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Abstract.   

The incorporation of nature-inspired techniques to control or reduce boundary layer separation, to bring about 

performance enhancements on air/water vehicles, has been an active research area for many years. In this paper a baseline 

NACA0012 airfoil is modified using a short flap on its upper surface at Reynolds number Re=1000. The impact of the 

flap configuration – described by length, attachment position, deployment angle and material properties, on the 

aerodynamic performance of the airfoil – quantified by mean and fluctuating forces, is investigated and the flow field is 

analysed. Inspired by the observation of pop-up feathers on a bird’s wing, the flap is first set to be rigid for a range of 

location, size and inclination angles. After the optimal location of a rigid flap has been established, the flap is then allowed 

to be flexible, its motion coupled to the encircling flow field, and it is tested for a range of mass ratios and bending 

stiffness values. The fluid motion is obtained by solving the lattice Boltzmann equation while the dynamics of the flexible 

flap are calculated using the finite element method (FEM) and the coupling between flow and flap handled by the 

immersed boundary method (IBM). For the flexible flap, two flapping patterns are observed and the mechanism of 

separation control via rigid/flexible flap is explained. Compared to the flapless NACA0012 airfoil case, the case with a 

flap of optimal configuration, the mean lift coefficient is improved by 13.51%, the mean drag coefficient is decreased by 

3.67%, the mean lift-drag ratio is improved by 17.84%, the maximum lift fluctuation is decreased by 40.90% and the 

maximum drag fluctuation is decreased by 56.90%.  

 

Key words: Passive separation control, flap, lattice Boltzmann, immersed boundary, finite element 

1. Introduction 

Due to their high flight efficiency, high manoeuverability and low flight noise, micro aerial vehicles (MAVs) are 

becoming more and more popular in recent decades and have been applied in many areas, such as environmental 

protection, traffic monitoring, earthquake search/rescue and movie photography. On most occasions, these MAVs have 

to operate in closed, narrow environments, which dictates their small sizes and must be capable of flying at low speeds. 

Yet they need to be agile enough to move around sharp corners and bends [1]. These operational limits cause many related 

challenges in the design of MAVs, an important one being the control of flow boundary-layer separation [2] since the 

flow separation is more likely on the upper surface of the wing at low Reynolds numbers [3]. To solve this problem, 

researchers have proposed biomimetic methodologies by observing the motion of birds in nature. During the long periods 

of evolution, birds have developed mature flow control mechanisms that can be applied to a wide variety of engineering 

designs. For example, during the landing approach, the secondary covert-feathers on the upper surface of bird wings tend 

to pop up, as shown in Figure 1. 

Liebe [4] and Carruthers et al. [5] interpreted this self-adjusting behaviour as a biological high-lift device and assumed 

that the related delay in flow separation resulted in higher lift at lower flight speeds. Using a wind tunnel, Meyer et al. [6] 

demonstrated that the lift of an airfoil (HQ17) would increase by about 10% in nominally stalled conditions by setting 

self-deploying flexible flaps on its suction side. Similar results were also observed by Schluter and Jorg [1]. Inaoka et al. 

[7] investigated the feedback flow control of a symmetric airfoil by some mini electromagnetic flap actuators attached on 

its leading edge, under both steady and unsteady flow conditions in the low Reynolds numbers. They found that the active 

flap actuators worked well to increase the lift of airfoil and delay the stall angle of attack in the Reynolds number ranging 

from 30000 to 80000. Bechert et al. [8] conducted a series of wind tunnel experiments and extensively investigated the 

effects of adaptive flaps mounted on the wing. Their results indicated that for a large aspect ratio wing, adaptive flaps 

could suppress flow separation, which developed gradually from upstream of the trailing edge, enhancing the maximum 

lift by up to 20%. John and Schluter [9] did similar work to investigate the three-dimensional effects on the performance 

of a passive flap on a finite wing, they found the chord-wise location and the size of the flap followed the results of two-

dimensional airfoil analysis, but the overall performance gain for three-dimensional geometries is lower than observed 
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for two-dimensional airfoil analysis. Bramesfeld and Maughmer [10] mounted small, movable flaps on the upper surface 

of a S824 airfoil and tested its aerodynamic performance in a low-speed wind tunnel at a chord Reynolds number 

Re=1.0106. They discovered that the flaps act as pressure dams, which could reduce the adverse effects of the flow 

separation, allowing lower pressures upstream of their location than would occur otherwise. Compared to the clean airfoil, 

the maximum lift coefficient could be increased by approximately 20% with these simple devices. 

