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Abstract

Background: Technological advancements, together with the decrease in both price and size of a large variety of sensors, has
expanded the role and capabilities of regular mobile phones, turning them into powerful yet ubiquitous monitoring systems. At
present, smartphones have the potential to continuously collect information about the users, monitor their activities and behaviors
in real time, and provide them with feedback and recommendations.

Objective: This systematic review aimed to identify recent scientific studies that explored the passive use of smartphones for
generating health- and well-being–related outcomes. In addition, it explores users’ engagement and possible challenges in using
such self-monitoring systems.

Methods: A systematic review was conducted, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses
guidelines, to identify recent publications that explore the use of smartphones as ubiquitous health monitoring systems. We ran
reproducible search queries on PubMed, IEEE Xplore, ACM Digital Library, and Scopus online databases and aimed to find
answers to the following questions: (1) What is the study focus of the selected papers? (2) What smartphone sensing technologies
and data are used to gather health-related input? (3) How are the developed systems validated? and (4) What are the limitations
and challenges when using such sensing systems?

Results: Our bibliographic research returned 7404 unique publications. Of these, 118 met the predefined inclusion criteria,
which considered publication dates from 2014 onward, English language, and relevance for the topic of this review. The selected
papers highlight that smartphones are already being used in multiple health-related scenarios. Of those, physical activity (29.6%;
35/118) and mental health (27.9; 33/118) are 2 of the most studied applications. Accelerometers (57.7%; 67/118) and global
positioning systems (GPS; 40.6%; 48/118) are 2 of the most used sensors in smartphones for collecting data from which the
health status or well-being of its users can be inferred.

Conclusions: One relevant outcome of this systematic review is that although smartphones present many advantages for the
passive monitoring of users’ health and well-being, there is a lack of correlation between smartphone-generated outcomes and
clinical knowledge. Moreover, user engagement and motivation are not always modeled as prerequisites, which directly affects
user adherence and full validation of such systems.
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Introduction

Background
Modern mobile phones have long transcended their basic use
as communication tools. At present, a smartphone is equally a
digital camera, a pedometer, a fitness tracker, or a virtual
assistant, among others. Smartphones are familiar, unobtrusive,
and discrete devices in today’s society. Their various embedded
sensors along with their high ubiquity have turned them into a
valuable accessory in multiple areas of research. One such area
is passive sensing or self-monitoring for either predicting or
classifying health-related behaviors of smartphone users [1].

Behavioral patterns such as app usage, social interactions, and
a user’s activity log or contextual information such as user’s
location or Wi-Fi connectivity are just a few examples of
smartphone data that can be modeled into passive indicators of
a user’s health or well-being [2,3]. A smartphone’s numerous
embedded sensors such as digital camera, microphone, global
positioning system (GPS), accelerometer, gyroscope, Wi-Fi,
Bluetooth, light and sound sensors, along with their
programmable platforms, enable the passive collection of user
data, thus making smartphones particularly promising
self-monitoring tools.

Objectives
This systematic review aims to overview current existing
literature about the passive sensing technologies and data of
smartphones used to monitor users’ health status. Passive
sensing does not require any explicit user involvement but rather
relies on the ubiquity of smartphones for gathering meaningful
data in the background, without any biases that could be
introduced by users’ categorical participation. In this review,
we assess recent studies on the use of smartphones as a tool for
providing passive health insights, which do not use any other
kind of complementary sensing or monitoring tools. Moreover,
we are interested in highlighting possible limitations or system
validation concerns that have been identified in the studies
included in the review.

Methods

Search Strategy
This systematic review follows the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and is registered in the PROSPERO database
(identifier CRD 4201912447). The objective of this paper was
to review the literature regarding the functionality of passive
sensing of modern smartphones. As such, we focused on finding
the most suitable keywords for retrieving recent studies that
focus on this topic. We conducted a bibliographic search on the
following Web-based databases: PubMed, IEEE Xplore, ACM
Digital Library, and Scopus.

The search query used for this purpose was as follows:
(smartphone OR mobile) AND (sensing OR monitoring) AND
well-being AND (health OR mhealth)

This strategy retrieved 7602 publications. Papers published
between January 2014 and March 2019 were included in the
search. We first removed duplicate titles by an automatic script
and then assessed the remaining titles for relevance for the topic.
The studies that passed this first assessment were further
evaluated based on their abstract. The final decision on the
inclusion of a study was based on its full-text evaluation.

