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Passive Nonlinear Pulse Shaping in Normally

Dispersive Fiber Systems
Sonia Boscolo, Anton I. Latkin, and Sergei K. Turitsyn

Abstract— We propose a novel approach to characterize the
parabolically-shaped pulses that can be generated from more con-
ventional pulses via nonlinear propagation in cascaded sections
of commercially available normally dispersive (ND) fibers. The
impact of the initial pulse chirp on the passive pulse reshaping is
examined. We furthermore demonstrate that the combination
of pulse pre-chirping and propagation in a single ND fiber
yields a simple, passive method for generating various temporal
waveforms of practical interest.

Index Terms— Nonlinear fiber optics, nonlinear pulse propa-
gation, passive pulse shaping, parabolic pulses.

I. INTRODUCTION

NONLINEAR phenomena in optical fibers can be ex-

ploited to develop new techniques for regeneration,

processing and manipulation of the optical signals. Recent

developments in nonlinear optics have put into the focus

of intensive research an interesting class of pulses with a

parabolic profile in the energy-containing core and a linear

(in time) frequency chirp that can propagate in a fiber with

normal group-velocity dispersion (GVD) [1]–[7]. While in the

normal dispersion regime nonlinear-dominated optical pulse

broadening generally leads to wave breaking which mani-

fests itself as waveform steepening with subsequent growing

oscillations at the pulse tails (see, e.g., [1], [8], [9] and

references therein), parabolic pulses (PPs) propagate in a

stable self-similar manner, holding certain relations (scaling)

between changing pulse power, width, and chirp parameter.

Because of their unique characteristics, parabolic pulses are

of great interest for various applications including amongst

others high-power femtosecond lasers, spectral broadening and

supercontinuum generation, and nonlinear all-optical signal

processing and regeneration. The problem of the PP generation

in fibers has attracted a great deal of attention in recent years

[7]. PPs can be generated through the asymptotic reshaping

of sufficently powerful pulses that occurs upon propagation in

normally dispersive (ND), nonlinear fiber amplifying media.

Experimental demonstrations relying on amplification from

either rare-earth doping [2], [3] or Raman scattering [5]

have confirmed the potential of this method, especially when

dealing with the generation of ultrashort, high-power pulses.

However, in the context of applications where high signal

power is not necessarily required and the most valuable

features are the specific parabolic shape and phase of the
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pulse, such as, e.g., optical telecommunications, other ap-

proaches to the PP generation could be of interest. To this

end, several techniques have been recently proposed: the use

of a dispersion-decreasing fiber [10]–[13], the application of

superstructured fiber Bragg gratings [14], and the combination

of two carefully chosen ND fibers [15].

In this paper, we present an accurate analysis of the

nonlinear reshaping of conventional pulses that occurs upon

propagation in cascaded sections of commercially available

ND fibers. In many respects, our analysis follows and gen-

eralizes the pioneering work of [15], where a very important

and simple method of generating linearly chirped PPs in a

complete passive manner has been proposed. Compared to

previous techniques, the approach suggested in [15] has the

clear advantage of relaxing the need to use an amplifying

medium (and thus the need for a pumping source), or the need

for additional custom devices [14]. Indeed, it relies only on the

use of commercially available fibers with normal dispersion.

Here, we extend the results of [15] in several directions. We

characterize in detail the evolution of an initial Gaussian pulse

into a pulse with a nearly parabolic temporal intensity profile

and a nearly linear chirp during propagation in a ND fiber,

and the subsequent pulse stabilization in a second ND fiber

with suitably different nonlinear and dispersive characteristics

relative to the first fiber. We discuss the tolerance of the PP

formation to the length of the initial reshaping fiber as well as

the impact of the initial pulse chirp on the pulse reshaping

process. We furthermore propose the combination of pulse

pre-chirping and propagation in a single ND fiber as a simple

method for passive nonlinear pulse shaping in the time domain.