For the further investigation of this passive separation control mechanism, Johnston et al. [11, 12] compared the effects 

of free-moving and fixed flaps mounted at different deployment angles over an angle of attack range from 12° to 20°. 

They observed a progressive increase in the stall angle of attack with increasing flap angle, with diminishing returns 

beyond 60°. The oil flow visualization on the airfoil with and without the fixed-angle flaps proved that the effector (flap) 

caused the separation point to move aft on the airfoil, as compared to the clean airfoil. Bruecker and Weidner [13] 

investigated various configurations of self-adaptable hairy flaps located on the lower half of a NACA0020 airfoil at low 

Reynolds number and measured the flow evolution along the airfoil with and without hairy flaps over gradually increasing 

angles of attack. They interpreted the stall delay as a reduction of the backflow and re-organisation of the shear layer roll-

up process. 

Besides wind tunnel experiments, some researchers have also used numerical methods to investigate the flow separation 

mechanisms behind this behaviour and have obtained many useful results. Favier et al. [14] numerically simulated flow 

past a two-dimensional circular cylinder with a cilia-like hairy coating at Reynolds number Re=200. They found the 

overall drag can be reduced by 15% compared to the clean cylinder. Similar work was done by Venkataraman and Bottaro 

[15] who simulated a NACA0012 airfoil with hairy coatings attached to its upper surface and found that the coatings 

could decrease drag oscillations by approximately 11% and increase lift by approximately 9% under separated flow 

conditions. Meyer et al. [6] used the finite volume method to solve the Navier-Stokes equations, simulating two-

dimensional flow past an HQ17 airfoil with a free-movable flap. They provided a detailed description of the lift 

enhancement phenomena and the effects of the flap on the flow. In their cases, the free-movable flap is modeled as a solid 

body and has only one degree of freedom. Rosti et al. did similar work and simulated two-dimensional [16][17] and three-

dimensional [18] turbulent flow around a NACA0020 airfoil with hairy flaps installed on the suction side and close to the 

trailing edge during an angle of attack (AoA) ramp-up. In their three-dimensional cases, each flap was still modeled as a 

lumped one dimensional flexible flap. 

So far, the required analysis to find an optimal flap configuration at a given angle of attack and Reynolds number is 

scarce in the literature. Furthermore, there is a lack of investigations into the flap material properties and detailed 

explorations on the mechanisms of this kind of separation control. This paper numerically investigates the passive 

separation control of an airfoil via a flap by using a many-core fluid structure interaction (FSI) solver LUMA [19]. The 

fluid motion in LUMA is obtained by the lattice Boltzmann method (LBM), and the interaction between fluid and structure 

is handled by the immersed boundary method (IBM). Recently, the combination of these two methods (IB-LBM) is widely 

applied in FSI simulations of flexible structures with unsteady flow, such as the large deformation of rectangular plate 

with zero thickness [20]; the two dimensional flexible artificial heart model [21]; two dimensional [22] and three 

dimensional [23] flexible capsule; the flexible motion of flaps with finite mass [24], and the flapping dynamics of a 

flexible flag in a uniform incompressible flow [25]. However, when the Reynolds numbers become high (Re=103~105), 

in order to achieve numerically stable simulations, the total computational cost of the standard LBM has to scale with 

ReD+1, where D is the number of dimensions [26], causing a heavy computational burden. For this reason, the Reynolds 

number in present paper is limited at Re=1000. To reduce the computational effort, several strategies have been applied 

to improve IB-LBM, the relevant work can be found in [26] and [27]. Except for the LBM and IBM, LUMA also 

introduces the finite element method (FEM) as a powerful structural solver in FSI simulation due to its great compatibility 

to handle unstructured meshes and good performance in nonlinear dynamic studies [28]. Similar work can also be found 

in [29] and [30]. 