Inclusion and Exclusion Criteria
The titles, authors, and publication dates of the manuscripts
resulting from the search were provided in a list that was further
ordered by author names. Manuscripts written by the same
author group and that refer to the same methodology or
application were analyzed for the sake of identifying the most
recent or complete publication. Having identified one such
manuscript per author group, the remaining articles written by
the same author group were discarded, as they would contain
similar content and thus add some redundancy to the final results
of the review. Other inclusion criteria were as follows:

Relevance for the Chosen Topic
Study focus is passive sensing. Therefore, studies in which users
have to explicitly manipulate the smartphone were not
considered. Publications that considered smartphone as the sole
sensing device were included.

Publication Date
Papers published from January 1, 2014 to April 1, 2019 were
included in the review. Due to the fast evolution of smartphone
technologies, what existed a few years ago may be obsolete
now. Therefore, we decided to include only recent manuscripts
based on current technologies.

Exclusion criteria were as follows: (1) publication language
other than English; (2) use of other sensing devices or external
sensors; (3) user interaction with the sensing system—this
review focuses on passive sensing, where users should neither
be aware of the sensing process nor willingly interact with the
device for this purpose; (4) unavailability of the full text of a
manuscript through the library services in our research institute;
(5) out of scope for this review’s target; (6) lack of
results—position papers were excluded; and reviews.

Study Selection
On the basis of the aforementioned selection criteria, the query
results were evaluated based on their titles first and then
abstracts. The full text of remaining papers was read and
analyzed critically to select the ones that best fulfilled the main
purpose of this review. Figure 1 shows a PRISMA flow diagram
[4] of the bibliographic search.
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Figure 1. Flowchart describing the selection of the studies for the review.

Data Collection and Analysis
The first 2 authors of this review performed individual
assessments of the papers to be included in the review. These
reviewers identified possible bias in each paper, based on the
Cochrane Collaboration’s risk of bias tool [5]. Finally,
observations were combined into 1 spreadsheet for discussion.
In case of disagreement, the third author provided advice on the
final decision regarding the inclusion of a manuscript. No papers
were discarded because of bias.

Study Limitations
The search query used for the retrieval of studies for this review
resulted in 7602 papers. These papers were evaluated by 2
reviewers only, which may have caused biases in the selection
and screening of search results considering the topic of the
review. However, when in doubt, the 2 reviewers involved the
third author for an objective opinion. Another limitation of this
review is the fact that all the information presented and
summarized here was manually collected.

Results

Overview
A total of 7602 manuscripts were retrieved through the
systematic search methodology described above. After removal
of duplicates, we obtained 7404 studies. Of the 7404 titles
inspected, 1339 were considered suitable for abstract assessment.
Out of these, 199 abstracts were considered as potential
candidates for the review, which led to 199 full-text retrievals
and assessments. Finally, 119 manuscripts were included in the

review. Table 1 shows the number of returned and selected
papers from different Web-based databases.

The exclusion of a large number of papers after title assessment
is because of the broadness of the search query used for study
retrieval. The query was not applied to a specific field or section
of a paper (eg, title or abstract), rather we looked for the terms
in the query anywhere in the text of the manuscript. This led to
the retrieval of a large number of papers related to the Internet
of Things, smart homes, wearable monitoring systems, and
robotics, as well as a considerable number of systematic reviews.
The abstract evaluation further refined the number of candidate
studies as, on one hand, many revealed the use of external
sensors as complements of smartphones in the sensing process.
On the other hand, many studies exposed explicit human
interaction with the monitoring system, which would no longer
satisfy 1 of the inclusion criteria for this review, passive sensing.
Table 2 summarizes the percentage of excluded papers in the
last step of our evaluation, based on the exclusion criteria
described above.

Among the studies included for the review, we can verify that
the number of published papers related to passive sensing and
monitoring of health conditions using smartphones has increased
over the years. More particularly, the number has doubled from
2014 to 2017 as shown in Table 3. This advocates for the
research interest on the topic and strengthens the motivation of
this review.

Below we provide an overview of some of the study
characteristics including their main purpose, target audience,
number and types of participants, and the sensing methods used.
We also compiled the health conditions that have been studied
and monitored using the various smartphone sensors.

Table 1. Number of returned and selected papers from different databases.

Scopus, nACM Digital Libraries, nIEEE Explore, nPubMed, nStudies

259540916042994Returned

23104144Included in review
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Table 2. Distribution of rejected papers resulting from the full-text assessment.

Excluded studies, nReason for exclusion

18Full text not available

7Review paper

12Off-topic

6Preliminary work

22User interaction required

17Use of external sensors

2Language (not English)

1Same application–different study

Table 3. Number of unique returned papers by year.

