects of changes in location, scale, orienta-

tion, end-effectors/bodies used in its creation, noise, and even

minor structural “injury.” We posit that it is this invariance that

makes “shape” a crucial piece of information for sensorimotor

interaction. Hence, we suggest that an unified treatment of the dual

operations of shape perception/synthesis is critical to better under-

stand the perception–action loop, how we recycle past sensorimotor

knowledge, and why we design tools the way we do (taking into

account how “user friendly” it is). In other words, we posit that “user

friendliness” is just a measure of how a “tool designer” can minimize

4“Simple” here formally refers to the “codimension” of the resulting shape, i.e., the

number of independent parameters necessary to bring back a shape point from its

perturbed version to the original state (Chakravarthy and Kompella, 2003). Greater

the codimension, the more unstable is the resulting shape.
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“sensorimotor” exploration required by a “tool user.” Further research

needs to be directed in these areas though both experiments with

humans and humanoids.

Learning the relationship between the “body effector” and “tool”.

This knowledge is specific to the body effector and tool involved

in the action and is mapped by the tool Jacobians at the interface. In

Section “Motor Skill Learning and PMP,” we have shown how this

information can be learnt through an “action–perception” loop

and represented in a sub-symbolic manner using standard neural

networks.

Learning to attain specific “body postures” that are required by

the task. Attaining the right body pose in some tasks may be oblig-

atory but most often simplifies the execution of any motor skill.

This can be achieved by learning the right balance of “admittance”

in the intrinsic space of the associated PMP network. Similar to

the learning of “virtual stiffness and timing” to perform spatio-

temporal movements in the end effector space, attaining the right

pose with the body may also be learnt through a combination

of imitation and practice. In principle it is possible to estimate

the approximate contribution of different body parts by observ-

ing a teacher or through kinesthetic teaching. Since the effect of

admittance is “local” in PMP, such perceptual information can

be directly used to “locally” modulate the participation of differ-

ent DoFs, hence influencing the nature of solution obtained in

the intrinsic space. Preliminary results have been obtained in the

scenario of whole body synergy formation (Morasso et al., 2010;

Zenzeri, 2010) where the task was to learn the right balance of

admittance values in the whole body PMP network in order to

reproduce the final body pose achieved by the teacher (recorded

using a motion capture device). Even though it applies for this

specific case, a more comprehensive and general understanding

needs to be achieved through experiments in the future. In gen-

eral, while the link between perception of movement and task-specific

regulation of “stiffness” and “timing” in the extrinsic space (VTGS)

has been already addressed in detail, further research needs to be con-

ducted to understand the link between perception of movement and

swift “task–specific” regulation of admittance in the intrinsic space,

in order to also obtain specific body postures while performing these

movements.

Integrating all the knowledge in the context of a Goal. The PMP

network is the natural site where all the motor knowledge related

to stiffness, timing, Jacobians, and admittance comes together.

The network structure is organized in a way such that different

connecting links play “well defined” roles and can be loaded at

“runtime” from memory when a task-specific PMP network is

“assembled” to coordinate a motor behavior. What remains is only

to “switch on” the task relevant force fields (i.e., the goal and other

constraints that apply) and let the network evolve in the resulting

attractor dynamics. Part of the motor knowledge related to “move-

ment” per se is context independent and part of the knowledge

related to task-specific consequences, other constraints involved

are context dependent. These are stored separately in the action

learning architecture and integrated in a task-specific fashion by

the PMP system to synthesize the motor commands. This modular,

distributed, local, and goal directed organization of action is one

of the positive features of the framework.

Effects of loading, tighter integration with dynamics

In this section, we are concerned with scenarios such as a firefighter

in a self-contained breathing apparatus wearing heavy protective

gears and performing a precision task with a tool (for example, a

water hose), a soldier often loaded in excess of 40% of his body

weight moving both for one’s own survival and performing his/her

duties, an infant coping up with a growing body especially dur-

ing the first few years of life (Adolph and Berger, 2006; Adolph

et al., 2008), industrial robots that wield and transport differ-

ent tools (e.g., assembly lines for car manufacturing etc), or even

ourselves performing/learning movements with different physi-

cal loads dynamically coupled to our body segments. Often there

are functional changes in the mass and moment of inertia of the

different body segments that we have to account for dynamically

“at runtime.” At the moment, PMP directly does not take into

account these effects. It basically solves the DoFs problem, i.e.,

the how the goal of performing a task-specific movement can be

distributed across a large number of contributing elements in a

highly redundant motor system (that also includes coupled tools).