Techniques for the control and manipulation of the temporal

shape of optical pulses have become increasingly important for

many scientific applications, including, ultrahigh-speed optical

telecommunications and computing systems, quantum optics,

and nonlinear optics. Here, we demonstrate that by means of

control of the initial chirp and power, conventional laser pulses

can be transformed into pulses with various temporal wave-

forms of practical interest, ranging from a parabolic profile

to a flat-top profile, and a triangular profile. Flat-top pulses

are highly desired for nonlinear optical signal processing and

switching as well as for a range of wavelength conversion

applications. Triangular pulses are also of interest, e.g., for

time-domain add-drop multiplexing, wavelength conversion

and other photonic applications.

II. SYSTEM DESCRIPTION AND PULSE SHAPING MODELING

The proposed pulse reshaper consists of a pre-chirping

device, an optical amplifier, and a section of ND fiber, as
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Fig. 1. Scheme of the pulse reshaper. (a) One-stage device, (b) two-stage
device.

depicted in Fig. 1(a). Qualitatively, the idea for the method

is as follows: a transform-limited (chirp-free) optical pulse

generated from a laser source incoming to the reshaper is first

subject to the preferred chirping. Then the pulse is amplified

by the optical amplifier to enhance the effect of nonlinearity

in the ND fiber. During transmission along the ND fiber, the

temporal waveform of the pulse can be changed to various

profiles by the combined action of GVD and Kerr nonlinearity

according to the chirping value and power level at the input of

the fiber. Note that the newly formed pulses in the device have

all a nearly linear chirp (first time derivative of the phase). It

is also worth noting that such pulse shapes represent transient

states of the nonlinear pulse evolution in a passive ND fiber.

This is in contrast with the self-similar PPs that can be

obtained as asymptotic, approximate solutions of the nonlinear

Schrödinger equation (NLSE) in a ND fiber amplifier in the

large-amplitude/small-dispersion limit [3], [4], [6], [7]. Finally,

we point out that the generation of PPs through passive pulse

reshaping in a ND fiber has been already demonstrated in

[15], and different types of pulse temporal waveforms have

been achieved in [16] using a two cascaded interferometers’

reshaping architecture. The approach proposed here general-

izes the method proposed in [15], offering additional flexibility

in the generation of the target waveform by control of the pulse

pre-chirping.

Our numerical simulations of the optical pulse propagation

in fiber are based on the standard NLSE model including the

effects of fiber dispersion, nonlinearity and, when explicitely

indicated, absorption [17]. To simplify the analysis, we use

the dimensionless quantities: u(ξ, τ) = NU , U(ξ, τ) =
ψ/

√
P0, τ = t/T0 and ξ = z/LD. Here, ψ(z, t) is the field

envelope in the comoving system of coordinates, T0 and P0

are respectively a characteristic temporal width (e.g., the half-

width at 1/e-intensity point in the case of a Gaussian-shaped

pulse) and the peak power of the initial pulse, and LD, LNL

and N are respectively the dispersion length, the nonlinear

length and the energy parameter (“soliton” number) defined

as: LD = T 2
0 /β2, LNL = 1/(γP0) and N =

√

LD/LNL,

where β2 and γ are the respective GVD and nonlinearity

parameters of the fiber. For the purpose of illustration, we

consider the propagation of an intial Gaussian-shaped pulse:

U(0, τ) = exp(−τ2/2 + iCτ2) in a highly nonlinear (HNL)

fiber. Propagation in the fiber is considered up to a maximum

length of LD. C is the (normalized) chirp parameter. Note

that for a different choice of the initial pulse shape, similar

pulse shaping regimes to those reported in this paper are

expected to occur upon propagation in a ND fiber, whereas the

relevant parameter regions would be different [15]. In order to

quantify the evolution of the initial pulse towards a pulse with

some shape and a linear chirp, we introduce dimensionless

functionals defined as

κ =

∫

∞

−∞
dτ τ2|u|2(

∫

∞

−∞
dτ |u|4)2

(
∫

∞

−∞
dτ |u|2)5 ,

κ̃ =

∫

∞

−∞
dω ω2|ũ|2(

∫

∞

−∞
dω |ũ|4)2

(
∫

∞

−∞
dω |ũ|2)5

,

Φ =

∫ ∆τ/2

−∆τ/2
dτ ||φττ | − |(φττ )τ=0||

∫ ∆τ

−∆τ
dτ |(φττ )τ=0|

. (1)