Studies per year, nYear

162014

192015

302016

282017

192018

62019

Focus and Target Population of Included Studies
As shown in Table 3, the interest in sensing capabilities of a
smartphone with the aim of improving users’ health and
well-being has been increasing over the last few years. Among
the selected papers for this systematic review, physical activities
and mental health are 2 of the most studied health dimensions,
along with sociability, students’ academic performance
monitoring, and general well-being, as shown in Table 4.

Of the selected papers, 29.6% (35/118) are dedicated to the
detection of users’ physical activities. Most of them aimed to
recognize basic daily activities such as walking [6-22], standing
or sitting [6-12,15,17-19,21-24], jogging or running
[6-13,17,24], going up and down the stairs [6-10,15], lying
down [10,11,15], and driving a bike [6,12,13] or vehicle
[13,14,25]. In addition, 1 study tried to infer riding up and down
an elevator [15], 1 assessed different activities including being
stationary, limping, shuffling, and skipping [13], and 1 detected
shopping and dining activities [14]. Physical activities were
also explored in the sense of detecting and counting steps
[26,27], distinguishing physical activity from lifestyle activities
such as eating [28,29], assessing mobility in the elderly to avoid
sedentary lives [30], studying its relationship with happiness
including nonexercise activities [31-33], or even measuring and
predicting the walking speed and distance of patients with
pulmonary diseases [34].

Another health-related issue well studied in the selected papers
is mental health disorders. Some of the mental health-related
issues, factors, or diseases that have been investigated using
smartphones are as follows: stress conditions [35-37], bipolar
disorder [38-42], anxiety [42,43], schizophrenia [44,45],
depression [46-49], psychotic relapse [50], mood [51-54], and

affect, which have been detected, for example, using photos
taken by the camera in smartphones [55,56]. A novel approach
for understanding users’ emotions is the study of the typing
behavior and texting speed of the users [57]. The influence of
users’ exposure to natural outdoor environments on mental
health has also been investigated through passive sensing [58].
Two other studies developed their monitoring solution including
a recommendation system to support patients with depression
to cope with their diagnosis [59,60]. Mental health systems have
also been used as a tool by caregivers to access the summary
of situations experienced by patients with depression [61] or to
alert physicians and families if an abnormal behavior is detected
in patients with mood disorders [62].

Sociability has been less studied, but it is an equally important
health dimension of people’s overall well-being. It is known to
have a considerable impact on the stress and anxiety levels of
individuals. In fact, healthy relationships between colleagues
may improve their productivity [3], united families are happier
[29,63], and students cope better with their studies when
surrounded by friends [64]. One way of analyzing this health
dimension is by exploring interaction patterns and near locations
[65,66]. An interesting approach for using the sensing
capabilities of smartphones to infer the risk-taking propensity
of users has been proposed in 2 studies [67,68]. One
recommendation study in particular includes a feature that
informs caregivers that their patients feel lonely and need
additional examination [69].

Only 5.9% (7/118) of the selected papers chose to infer users’
sleep by detecting sleep patterns, irregular nights, and sleep
start and end times [2,70-74]. One study focused on the
correlation between sleep patterns and schizophrenia [75].
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The health areas described above were investigated on an
individual basis by some of the selected papers, but several
other studies explored more than just 1 area to infer insights on
users’general well-being. Such systems are developed to detect
the physical activities, sleep patterns, sociability levels, and
location of users to either better understand and improve their
behaviors or to promote awareness and self-reflection [76-80].

Self-monitoring systems have become very helpful in supporting
older people with their health conditions and in the early
diagnosis of abnormal conditions in the elderly. For example,
the easy monitoring of cardiac parameters with smartphones,
only using the users’ photographs of the finger or face, can
provide a first pulse rate estimation, and users can quickly
understand if something is wrong and needs additional
examination [81,82]. Similarly, incidents of fall events and
tremors are prone to increase in older people. Fall detection
systems can quickly alert when a fall occurs, decrease the time
spent on the floor, and reduce the fear of falling among the
elderly [1]. On the other hand, the early diagnosis of hand
tremors by passive sensing is an important contribution in the
diagnosis and treatment of Parkinson disease [83-86].

Finally, 10.1% (12/118) of the selected studies developed
monitoring systems specifically dedicated to students, mainly

to understand how their behaviors (physical activities, sleep,
and social interactions) affect their academic performance
[87-89], mental health [46-48], social anxiety [43], mobility,
and behaviors [18,90-93]. One study [94] presented an approach
for predicting the students’ food purchase within their proximity
to provide them with recommendations about healthier options.