In this sense, PMP networks should be considered as a “body

schema” or an “internal model” that interfaces higher cognitive

levels (reasoning and planning) with lower control levels, related

to actuators and body dynamics. It does not deal directly with the

lower level dynamics at actuator level. In the iCub, whose indi-

vidual DoFs are separately controlled by means of standard PIDs

loops at the actuator level, the output of the PMP network pro-

vides the reference trajectory for each PID controller. Still, a tighter

“closed–loop” integration of PMP with dynamics at actuator level,

taking into account effects of “loading” in various body segments

while generating motor actions is necessary. With ongoing hard-

ware developments related to joint level force/torque sensing in

iCub (Parmiggiani et al., 2009; Fumagalli et al., 2010), in the next

generation PMP networks we plan to integrate and account for

dynamics at the lower level in a more refined manner.

An interesting inverse scenario concerns the use of humanoid

robots to understand “constraints” that various physically coupled

loads place on the movements that needs to be generated under

such conditions. New experiments with PMP are being devised

to better understand the effects of loading different body segments

(trunk, head, hands) of iCub to investigate: (a) postural/focal rela-

tions in terms of functional changes in Mass and Moment of

Inertia of the different body segments; (b) evaluation of the result-

ing reduction in available DoF and lack of access to physical and

functional workspace due to the loading conditions; (c) compare

the results with motion analysis of humans performing similar

movements under identical loading conditions. This direction

of research can potentially provide greater insights into: (a) the

functional capability and survivability of people wearing different

kinds of personal protective equipments (PPE) while performing

their day to day tasks; (b) use this knowledge to redistribute load-

ing of their bodies in an optimal fashion; (c) create ergonomic

designs of PPE’s, safety gears etc worn by people who are expected

to perform precision tasks in critical conditions (like soldiers, fire

fighters among others).
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TOWARDS A SHARED COMPUTATIONAL BASIS FOR “EXECUTION,

IMAGINATION, AND UNDERSTANDING” OF ACTION

Biological plausibility

Mounting evidence accumulated from different directions such

as brain imaging studies (Frey and Gerry, 2006; Grafton, 2009;

Kranczioch et al., 2009; Munzert et al., 2009), mirror neuron sys-

tems (Gallese et al., 1996; Rizzolatti et al., 2001; Rizzolatti and Sini-

gaglia, 2010) and embodied cognition (Gallese and Lakoff, 2005;

Gallese, 2009; Gallese and Sinigaglia, 2011; Sevdalis and Keller,

2011) generally support the idea that action “generation, obser-

vation, imagination, and understanding” share similar underlying

functional networks in the brain. In general, there is growing evi-

dence for the fact that neural circuits in the predominantly motor

areas are also activated in other contexts related to “action” that

do not cause any overt movement. Such neural activity occurs

not only during imagination of movement (Decety, 1996; Decety

and Sommerville, 2007; Caeyenberghs et al., 2008; Holmes and

Calmels, 2008, several others) but also during observation and imi-

tation of other’s actions (Grafton et al., 1996; Buccino et al., 2001;

Frey and Gerry, 2006; Ulloa and Pineda, 2007; Iacoboni, 2009a)