In present paper, the NACA0012 airfoil is selected and both rigid and flexible flaps separately attached on the upper 

surface of the airfoil. The overall aerodynamic performance of the airfoil and flap combination is quantified by the mean 

lift, mean drag, mean lift-drag ratio, maximum lift fluctuation and maximum drag fluctuation. The effects of flap 

configurations (length, attachment position, deployment angle and material properties) on the aerodynamic performance 

are investigated and the separation control mechanism of rigid/flexible flap is explored. 
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Figure 1: A bird with popped-up secondary covert-

feathers (Picture from Rechenberg et al. [45]) 

Figure 2: Configuration of a NACA0012 at AoA=10° with a 

flap attached on its upper surface. 

2. Physical model and numerical method 

The physical model used in this paper is shown in Figure 2. The NACA0012 airfoil has a 10° AoA and its chord length 

is c. A flap is attached on its upper surface with length L, the deployment angle between flap and airfoil upper surface is 

θ, and the distance from the airfoil leading edge to the fixed end of flap measured along the chord c is P. 

As introduced in previous section, in the numerical simulation of this model, the fluid motion is obtained by solving 

the lattice Boltzmann equation, the dynamics of the flexible flap are calculated using the finite element method. The 

interaction between fluid and structure is handled by the immersed boundary method. In this section, the theoretical 

formulations of these three methods are described briefly. 

2.1. Lattice Boltzmann method  

As an explicit time-advancement method, the lattice Boltzmann method (LBM) has been proven to be a viable and 

efficient substitute for Navier-Stokes solver. Based on microscopic models and mesoscopic kinetic equations, the 

evolutionary process of the LBM is simple and clear, and its computational stencil is local and has natural parallelism, 

making it highly suited to parallel calculations [31]. The Boltzmann equation for incompressible viscous flow is: 

 f

f
f f

t


+  +  = 


x ee F   (1) 

where f is the distribution function of the particles located at spatial coordinate x and time t with velocity e. The force 

term F accounts for any external force applied to the fluid, Ωf  represents the collision operator which includes a non-

linear distribution function term f. The collision operator can be simplified using the Bhatnagar, Gross, and Krook (BGK) 

approach [32], which is given by: 

 
( )( )

1 eq

f f f


 = −   (2) 

where τ is the single relaxation time parameter related to the kinematic viscosity of the fluid υ, and f(eq) is the equilibrium 

distribution function obtained by a Taylor series expansion of the Maxwell-Boltzmann equilibrium distribution [33]. 

Equation(1) can be discretised in time and space, and solved on a uniform Cartesian mesh. At each point on the mesh, 

each particle is assigned one of a finite number of discrete velocity values. In our case we use the D2Q9 model, which 

refers to a two-dimensional mesh with nine discrete velocities, referred to by subscript α. The corresponding equilibrium 

distribution function f(eq) in D2Q9 model can be obtained as: 

 ( ) ( )
2 2

2 4 2
1

2 2

eq

s s s

f w
c c c


 

 
= + + − 

  

e ue u u
  (3) 

where ρ is the fluid density, 𝑐𝑠 = 𝑐 √3⁄  is the speed of sound, c is the lattice speed defined by 𝑐 = 𝛿𝑥 𝛿𝑡⁄ = 1, δx and 

δt represent the lattice size and time step, respectively. 𝐞𝛼 and 𝑤𝛼 are nine discrete velocities and corresponding weight 

coefficients, which take standard values [31]. It should be noted that the Mach number of the macroscopic velocity u in 

lattice units must be far less than 1, which is equivalent to the CFL number in classical Navier-Stokes solvers. In this 

model, the relationship between single relaxation time τ and the kinematic viscosity of fluid υ is: 

 21

2
sc t  

 
= − 
 

  (4) 

For the discretization of the external forcing term F, we use the representation proposed by Guo et al. [34] which accounts 

for the contribution of the additional force to the momentum and momentum flux. The expression can be written as:     
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where f is the force density acting on the fluid. Then the macroscopic fluid variables can be calculated by: 

 f


 =   (6) 

 
1

 
2

f t 


 = +u e f   (7) 

2.2. Finite element method  

The FEM is introduced as the structural solver to obtain the dynamic response of flexible flaps. In addition, the 

geometrical non-linearity is also taken into consideration. In the non-linear dynamic FEM [35], the kinetic equation of 

flexible flap can be written as: 

 ( ) ( ) ( ) ( )+ 0int extt t t+ − =MX CX F X F   (8) 

where 𝐗, �̇� and �̈� represent the displacement, velocity and acceleration of boundary points (or Lagrangian points in 

IBM, see in Section 2.3), respectively. M and C are the mass and damping matrices of the flap, in present work we do 

not consider the flap damping, so matrix C equals zero. 𝐅𝑖𝑛𝑡 represents the internal force of the flap, it is a non-linear 

function of the displacement 𝐗. 𝐅𝑒𝑥𝑡(𝑡) represents the external forces such as the fluid force and gravity acting on the 

flap. 