Considering the selected papers and their described study focus,
we can categorize them by disease or lifestyle monitoring. In
fact, 4 studies aimed to monitor health conditions related to a
specific disease, such as detecting sleep abnormalities in patients
with schizophrenia or hand tremors in those with Parkinson
disease, and another 12 opted to use smartphones to sense users’
daily lives to improve their general health and well-being.
Among the studies that targeted a specific population, 6.9%
(8/118) were on monitoring students’ lives
[64,69,87,88,90,92-94] and 27.1% (33/118) on people with
mental health conditions, such as depression or schizophrenia
[55,60-62,75]. Senior population and workers were targeted by
3 studies each [1,3,9,30,35,69]. Among the remaining studies,
2 aimed to monitor patients with Parkinson disease [83,84], 1
targeted pulmonary patients [34], and 1 targeted family members
[29]. It should be noted that among studies that aimed to monitor
diseases, almost all of them targeted a specific population.

Table 4. Study fields of the selected papers.

Studies per topic, nStudy topic

12General well-being

6Fall detection

7Sleep

9Sociability

33Mental health

35Physical activity

2Heart rate

4Hand tremors and Parkinson’s

3Respiratory issues

10Students’ well-being

Smartphone Technologies
Today’s off-the-shelf smartphones are equipped with many
passive and powerful sensing technologies, which allow the
continuous collection of various health-related data. Among the
smartphone physical sensors, accelerometer is the most used
sensor because of its low privacy and power consumption. In
fact, 56.7% of the selected papers (67/118) took advantage of
this sensor to gather users’ data, mostly related to physical
activities.

The GPS is another commonly explored physical sensor in
smartphones as it is part of most commercially available
smartphones. Of the studies included, 40.6% (48/118) collected
useful GPS data about users’ location and movements. This
sensor was either used alone or along with Wi-Fi, Bluetooth,
or accelerometer. Besides the users’ location, Bluetooth was
highly used to infer levels of sociability. In fact, of the 6 papers

that used Bluetooth, 4 aimed to detect users’ physical
encounters.

Microphone and gyroscope are other well-studied sensors in
passive systems and have been explored in 20.3% (24/118) and
16.9% (20/118) of the selected papers, respectively. A
microphone is used to infer loneliness, sleep, and fall events,
and a gyroscope is essentially used to detect basic physical
activities.

In addition to the information collected by physical sensors,
proposed solutions also collect a set of useful health-related
data about the use of smartphones and users’usage pattern. The
most common ones are related to communication events
including calls and text messages and smartphone usage such
as screen events, light values, time spent on the phone, and
device settings. Furthermore, battery level and status and app
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usage, used in 5.9% (7/118) of the selected papers, allow the
collection of useful data about sleep.

Other health-related data can be collected from physical sensors
and smartphone data, for example, camera, temporal context,
and magnetometer, as shown in Table 5. The table overviews

the sensors and smartphone data that are used in the selected
papers.

Table 6 provides an overview of the use of smartphone sensors
and data in the selected papers and different health areas.

Table 5. Source of the health-related data in percentage. SMS: short message service; API: application program interface; GPS: global positioning
system.

Studies, nSource of data

3Camera

3Google APIs

5Battery level & stats

6Magnetometer

6Bluetooth

13SMS & calls

14Gyroscope

17Microphone

15Wi-Fi

19Smartphone & app usage

48GPS

35Accelerometer

8Others
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Table 6. Summary of the smartphone sensors used in the reviewed papers.

Smartphone sensors/dataStudied behavior

Microphone [77,95]; accelerometer [32,76,77,79,95-97]; smartphone usage [54,67,77,79]; app usage

[54,78], activity recognition APIa [78]; text messages, calls, Wi-Fi [78,79]; GPSb [67,78-80,95,97];
Bluetooth, magnetometer, gyroscope, battery level and status [79], camera [98]

General well-being

Audio features (microphone) [1], accelerometer [99-102], GPS[99]Fall detection

App and smartphone usage [2,71,73,103]; Wi-Fi, temporal context, battery level and status [2,70,71];
accelerometer [2,71,75]; GPS, calls, text messages, activity recognition API [70]; microphone [71,74]

Sleep

Bluetooth [3,65,66,69]; accelerometer, gyroscope, microphone [29,104]; GPS [29,43,64,65,68,104];
Wi-Fi [29,66,69]; calls, text messages, social app usage [43,65,68,69]; emails [69]

Sociability (loneliness, relationships)

