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EDITOR'S NOTE:
This paper represents 1 of 6 papers in the special series “Passive Sampling Methods for Contaminated Sediments,” which was

generated from the SETAC Technical Workshop “Guidance on Passive Sampling Methods to Improve Management of
Contaminated Sediments,” held November 2012 in Costa Mesa, California, USA. Recent advances in passive sampling methods
(PSMs) offer an improvement in risk‐based decision making, since bioavailability of sediment contaminants can be directly
quantified. Forty‐five experts, representing PSMdevelopers, users, and decisionmakers from academia, government, and industry,
convened to review the state of science to gain consensus on PSM applications in assessing and supporting management actions on
contaminated sediments.

ABSTRACT
“Dissolved” concentrations of contaminants in sediment porewater (Cfree) provide a more relevant exposure metric for risk

assessment than do total concentrations. Passive sampling methods (PSMs) for estimating Cfree offer the potential for cost‐

efficient and accurate in situ characterization of Cfree for inorganic sediment contaminants. In contrast to the PSMs validated

and applied for organic contaminants, the various passive sampling devices developed for metals, metalloids, and some

nonmetals (collectively termed “metals”) have been exploited to a limited extent, despite recognized advantages that include

lowdetection limits, detection of time‐averaged trends, high spatial resolution, information about dissolvedmetal speciation,

and the ability to capture episodic events and cyclic changes that may be missed by occasional grab sampling. We summarize

the PSM approaches for assessing metal toxicity to, and bioaccumulation by, sediment‐dwelling biota, including the

recognized advantages and limitations of each approach, the need for standardization, and further work needed to facilitate

broader acceptance and application of PSM‐derived information by decision makers. Integr Environ Assess Manag

2014;10:179–196. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley

Periodicals, Inc. on behalf of SETAC.
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INTRODUCTION
Metals (including metalloids and some nonmetals with

biogeochemical cycles that are similar to those of metals, e.g.,
Se) in sediments present a challengewith regard to assessing their
fate and adverse effects in the environment. A basic characteris-
tic ofmetals is their high reactivity and inherent tendency to bind
to the diversity of ligands present within sediments. Because of
fate‐regulating processes such as competition, precipitation,
complexation, and inclusion, and also because of the mediation

of these processes by (variations in) the composition of the solid‐
phasematrix aswell as the sediment interstitial (or “pore”)water,
only a fraction of the metal present in sediments is available for
transport out of the sediment and for interaction with biota
(Salomons and Förstner 1984; Wang et al. 1997; NRC 2003).
Therefore, such processes determine whether (competitive)
interactions of metals with biota will result in adverse effects
(Bryan and Langston 1992). The composition of the solid phase,
in terms of sorption sites for metal binding (with clay surfaces,
Al/Fe/Mn oxides, and organic coatings being especially impor-
tant [Tessier et al. 1980]), and also the composition of the
aqueous (porewater) phase, strongly affect the fraction of metal
present that is actually available for interaction with biota.
Dissolved organic carbon, pH, and major cations modify
competition for abiotic and biotic ligands present in either the
solid or porewater phases (Allen 2010). This bioavailable
fraction is not a fixed value for a given sediment; it may well
vary from one type of biological receptor to another, and it also
may vary with sediment depth, depending on the oxidation/
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reduction potential of the system (Luoma and Rainbow 2008;
Burton 2010). Typically, a thin, oxic surface layer of sediment
(often less than 1 cm deep in productive sediments) overlays a
suboxic zone dominated by iron(II) andmanganese(II), followed
by an anoxic zone where sulfide or methane is produced (Morel
and Hering 1993). Note that the thickness of the oxic layer may
extend to 10 cm or more in porous sandy sediments with low
organic carbon concentrations. Furthermore, similar changes
occur around the burrows of animals or plant roots, which can
transport oxygen into the sediment. A shift from oxic to anoxic
conditions dramatically changes metal speciation and can
produce short‐term mobilization of many metals.
Uptake of sediment‐associated metals by benthic organisms

can take place from the overlying water (more exactly: the
benthic interfacial water, which includes burrow water and
benthic boundary layer water), from porewater, and from
ingested sediments (Warren et al. 1998; Luoma and Rainbow
2008). All possible uptake routes need to be taken into
consideration when assessing the most relevant exposure
metrics for metals, that is, water‐borne and diet‐borne metals.
Given the fact that passive sampling methods (PSMs) respond
only to aqueous metals, and given the aim of this contribution
to discuss the state of the science with regard to the potential
use of PSMs to evaluate metal bioavailability, the focus of this
contribution is restricted to aqueousmetals. Even if the route of
uptake is via solids, the aqueous metal concentrations may
indicate the bioavailable metals in those solids. Although the
focus of the review is on benthic organisms, no attempt is made
to comprehensively review all of the work that has been done
on metal bioavailability in sediments.
Metal uptake from the aqueous environment can occur as a

result of multiple transport mechanisms, including passive
diffusion, facilitated transport, active transport, and endocytosis
(Simkiss and Taylor 1995). This multitude of transport
mechanisms represents a challenge for predicting metal uptake
from sediments by means of PSMs. Only lipid‐soluble metal
species, such as neutral, nonpolar, inorganically complexed
metal species, and some alkyl–metal compounds, can be taken
up by organisms via passive diffusion through the cell
membrane (Simkiss and Taylor 1995). Most ions are highly
hydrophilic and are taken up by organisms via membrane
transport proteins, such as channels, carriers, and pumps. As a
result of these specific transport mechanisms, the bioaccumu-
lation of metals may involve saturable uptake kinetics. Uptake
via saturable kinetics‐exhibiting mechanisms is substantially
more common and toxicologically relevant than passive
diffusion or active transport, although active transport can
also be saturable (Simkiss and Taylor 1989;Wood 2001). Once
the metal is taken up, it is subject to internal processing, can be
shuttled to many subcellular fractions, and can react within the
organism in a variety of ways that allow for continued transport;
thus, the establishment of true equilibrium, in general, is
unlikely for ionic species.
Organisms have developed physiological or anatomical

mechanisms to adapt to metal exposure (Fairbrother
et al. 2007). They are often able to actively regulate metal
bioaccumulation and maintain homeostasis over a range of
exposures via either exclusion or increased elimination
(Wood 2001; Rainbow 2007). Additionally, organisms have
the ability to regulate internal metal concentrations through
sequestration, detoxification, and storage (Mason and
Jenkins 1995; Rainbow 2002; Vijver et al. 2004). Because of
the natural occurrence of metals in the environment, these

physiological processes have evolved over time, allowing
organisms to adapt to excess metals and to accumulate essential
metals at required levels. In contrast, uptake by PSMs is not
complicated by such biological processes and is determined
simply by mass transfer principles.
Consequently, traditional measures of metal bioavailability,

that is, the concentration taken up by the organism, do not
necessarily translate into toxicological bioavailability, because
this metric may not reflect the metal that actually reaches the
site of toxic action. Metal toxicity depends on the chemical
form or compound, interactions between metals, and the
binding affinity of a specific receptor site (USEPA 2007).
Toxicity to organisms occurs when they cannot deal with the
overwhelming flux of metals to specific internal receptor sites,
whichmay come frombothwater‐borne and diet‐bornemetals.
In addition, the effective toxicological “dose” of metals and
metal complexes is often life stage‐ and gender‐specific. Uptake
and organ distribution kinetics are also often species‐specific.
Thus, tissue‐specific bioaccumulation does not necessarily
equate to adverse effects but rather depends on the toxicoki-
netics of bioreactive forms ofmetals in competition for enzymes
and binding sites associated with metal pools that are not
metabolically active (Hook and Fisher 2002).
Two distinctly different approaches have been used to

predict metal bioavailability in aquatic environments: equilib-
riummodeling (e.g., the Biotic LigandModel or BLM—DiToro
et al. 2001; Campbell and Fortin 2013;) and biodynamic
modeling (e.g., the DYNBAM model—Luoma and Rainbow
2005; Rainbow 2007). The BLM aims to predict how dissolved
metals interact with, and eventually affect, aquatic organisms.
The epithelial surface of the organism, including the so‐called
“biotic ligand,” is assumed to be in equilibrium with the
ambient water, and the biological response (metal uptake and/
or toxicity) is predicted on the basis of the concentration of the
metal–biotic ligand complex, metal–biotic ligand–epithelium.
An implicit corollary of the BLMapproach is thatmetal toxicity
can be predicted on the basis of water‐borne exposures and that
metals in food can be ignored. In contrast, the biodynamic
approach considers uptake of metals from both the ambient
water and the ingested solids, and also takes into account metal
loss (excretion, elimination of fecal matter). Considering both
water and food as vectors would be preferable when assessing
the bioavailability of metals in sediments. However, as
indicated previously, in the present case we are addressing
the potential use of PSMs to evaluate metal bioavailability;
because PSMs only respond to aqueousmetals, we have focused
on the sediment porewater and the equilibrium modeling
approach.
Equilibrium partitioning models have been used to predict