In (1), the structural functional κ characterizes the pulse

temporal shape [18], [19]. For example, κ = 0.0796 for a

Gaussian pulse, κ = 0.072 for an ideal PP corresponding

to the intensity profile: |uP(τ)|2 = 1 − (τ/τP)2 if |τ | ≤
τP and |uP(τ)|2 = 0 otherwise, and κ = 0.0741 for an

ideal triangular pulse defined as |uT(τ)|2 = 1 − |τ/τT| if

|τ | ≤ τT and |uT(τ)|2 = 0 otherwise. Obviously, κ is not

the only possible choice of dimensionless quantity that can

be used for shape characterization. Nonetheless the form of

this coefficient provides the simplest way of describing the

pulse shape in terms of meaningful physical characteristics of

the pulse. Indeed, one may notice that κ = (TintPint/E)2,

where Tint = (
∫

dτ τ2|u|2/E)1/2 and Pint =
∫

dτ |u|4/E are

the second-order moments related to the pulse temporal width

and power, respectively, [19], [20] and E =
∫

dτ |u|2 is the

pulse energy. In [19], κ has been associated with an invariant

of the propagation equations of the second-order moments of

the pulse amplitude and effective power within the parabolic

approximation for the pulse phase. This invariant indirectly

expresses the conservation of energy. Since it is normalized by

the energy, which is also an invariant, it describes the pulse

shape. In (1), κ̃ is an analogous functional defined for the

pulse spectral shape, where ω is the (normalized) frequency

and ũ is the Fourier transform of the field envelope. φ = argu
is the phase of the field, and parameter Φ gives a measure of

the linearity of the frequency chirp across a time interval ∆τ

around τ = 0 such that
∫ ∆τ/2

−∆τ/2
dτ |u|2 = a

∫

∞

−∞
dτ |u|2, where

0 < a ≤ 1. In other words, Φ quantifies the misfit between

the slope of the frequency chirp at some τ and the slope at

τ = 0 in the energy-containing central portion of the pulse,

which is parametrized by a. For the purpose of comparison,

we will also consider in our analysis the misfit parameter M
between the pulse temporal intensity profile and a parabolic fit

of the same energy and full-width at half-maximum duration

used in [15]:

M2 =

∫

∞

−∞
dτ (|u|2 − |uP|2)2
∫

∞

−∞
dτ |u|4 . (2)

Following [15], it is possible to stabilize the PP shape

generated in a length of ND fiber by launching the pulses into

a second fiber such that the soliton number N ′ is higher than

the soliton number N in the initial reshaping fiber: N ′/N > 1.

Here, N ′ is defined by N ′2 = T 2
0 γ

′P0/β
′

2, where β′

2 and γ′

are the parameters of the second fiber, and T0 and P0 relate

to the pulse parameters at the input of the first fiber. The
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schematic diagram of the two-stage fiber device is depicted

in Fig. 1(b). As an illustrative example, we choose to use

a fiber with nonlinearity and dispersive characteristics such

that γ′/β′

2 = 9γ/β2. With this respect, we would like to

mention that an alternate approach to increase N ′ relative to

N is to amplify the pulses before propagation in the second

fiber (in such case N ′ is defined by: N ′2 = T 2
0 γ

′GP0/β
′

2,

where G is the gain between the two fibers), whereas this

approach is not completely passive and might bring about

perturbation of the pulse due to amplification. The total length

of the two-stage system is set to 4LD. Such (not optimized)

length yields a reasonable compromise between the quality of

the parabolic pulses obtainable at the system output and the

system complexity.

The dimensionless analysis performed in this paper enables

us to obtain results that can be applied to a variety of situations

in the real world’s units by simple scaling of the relevant

quantities. A target operational regime and output pulse shape

can be achieved here by changing ξ, N and C. In practical

situations, it is usually the case that one has a pulse source

with a given pulse duration T0, and a ND fiber with given

dispersive and nonlinear characteristics, β2 and γ. Therefore,

to achieve the desired operational regime and pulse shape one

simply needs to change the fiber length z, the input pulse peak

power P0 (or input pulse energy) and the input chirp parameter

C/T 2
0 .