and even comprehension of language, i.e., both action related verbs

and nouns (Glenberg, 1997; Barsalou, 1999; Feldman, 2006; Fis-

cher and Zwaan, 2008; Pulvermüller and Fadiga, 2010; Glenberg

and Gallese, 2011; Marino et al., 2011). The neural activation pat-

terns include not only premotor and motor areas such as PMC,

SMA, and M1 but also subcortical areas of the cerebellum and the

basal ganglia. During the observation of movements of others, an

entire network of cortical areas called as the “action observation

network” that includes the bilateral posterior superior temporal

sulcus (STS), inferior parietal lobule (IPL), inferior frontal gyrus

(IFG), dorsal premotor cortex, and ventral premotor cortex are

activated in a highly reproducible fashion (Grafton, 2009). The

central hypothesis that emerges out of these results is that motor

imagery and motor execution draw on a shared set of cortical

mechanisms underlying motor cognition. In simple terms, it posits

that one can reason about an action (reach, grasp etc.) without

actually performing the action and yet use the same neural sub-

strate in the sensory motor system. Further, neural substrates that

are used in imagination are also used in understanding actions

of others, i.e., when observing actions, people recruit motor rep-

resentations as if they were themselves acting. In other words,

understanding is an internal simulation that entails the reuse of

our own ability to act with our bodily resources in order to func-

tionally attribute meaning to “others” actions. The extent and

reliability of such reuse and functional attribution depends both

on the simulator’s bodily resources and their being shared with the

target’s bodily resources (Gallese and Sinigaglia, 2011).

A preliminary foundation of such “shared” computational

machinery for action generation, action learning through imi-

tation and covert reasoning about action in the humanoid robot

iCub has been created through the development of the PMP frame-

work (and illustrated through numerous examples in this paper).

In general, PMP networks are activated under a variety of con-

ditions in relation to action, either of oneself or observed from

the teacher. Their function is not only to shape the motor out-

put during action execution, but also to provide the self with

information on the feasibility, consequence, understanding, and

meaning of potential actions. Further, considering that real and

imagined actions turn out to be similar indeed, the proposition that

even overt actions are a product of an “internal simulation” is a defin-

ing feature of PMP architecture. A further hypothesis suggested by the

PMP, is that the posited simulation is an attractor dynamics, driven

the “task–specific” force fields. This is the crucial difference between

EPH and PMP. While in the classical view of EPH, the attractor

dynamics that underlies production of movement is attributed

to the elastic properties of skeletal neuromuscular system, PMP

posits that cortical, subcortical, and cerebellar circuits may also be

characterized by similar attractor dynamics. This could explain the

similarity of real and imagined movements because, although in the

latter case the attractor dynamics associated with the neuromuscular

system is not operant, the dynamics due to the interaction among

other brain areas are still at play.

The study of the neural basis of imitation is still in its infancy,

although the cognitive, social and cultural implications of imita-

tion are well documented (Rizzolatti and Arbib, 1998; Schaal et al.,

2003; Argall et al., 2009; Lopes et al., 2010). Experimental evidence

from numerous brain imaging studies (Perrett and Emery, 1994;

Grafton et al., 1996; Rizzolatti et al., 1996, 2001; Iacoboni et al.,

2001; Koski et al., 2002; Iacoboni, 2009b) suggest that the infe-

rior frontal mirror neurons which code the goal of the action to

be imitated receive information about the visual description of

the observed action from the STS of the cortex and additional

somatosensory information regarding the action to be imitated

from the posterior parietal mirror neurons. Efferent copies of

motor commands providing the predicted sensory consequences

of the planned imitative actions are sent back to STS where a

matching process between the visual description of the action

and the predicted sensory consequences of the planned imitative

actions takes place. If there is a good match, the imitative action is

initiated; if there is a large error signal, the imitative motor plan is

corrected until convergence is reached between the superior tem-

poral description of the action and the description of the sensory

consequences of the planned action. It is interesting to note that the

imitation learning loop of our skill learning architecture (Figure 6)

resonates well with these findings, the visual shape extraction and

motor goal formation system coding for the early visual descrip-

tion of the action to be imitated, virtual trajectory coding for a

detailed motor representation necessary for action generation, and

the forward model output of the PMP (efferent copies) being sent

back in the same format of the visual goal description for moni-

toring purposes. This issue has been dealt with in detail in Mohan

et al. (2011b), and emphasizes the point that internal simulations

play an important role in allowing the observer to foresee the con-

sequence of an action, predict the intended goal of the actor and

learn to replicate the action through imitation.

In this sense, PMP is a young framework that attempts to inte-

grate, in a computational manner, a growing body of neurobiological

knowledge on a humanoid robot. Its biological plausibility comes

from complementary and converging lines of investigations on the

neural basis of purposive behavior: the equilibrium point hypoth-

esis, extended in such a way to take into account the evidence

coming from motor imagery, on one side, and the parieto-frontal

mirror circuitry, on the other. We understand that this is just the

starting point. There exists wide scope for further investigating the

neurobiological basis of PMP using a combination of behavioral stud-

ies and brain imaging techniques. This requires a comprehensive
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research program with active participation from the neuroscience,

animal cognition and developmental psychology community. This

article is just an initiative in this direction.