dissolved concentrations in porewater for selected metals
(USEPA 2005). The emphasis on dissolved metals in the
porewater derives from 2 considerations. First, contaminants in
sediment porewater (Cfree) integrate the numerous interac-
tions that exist between the dissolved metal and the various
solid phases present in the sediment, and thus such measure-
ments may provide an estimate of the overall activity of the
metal in the sediment environment (Ankley et al. 1994); the
bioavailability of the metal may be directly related to its
chemical activity. Second, extensive literature demonstrates
that the bioavailability of dissolvedmetals to aquatic organisms
normally varies as a function of the free metal ion concentra-
tion in solution [Mzþ] (Campbell 1995), and that this
interaction of the organism with [Mzþ] is modulated by pH
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and water hardness ([Ca2þ], [Mg2þ]) (Di Toro et al. 2001).
Although the importance of the free metal ion was initially
recognized for aquatic organisms living in the water column,
it has recently been extended to benthic organisms and the
sediment environment, again with an emphasis on porewater
(see Di Toro et al. 2005 for a description of this “sediment
biotic ligand model”). Whereas debate continues about which
solid phases control porewatermetal concentrations (e.g., acid‐
volatile sulfide [AVS]; amorphous iron oxyhydroxides; solid
organic matter) (Nguyen et al. 2011), Cfree offers a very useful
“window” into understanding metal bioavailability in sedi-
ments. In principle, the emphasis should be on the free metal
ion concentration in the sediment porewater (Cfree), not the
total dissolved metal concentration. If the PSM provides
estimates of the total dissolved metal concentration, as well as
the other water relevant chemistry parameters (e.g., pH,
dissolved organic carbon, hardness, alkalinity), Cfree can be
calculated using appropriate equilibrium models (Milne
et al. 2003; Tipping et al. 2011). The processes underlying
the current concepts for assessment of metal bioavailability in
sediments are schematically depicted in Figure 1.

The porewater approach strictly only applies for selected
cationic metals in which uptake is dictated by exposure from
the sediment porewater, for example, by rooted aquatic plants
or by benthic animals with metal‐permeable epithelia. Provid-
ed the physical and chemical conditions in the digestive tract do
not differ markedly from those in the host sediment, the
relationship between porewater metal concentrations and
metal toxicity should still hold even if uptake from ingested
metals (i.e., from the sediment solid phase) occurs. If, however,
the conditions in the digestive tract differ markedly from those
in the adjacent sediment, particularly with respect to lower pH,

and if the transit time in the gut for the sediment is fairly long,
the relationship between [Mzþ]interstitial and metal bioavailabil-
ity may not apply (Campbell et al. 2005).

Although normalization of the total concentrations in the
sediment with respect to the concentration of the dominant
binding phase (e.g., AVS for divalent metals) often works well
for laboratory‐spiked sediments, this approach does not reliably
characterize the bioavailability of contaminants in field sedi-
ments. This is because of the presence of other binding phases
(e.g., sedimentary organic carbon or iron oxyhydroxides) and
the heterogeneity of metal‐sequestration and mobilization
processes (Campbell and Tessier 1996; Jonker et al. 2004;
Nguyen et al. 2011).

Given the cost implications of remedial decisions, these
findings have led to a growing body of literature on the use of
PSMs and partitioning‐based approaches for direct analytical
quantification of the bioavailability of sediment‐associated
contaminants (Maruya et al. 2011). Past research has focused
heavily on organic compounds, but a growing body of literature
reports on the use of PSMs for assessing metal availability
(Davison et al. 1994; Martin 2008).

We provide an overview of the approaches taken to assess
metal bioavailability by means of PSMs, focusing on bioaccu-
mulation and toxicity in sediments and overlying waters. We
conclude with a summary of knowledge gaps and the next
logical steps to be taken to fill those gaps.

PSMS FOR METALS
Despite significant advances in the development and

application of PSMs, practical incorporation of these relatively
simple, sensitive methods in contaminated sediment manage-
ment decisions has been limited. Barriers to broader regulatory

Figure 1. Schematic representation of processes governing metal bioavailability in sediment porewater (modified from Di Toro et al. 2005). Mzþ corresponds to
the free metal ion or Cfree; BLM¼Biotic Ligand Model.
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acceptance and use are a lack of understanding of the advantages
and limitations of PSMs over traditional analytical methods;
confusion with regard to the different PSM materials and
configurations that are increasingly reported in the literature;
lack of consensus on technical guidance, and, as we see in
this review, the paucity of studies that relate measurements
with PSMs to metal uptake and toxicity in benthic organisms.
Examples and key details of PSMs used to measure metals
are compiled in Table 1, including their initial use for water
monitoring, if relevant. The 4 main types of PSMs used to
investigate metals in sediment are summarized later. The
equilibrium‐regimen and kinetic‐regimen operation of PSMs
are described thoroughly elsewhere (Lydy et al. this issue).
Sediment deployments require careful consideration of issues

such as how to deploy PSMs without disturbing the sediment
chemistry, or how to ensure the samples are adequately
preserved, especially when the sampled sediment includes
suboxic and anoxic zones. Sediment chemistry canmost readily
be disturbed by introduction of oxygen into the sediment or the
sample collection matrix. To prevent this, the assembled PSMs
are thoroughly deoxygenated before being deployed (Carignan
et al. 1994). The PSMs are usually deployed upright so that
vertical profiles or distributions are obtained. Divers will be
needed in deep waters, but benthic landers have also been used
(Fones et al. 2001). In either instance, if care is taken during the
PSM deployment, so that the sediment is minimally disturbed
and good contact occurs between the sediment and the PSM
sampling surface, then sampling artifacts can be minimized
relative to the period over which diffusive sampling occurs.
When the PSM device is retrieved, subsampling or preservation
needs to be done quickly to minimize the effects of oxygen
exposure. Some PSMs also can experience diffusional
relaxation and need to be either sub‐sampled or quantified
within a short period. Other issues include making certain
that equilibrium‐regimen PSMs have approached equilibration
and interpreting the sediment response to kinetic PSMs.
Fortunately, various models have been described to assist
with these issues. Issues specific to each type of PSM are
discussed later, along with the theory relevant to each PSM
technique. The Supplemental Data contains case studies on the
application of PSMs for investigation ofmetals andmetalloids in
sediments.

Porewater peepers

Peepers were first described in 1976 by Hesslein (1976) and
were developed for usewithmetals byCarignan and co‐workers
(1985). They are equilibrium regimen PSMs, in which solutes
from adjacent porewaters diffuse across a membrane into
compartments containing water. Porewater peepers exist in
several different designs, but they often consist of an acrylic
(Plexiglas) frame, into which have been milled a series of
sampling wells (Carignan et al. 1985; Hesslein 1976). The
sampling wells are filled with ultrapure water, covered with a
precleaned microbially resistant membrane (usually polysul-
fone, 0.2mm nominal pore size) that is secured in place with a
cover plate (Supplementary Data Figure S1). In addition to
using trace‐metal clean sampling practices (Nriagu et al. 1993),
the entire peeper assembly must be deoxygenated under a
nitrogen atmosphere before deployment (Carignan et al. 1994),
otherwise the oxygen held within the plastic of the frame can
diffuse into the (anoxic) water in the sampling cells located
below the redox boundary and alter the chemistry of the
collected porewater.

Properly prepared peepers are carefully inserted into the
sediments of interest and left in place for days to weeks, until
chemical equilibrium is approached. The crucial parameter for
peepers is the design factor (F, cm), which is the effective depth
of the peeper cells (derived from the cell volume/exposed
membrane surface area; Brandl and Hanselmann 1991). The
larger the design factor, the longer the equilibrium time;
peepers typically have F values of 0.5 cm or greater. This is
discussed further in the section on use of models.
Multiple peepers are typically deployed at a given sediment

site to account for sediment heterogeneity. The peeper is
inserted vertically into the sediment, leaving several wells
exposed above the sediment–water interface to sample both the
interstitial and overlying water.When the peepers are retrieved
and quickly cleaned, one must note closely where the
sediment–water interface was situated and then subsample
the individual sampling wells without delay (minutes), starting
with the bottom wells that presumably contain anoxic samples
(Teasdale et al. 2003). The water collected from the peeper
wells is normally used to measure the total dissolved
concentrations of the various solutes. A potential advantage
of using peepers is that these dissolved concentrations can be
compared directly with water quality criteria, which are widely
used in risk assessment and for which a large body of
toxicological data exists.
Samples obtained from the peeper wells are preserved in the

same way that a surface water sample would be treated, that is,
without trying to maintain the redox state of the original
sample. For example, subsamples destined formetal analysis are
normally acidified with trace‐metal grade HNO3; a typical
subsampling and preservation protocol was described by
Alfaro‐De la Torre and Tessier (2002). Typical porewater
profiles obtainedwith peepers are shown in Figure 2 for Fe,Mn,
and Cu from 3 sites in Macquarie Harbour, Australia. Peepers
X, D, N, and V had 26 chambers at 1‐cm resolution, and
peepers U and Twere ameter long, although porewater profiles
are only shown to 30‐cm depth. Site 3 was an artificial delta
comprising tailings from a Cu mine operating continuously for
more than 100 years. Site 5 was approximately 3 km down‐
gradient of site 3. Site 9 is 30 km from the delta at the south end
of the harbor, where strongly sulfidic sediment is influenced by
tannin‐rich inflow. The porewater profiles of Fe, Mn, and Cu
clearly reflect changes in sediment conditions and extent of
contamination.