III. PARABOLIC PULSE GENERATION IN A NORMALLY

DISPERSIVE TWO-SEGMENT FIBER DEVICE

In this section, we study the progressive nonlinear reshaping

of an initial pulse into a pulse with a close-to-ideal parabolic

shape and a nearly linear chirp in a ND fiber, and the

subsequent shape-maintaining propagation of the pulse in a

further piece of fiber.

Figure 2 shows the evolution of the relative temporal and

spectral shape factors K and K̃ , the misfit parameter M , and

the phase factor Φ versus the length of the first fiber section

(ξ ranging from 0 to 1) and the energy parameter N (from 1

to 10) for an initial Gaussian pulse with C = 0. Here, K and

K̃ are defined as: K = (κ−κP)/κP, and K̃ = (κ̃− κ̃P)/κ̃P,

where κP = κ̃P = 0.072, and a is set to 0.95. It is seen

that parameters K and M exhibit similar trends, confirming

the results of [15]. The initial pulse energy, or in other words

the value of N strongly influences the pulse reshaping to a

parabolic form. The optimum distance ξopt where K (M )

reaches a minimum decreases with increasing N , and the

higher the value of N , the faster the increase of K (M ) after

ξopt, indicating that the parabolic temporal intensity profile

is more difficult to maintain. This represents a very different

behaviour compared to that of self-similar PPs which maintain

their intensity profile during amplification [3].We can also see

in Fig. 2 that N influences Kopt ≡ K(ξopt) (Mopt) and that

an optimum N exists: Nopt ∼ 2.5–4 (moderate energies). The

absolute minimum of K (corresponding to κopt ≈ 0.0723)

occurs here at (Nopt = 2.8, ξopt = 0.446). M is at its absolute

minimum (Mopt ≈ 0.033) for (Nopt = 2.6, ξopt = 0.413). It

is worth noting that the distance at which the pulse becomes
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Fig. 2. First-stage evolution of the relative temporal and spectral shape factors

K and K̃, the misfit parameter M , and the phase factor Φ (for a = 0.95)
versus ξ and N for C = 0.

parabolic precedes the onset of wave breaking [15]. Figure

2 also shows that the phase factor has a similar qualitative

behavior as the temporal shape factor. On the other hand,

the band of operating conditions for which Φ is very low is

shifted towards the region of larger distances compared with

the band where the pulse temporal profile is nearly parabolic.

Moreover, Φ takes its absolute minimum value for N = 1
(low energies) or, in other words when the pulse evolution in

the fiber is almost linear. Again, such a behavior constitutes

a major difference compared to the asymptotic generation of

a self-similar PP which leads to a perfectly linear chirp [3].

However, it is evident from Fig. 2 that there exists a relatively

large region (N , ξ) around the optimum point (Nopt, ξopt)

for K (M ) where the frequency chirp is sufficiently linear

(Φ < 0.1) over the majority of the pulse.

Figures 3 and 4 show the pulse temporal and spectral inten-

sity profiles and the chirp profile at the output of the first and

second fiber segments obtained from numerical integration of

the NLSE, when the pulses are launched into the second fiber

at the optimum distance ξopt and for the optimum energyNopt

for which K and M reach their minima in the intial reshaping

fiber, respectively. It can be seen that after propagation in the

first stage, the pulse temporal profile is already very close

to the desired parabolic shape, as confirmed by the good

agreement between the temporal intensity distribution and the

parabolic fit (of the same energy and FWHM width), and

the chirp (instantaneous frequency) is linear over the energy-

containing part of the pulse. On the other hand, the spectrum

of the pulse remains substantially Gaussian-shaped – as the

initial pulse spectrum is – during propagation in the first stage
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Fig. 3. Pulse temporal and spectral intensity profiles and chirp profile at
the input and output of the second stage starting at ξ = 0.446 for N = 2.8.
Solid curves: NLSE numerical simulation results, circles: parabolic fits. The
vertical lines mark the boundaries of the region ∆τ where a = 0.95. Insets:
Intensity profiles at the input of the first stage (dashed lines) and second stage
(solid lines).
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ending at the optimum ξ for M , while the beginning of a