PMP extended: ongoing developments

We emphasize that PMP is also a medium through which several

findings related to motor cognition coming from the field of neu-

roscience can be implemented in complex humanoid robots. This

opens us the possibility of both conducting a wide range of exper-

iments related to different aspects of “action” on humanoid robots

and at the same time endowing them with motor skills necessary to

flexibly“assist”us in our needs and in the environments we inhabit

and create. In this context, further developments of the architec-

ture are being pursued by the different EU supported projects that

use PMP as a computational backbone (ITALK5, EFAA, DARWIN,

and ROBOCOM).

PMP AND SOCIAL INTERACTION

Specifically, EFAA aims to extend the PMP framework in the

domain of social interaction, acquisition of motor skills through

demonstration, learning to “inter-act,” and cooperate with the

teacher in joint goals. Further development of the work on motor

knowledge recycling and the“shape”perception/synthesis hypoth-

esis (Mohan et al., 2011b) discussed in Section “Motor Skill

Learning and PMP” is also planned. An interesting question in

the behavioral side that we are investigating in this context is

the possibility of characterizing the shape of “percepts” in gen-

eral, independent of the modality through which they are sensed

(visual, auditory, haptic, all of which is functionally available in

iCub). Does multimodal sensory fusion partially result from the

resonance between shape critical points computed through different

sensory modalities? For example, it is well known that certain forms

of music resonate well with certain forms of dance (auditory to

motion mapping) or even the existence of numerous metaphors

that connect different sensory modalities like “chatter cheese is

sharp” (gustatory to tactile mapping). That humans are very good

at forming cross modal synesthetic abstractions has been known

right from the early experiments of Wolfgang Kohler, the so called

“Bouba–Kiki effect” (Ramachandran and Hubbard, 2003). In the

same line are recent results from sensory substitution (hearing to

seeing for the blind, see Amedi et al., 2007) that show primacy

“shape” information in mediating multisensory integration. We

hypothesize that a formal framework for perception and synthesis

of “shape” backed up with behavioral studies will both shed more

light on how cross modal abstractions between senses are made

(and at the same time endow iCub with a preliminary capability

to perform the same).

PMP, MOTOR SKILL LEARNING, AND NEUROREHABILITATION

When it comes to motor skill learning a related field of high rele-

vance is neuromotor rehabilitation, considering that functional

recovery from motor impairment is similar to learning a new

5EFAA stands for Experimental Functional Android Assistant (http://efaa.upf.edu/).

DARWIN stands for Dextrous Assembler Robot Working with embodied INtelli-

gence (http://www.darwin-project.eu/), ITALK stands for Integration and transfer

of action and language knowledge in robots (www.italkproject.org), ROBOCOM

stands for Robot Companions for Citizens (www.robotcompanions.eu).

motor skill. In a previous work, we have already investigated the

scenario of a master teaching iCub the drawing/writing skill. What

about the inverse scenario6 of a skilled robot teaching or assist-

ing a neuromotor impaired subject to recover a skill, like writing

or drawing? This inverse scenario makes it possible to investigate

motor learning as it occurs in human subjects. To investigate this

issue, we have ported the PMP framework into the haptic manipu-

landum BdF (Casadio et al., 2006) and the first set of experiments

of teaching subjects to draw “shapes” with their non-dominant

hand (coupled to the BDF) is underway (Basteris et al., 2010). An

assistance module that “optimally” regulates haptic intervention

of the robot based on the performance of the student is being

designed. We are also investigating a three way interaction sce-

nario between expert-robot–student (expert and student coupled

to the either arms of the manipulandum) during handwriting

learning experiments. The goal for the robot here is to acquire an

internal model of the training session (case histories) and use this

knowledge to intelligently regulate assistance to the trainee when

the expert is disconnected in the later stages. This scenario is the

subject of the ongoing EU FP7 project HUMOUR.

PMP AND THE “BLURRED” DISTINCTION BETWEEN “TOOL” AND THE

“BODY”

An interesting point to observe is that PMP framework does not

make any special distinction between the “body” and a “tool.”

There are two interesting ramifications.