GPS [36-39,42,44,46,47,50-52,58-61,72,105-107]; smartphone and app usage
[36,39,41,42,52,53,59,60,72,106,108-110]; accelerometer [35,36,39-42,44,51,57,58,60,72,106]; cell-
ID/calls [45,49,51,72,105-107]; text messages [42,45,51,55,105,107]; Wi-Fi [42,44,47,51,60]; Bluetooth
[44]; microphone [36,40,44,45,51,52,62,106]; camera [55,56]; keyboard [57]; temporal context [60];
battery usage [37]; Bluetooth [37]; Google location services API, activity recognition API [61,63]

Mental health (depression, emotions, stress
level, bipolar disorder, schizophrenia)

Accelerometer [6-13,15-19,21-28,30,31,33,34,38,111-114]; gyroscope
[6,12,15,16,18,21,22,25,27,30,33,111,113,114]; magnetometer [6,16,18,21,27,111,113]; GPS
[13,14,17-20,28,115-117]; barometer [15,18,111]; gravity sensor [26], microphone [18,28]; Wi-Fi access
points [17,18,28]

Physical activities recognition (mobility,
steps counting)

Camera [81,82]Heart rate measurements

Accelerometer [83,84]; gyroscope [84]Hand tremor

Accelerometer [118]; microphone [119,120]Oxygen, breath, and voice analysis

GPS [86]; gyroscope [85]; accelerometer [85]Parkinson disease

GPS [48,87,88,91]; microphone [87,88,90,91,93]; Wi-Fi [87,88,91,94]; accelerometer [87,90,91,93];
smartphone usage [87,90,91]; temporal context [88]; app usages, text messages, calls [48,89,90]; battery
level and status [90,91]; location, weather data [92]; gyroscope, Bluetooth [91]; Google activity recog-
nition [89]

Students’ monitoring (behaviors, perfor-
mance)

aAPI: application programming interface.
bGPS: global positioning system.

One of the main advantages of the use of smartphones in health
monitoring is the possibility to passively collect data. Passive
data collection means that user interaction or participation is
not intentional, and all sensing data come from the ubiquitous
sensors of the smartphone. Of the 118 selected papers, 50 used
collected data from only 1 sensor, mostly accelerometer to detect
physical activities. GPS and camera were also used alone in 7
different papers. On the other hand, of the selected papers that
investigated the use of several sensors, 23 used accelerometer
that was essentially used along with gyroscope, GPS, Wi-Fi,
and microphone to detect physical activities and general users’
behaviors.

In the spectrum of smartphone technologies, one of the main
challenges that can affect the health-related collection of data
when developing monitoring systems is the choice of the
operating system. In fact, there are some differences and
difficulties in development for Android or IOS systems, the 2
most used phone operating systems worldwide. Android is
currently the most popular system and has the advantage of
being convenient from the programming point of view [7].
Scanning rates of sensors are found to be superior with this
operating system [3]. Furthermore, IOS hampers third-party
apps to run endlessly in background, which may make the data
collection difficult [91]. Of the selected papers, 56.7% (67/118)
developed their system only for Android smartphones, 6

developed for both Android and IOS, and 45 did not provide
any information about the chosen operating system.

System Validation
To ensure that users of smartphone-based passive monitoring
systems engage with their use requires a strong validation before
releasing such systems for mass usage. Three aspects related to
the validation of systems can be highlighted: the dimension of
the sample of participants, the study duration, and the ground
truth data that are used to compare and evaluate the results.

Validation of monitoring systems is an important phase as it
can provide researchers and developers with relevant feedback
and information about the accuracy and efficiency of the
systems. The developed systems are tested by a sample of
participants for a specific duration. Of the selected papers, about
71.1% (84/118) asked less than 50 participants to use and test
their developed systems. Only few studies tested their
monitoring systems with more participants: in 16.1% (19/118)
of the studies, the systems were tested by 51 to 450 participants,
and only 2.5% (3/118) used more than 10,000 participants in
the validation phase. Although most of the papers gave
information about the number of participants on their studies,
12 out of 118 (10.1%) did not provide any relevant information
(see Table 7). Another aspect to be noted is that, of the papers
with information about the participants, 21 out of 118 asked
students to test their developed systems [2,56,64,69,
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79,87,88,90-92,94]. This may be an indicator of the willingness
of younger adults to engage in this area.

Study duration is also an important feature to be considered. Of
the selected papers, about 20% (24 out of 118) did not provide
any relevant information about the study duration. Of those
studies with a specific study duration, 16.1% (19/118) lasted
between 1 to 3 weeks or between 4 to 8 weeks, 12.7% (15/118)
lasted between 8 to 35 weeks, and 7.6% (9/118) lasted for more
than 36 weeks. Some of the papers that tried to detect physical
activities chose to ask the participants to perform specific
activities to test their developed systems without having a
specific duration (29%, 35/118) [1,6-13,15,26,27,30,34,84] (see
Table 8).