spectral reshaping of the pulse is observable at the output of

the first stage ending at the optimum ξ for K . In any case, at

this stage the spectrum does not have the parabolic intensity

profile characteristic of a highly chirped PP [1], indicating

relatively moderate nonlinear effects during the first-stage

pulse evolution. The situation is different at the output of

the second stage. There, the temporal intensity profile has

stabilized to an almost ideal parabolic shape and the chirp is

highly linear over the entire pulse duration. Moreover, a large

degree of spectral broadening and reshaping is observed which

can be fitted well with a parabolic shape. The PPs generated

in the first stage are thus seen to undergo large self-phase

modulation-induced spectral broadening without evidence of

any oscillations in the wings and concomitant side lobes in the

spectrum characteristic of wave breaking [1]. These results are

in agreement with the results reported in [15]. Moreover, the

comparison between Figs. 3 and 4 indicates that starting the

second stage at the point (Nopt, ξopt) of either minimum K
or minimum M yields similar results in terms of degree of

parabolicity of the pulse shape in the temporal and spectral

domains and of linearity of the frequency chirp. Here and

here after, we will use parameter K as an indicator of the

pulse shaping process.
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factors K and K̃ , and the phase factor Φ versus ξ in the second fiber,
for N = 2.8 and the second stage starting at different ξ. Dashed curves,
corresponding evolutions over a single-stage fiber device for N = 2.8. Right
graphs, temporal and spectral intensity factors κ and κ̃ and phase factor at
the output of the second stage as a function of the second stage starting point.

Next, we investigate the tolerance of the PP generation in

the two-stage fiber system to the length of the initial reshaping

fiber segment. The left graphs in Fig. 5 show the evolutions of

the relative temporal and spectral shape factors and the phase
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the output of the second stage starting at ξ = 0.3 and ξ = 1 for N = 2.8.
Solid curves: NLSE numerical simulation results, circles: parabolic fits. The
vertical lines mark the boundaries of the region ∆τ where a = 0.95.

factor over the distance in the second fiber, when the second

stage starts at different ξ and the energy parameter is set at

the optimum value of Nopt = 2.8 relative to K in the first

fiber. The corresponding evolutions in a single-stage system

are also plotted for comparison. The values of the temporal

and spectral shape factors and the phase factor at the output

of the second stage are plotted as a function of the starting

point of the second stage in the right graphs of Fig. 5. It

can be seen that launching the pulses into the second fiber

at the optimum ξ relative to the first stage is not of crucial

importance, especially with regard to the degree of parabolicity

of the temporal profile of the output pulse. A closer inspection

of Fig. 5 reveals that also the deviations of the spectral shape

and phase factors from their optimum values are, nevertheless,

very small. These results are confirmed by Fig. 6, which shows

the pulse temporal and spectral intensity profiles and the chirp

profile at the output of the second stage, when the second

stage starts at the boundaries of the ξ-region considered in

Fig. 5. It is worth noting here that starting the second stage

beyond ξopt leads to small oscillations in the far wings of the

PP at the output of the second stage, which are an indication

that the pulse will be subject to wave deformations on further

propagation. However, still for a second stage starting point

that is approximately twice as large as ξopt, such far-end

oscillations in the output pulse from the two-stage device are

very small, as it is seen from Fig. 6. The relatively large

freedom in the choice of the initial reshaping fiber length for

the generation of good-quality linearly-chirped PPs in a two-

stage fiber device suggested by the results in Figs. 5 and 6 can

be particularly important for experimental implementations of

the approach.

Next, we highlight the influence of the initial chirp on the

PP generation process. Maps similar to those presented in Fig.
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Fig. 7. First-stage evolution of the relative temporal and spectral shape

factors K and K̃, and the phase factor Φ (for a = 0.95) versus ξ and N for
C = −2.5 and C = 2.5.

2 are plotted in Fig. 7 for a Gaussian pulse with C = −2.5 and

C = 2.5 used as the input. We observe that pulse reshaping

is again obtained in the first fiber and that, just as for the case

of an input chirp-free pulse, operational bands exist for which

the output temporal intensity profile approaches the parabolic

shape (K ∼ 0.01) and the frequency chirp is close to linear.