Diffusive equilibration in thin films

The diffusive equilibration in thin films (DET) technique,
first described by Davison et al. (1991), is also an equilibrium
regimen PSM. For DET samplers, a thin hydrogel layer (usually
less than 1mm thick) is used as the samplingmedium instead of
water; the F value for DET devices is equal to the gel thickness
(<0.1 cm). This means that DET samplers equilibrate much
more quickly than peepers and also allow measurements at
higher resolution (the measurement resolution is limited by the
gel thickness, which determines the possible extent of lateral
diffusion). Two main types of DET devices are used.
Unconstrained DETs use continuous sheets of hydrogel, and
porewater profiles can undergo diffusional relaxation when
they are removed from the sediment. They are normally
preserved by soaking immediately in NaOH, which causes iron
and manganese hydr(oxides) to precipitate and solutes to
adsorb to these newly formed phases (Davison et al. 1991).
Alternatively, subsamples can be collected immediately, by
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Table 1. Overview of PSMs for metals

A ‐ Overlying Water

Technique & metal Description and operation References (examples)

• Diffusion samplers

(trace metals and

major ions)

Simple diffusion cells are left in the water column to equilibrate

with the ambient water. Equilibration time is dependent on the

depth or design factor (F, cm) of the sampler device, with some

samplers equilibrating in about 24 h in well‐mixed waters

(F ¼ 1.0 cm) but others requiring 2 or more days.

(Benes and Steinnes 1974;

Davison et al. 2000; Fortin

et al. 2010)

• Diffusive gradients in a

thin film (DGT)

samplers (Al, As, Cd,

Cu, Se, Hg, Ni, Pb, U,

Zn; lanthanides)

Diffusion gradients in thin films give an estimate of “labile” metals,

which are operationally defined by the nature and thickness of

the gel through which the metals must diffuse, and by the

strength of the binding phase. Kinetic regimen sampler, normally

deployed from several hours to days. Use of a diffusion

coefficient assumes no calibration is required.

(Davison and Zhang 2012; Dunn

et al. 2003; Garmo

et al. 2003; Zhang and

Davison 1995)

• “Chemcatcher”

samplers (Cd, Cu,

Ni, Pb, Zn, Hg)

Teflon watertight body that retains a chelating disk; receiving phase

is overlaid with a cellulose acetate diffusion‐limiting membrane

(0.45 mm pore size; 0.135 mm thick). Kinetic regimen sampler,

deployed for periods of 1 to 4 weeks; requires laboratory

calibration

(Aguilar‐Martinez et al. 2011;

Allan et al. 2008)

• “Gellyfish” samplers

(Cu)

Polyacrylamide gel, embedded with iminodiacetate (Chelex) resin

particles, is suspended in water until equilibrium reached; the

amount of metal in the resin is proportional to the free metal ion

concentration in the water. This technique has only been used in

coastal marine systems. Deployment times of at least 8 d are

needed to achieve equilibrium.

(Senn et al. 2004)

• Hollow fiber supported

liquid membranes

(Cd, Cu, Mn, Ni, Pb, Zn)

A hollow fiber is impregnated with a crown ether (ligand), dissolved

in an organic solvent; the metal–ligand complex migrates across

the fiber membrane and the metal is released to the aqueous

acceptor phase in the lumen of the fiber. Can be used as either an

equilibrium or kinetic passive sampler and provides the best

estimation of free metal ions

(Bautista‐Flores et al. 2010;

Bayen et al. 2007;

Parthasarathy et al. 1997;

Sigg et al. 2006;

Slaveykova et al. 2009)

B ‐ Sediments

• Porewater peepers

(Al, As, Cd, Co, Cu, Hg,

Fe, Mn, Ni, Pb, Zn)

Multilayer diffusion cells inserted into sediments and allowed to

equilibrate with the sediment pore water. Equilibration times

range from about 1 day to well over 1 month (F ¼ 1.0 cm),

depending on whether the resupply of analytes from the

sediment solid phase is able to sustain the pore water

concentrations. The equilibration process has been modeled.

Typical deployments of about 1–2 weeks are used.

(Brandl and Hanselmann 1991;

Carignan et al. 1985;

Hesslein 1976; Nipper

et al. 2003; Teasdale

et al. 2003)

• Teflon sheets (Fe,

Mnþ associated

metals)

Teflon sheets act as a “substrate” for the deposition of iron and

manganese oxyhydroxides and their associated metals; useful for

identifying the boundary between the oxic and sub‐oxic zones

and adsorption of metals to new phases.

(Belzile et al. 1989; Feyte

et al. 2010; Fortin et al. 1993)

• DGT samplers (As, Cd,

Cu, Co, Hg, Ni, Pb, V,

Zn)

DGT deployments within sediments are influenced by sediment

response to depletion of analytes in the pore waters. The

mobilization of metals from sediment solid phase can lead to

pore water concentrations being fully or partially sustained. The

response of sediment to DGT measurements has been

characterized by several models, including interpretation of

micro‐niche responses. Metal pore water distributions can be

determined at high resolution and in 2 dimensions.

(Davison et al. 2000; Davison

et al. 1997; Stahl et al. 2012;

Zhang et al. 1995)

• Diffusive equilibration

in a thin film (DET)

samplers (Cd, Cr, Cu,

Fe, Mn, Mo, Pb, Re, U,

Zn)

An equilibrium passive sampler that uses a thin layer of hydrogel as

the sampling media. Deployed in unconstrained or constrained

modes, with the former requiring fixing to minimize diffusional

relaxation and the latter using compartments. Can be used to

make measurements of 2‐dimensional pore water distributions

at high resolution.

(Davison and Zhang 1994; Fones

et al. 2001; Krom et al. 1994;

Yu et al. 2000)
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slicing the gel at a particular resolution (e.g., 1–3mm);
subsamples are then eluted (in 1M HNO3 or NaOH) and
measured separately (Mortimer et al. 1998; Pagès et al. 2012).
A recently developed approach used for 2‐dimensional
measurements by DET has been to expose the retrieved
hydrogel to colorimetric reagents soon after removal, followed
by quantification on‐site by computer imaging densitometry
(see section on Two‐dimensional measurements of metal in
sediment). The second type of DET is a constrained probe in
which agarose hydrogel is added to compartments that are not
in diffusional contact with each other and that can be removed,
under clean laboratory conditions, eluted (as described
previously) and measured separately (Fones et al. 1998).
Because DET samplers do not concentrate analytes and

usually require an elution step, DET has been used infrequently
for tracemetal determination (Yu et al. 2000) and ismuchmore
commonly used for Fe or Mn (Fones et al. 2001; Bennett,

Teasdale, Welsh, Panther, Jolley et al. 2012). A recent interest
inDET formetals in sediments is with the development of high‐
resolution, 2‐dimensional measurements of porewater iron(II)
(Shuttleworth et al. 1999; Pagès et al. 2011) and other analytes
(see the next section onTwo‐dimensional measurements of metals
in sediment). These approaches can be combined with other
PSMmeasurements of metals (especially DGTmeasurements)
to allow the major biogeochemical processes and sediment
heterogeneity to be characterized, which can assist with
interpretation of the major processes influencing metal
mobilization.

Diffusive gradients in thin films

The diffusive gradients in thin films (DGT) technique, first
described by Davison and Zhang (1994) for the analysis of Zn
in seawater, is a kinetic regimen passive sampler. Diffusive
gradients in thin films technique uses a thin hydrogel layer

Figure 2. Typical profiles of Fe, Mn, and Cu as observed at 3 sites in a Cu‐contaminated Australian harbor (P. Teasdale, Griffith University, Gold Coast Campus,
Australia, personal communication); ppm¼mg · L�1. Double‐sided peepers (F¼0.5 cm) were deployed for 5–6 days.
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(as used for DET) to constrain mass transport of solutes by
diffusion into a binding layer containing a resin or functional
groups that will selectively bind or adsorb the analyte species of
interest. As with all kinetic regimen PSMs, a linear relationship
exists between the accumulation of analytes and deployment
time formeasurements that do not approach the capacity of the
binding layer and do not deplete the analyte concentration in
the surrounding media.