Equation(8) can be solved by the Newmark-β method [36] which is also an implicit method. In this method, the 

acceleration and velocity of flap can be written as: 

 
( )

( )
0 2 3

1 4 5

t t t t t t tt

t t t t t t tt

c c c

c c c

+ +

+ +

= − − −

= − − −

X X X X X

X X X X X
  (9) 

where c0~ c5 are six variables which are related to the accuracy and stability requirements of the method, and their specific 

expressions can be found in [36]. 

In order to obtain the displacement of flap at time 𝑡 + Δ𝑡, we use the Newton-Raphson method to process the non-linear 

item 𝐅𝑖𝑛𝑡(𝐗) in Equation(8). In this method, we assume that the non-linear internal force of flap 𝐅𝑖𝑛𝑡 at time 𝑡 + Δ𝑡 

can be expressed as: 

 , t, , ,

int

Tint t t int t int t K+


 = 


= + +

F
X X

X
F F F   (10) 

where KT is the global tangent stiffness matrix of the flap, it can be assembled by the element stiffness matrix: 

 e e e eT e e e

T T E G E G

e e e

K K K K T K K T  = = + = +        (11) 

where Te is the transformation matrix from local coordinate system to global coordinate system. 𝐾𝐸
𝑒 is the local element 

elastic stiffness matrix which corresponds to the elastic deformation of structure. 𝐾𝐺
𝑒  is the local element geometric 

stiffness matrix which is also a function of the displacement 𝐗. The expressions of 𝐾𝐸
𝑒 and 𝐾𝐺

𝑒 are determined by the 

element type. For the flexible flap, the corresponding element chosen here is beam element, the expressions of 𝐾𝐸
𝑒 and 

𝐾𝐺
𝑒 can be written as [35]: 
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0 0 0 0 0 0 0 6 2 0 6 4

e

E

L L

L L L LEA EI
K

L L

L L

L L L L

−   
  

−  
   −
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0 0 0 0 0 0 0 0 0 0 0 0

ye x

G

FF
K

L L

−   
   

− −
   
   

= −   
−   

   − −
   
      

  (13) 

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
18

93
3



 5 / 19 
 

 

where L, A, E and I are the length, cross section area, Young’s modulus and cross sectional moment of inertia of the beam 

elements (flexible flap). �̅�𝑥 and �̅�𝑦 are the normal stress and shear stress of beam elements in local coordinate system. 

Based on the above discussion, the final expression of Equation(8) can be written as: 

 

 ( )

( )

1

, 0 1 , int,

0 2 3

1 4 5

                                             

                                             

i i i

T t t ext t t t t

i

t t t t tt

i

t t t t tt

K c c F F

c c c

c c c

+

+ + +

+

+

 + +  = − 

 − − − −
 

 − − − −
 

M C X

M X X X X

C X X X X

  (14) 

Because KT, M and C are symmetric matrices, the above iteration can be solved by the triangular decomposition method. 

When the above iteration converges, the displacement of flap 𝐗𝑡+Δ𝑡  can be obtained. Substituting 𝐗𝑡+Δ𝑡  into 

Equation(9), the acceleration �̈�𝑡+Δ𝑡 and velocity �̇�𝑡+Δ𝑡 of flap can also be obtained.  

2.3. Immersed boundary method 

The basic idea of the immersed boundary method [37] is that the flow field is influenced by the force distribution generated 

by the boundary of the structure immersed in the fluid. The immersed boundary method uses independent grids to 

discretize the fluid and structure separately. As shown in Figure 3, the fluid is discretized by a set of Eulerian points, 

which are in fact the fixed regular Cartesian lattice points, while the boundary of the structure immersed in the fluid is 

discretized by a set of markers which are called Lagrangian points. The blue domain depicted by red dash lines is the 

fluid region which is influenced by one Lagrangian point. When the structure boundary has a small distortion, there will 

be a force acting on the Lagrangian point that tries to restore the boundary back to its original position. This force will be 

distributed on the Eulerian grid and then the flow field is updated. 