Only 1 of the selected papers did not provide any information
about the number of participants and the study duration but
mentioned that they had used 4 different smartphones to infer
nearness based on users’ daily activities and social interactions
over time and space [66].

Ground truth data allow the comparison and validation of the
data collected by smartphones. Of the selected papers, about
59.3% (70/118) indicated the type of data used as ground truth,
and the remaining studies did not provide any relevant
information. The most used method is self-reports and

questionnaires that can be performed either by a physician or
provided by the participants. This method is very useful when
testing monitoring systems because self-reports can be prompted
to the users in their smartphones without involving any
additional efforts. On the other hand, this method presents some
disadvantages because the users may not always respond
accurately, and results turn out to be biased. In the studies
selected for this review, the questionnaire method has been
essentially used to collect information about the users’ mental
health [36,39,55,56,64,77,87,92], sleep [2,58,77], stress levels
[35,53,55,108], and physical activities [51,77,109]. Some of
the studies chose to use self-reports recognized in the health
area, as for example the Patient Health Questionnaire about
depression [59,60], the Pittsburgh Sleep Quality Index [75], the
Unified Parkinson’s Disease Rating Scale [84], and the Beck’s
Depression Inventory [80]. To collect ground truth data,
dedicated devices can also be used as an alternative to
questionnaires: actigraph [34], fitness devices [27,34],
electrocardiogram [82], and video clips [15,30] to record
participants’ physical activities. The actual pulse rate of the
participants has also been collected when trying to measure
cardiac parameters using the smartphone [81]. Of the selected
papers, 3 asked the participants to manually label the data about
them used during the study [9,65,88].

Table 7. Number of participants within the selected papers.

Studies per participant range, nParticipants, n

84≤50

1951–450

3>10,000

12Not specified

Table 8. Study duration of the selected papers.

Studies, nExperiment duration, weeks

191 – 3

154 – 8

199 – 35

9≥36

57Not specified

Limitations and Validation Concerns
Users’ motivations, interests, and concerns about monitoring
systems may influence their adherence on using available
solutions. Some of them are related to physiological aspects
such as improving behaviors or monitoring health conditions
such as cardiac parameters, and others are related to more
technical aspects of the systems. Selected papers in this review
had more concerns about technical limitations of the proposed
solutions as they may affect the users’ interest and adherence
to monitoring systems.

As described previously, 56.7% (67/118) papers decided to
develop their systems with Android as it is simpler to develop
third-party apps and because it is the most common operating

system worldwide attracting more people to use the proposed
systems.

Battery levels and privacy are 2 main themes approached in
some of the selected papers. In fact, if these 2 aspects do not
fulfill the users’ expectations, they may not use the available
solutions. Of the selected papers, about 36.4% (43/118)
improved the use of smartphone battery or demonstrated some
concerns about its levels and hope to improve this performance
in future work. The most used solution to maintain reasonable
levels of battery was to decrease the sampling rates of sensors
[2,13,35,70,77,91,93]. Other studies chose to pause the sampling
when the battery was low [51] or to only do a unique sampling
per day [65]. Finally, only 1 study [11] used accelerometer to
classify activities because this sensor does not use much battery.
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Related to privacy, 25.4% (30/118) evidenced that privacy issues
may drop users’ adherence. For example, users may want their
data to be securely stored as explained and implemented in 2
studies [34,87]. Other studies chose to not store any user
information on the smartphone or in the cloud [51,78], to hash
all the relevant information about the user [2,3,65,78,87] or to
only use the accelerometer as it raises few privacy concerns
[35].

Another possible limitation of these studies is that if a developed
system is tested by a sample of young adults, it may not be
adapted to senior people, and results may not be accurate [1,15].
Some of the proposed models were developed and tested only
with a specific population and may be too personalized, thus
leading to inaccurate results when the systems are used by other
populations [88,94]. Other papers pointed out the fact that
personalized models produced better results than general models
[2,35,70,76]. Summing up, about 16.1% (19/118) raised some
concerns about the accuracy of the developed models when
used on different populations. This percentage can be explained
by the fact that 43.2% (51/118) of the selected papers chose to
develop their systems to specific populations, and no concerns
were raised by the developed models.