Most studies on developing and applying PSMs for metals
have focused on the DGT device. DGT is a well‐developed
technique for sampling metals in bulk water, with deployments
from 6 to 72 h being typical. In the well‐mixed overlying
waters, the water motion maintains an essentially constant pool
of analyte, and the mass transfer resistances external to the
device are often minimal, leaving the rate of metal uptake by
the resin gel controlled by the diffusive layer. The rate of
diffusion in this layer (the diffusion coefficient) is similar to that
of the diffusion rate of the metal ion in pure water and can be
measured accurately by experiment (Zhang and Davison
1999). Diffusion coefficients for many metals in polyacryl-
amide gels are available in the DGT literature, often provided
along with newly described DGT methods (Garmo et al.
2003; Scally et al. 2006; Panther et al. 2013). The analyte
concentration in the water adjacent to the sampler is related to
mass adsorbed in a given time and can be calculated using the
DGT equation:

Cw ¼
MDg

DtA

where

M¼mass of metal adsorbed to the binding layer (ng)
Cw¼ concentration of metal in bulk solution (ng ·mL�1)
D¼diffusion coefficient of metal in gel (cm2 · s�1)
t¼ deployment time of the device (s)
A¼ exposure area of the device to the bulk solution (cm2)
Dg¼ distance from the resin layer to the bulk solution (cm)

(Zhang and Davison 1995)

The mass in the binding layer is determined by conventional
analytical techniques, after an elution step in which an elution
efficiency correction is used to estimate the actual accumulated
mass.

The components of a DGT water sampler are shown in
Supplemental Data Figure S2, along with a representation of
how the diffusive gradients develop. The diffusive and resin

gel layers originally designed by Davison and Zhang were
synthesized from an acrylamide and agarose cross‐linker
solution with an ammonium persulfate initiator and an N,N,
N’,N’‐tetramethylethylendiamine catalyst (Zhang and
Davison 1995). The binding layer includes a specific adsorbent
chosen for the specific metal of interest, typically Chelex1‐100
resin for common divalent metal ions. The layers are
manufactured by mixing the aforementioned constituents
and casting to a desired thickness between 2 glass plates
(Zhang and Davison 1995). Finally, a filter is placed on top of
the diffusive layer facing outward; this filter is normally a 0.45‐
mm cellulose nitrate membrane that serves to prevent particles
from binding to the outside of the diffusive layer and
penetrating into the gel layers (Zhang and Davison 1995),
although in sediment deployments a polysulfone membrane is
preferred. Subsequent research has expanded the number of
analytes measurable by DGT, by modifying the adsorbent
within the binding layer, to include many important anionic
species such as As, Se, V, Mo, Sb, and W (Table 2). The
extraction solutions used with each binding layer can vary
considerably, and this is a major step in the development of a
newDGT technique. Themeasurement of Hg and As species is
described in more detail in the Supplemental Data.

Although simple in concept, the interpretation of DGT
results can be difficult because of the potential for species and
complexes operationally defined as “labile” to be sorbed onto
the resin gel (labile¼ free ions and inorganic and organic
complexes that dissociate over the time it takes to diffuse into
the device or within the sampling period). The mass of analyte
accumulated onto the resin gel depends on the relative diffusion
rates of species that may pass through the gel layer. A
“restricted” diffusive gel layer, with bis‐acrylamide cross‐linker,
in which the average pore size is smaller than in the normal
diffusive gel, can be used to substantially decrease the
contribution to the measurement of organic metal complexes
(Zhang and Davison 2000).

Several issues can occur with DGT measurements in the
water column. In poorly mixed solutions a diffusion boundary
layer of a significant thickness will develop, which effectively
increases the thickness of the diffusive layer and thus decreases
the flux of metal to the sampler. This is easily overcome,
however, by using multiple samplers with differing diffusive
layer thicknesses, which allow the accurate calculation of the
diffusion boundary layer thickness (Zhang et al. 1998;Warnken
et al. 2006; Bennett et al. 2010). Biofilms can form on the
sampler surface during longer deployment times and can be a

Table 2. Analytes measurable with common DGT binding phases

DGT Binding Phase Measurable Analytes Reference(s)

Chelex 100 Ala, Cr, Mn, Feb, Co, Ni, Cu, Zn, Ga, Cd, Pb, La, Ce, Pr,

Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb, Lu, Y

(Garmo et al. 2003; Warnken et al. 2004b; Zhang and

Davison 1995)

Ferrihydritec V(V), As(III), As(V), Se(VI), Mo(VI), Sb(V), W(VI), U (Luo et al. 2010; Stockdale et al. 2010)

Metsorb (TiO2)
d Al, V(V), As(III), As(V), Se(IV), Mo(VI), Sb(V), W(VI), U (Bennett et al. 2010; Hutchins et al. 2012; Panther

et al. 2012; Panther et al. 2013)

Mercapto‐silica As(III) selectively, Hg (Bennett et al. 2011; Fernández‐Gómez et al. 2011)

aOnly suitable for acidic freshwaters (Panther et al. 2012).
bRequires further method validation to ensure accurate results under all deployment conditions (Garmo et al. 2003).
cNot suitable for marine waters (Bennett et al. 2011; Panther et al. 2013).
dSuitable for fresh and marine waters, except Mo and U, which are only measurable in freshwaters (Hutchins et al. 2012; Panther et al. 2013).

PSMs for Metals in Assessment of Contaminated Sediments—Integr Environ Assess Manag 10, 2014 185



significant problem for water‐column DGT measurements
under some circumstances (Uher et al. 2012). The DGT
measurement is therefore considered highly operational; the
measured concentration is the effective free metal ion
concentration (attributable to use of the diffusion coefficient
of free ions) that would be required to account for the
accumulated mass over the deployment period, but it is based
on well‐understood chemical and physical processes.
The DGT devices have also been thoroughly characterized

for use in sediments, for which different configurations of PSM
devices are used (Supplementary Data Figure S3), because of
an interest in concentration profiles or distributions. For
sediments in which porewater solutes are fully sustained by
rapid desorption from the solid phase, concentrations can be
calculated using the DGT equation described previously. The
DGT devices can be placed in the sediments for varying
periods, from 6 to 8 h to over a week, although deployments of
1 to 3 days aremore common. Inmany sediments, however, the
available pool of metals that can be taken up by the binding gel
may become limited because of their depletion in the
porewaters and limited release from the sediment or slow
diffusion or convection of analyte solutes to the DGT sampler.
This depletion becomes more significant over longer deploy-
ment times. The net effect is that the accumulatedmass is often
less in sediments than in water at the same concentration. For
this reason, laboratory work is typically needed to identify any
potential matrix effects, to confirm the species that are
measurable as well as the efficiency of measurement, and to
allow optimization of the sampler binding layers, diffusive gel
layers, and other operational parameters, such as deployment
time. Laboratory experiments also can be used to validate the
DGT technique by comparing porewater DGT measurements
with another measurement of porewater solute concentration.
Finally, as discussed later, PSMs can better characterize fine‐

scale changes across the sediment–water interface, or with
respect to other sediment biogeochemical zones or features,
than conventional measurements. New binding layers could be
used that have lower binding capacities and selectivity for
metals that may better mimic the saturable kinetics often
observed in bio‐uptake and with related biotic ligands that are
the sites of toxic action (i.e., between the kinetic and
equilibrium regimens traditionally used by PSMs), as illustrated
in Figure 3.

Teflon sheets

The foregoing PSM techniques have focused on the
sediment porewater rather than the various solid phases
with which the porewater is in equilibrium. Direct deter-
minations of metal–solid associations in aquatic sediments,
for example, by X‐ray diffraction, have rarely proved feasible.
The great variety of metal forms in sediments, the presence
of complex organic–mineral associations, the amorphous
nature of the most important metal‐binding phases (e.g.,
Fe/Mn oxyhydroxides), and the relatively low metal
concentrations involved have all combined to limit this
approach. However, Tessier and co‐workers devised a method
to collect authigenic metal‐binding phases directly, on small
Teflon1 sheets (Belzile et al. 1989; Fortin et al. 1993). When
such sheets are inserted vertically into lake sediments and
left there (for months to years), authigenic Fe and Mn oxides
and their associated material are deposited in distinct bands at
or above the oxic–anoxic interface; the iron oxyhydroxides
appear as a thin firmly fixed orange‐brown band (typically
�0.5 cm wide and 5–20mm thick), whereas the manganese
oxyhydroxides occur as a brownish, more diffuse layer located
above the Fe deposit. In some cases, a band or discrete spots
corresponding to amorphous sulfides also form below the Fe
deposit.
The Teflon sheets are inserted into the sediments and

retrieved manually, normally by divers. On retrieval, the
Teflon support is rinsed in ambient lake water, and the bands
corresponding to the authigenic metal‐binding phases can then
be characterized directly (e.g., X‐ray diffraction; transmission
electron microscopy) and analyzed for their elemental content.
The amounts of collectedmaterial are small (e.g.,�500mg of Fe
oxyhydroxide per sheet [Tessier et al. 1996]), but the samples
collected in this way are relatively free from contamination by
the other solid phases present in the sediment matrix. Recent
applications of this technique include biogeochemical inves-
tigations of As (Couture et al. 2010), Hg (Feyte et al. 2010;
Feyte et al. 2012), Mo (Chappaz et al. 2008), and U (Chappaz
et al. 2010).
This approach has been used to develop conditional

equilibrium constants for the sorption of various metals (e.g.,
As, Cd,Cu,Ni, Pb, Zn) on diagenetic Fe andMnoxyhydroxides
(Tessier et al. 1996), which can then be used to predict metal
concentrations in sediment porewater, but to our knowledge
no reports have been made of direct relationships between
the metal concentrations in these oxyhydroxides and metal
bioavailability.