Such bands correspond again to moderate values of the initial
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Fig. 8. Temporal intensity and chirp profiles at the output of the first stage
for C = −2.5 (N = 5), C = 0 (N = 2.8), and C = 2.5 (N = 3). Thin
solid lines: parabolic fits.

energy (N ∼ 4.5–6 for C = −2.5 and N ∼ 3–4 for C = 2.5).

Parameter K reaches its minimum (kopt ≈ 0.0725) at (Nopt =
5, ξopt = 1) for C = −2.5, and at (Nopt = 3, ξopt = 0.496)

for C = 2.5. We note that when C < 0, the curves of the

shape and phase factors for a given N are monotonic in ξ.

This is because the chirp parameter of an ideal PP is also

negative. On the other hand, when C > 0, the curves exhibit

peaks and deeps, which indicate that the pulse is changing its

chirp. More importantly, an initial non-zero chirp can stabilize

the evolution of the temporal shape factor. We can observe

that, although the minimum value of K for C = ∓2.5 is

higher than that for the zero chirp, K sets itself to a close-

to-parabolic value K ≤ 0.01 (κ ≤ 0.0727) after the distance

ξ ≈ 0.55 for C = −2.5 and ξ ≈ 0.4 for C = 2.5 in Fig. 7.

The temporal intensity and chirp profiles at the output of the

fiber (ξ = 1) for C = ∓2.5 and C = 0 are plotted in Fig. 8.

Here, the corresponding optimum N values are used. We note

that the generated PP has a linear chirp with a negative slope

as the ideal PP does, regardless of its initial chirp. Moreover,

the intensity profiles illustrate how the initial chirp acts as a

parameter (in addition to the initial energy) related with the

width of the output PP.

The stabilization of the temporal shape factor in the first

stage by an initial non-zero chirp observed in Fig. 7 is gener-

ally expected to lead to a higher tolerance of the characteristics

of the pulses generated in the two-stage system to the length

of the initial reshaping fiber compared with the case of a

zero chirp. These expectations are confirmed by Fig. 9, which

shows the temporal and spectral shape factors and the phase

factor at the output of the second stage as a function of the

second stage starting point ξ for C = ∓2.5 and C = 0,

and the corresponding optimum N values. It is seen that an

initial non-zero chirp yields a higher tolerance to the first

fiber length in the spectral and phase domains irrespective

of the chirp parameter sign, whereas in the temporal domain

the tolerance for C > 0 is slightly reduced compared with

the case of C = 0. However, we can see that the deviations

of the temporal shape factor from its ideal parabolic value

are very small for all chirp values. We also observe that

launching an initially positively chirped pulse into the two-

stage device yields the best compromise between minimum

achievable values of κ, κ̃ and Φ at the device output and
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tolerance to the first fiber length. The results achieved here

demonstrate that the initial chirp can be used to tailor the

linearly chirped PPs generated in a fiber system, thus offering

an additional degree of freedom. The chirp selection should

be done in accordance with the available fibers.
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Fig. 10. Pulse temporal intensity profiles at the output of the two-stage
device for the lossless and lossy systems (α = 0.2 dB/km).

Finally, we briefly discuss the influence of fiber loss on

the pulse reshaping process. It is well known that the loss

effectively reduces the length z of the fiber to a length zeff =
(1 − exp(−2Γz))/(2Γ), where Γ = 0.05 ln(10)α is the loss

coefficient, and α is given in dB/km [17]. A simple estimate

for the typical value α = 0.2 dB/km of standard monomode

fibers indicates that for the purpose of lossless propagation the

fiber length should be z ≪ 1/Γ ≈ 40 km. The effect of fiber

loss remains negligible even for the more lossy HNL fibers

with α ∼ 1 dB/km as long as z does not exceed some hundreds

of meters. In Fig. 10 we have plotted exemplary pulse temporal

intensity profiles at the output of the two-stage fiber device for

the lossless and lossy (with Γz ≈ 0.01) systems. It can be seen

that the two curves are, indeed, indistinguishable.
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IV. NONLINEAR PULSE SHAPING IN A NORMALLY

DISPERSIVE FIBER

In Sec. III, we have seen that pulses with a parabolic

intensity profile can be formed by passive nonlinear reshaping

in a ND fiber. The best-quality parabolic pulses occur for mod-

erate values of the initial pulse energy. Here, we demonstrate

that using initial pulses with sufficiently high energy, rather

different reshaping processes are possible in a short length of

ND fiber.
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Fig. 11. Temporal intensity and chirp profiles in the ND fiber for N = 10,
and C = −1.5 at ξ = 0.215 (left) and C = 2 at ξ = 0.33 (right). Solid
curves: NLSE numerical simulation results, circles: corresponding fits. In the
left graph, the parabolic fit (thin solid curve) is also shown.