One of the main advantages in using a smartphone in health
monitoring is its unobtrusiveness. However, almost half the

selected papers required the smartphones to be on a specific
body position, such as in the pocket trouser, in the handbag, or
in the hand. Other studies required the smartphones to be placed
in the users’ vicinity [1,2,59] or to keep it always on to make
sure that the system works correctly [3,75]. These conditions
may nullify the use of smartphones as it turns it into an obtrusive
device for users.

Finally, considering that the main purpose of health monitoring
systems is to improve users’ behaviors, health, and well-being,
37.2% (44/118) of the selected papers referred the importance
of a recommendation and feedback system to make sure that
users are aware of their behaviors to be able to improve them.
In fact, such system features may lead to improvements in users’
daily lives and health when providing useful information to
users, for example, improvements in subjects’depression levels
[60]. However, users are not willing to receive too many
recommendations, as described in 1 study [55], and notifications
should be sent to users only when necessary, for example, when
symptoms are detected [83].

Table 9 presents a list of the selected papers that referred the
described technical aspects that can have an impact on the users’
adherence to the systems.

Table 9. List of the selected papers that referred possible limitations either in the validation of the systems or in their use.

ReferenceConcerns

[2,3,11,13,15,29,31,35,51,61,65,66,70,77-79,83,91,93]Battery levels

[2,3,34,35,51,61,65,69,70,78,79,87,91]Privacy

[1,2,15,35,70,76,88,94]Developed models

[1-3,6-13,15,26,27,29,30,34,58,59,75,83,84]Smartphone body position

[29-31,51,55,57,59-61,65,77,78,83,88,90-94]Recommendations and feedback

Discussion

Comparison With Prior Work
The reviewed studies illustrate the potential of monitoring
several health dimensions using only data collected from the
smartphone to support users in improving their health and
well-being. Several strategies for data collection were
demonstrated for different health areas offering researchers
several options to develop passive sensing solutions. We provide
an overview of the limitations of such health-related monitoring
systems reviewing the specific use of smartphone technologies
to monitor, understand, and improve users’ well-being through
several health dimensions. As far as we know, this is the first
review that investigates the use of smartphone sensing
technologies and data in health monitoring and discusses the
limitations and concerns on using such systems.

Many reviewed papers focused on specific conditions such as
mental health (bipolar disease, schizophrenia, major depressive
disease, and mood disorder) [121-125], stress [126], cardiology
[127], sleep [128], weight control through physical activities
[129], management of chronic diseases in older adults [130],
or in a more general way, health and well-being with particular

representation of mental health and sleep [131], and
psychological research (social interactions, activities, and
mobility patterns) [132]. Regarding the technologies and devices
used in the reviews, smartphone is the most commonly used
[121-132], but only a few studies used it to collect data from
its sensors [121,123,126,128,129]. In other cases, smartphones
are used to prompt ecological momentary assessments to users
[123,124,126], provide smartphone apps [122-125,128], or send
some recommendations by short messaging service to the users
[129]. Reviewed papers also consider wearable devices
[122,123,125,128,130] and other devices and technologies such
as tablets, fitness trackers, smartphone-connected devices,
accessories, and desktop resources [123,127-130].

Compared with these reviewed papers, this review does not
target a specific condition or a sensor. Our ambition was to
identify all health-related aspects that can be monitored with a
smartphone and to understand how far we are from using such
systems as an alternative or a complement to standard clinical
procedures.

Current Challenges
Although the use of smartphones in health monitoring
demonstrates to be a promising study field, available solutions
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still face some limitations that need to be overcome to make
sure that users are comfortable and confident in using such
systems. In fact, in some situations, monitoring systems may
be perceived as uncomfortable, burdensome, and intrusive to
users.

Regular users expect monitoring systems to be able to provide
useful information and recommendations about their behaviors
[133]. Given a health-related feedback, users are prone to
improve their lifestyle and habits in relation with physical
activities, well-being, sociability, and mental health [134,135].

Several technological aspects of health monitoring systems
using smartphones should be taken into account. Among them,
the most interesting one is the possibility to passively and
continuously collect health-related data about users without
changing their daily lives, thus turning smartphones into an
unobtrusive and less burdensome tool compared with other
health devices. In addition, smartphones are portable, cheaper,
and more convenient than other devices and stay with the users
throughout the day, which makes them a familiar tool to users
[135]. Moreover, these passive systems can be used to share
behavioral and health-related data with health professionals and
peers. Recommendations, interventions, feedback, and reminders
can be integrated to inform the users about their current state
and eventually improve it [133,136].