Advantages and limitations of PSMs over other estimates

of exposure

Given that freely “dissolved”metal concentrations in surface
waters and sediment porewater (Cfree) provide a relevant
exposure metric for risk assessment, PSMs must provide
an accurate, reproducible estimate of the dissolved metal
concentration, whether it be in the overlying water or in
sediment porewater. Whether this estimate should be for total
dissolved metal, total “labile” metal, or total “free” metal is
discussed later. As mentioned earlier, the Cfree hypothesis
assumes that, for sediment‐ingesting animals, the physico-
chemical conditions in their digestive system are similar
to those in the host sediment and that porewater metal
concentrations accurately reflect the chemical “activity” of the
ingested sediment‐bound metal.

Figure 3. Illustration of the gap to be filled between the current generations
of kinetic and equilibrium regimens traditionally used by PSMs.
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Advantages and limitations of PSMs are outlined in the
following sections. Some advantages also can be limitations,
and the reverse is also possible. Thus, caremust be taken in the
experimental design and interpretation of results.

Recognized advantages

� Minimal effects of sampler contamination for samplers that
equilibrate with the sediment porewaters (peepers, DET)

� Improved detection limits and a simpler analytical matrix
(for samplers that concentrate the contaminant, e.g., DGT)

� Time‐averaged measurement during the period of deploy-
ment or equilibration

� Exclusion of particulates and colloids, and can be used with
different membranes to separate dissolved metal species on
the basis of molecular weight

� The DGT device can introduce selective binding layers to
facilitate elemental speciation

� Episodic events and cyclic changes, which may be missed
by occasional grab sampling, are incorporated into the
measurement

� Reduced sampling artifacts so that measurements are more
representative

� Capable of 2‐dimensional measurements at high resolution,
which provide exceptional insights into sediment hetero-
geneity and biogeochemical processes, and into metal
mobilization mechanisms and

� Can be deployed in freshwater, estuarine, and marine
environments, including deep sea and polar regions; in the
case of DGT, the analytes accumulate in the binding resin
whereas the high major ion concentration does not, which
allows for lower detection limits in high‐salinity matrices

Recognized limitations

� Subject to biofouling or clogging during extended deploy-
ments, although this is less of an issue for sediment
deployments because more complex biofilms do not grow
because of the absence of algae

� Restricted diffusion and slow contaminant release from
sediments may limit uptake rates

� Sample volumes obtained are often small
� Device design (e.g., volume sampled, size, membrane size)

affects rates ofmetal accumulation and interpretation of the
PSM response

� Interpretation of kinetic regimen passive samplers within
sediments can be complex and requires appreciation of how
the sediment responds (discussed later under Models to
Interpret PSM Measurements)

� May not be representative of total bioavailability where
sediment ingestion occurs

� Insertion of the sampler into the sediment can introduce
oxygen and thus locally alter the redox conditions, although
if the samplers are thoroughly deoxygenated and care is
taken not to disturb the sediment (especially making sure
the sampler is in good contact with the sediment), the
impact on the measurement is minimal.

Depending on the technique employed, passive sampling
may reduce or minimize the risks of sample contamination.
For example, when deployed in a natural water body, any
contamination initially associated with a porewater peeper
or a diffusion cell will be considerably diluted during the

equilibration phase. In other cases, where the PSM includes a
metal‐binding phase (e.g., DGT), there will be substantial
preconcentration and, therefore, better detection limits.

Some PSMs (peepers and DGT particularly) are often
deployed for long periods and thus yield time‐averaged
estimates of the ambient metal concentrations, which may be
relevant in the case of long‐term exposure of aquatic organisms
that only slowly come to steady‐state with their environment
with respect to metal exposure. Long‐term equilibration
between the PSM and the ambient environment may
underestimate the extent of short‐term episodic events, but
grab sampling may miss such events completely; the PSM can
often detect the event, but the associated concentrations are
averaged over the time of deployment (Dunn et al. 2003;
Jordan et al. 2008). Allan and co‐workers (2008) compared
passive sampling (with DGT andChemcatcher devices) to spot
sampling, in the River Meuse (The Netherlands), and
concluded “Passive sampling provides information that cannot
be obtained by a realistic spot sampling frequency and this may
impact on the ability to detect trends and assessmonitoring data
against environmental quality standards when concentrations
fluctuate.” Chemcatcher samplers are typically deployed for
several weeks, whereas DGT devices are often deployed for no
more than 24 to 96 h (Table 1); repetitive sampling using DGT
can therefore reveal temporal changes.

TWO‐DIMENSIONAL MEASUREMENTS OF METALS
IN SEDIMENT

Although the potential heterogeneity of sediment has long
been considered important, few techniques were actually able
to observe this heterogeneity, for metals or other substances.
Therefore, the investigation of metals in sediments typically
involved measuring vertical concentration profiles of the solid
phase or porewaters, at 1‐ or 2‐cm resolution (Stockdale
et al. 2009), despite the limitations of this approach being well
known (Brendel and Luther 1995).

Toward the end of the 20th century, several techniques were
described that allowed 2‐dimensional measurements of pore-
water solutes at high resolution, which allowed sediment
heterogeneity to be observed directly. Glud and co‐workers
described a planar optical sensor (optode) for O2 that used
fluorescence quenching of an Ru complex and allowed very‐
high‐resolution (100mm), 2‐dimensional measurements of
O2 depletion across the sediment–water interface (Glud
et al. 1996) and at the base of a biofilm (Glud et al. 1998).
Teasdale et al. (1999) described a DGT technique for sulfide in
estuarine sediment with an AgI(s) binding gel and computer‐
imaging densitometry, also capable of high resolution (1mm),
2‐dimensional measurements. Although these examples did
not measure metals in sediment, they did provide an
understanding of the sediment biogeochemical zones and
heterogeneity that strongly influence metal mobilization (Stahl
et al. 2012). In a crucial development, Davison et al. (1997)
described 2‐dimensional, high‐resolution (100mm) DGT
measurements of Zn, Fe, Mn and As(III) in a microbial mat
using particle‐inducedX‐ray emission. After this, Shuttleworth
et al. (1999) described an unconstrained DET device for the
measurement of 2‐dimensional Fe andMn distributions in fresh
water sediment porewaters at 3� 3mm resolution. These
2‐dimensional measurements provided the advantage of
measuring smaller volumes of sediment porewaters (Stockdale
et al. 2009), and therefore less averaging of steep concentration
gradients occurred, vertically or laterally. As a result, a more
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representative measurement of sediment porewater solute
distributions was obtained (Pagès et al. 2011).
Subsequent studies have seen the further development of the

DGT technique for 2‐dimensional measurements of porewater
metal (As, Cu, Co, Fe, Mn, Ni, V, Zn) distributions using laser‐
ablation ICP‐MS (Motelica‐Heino et al. 2003; Warnken
et al. 2004a). These approaches have allowed investigation of
metal mobilization from microniches in deep sea (Fones
et al. 2001) and freshwater sediment (Stockdale et al. 2008),
and the mobilization of metal from sulfides (Naylor et al.
2006; 2012). Two‐dimensional, high‐resolution (1mm) DET
measurements of iron(II) using colorimetric reactions with
ferrozine have also been described recently (Jézéquel et al.
2007; Robertson et al. 2008; Bennett, Teasdale, Welsh,
Panther, Jolley et al. 2012) using low‐cost computer‐imaging
densitometry analysis. This technique has been used to
investigate the biogenic heterogeneity (Robertson et al.
2009) of coastal sediments, diurnal changes in seagrass
biogeochemistry (Pagès et al. 2012), and interpret mobilization
of As species from sediment (Bennett, Teasdale, Panther,
Welsh, Zhao, et al. 2012). These new DGT and DET
techniques provide valuable insight into the distribution of
porewater metals within heterogeneous sediment, and the
mechanisms of metal mobilization from microniches and
attributable to changing redox conditions. These and other
approaches need to be used while recognizing that biota
typically tend to integrate 2‐dimensional exposure patterns
by actively burrowing in the sediment with subsequent
modification of the microniches they reside in, for instance
by irrigating their burrows with overlying water. Figure 4 shows
2‐dimensional patterns of Fe(II) and S(II) obtained by a
combined DGT/DET sampler (24h deployment) in a low‐

density seagrass sediment on Tallebudgeera Creek, Gold Coast
(Queensland, Australia); note the high degree of heterogeneity
and the presence of both Fe(II), indicating a sub‐oxic redox
zone, and sulfide, indicating an anoxic redox zone at the
same depth (50–100mm), although at different lateral
positions.