The tool space is represented exactly in the same manner as

any other motor space and during coordination the body and

the tool act as one cohesive unit (to realize a goal). The process

whereby a tool becomes an extension of the hand to perform a

specific task can be related to the flexible view of body schema

offered by Head and Holmes (1911). In a seminal paper, Umiltà

et al. (2008) have shown that the essence of tool use lies in the

capacity to transfer proximal goals to distal goals. Recording from

monkeys trained to use pliers to grasp otherwise unreachable

food reward, they demonstrated that the end effect of tool use

training was the transfer of the temporal discharge pattern that

controls “hand grasping” (area F5) to the tool, as if the tool was

the hand of the monkey and its tips were the monkey’s fingers.

This of course is reminiscent of the results of Iriki and colleagues

(Maravita and Iriki, 2004; Iriki and Sakura, 2008), who showed

that, with practice, a rake becomes a part of the acting monkey

body schema. However, what Umiltà et al demonstrated was that

in addition to being incorporated into the body schema, the tool,

after learning, is coded in the motor system as if it were an artificial

hand able to interact with the external objects, exactly as the natural

hand is able to do. In the PMP network for coordinating the toy

crane (Figure 2), as the magnetized tip is being pulled toward the

goal target, iCub’s end-effectors are simultaneously being pulled

toward the required positions so as to allow the tool tip to reach

the goal. These positions are the goals for the end effector space.

As a consequence, the joints are concurrently pulled so as to allow

the end-effectors to reach the position that allows the tool tip to

reach the goal. These are the goals for the intrinsic space. If motor

6This scenario is the subject of the ongoing EU FP7 project HUMOUR: HUman

behavioral Modeling for enhancing learning by Optimizing hUman-Robot interac-

tion.
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commands derived through this incremental internal simulation

of action are transmitted to the robot, it will reproduce the motion,

hence allowing iCub to perform goal directed movements using

the “body + toy crane” network. It is this kind of goal-centered

functional organization of cortical motor areas for which Umiltà

et al provide evidence through their tool use experiments with

monkeys.

An interesting idea proposed in a seminal article by Iriki and

Sakura (2008) in this context is that if external objects can be con-

ceived as being parts of the body during coordination, then the

converse, i.e., the subject can now “objectify” its own body parts as

equivalent to external tools, becomes likewise apparent. In other

words, they hypothesize that the ability to literally incorporate

external objects into one’s own body schema and the ability to

“objectify” the body (other bodies) as another object/tool are just

the two sides of the same coin. The consequence is quite remark-

able. As soon as one’s own body becomes objectified and separate,

one must assume a subject with an independent status that is

orchestrating the movements of both the body and its tools. In

this way, the “mind” could emerge naturally as a sort of “virtual

concept,” a placeholder for the link between the “subject” and the

“objects” of manipulation, which includes the body itself (and

other bodies). There is already some evidence in this regards. It

has been shown that significant intracortical connections between

the intraparietal cortex (IPS) and the temporo-parietal junction

(TPJ) can be forged by tool use training in adult monkeys (Hihara

et al., 2006). In human subjects, activation of the homologous

circuitry at the TPJ is detected in self-objectification paradigms

(Corradi-Dell’Acqua et al., 2008). In this sense, further research

on acquisition of tool use skills in both primates and cognitive

robots could open a new window to understand several funda-

mental issues like the emergence of mind, the sense of self, the

continuity of self in time, “other selves” in other bodies and

the horizontal spread of skills through culture (through social

interactions: human–human, human–humanoid). In this context,

work is ongoing to expand the motor skills of iCub using the

extended PMP framework and teach it to use common day to

day tools like screwdriver, hammer, lever etc., and perform simple

assembly operations (using MECCANO 2+ assembly kit) through

a combination of social and physical interactions (as in Figure 6).

Further, while interacting with these objects we expect it to learn

“abstract” sensorimotor knowledge related to contact (using the

new touch sensors and skin available in iCub), directionality while

pushing/pulling, extension of reach (and its peripersonal space),

amplification of force (integration PMP with recently mounted

force/torque sensors). The word “abstract” should be taken in the

sense that the acquired knowledge can be “recycled” in a number

of task-specific contexts. This objective is being pursued through

a recently funded EU project DARWIN (www.darwin-project.eu).

In general, we look forward towards creating an iCub that learns

“Green”!
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