Eulerian point

Lagrangian point

Fluid points domain

 
Figure 3: Immersed boundary illustration. 

 

Since the fluid grid and structure grid are separate from each other, communication between them is crucial. Moreover, 

since they are non-conforming, this data transfer requires specialised interpolation/spreading operators. Specifically, the 

momentum field must be interpolated from the fluid grid (Eulerian) to the boundary grid (Lagrangian), and the resulting 

forces must be spread back from the boundary grid to the fluid grid. The operators defining these communication steps 

are given by [38]: 

 ( ) [ ( )] ( ) ( ) x y z  


 = = −   X x x x X   (15) 

 ( ) [ ( )] ( ) ( ) q r s 


=   =  −   x X X x X ò   (16) 

where x = (x, y, z) is the position of fluid point in Eulerian frame, X=(q, r, s) is the positon of structure boundary point in 

Lagrangian frame, Ω is the computational domain and Г is the boundary of the structure. ϕ is a quantity defined in the 

Eulerian frame, Ф is the same quantity defined in the Lagrangian frame and 𝜖 is a scaling factor which ensures reciprocity 

between the interpolation and spreading steps. Here, lower-case notation denotes values in the Eulerian frame, and upper-

case notation denotes values in the Lagrangian frame. The present work adopts the three-point version of the discrete 

Dirac delta function 𝛿, proposed by Roma et al. [39]. 

Using the algorithm given by Li et al. [40] and Wu & Shu [41], the fluid velocity is decomposed into a predicted and a 

force-corrected term. Based on Equation(7), after one pass of the LBM equations, the macroscopic fluid velocity can be 

written as: 

 * 1
 

2
t  = +u u f   (17) 
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where u* is the predicted velocity. The density and predicted velocity field are the only known quantities at this stage. 

Since the fluid velocity at the boundary must equal the velocity of the boundary 𝐔 = Π[𝐮], then converting Equation(17) 

into the Lagrangian frame gives: 

 *[ ( , )] ( , ) ( , ) ( , )
2

t
t t t t 


  =  + x U X u x F X   (18) 

Since the velocity of the boundary U is known, Equation(18) can be rearranged and solved for the corrective force density 

F. The force is then transferred back to the Eulerian frame via the spreading operator Ψ. Finally, the velocity field is 

updated by adding the corrective force to the predicted velocity (Equation(17)). 

3. Results and discussion 

In this section, the flow around a NACA0012 airfoil with and without a rigid/flexible flap is investigated, and the effects 

of the flap configurations (length, attachment position, deployment angle and material properties) on the airfoil 

aerodynamic performance are analyzed. The airfoil aerodynamic performance is quantified by the overall mean lift and 

drag coefficients, mean lift-drag ratio, maximum lift and drag fluctuation.  

3.1. Flow around a NACA0012 airfoil 

Before exploring the effects of the flap on the aerodynamic performance of the NACA0012 airfoil, we first study the 

unsteady flow around a clean (or single) NACA0012 airfoil at Re=1000 and AoA=10°, which has been investigated 

extensively in the literature. As shown in Figure 4, in the present simulation the computational fluid domain is 

XY=50c40c, the leading edge of airfoil is put at the location (20c, 20c) and the airfoil surface is represented by 500 

Lagrangian points. There are four levels of grid refinement (Grid 1 to Grid 4) in the whole fluid domain and their relative 

positions are shown in this figure. Most region of fluid domain is covered by a coarse mesh with a resolution of 

Δx=Δy=0.04c, while the region around the airfoil (4c2c) is discretized by a very fine uniform mesh with a resolution of 

Δx=Δy=0.0025c. In the lattice Boltzmann method, the lattice freestream velocity of flow is 𝑈𝑙𝑏=0.05 and the fluid density 

is ρ=1.0. The Strouhal number St here is defined as St=𝑓𝐷𝑐/𝑈∞, where 𝑓𝐷 is the vortex shedding frequency, 𝑈∞ is the 

freestream velocity.  
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Figure 4: The sketch of grid refinement in computational fluid domain. 