MODELS TO INTERPRET PSM MEASUREMENTS
Early development of models to support interpretation of

PSM results has helped us understand how the sediment
responds to PSMs and to better understand potential sampling
artifacts. All in situ porewater samplers create a diffusive flux
into the sampling device on deployment (Davison et al. 2000)
the mechanism by which PSM sampling occurs—that perturbs
the pseudo‐equilibrium within the sediment to some extent;
however, this process also occurs naturally within sediments.
The response of sediment to the perturbation created by a PSM
can vary considerably between equilibrium regimen (peepers
and DET) and kinetic regimen (DGT) samplers, with sampler
design features and sediment properties also being important.
Equilibrium samplers have a high initial flux of solutes that

diminishes over time as the concentration difference driving the
flux decreases. Complete equilibrium must be approached
(>90%) to interpret the results as porewater concentrations.
The equilibration time for such devices is determined by the
ratio of the sampler volume to the exposed area of the sampler
(Brandl andHanselmann 1991). This process has beenmodeled
(Harper et al. 1997; Davison et al. 2000) for peepers and DET
PSMs, investigating 3 different regimens of solute resupply to
the sediment porewaters:

i) Sustained resupply in which various processes (desorption,
dissolution, microbial respiration) maintain porewater
solute concentrations from the particulate phase

ii) Diffusive resupply only, in which porewater concentrations
become depleted in an expanding volume from the PSM
interface; and

iii) Partial resupply, which is intermediate to i) and ii) and
involves both resupply from the solid phase and recharge by
diffusion

Partial resupply seems to be the most common regimen
encountered for trace metals (Naylor et al. 2006; Wu
et al. 2011), but examples of all 3 have been observed, with
the by‐products of active microbial respirationmost likely to be
fully sustained, particularly iron(II) (Naylor et al. 2006; Zhang
et al. 1995) and sulfide (Motelica‐Heino et al. 2003; Robertson
et al. 2009). The resupply regimen may vary considerably with
depth; for instance, manganese(II) was observed to have strong
resupply in surface sediments but decreased to diffusional
recharge only at most other depths (Naylor et al. 2006).
Equilibration time (to 95% of equilibrium) was observed to
vary between 12min and 15h for a DET and between 23 h and
56 days for a dialysis sampler (F¼ 1.1 cm) in fully sustained and
diffusional resupply only conditions, respectively (Davison
et al. 2000). Other comparisons of models with experimental
results showed that, with peepers in saline waters, equilibration
times were reduced because of convection in the peeper cells,
decreasing the upper deployment time (Webster et al. 1998). A
1‐dimensional diffusive model was also described that allowed
validation of equilibration times determined through time
series deployments (Bally et al. 2005).
These resupply regimens also occur with DGT measure-

ments, although the kinetic regimen DGT sampler maintains a
higher rate of flux of analyte solutes into the sampler than do
equilibrium PSMs, because of the adsorption of the analyte
within the binding layer. This can be varied, however, through
changing the thickness of the diffusive layer, sometimes
resulting in resupply regimens also changing (Naylor
et al. 2006). This option makes DGT a useful tool for

Figure 4. Example of 2‐diomensional patterns of Fe(II) and S(II) in sediment (P.
Teasdale, personal communication). The Fe(II) is a colorimetric DET
measurement and the sulfide is a colorimetric DGT measurement; both
measured by computer imaging densitometry at 1‐mm resolution. The dark
blue zone amongst the high Fe(II) at approximately 40mm depth and 60mm
from left to right is an artifact in which the gel had broken on contact with a
shell. © 2014 by the Association for the Sciences of Limnology and
Oceanography, Inc.
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investigating sediment geochemical processes (Naylor et al.
2006; 2012). Whereas DGT has the advantage that any
deployment time can be used, instead of requiring uptake to
have approached equilibrium, this does complicate the
interpretation of the results. Under deployment conditions
in which sediment interstitial water concentrations remain
constant, the DGT equation can be used to calculate an
accurate contaminant porewater concentration. Under all other
conditions the DGT measurement is most accurately reported
as a flux into the sampler (Zhang et al. 1995; Davison
et al. 2000), although some authors instead report the results as
concentrations and also discuss the likelihood of the porewater
concentrations being underestimated (Bennett, Teasdale,
Welsh, Panther, Stewart, et al. 2012). Given that the resupply
can vary considerably over a concentration profile or distribu-
tion, and the difficulty of obtaining an independent measure of
porewater concentrations (particularly in salinewaters), this is a
reasonable approach. A 2‐dimensional model to assist with
interpretation of DGT profiles, particularly the likely concen-
tration and fidelity of peaks, has been developed (Harper
et al. 1999; Davison et al. 2000). A method that assists in
translating porewater fluxes into concentrations has also been
described (Harper et al. 1999), and minimum peak width at
several diffusion layer thicknesses provided for representative
peak shape and concentration (Davison et al. 2000). More
recently another model has been described that allows
interpretation of small‐scale features in DGT measurements
—a spherical microniche was located close to a DGT device in
the model (Sochaczewski et al. 2009). Micro‐niche responses
were found tomost likely reflect a localized sourcewith a higher
concentration than the surrounding sediment, and most
measurements of microniches are likely to reflect 62% to
87% of the true peak maxima.

Another major development toward interpretation of DGT
measurements of metals in sediments was the DIFS (DGT‐
induced fluxes in sediments/soils) model (Harper et al. 2000;
Sochaczewski et al. 2007). The DIFS allows quantitative
interpretation of DGT measurements using equilibrium (Kd)
and kinetic (desorption rate) parameters that relate to
conventional measurements and important geochemical pro-
cesses. This response can be evaluated over time and can be
used to visualize the change in sediment porewater and
particulate analyte concentrations surrounding the DGT
device. The DIFS has been used in soils rather than in sediment
for metals because of the relative ease of making measurements
on homogenized samples, which is considered relevant for soil
studies. However, this approach has been used for phosphate in
freshwater lake sediment (Monbet et al. 2008). A probabilistic
model was developed (DGT‐PROFS; Ciffroy et al. 2011) that
better determines the range of physical parameters possible
from a DGT measurement and was successfully evaluated
against formulated sediments that varied in proportions of iron
oxides (Ciffroy et al. 2011) and humic acids (Nia et al. 2011).

LIMITATIONS: DO SPECIFIC PSMS WORK BETTER
FOR SOME METALS THAN FOR OTHERS; WHICH
METALS ARE (NOT) DATA‐RICH?

Most studies relating PSM responses to metals in aquatic
sediments or the overlying water have tended to focus on
divalent species (Cd, Cu, Ni, Pb). Garmo et al. (2003)
published a laboratory comparison of the behavior of 55
elements in trials with DGT devices deployed in the absence of
sediments. They compared independently determined or

estimated diffusion coefficients in water (i.e.,DH2O, unrestrict-
ed by a gel phase) with DGT effective diffusion coefficients
(DDGT) for all 55 elements. The DGTs were exposed at a
controlled fluid velocity of 0.1 m · s�1 and a concentration of
1mg · L�1 at 4 pH values between 4.7 and 6.0, andDDGT values
were determined from the uptake by the sampler. For Al, Cd,
Co, Cu, Ga, Mn(II), Ni, Pb, and Zn, good agreement was seen
between the measured DDGT values and the accepted
previously published DH2O values, “with some deviations for
Pb and Zn.” The uptake of Ba, Cr(III), Fe(III), Mo(VII), Sr,
Ti(IV), U(IV), and V(III) proved to be pH‐sensitive, and the
authors reported some experimental problems that “required
further investigations.” Novel DDGT values for the lanthanides
(La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Tb, Yb, Lu,
Y) were reported.

Accumulation of metal ions as a function of time was
followed (24, 48, and 72 h) and for many of the elements
linearity was observed up to 72 h (Garmo et al. 2003). Some
exceptions were noted, notably for Ag(I), As(III), B(III), Bi(III),
Ca, Hf, K, Li, Mg, Na, Nb, P(V), Rb, S, Sb(III), Se, Si, Sn(II),
Ta, Te, Th, Tl,W, and Zr, indicating that these elements are not
quantitatively collected (e.g., elements that exist in water as
monovalent cations or as anions, and for which the Chelex resin
does not have a high binding capacity). For such elements
overall accumulation was low, and DDGT values were less than
10% of theoretical values. Such constraints have been rectified
for specific analytes, such as many of the oxyanionic species, by
the incorporation of alternative adsorbents into the binding
layer (e.g., metal‐oxide binding phases such as ferrihydrite and
titanium dioxide).