We have observed that an initial, sufficiently powerful pulse

can evolve towards a flat-top temporal shape for both zero

and non-zero initial chirp and to a triangular shape when

C > 0 during propagation in a ND fiber. Both types of

generated pulses have a negative chirp parameter similarly to

the ideal PP. It is to be re-iterated that such pulse intensity

profiles correspond to transient evolution regimes in the fiber.

Figure 11 shows examples of the temporal intensity profiles

and corresponding chirp profiles obtained using an initial

chirped Gaussian pulse and N = 10. The left graph in

Fig. 11 shows a flat-top pulse generated for C = −1.5
at ξ = 0.215. Such a pulse is characterized by a flatter

top and steeper edges than a PP. The trial fitting function

|uR(τ)|2 = [1 − (τ/τR)2]b if |τ | ≤ τR and |uR(τ)|2 = 0
otherwise, is also plotted for b = 0.382 and the same energy

and peak power as those of the actual pulse, showing a good

agreement with the actual pulse shape. This function yields

κ(b) = 2Γ(2b)2Γ(b+3/2)4/(πb2(b+3/2)Γ(b)4Γ(2b+3/2)2),
which matches the value of the generated pulse (κ = 0.0739)

for b = 0.382. The corresponding parabolic fit is also shown.

Note that such a flat-top intensity profile corresponds to the

evolution regime in the fiber immediately preceding wave

breaking [1]. Function κ(b) has the minimum at b = 1, which

corresponds to a parabolic intensity profile. A triangular pulse

generated for C = 2 at ξ = 0.33 is shown in the right graph of

Fig. 11. There is a good agreement between the actual intensity

profile and the ideal triangular fit. In this example, κ = 0.0752
for the generated pulse. Note that the triangular pulse shaping

regime seems to be peculiar to the nonlinear evolution of an

initial pulse with a positive chirp parameter in a ND fiber [17].

We can furthermore see from Fig. 11 that the frequency chirp

exhibits a linear and monotonic behavior over the majority

of the flat-top pulse profile and over the entire triangular

pulse. Finally, we would like to point out that the shape factor

κ (κ̃) used in this paper, which is defined solely in terms

of the second-order moments related to the pulse temporal

(spectral) width and power, does not characterize uniquely the

shape of the pulse. Some information about the shape is still

present and it is useful for gaining a physical insight into the

pulse dynamics. More complete shape information could be

provided by higher-order moments, which contain information

in the time and frequency domains simultaneously.

V. CONCLUSION

We have presented an accurate characterization of the

nonlinear reshaping of conventional pulses that occurs upon

propagation in cascaded sections of commercially available

ND fibers. We have analyzed in detail the evolution of an

initial pulse into a pulse with a nearly parabolic temporal

intensity profile and a nearly linear chirp during propagation in

a ND fiber, and the subsequent pulse stabilization in a second

ND fiber with specially adjusted nonlinear and dispersive

characteristics relative to the first fiber. We have investigated

the tolerance of the PP formation against variations in the

length of the initial reshaping fiber as well as the influence

of the initial pulse chirp on the pulse reshaping process.

We have furthermore proposed the combination of pulse pre-

chirping and propagation in a single section of ND fiber as a

method for passive nonlinear pulse shaping, which provides

a simple way of generating various pulse temporal shapes

of fundamental and practical interest. We anticipate that the

obtained results might be of great interest in the field of

optical communications and signal processing, as well as in the

field of pulsed lasers. We believe that our analysis, based on

integral quantities (averaged over time or frequency) related to

the main pulse characteristics, will stimulate the deployment

of a larger array of mathematical tools to achieve a better

description of the nonlinear pulse dynamics in ND fibers,

which is becoming an active field of research.
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