Despite these advantages, users may still have some concerns
about the use of smartphones in health monitoring. Nowadays,
users decide very quickly on whether they are going to use a
smartphone app or not; therefore, the developed systems should
fully meet their expectations. The first aspect that the users
normally evaluate is the design of apps. In addition, they hope
that the developed system is easy to use and that they will not
spend too much time to understand how it works. Concerns
about the battery and privacy are also often raised. In fact, users
expect that their battery level will not drop significantly given
that these systems usually run in background continuously.
Users may also discard apps because of privacy issues. Data
collected using smartphones are private and should not be shared
without permission or maliciously accessed. Generally, users
accept to share their data with physicians or within a group of
people with the same goal but are not comfortable with sharing
it on social media sites, as an example. In addition, users are
comfortable with apps using password access but are not willing
to spend too much effort in creating accounts. Moreover,
inconsistent or inappropriate results or advice may lead to the
removal of a certain app. Still related to technical aspects, users
expect that the app will not consume excessive space and
memory and that it can run in background without affecting
other smartphone functionalities [133,136].

Another important point is that users are willing to receive a
reasonable number of notifications about their current state,
mostly positive recommendations. The possibility to choose the
frequency and timing of notifications is a feature that is
interesting to them [133]. On the other hand, users are also
interested in setting personal goals and achieving them. This
shows that a challenge or gamification feature is prone to
increase the users’ engagement [133,136].

Considering the described challenges and possible concerns,
the developed systems referred in this systematic review still
face some limitations that need to be overcome to meet users’
expectations and needs. First of all, validation of monitoring
systems is one of the most important phases, and the systems
should be tested with a sample of population highly
representative of the target population for a sufficient period to
collect enough data and produce results as accurate as possible.
Among the selected papers, 71.1% (84/118) asked up to only
50 participants to test the developed system, and about 17.7%
(21/118) of the selected papers tested their system for 1 to 3
weeks, which seems to be a short period to ensure reasonable
results to make sure users are confident on using available
solutions. In addition, some of the proposed systems developed
models too personalized for specific populations, which may
produce inaccurate results when using the system with other
populations. Furthermore, the main advantage of using
smartphones as a data collector is its unobtrusiveness. However,
43.2% (51/118) of the selected papers require users to keep the
smartphone near them or use it on a specific body position such
as hand, chest, or trouser pocket. Privacy and battery levels are
other 2 aspects that need to be considered when developing
monitoring systems and that make users more confident when
using such systems. In fact, users insist on maintaining a good
battery level despite the use of several smartphone sensors and
expect that their data will be securely stored.

This review points out that smartphones may have the potential
to collect health-related data and provide useful feedback to
users about their health conditions. Despite the growing interest
and ongoing maturation, monitoring systems may still need to
be improved to attract a more diversified type of users and meet
their expectations. Besides above-mentioned needs and
concerns, more questions may be raised by the use of
smartphones in health monitoring. In fact, at present,
smartphones are used worldwide, but younger population are
more comfortable using them. Health monitoring systems may
be very useful to older populations, but smartphones may not
be an easy and adaptable tool to them. In addition, these systems
may attract more people with diagnosed diseases and specific
goals, such as monitoring behaviors, controlling pulse rate, or
improving their fitness, than to people with no specific goal in
mind. Finally, a disadvantage of such systems is that when the
users are familiar with them or have achieved their personal
goals, they may not use the developed system anymore.

Conclusions
In recent years, the capabilities of smartphones have made it
possible to detect and monitor health-related behaviors of their
users. Smartphones are easy to use, unobtrusive, familiar, and
cheap compared with more traditional monitoring methods and
come with many sensors that allow the continuous collection
of health-related data, without directly interfering with users’
daily activities.

As demonstrated by this systematic review, the monitoring of
health and well-being of users using a smartphone and its
sensors is a promising field, hence the growing interest and
ongoing maturation. Although there are a couple of predominant
fields in which smartphone passive sensing contributes to the
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well-being of its users, considerable other domains remain
underexplored. In addition, most studies focus on the prevailing
use of some of the most common sensors, such as GPS or
accelerometer, whereas only a handful of studies have so far
explored user patterns in interaction with smartphones.

Smartphones have emerged as a good monitoring tool as they
are unobtrusive, discrete, and omnipresent in today’s society
and allow to continuously collect data about their users.

Smartphones facilitate the diagnosis and treatment of some
diseases as the care manager may have access to additional data
sensed by them. Nevertheless, available solutions still present
some limitations, such as privacy and battery issues, that have
to be overcome to meet the users’ expectations. Finally, another
aspect worth mentioning is that researchers and developers are
focused on understanding what might motivate users to use such
monitoring systems and arouse their confidence and long-term
adherence.
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