The focus of PSMs has been on individual metals, whereas
sediment‐dwelling biota are typically exposed to mixtures of
metals of varying composition. Typically, care is taken in the
deployment of the PSMs not to saturate the resins; competition
for binding of individual metals to the resin usually is not a
factor of importance. However, competition ofmetals for biotic
membranes can be a factor limiting the relationship between
DGT‐labile metal and metal accumulated in biota (Roulier
et al. 2008). Saturable biotic ligands and specific interactions
between metal mixtures present in varying composition
potentially complicate reliable toxicity prediction by means
of PSMs.

HOW WELL DO PSMS PREDICT BIOAVAILABILITY?
To answer the key question of how well PSMs work for

metals in practice requires evidence that their response can be
used to predict metal bioavailability. Ideally, such evidence
would have been generated in a field setting, but such studies
are very scarce in the scientific literature (Table 3, sections C
and D). Accordingly, studies that were performed on natural
waters or sediments but in the laboratory (e.g., algal studies on
natural waters brought back to the laboratory) or in mesocosms
(e.g., periphyton grown in the laboratory in mesocosms fed
with natural river water; benthic organisms exposed to natural
or spiked sediments) were included in a literature search
regarding this question. Table 3 presents some examples in
which PSMs were deployed in systems containing natural
waters or sediments and where the results were compared with
metal accumulation or toxicity in resident aquatic organisms.

Provided that they are used correctly, PSMs can provide
unique, relatively artifact‐free concentration or flux data for
sediments that cannot be obtained through grab sampling. As
discussed earlier, the common PSMs for sediments are DGTs
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Table 3. Examples of positive relationships between the response of PSMs and the response of free‐living or caged aquatic organisms

PSM Biological response References

A ‐ Overlying water – fresh water

• DGT

Cu

Short‐term and steady‐state Cu accumulation by an aquatic moss in

laboratory experiments with NOM; DGT labile Cu related to

accumulation in some cases only.

(Ferreira et al. 2008)

• DGT

Cu

Acute and chronic toxicity of Cu (Ceriodaphnia dubia) in 3 spiked river

water samples containing 4 to 13 mg DOC L�1; the range of the LC50

values was narrower when expressed as DGT‐labile Cu (20–30 mg L�1),

but exceeded the SMAV value (11.5 mg L�1).

(Martin and Goldblatt 2007)

• DGT

Cd

Cd uptake flux into an amphipod (Gammarus pulex) in laboratory studies

in the presence of EDTA and Aldrich humic acid; values for [Cd]inorg and

[Cd]DGT were very similar, indicating that few complexes were

contributing to the DGT measurement.

(Pellet et al. 2009)

• DGT

Al

Toxicity of Al to brown trout (fish exposed to natural waters spiked with Al

and manipulated); DGT labile metal a better predictor of fish stress than

total inorganic Al (pyrocatechol‐violet).

(Royset et al. 2005)

B ‐ Overlying water – seawater

• DGT

Cu

Transplanted rock oysters (Sacccostrea glomerata) and DGT devices were

deployed over 6 weeks (biweekly measurements) in a coastal lagoon;

bioaccumulated Cu strongly correlated with cumulative Cu taken

up by DGT devices at a marina and a boat anchorage. These field

measurements were used to calibrate the oyster biomonitors to give

biomonitor‐available concentrations. A significant correlation was then

obtained between biomonitor‐ available and DGT‐labile measurements

over 14 sites.

(Jordan et al. 2008)

• DGT

Cd Cu Ni Pb

Mussels (Mytilus galloprovincialis) and DGT devices were deployed

together for 3 one‐month periods in coastal waters of Sardinia (Italy);

nonessential metals (Cd, Pb) accumulated over time and showed weak

correlation with DGT‐labile metal; Cu and Ni did not bioaccumulate

although DGT‐labile Cu and Zn were detected.

(Schintu et al. 2008)

• Hollow fiber

permeable

liquid

membrane

Cd, Cu, Ni, and Pb uptake fluxes into a test marine alga (water from the

Baltic Sea, collected at 7 different sites) as a function of [Mzþ].

(Slaveykova et al. 2009)

• DGT

Cd Cu Pb

Brown macroalga (Padina pavonica) collected from 5 coastal marine sites

near smelters; DGT devices deployed at each site (3 d); positive

correlation between DGT‐labile Pb and Pb concentrations in the

macroalga.

(Schintu et al. 2010)

C ‐ Sediments – freshwater

• Porewater

peepers [Cd] in

pore water in

surface

sediments

Cd accumulation and metallothionein induction in free‐living freshwater

bivalves, collected from lakes on the Canadian Shield.

(Couillard et al. 1993;

Tessier et al. 1993)

• Pore water

Ni

Tested 3 invertebrate taxa (Hyalella survival, Gammarus survival, and

Hexagenia growth) in 10 Ni‐spiked sediments, over at least 28 d; toxicity

values based on pore water nickel concentrations had lowest among‐

sediment variation, especially for the 2 amphipods.

(Besser et al. 2011)

• DGT

Cd

Periphyton exposed to Cd in artificial recirculating channels containing

natural freshwater; Cd speciation modified by addition of

nitrilotriacetate (NTA). Total and intracellular Cd content in periphyton

increased and were related to an increase in DGT‐labile Cd.

Bioaccumulation not controlled by the free Cd concentrations, but by

diffusion of labile Cd‐NTA complexes.

(Bradac et al. 2009)
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and porewater peepers, both of which are useful, but do not
measure the same thing. Peepers sample either whole pore-
water (which may include some particulate and colloidal
fractions, depending on the membrane size), whereas DGTs
can measure a flux of “labile”metals. Based on the principles of
the BLM (Campbell 1995; Di Toro et al. 2001), one would
expect the PSMs that best predict metal bioavailability to be
those that respond only to the free metal ion, or (failing that)
respond only to inorganic metal (i.e., the free metal ion and its
inorganic complexes), such that one can calculate the free
metal ion concentration confidently using the inorganic metal
concentration, the inorganic ligand concentrations, pH, and
ionic strength as inputs to an equilibrium speciation model.
PSMs that collect “labile” metal are inherently less likely to be
useful in this context, because the nature of what is included in
the labile fraction (e.g., weak metal complexes) will vary from
one receiving water to another. For example, Buzier et al.
(2006) studied the bioavailability of Cd and Cu in wastewaters
and showed that DGT‐labile Cd overestimated bioavailability
to Daphnia magna (see their Figure 1). Similarly, Ferreira et al.
(2008) reported thatDGT‐labileCuwas a good predictor ofCu
bioaccumulation in moss in the presence of some types of
organic matter but not others. Conversely, using Aldrich humic
acid (high molecular weight) and ethylenediaminetetra‐acetic
acid, Pellet et al. (2009) showed that [Cd]DGT and [Cd]inorg
were very similar and that the predictive powers of the 2
variables were accordingly also very similar.

Metal bioavailability also depends on the aquatic species
of interest. For example, Dabrin et al. (2012) conducted
laboratory microcosm experiments with a natural carbonate‐
rich sediment spiked with Cd at 5 different concentrations.
Three different test species (chironomid, Chironomus riparius;
amphipod, Gammarus fossarum; mudsnail, Potamopyrgus
antipodarum) were exposed for 7 d to the spiked sediments.

The DGT‐labile Cd predicted Cd accumulation rates well in
the mudsnail, overpredicted Cd accumulation rates in the
amphipod, and underpredicted Cd accumulation rates in the
chironomid.

In a recent study (Costello et al. 2012), sediments were
amended with Ni and placed either within a streamside
mesocosm or deployed in situ. Using macroinvertebrate
community composition as a response, the authors compared
the performance of DGT‐measured Ni with AVS and organic
carbon–corrected Ni ((SEMNi‐AVS)/fOC) and total Ni con-
centrations as predictors of the biological response. From both
experiments, DGT‐labile Ni poorly predicted the invertebrate
response to metal, whereas models that included total Ni or
(SEMNi‐AVS)/fOC predicted the invertebrate response for the
streamside mesocosm and in situ experiments, respectively.
The authors concluded that DGT overestimated the available
Ni fraction, possibly because the DGT resin may be mobilizing
a solid‐phase Ni fraction that is not bioavailable to the
colonizing benthic invertebrates, or because the binding of
dissolved Ni to the DGT is not affected by other dissolved
cations that may be protecting the invertebrates (Costello
et al. 2012).

In a similar study (Simpson et al. 2012), a Cu‐sensitive
estuarine bivalve (Tellina deltoidalis) was exposed to 3
sediments with varying properties that had been artificially
contaminated with Cu‐based antifouling paint particles.
Overlying water Cu concentrations and DGT‐Cu fluxes
measured at the sediment–water interface provided good
exposure concentration–response relationships relative to Cu
bioaccumulation and Cu‐induced lethality.

In summary, and as illustrated in Table 3, an encouraging
correspondence between metal bioavailability and PSM‐

measured metal has been demonstrated for the water column.
However, very few studies have deployed PSM devices in

Table 3. (Continued)

C ‐ Sediments – freshwater

• DGT

Cd Cu Pb

Laboratory microcosm experiments conducted with 6 contaminated

sediments; compared DGT‐labile metal with metal bioaccumulation in a

chironomid (Chironomus riparius); significant relationships found for Cu

and Pb; however, total metals in sediments were, surprisingly, the best

predictors of bioaccumulation.