 

Figure 5a shows how the lift and drag coefficients of NACA0012 airfoil change with time in the present case. It can be 

seen from this figure that at Re=1000 and AoA=10°, the lift and drag coefficient variations in time are in phase with the 

maximum drag (occurring at maximum lift) and minimum drag (occurring at minimum lift). In Table 1 the obtained 

aerodynamic performance results are compared with results reported by Falagkaris et al. [42] and Mittal & Tezduyar [43], 

it can be indicated from this table that our results agree well with them. The obtained time-averaged lift coefficient over 

the last six periods is compared with the results in [42] and [43] in Figure 5b, it can be seen that the present results agree 

well with these two references. Figure 5c shows the snapshot of fluid field vorticity contour, it can be observed in this 

figure that there are positive and negative vortices shed alternately from the tail of airfoil, which diffuse as they convect 

downstream forming a Von Karman vortex street. This behaviour causes the lift and drag of airfoil to periodically oscillate 

with time. 
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Table 1: The aerodynamic performance results of clean NACA0012 airfoil at Re=1000 and AoA=10° 

 Present Falagkaris et al.[42] Mittal & Tezduyar [43] 

Mean lift coefficient LC  0.4203 0.4178 0.4221 

Mean drag coefficient DC  0.1674 0.1667 0.1650 

Mean lift-drag ratio /L DC C  2.5108 2.5063 2.5581 

Maximum lift coefficient fluctuation LC  0.0510 0.0460 0.0426 

Maximum drag coefficient fluctuation DC  0.0053 0.0049 0.0048 

 

(a) 

 

(b) 

 
(c) 

 

Figure 5. (a): Time evolution of lift and drag coefficients for the flow around NACA0012 airfoil at Re=1000 and AoA=10°. (b): 

Average lift coefficient with T. (c): Snapshot of fluid field vorticity contour. 

 

3.2. Flow around a NACA0012 airfoil with a rigid flap 

After evaluating the aerodynamic performance of the clean NACA0012 airfoil, in this section we attach one rigid flap on 

its upper surface and investigate the effects of flap configurations on its aerodynamic performance. To describe the length 

and attachment position of flap, we define two dimensionless parameters: the length ratio L*=L/c and the position ratio 

P*=P/c, and their values are listed in Table 2. According to the experimental study of John and Schluter [9], the flap 

close to the airfoil leading edge has only minor effects on its aerodynamic performance, so we choose five different 

positions (P*=0.5, 0.6, 0.7, 0.8 and 0.9) on the rear part of airfoil upper surface. The length ratio L* of flap is chosen from 

0.01 to 0.16. The deployment angle of flap θ is fixed at 90°. 

 

Table 2: The values of length ratio L* and position ratio P* 

L* 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10 0.12 0.14 0.16 

P* 0.5 0.6 0.7 0.8 0.9 

 

Figure 6a and 6b show the overall mean lift coefficient LC and mean drag coefficient DC of the NACA0012 airfoil with 

the rigid flap for each case. For comparison, these results are normalized by the corresponding results of clean airfoil 

obtained in previous section. From these two figures, it can be seen that for a rigid flap of a fixed length, when it is closer 

to the trailing edge, the mean lift coefficient increases and the mean drag coefficient decreases. When the flap length is 

very small (L* = 0.01, 0.02, 0.03 and 0.04), wherever the flap is put, the airfoil with flap always have a higher mean lift 

coefficient and smaller mean drag coefficient than the clean airfoil, even though these differences are very small. 

Conversely, when the flap is long (L* = 0.14 and 0.16), wherever the flap is put, the mean lift coefficient is smaller and 

mean drag coefficient larger than the clean airfoil. For flap lengths between these two situations (L* = 0.06, 0.08 0.1 and 

0.12), when the flap is put close to the leading edge of airfoil (P* = 0.5), it has negative effect on the aerodynamic 
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performance of airfoil – smaller mean lift coefficient and larger mean drag coefficient than the clean airfoil. As the rigid 

flap is moved closer to the trailing edge of airfoil (P* = 0.9), this negative effect will lessen, eventually becoming a 

positive effect on the aerodynamic performance. 