(Roulier et al. 2008)

• DGT

Cd

Laboratory microcosm experiments conducted with a natural carbonate‐

rich sediment spiked at 5 different concentrations; 3 test species

(chironomid, Chironomus riparius; amphipod, Gammarus fossarum;

mudsnail, Potamopyrgus antipodarum) exposed for 7 d; DGT devices

also exposed 2, 4, 8, 12, 24, 48, 72, 144 h; DGT‐labile Cd predicted Cd

accumulation rates well in mudsnail, over‐predicted rates in amphipod,

and under‐predicted Cd rates in chironomid.

(Dabrin et al. 2012)

• DGT

Cd

Flux of Ni from spiked sediments (weeks to months) linking effects to

benthic macroinvertebrate populations and Hyalella azteca and Lymnea

stagnalis. No relation to benthic responses, but did show biphasic flux

patterns.

(Costello et al. 2011;

Costello et al. 2012)

D ‐ Sediments—seawater

• DGT

Cu

Bioavailability of Cu to the benthic marine bivalve Tellina deltoidalis

in sediments of varying properties contaminated with Cu‐based

antifouling paint particles; overlying water Cu concentrations and

DGT‐Cu fluxes provided good exposure concentration–response

relationships in relation to Cu bioaccumulation and Cu‐induced

lethality.

(Simpson et al. 2012)
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metal‐contaminated sediments and then compared the PSM
response to metal accumulation or metal toxicity in benthic
organisms; the results from these sediment studies are less
persuasive than those obtained for the water column. This
situationmay simply reflect the paucity of sediment studies, but
it should also be recalled that PSMs respond to aqueous metals
and thus can only indirectly account for the uptake of diet‐
borne metals. Clearly the correspondence between bioavail-
ability and PSM‐measured metal for sediment‐dwelling organ-
isms remains to be confirmed. Nevertheless, the geochemical
information furnished by PSMs is clearly “complementary” and
can be used to help interpret the results of metal bioaccumu-
lation assays or toxicity tests conducted on sediments.
Understanding the fraction sampled by a PSM will be critical
for assessing biological routes of exposure (e.g., dissolved vs
colloidal vs particulate‐associated metals) and any resulting
effects.

BARRIERS TO WIDESPREAD APPLICATION OF PSMS
BY DECISION MAKERS
A list of barriers to broader regulatory acceptance of PSMs

was articulated by participants in a recentworkshop on research
and development needs for the long‐term management of
contaminated sediments (Thompson et al. 2012); one of the
principal barriers identified was that too few studies relate PSM
responses to actual metal‐induced effects in benthic organisms.
In a regulatory context, data from PSMs are more readily

accepted by decision makers where unambiguous linkage to
parameters has been established and vetted by the scientific
community. Examples are parameters such as total dissolved
metal concentration (which could then be used as input to a
chemical equilibriummodel and the BLM, or as partial input to
a biodynamicmodel), or the freemetal ion concentration. Such
information is consistent with the recognition in current
regulations that metal speciation is critical to risk assessment
and that the free metal ion concentration, as opposed to the
total concentration, is a useful predictor ofmetal bioavailability.
However, techniques that express results in amanner that is less
directly linked to regulatory paradigms, for example, that
measure the rate ofmetal accumulation (such as theDGT), will
likely meet with more resistance. In such cases one must back‐
calculate the concentration that would yield the observedmetal
flux. This is straightforward for synthetic solutions and
controlled conditions in the laboratory, but more complex
for field deployments in which empirical measurements of
metal flux are affected by a variety of physicochemical factors,
including turbulence, temperature, water chemistry (i.e., pH;
hardness, and dissolved organic carbon), and the potential of
biofouling of the passive sampler. Despite these limitations,
PSMs allow for a much more representative exposure
measurement than do grab samples and subsequent deter-
mination of total porewater concentrations. The PSMs are
highly complementary and as useful as or more useful than
conventional sediment porewater measurements.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

� The PSMs have been useful for evaluating the geochemical
behavior of metals in surficial sediments, including the
determination of fluxes across the sediment–water inter-
face, and postdepositional changes in metal speciation and/

or forms (diagenesis). These studies have indicated a
marked geochemical heterogeneity in sediments, at the
scale of millimeters to micrometers.

� The development of PSM techniques capable of measuring
2‐dimensional, high‐resolution (mm–100mm) porewater
solute distributions suggests that conventional measure-
ments of porewaters in sediments, such as filtering,
squeezing, or centrifuging sediments to separate the
interstitial water from the solid phase, may lead to major
artifacts. The PSMs can also characterize fine‐scale changes
across the sediment–water interface better than conven-
tional measurements.

� The PSMs have been less useful for evaluating the
bioavailability of metals in surficial sediments with respect
to benthic organisms. Representing diverse and often
complex biouptake mechanisms with simple chemical
processes remains a challenge, even though PSMs can
operate in different regimens (equilibrium or kinetic).

� Equilibrium devices such as porewater “peepers” show
promise for those benthic organisms that are exposed to
metals primarily through contact with the porewater. Using
the overall composition of the porewater, one may apply
modeling (e.g., the BLM) to estimate metal bioavailability
in porewater, similar to what has been done for the
overlying water.

� Non‐equilibrium devices designed to measure metal fluxes
(e.g., DGT) are often cited in the literature as tools for
quantifying metal bioavailability, but very few examples
were identified in which such measures have yielded
significant improvement over conventional analysis of the
sediment. This result contrasts with the situation for metals
in the soil environment, where the DGT approach has been
shown to improve predictions of metal bioavailability. In
soils, the supply of metals from the solid phase and their
physical transport from the solid phase to the biological
interface (e.g., root surface or invertebrate epithelium) are
known to influence metal uptake; under such conditions,
the use of a PSM to measure metal fluxes makes sense. In
contrast, for sediments in which porewater serves as a
contiguous medium between the solid phase and the
biological target, and where equilibrium between solid
phase and porewater is less likely perturbed by biological
uptake, metal flux measurements may be less relevant than
free metal concentrations.

� The DGT technique has the most potential for versatility.
New binding layers could be used that have lower binding
capacities and selectivity for metals that may better mimic
the saturable kinetics often observed in biouptake and
related biotic ligands that are the sites of toxic action (i.e.,
between the kinetic and equilibrium regimes traditionally
used by PSMs).

Recommendations

To optimize PSM use for metals and promote sound
interpretation of PSM data in risk assessment approaches that
allow for assessment of metal bioavailability in sediment,
further work is needed:

� Standardization of devices is clearly needed. For broad
acceptance of PSMs, round‐robin testing should be
performed to determine intra‐ versus interlaboratory
variance. Such efforts will be facilitated by standardization
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of sample and sampler preparation, and the creation of
reference materials.

� For each PSM, clear guidance on methods and sampling
protocols, and on calibration of devices, are also needed,
including noting any limitations on the types of sediment
that can be conveniently measured.

� Very few studies have tried to link PSM responses in
sediments to metal uptake and toxicity responses in benthic
organisms. Further studies of this type are needed.

� Future PSMs could be designed to mimic saturable kinetics,
which would fill the gap between the kinetic and the
equilibrium regimen samplers currently used, and may
represent the accumulation of metals by benthic organisms
more accurately.

� The few studies relating PSM responses to metal bioavail-
ability in the water column or in aquatic sediments have
tended to focus on Cd, Cu, Ni, and Pb; on a relative scale,
these metals are “data‐rich.” Future work on linking the
bioavailability of data‐poor metals and metalloids (e.g., Hg,
Se) to PSM responses is required to expand applicability
across sites.

� The capability of DGT PSMs to selectively measure
the different oxidation states of arsenic in situ, at high
resolution and in 2 dimensions, is a significant advantage of
these techniques over conventional sediment sampling
approaches. Because these methods are relatively new,
currently no published studies exist using these devices
to investigate arsenic toxicity and bioavailability in
sediments.

� The PSMmeasurements should be linked with existing and
future models, including those that define metal speciation
under equilibrium conditions. When comparing the
performance of different PSMs, care should be taken to
obtain complementary water and sediment chemistry data,
so thatCfree can be calculated. The comparison of PSM data
and modeled speciation data is a powerful means of
evaluating the performance of both the passive sampling
device and the chemical equilibrium model.

� Presently, the application of such models often results in
predictions of metal speciation that diverge from the results
of measurements with PSMs. One of the research priorities
should be to work to improve the modeled predictions of
metal speciation, so that they can be used to derive free
metal ion concentrations from the time‐averaged concen-
trations obtained from PSMs. In turn, the time‐averaged
free metal ion concentrations could then be used in BLM
calculations.

� Furthermore, the use of well‐developed PSMs for routine
monitoring alongside conventional approaches needs to be
undertaken.
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