For a rigid flap with a fixed position, when its length increases, the mean lift coefficient increases first and then 

decreases. Analogously, the mean drag coefficient decreases first and then increases. With the position of flap closer to 

the trailing edge, the optimal length of flap increases (L*
opt = 0.03 for P* = 0.5 and L*opt = 0.1 for P* = 0.9). This 

phenomenon is similar to the observation of John and Schluter [9] in their experimental studies, even though their research 

object is a three-dimensional SD8020 finite wing. 

Figure 6c, 6d and 6e show the mean lift-drag ratio /L DC C , maximum lift fluctuation LC and maximum drag fluctuation

DC of NACA0012 airfoil together with rigid flap in these test cases, respectively, and these results are also normalized 

by the clean airfoil case for comparison. From these three figures, it can be found that the variation of /L DC C is similar 

to the mean lift coefficient LC (as shown in Figure 6a) while the variation of LC and DC are very similar to the mean drag 

coefficient DC (as shown in Figure 6b), so we can draw similar conclusions here. Some combinations of length ratio L* 

and position ratio P* introduce smaller mean lift-drag ratio and stronger variations in lift and drag coefficient and 

compared with the clean airfoil, others introduce higher mean lift-drag ratio and smaller variations. These combinations 

correspond exactly to those which produce the improved and degraded aerodynamic performance illustrated by Figure 6a 

and 5b.  

 Thus, it can be concluded that when L*=0.1 and P*=0.9, the airfoil with a rigid flap achieves its optimal aerodynamic 

performance: highest mean lift coefficient, smallest mean drag coefficient, highest mean lift-drag ratio, smallest lift 

fluctuation and smallest drag fluctuation. Compared to the clean airfoil, the mean lift coefficient of present case is 

increased by 9.48%, the mean drag coefficient is decreased by 2.55%, the mean lift-drag ratio is increased by 12.34%, 

the maximum lift fluctuation is decreased by 40.54% and the maximum drag fluctuation is decreased by 56.65%. Focusing 

on this optimal case, in the next step we investigate the effects of deployment angle of flap θ on the aerodynamic 

performance of airfoil. 

Figure 7a shows the overall mean lift coefficient LC , mean drag coefficient DC and mean lift-drag ratio /L DC C of the 

NACA0012 airfoil together with a rigid flap ( L*=0.1, P*=0.9) whose deployment angle θ changes from 10º to 90º. These 

results are normalized by the clean airfoil case for comparison. From this figure, it can be seen that when the deployment 

angle θ is very small (10º≤θ≤20º), the airfoil with flap has smaller mean lift coefficient LC ,mean drag coefficient DC

and mean lift-drag ratio /L DC C than the clean airfoil. As the deployment angle θ increases, the mean lift coefficient LC

and mean lift-drag ratio /L DC C increase while the mean drag coefficient DC decreases. In the range of 30º≤θ≤60º, all

LC , DC and /L DC C change almost linearly with θ. And at θ=90º, the airfoil with flap achieves maximum mean lift 

coefficient, maximum mean lift-drag ratio and minimum mean drag coefficient. Figure 7b shows the normalized 

maximum lift fluctuation LC and maximum drag fluctuation DC of airfoil together with rigid flap. This figure shows that 

when the deployment angle θ is small (10º≤θ≤30º), the airfoil with flap has a higher maximum lift fluctuation than the 

clean airfoil. When the deployment angle θ increases, the maximum lift fluctuation LC increases first and then decreases, 

at θ=20º with a maximum value of LC =1.0781. Analogously, the maximum drag fluctuation DC decreases first and then 

increases, at θ=50º with a minimum value of DC =0.3844.  

Based on the discussion above, it can be concluded that at θ=90º, the airfoil with a rigid flap achieves its optimal 

aerodynamic performance: highest mean lift coefficient, smallest mean drag coefficient and smallest maximum lift 

fluctuation. 
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(c) 

  

(d) 

  
(e)  

 

Figure 6. Results for airfoil with rigid flap (a): The mean lift, (b) mean drag and (c) mean lift-drag ratio. (d): maximum lift and 

(e) maximum drag fluctuation. 

 

(a) 

 

(b) 

 

Figure 7. Results for airfoil with rigid flap at different deployment angles for the max L*=0.1, P*=0.9 (a): mean lift, drag and lift-

drag ratio (b): maximum lift and drag fluctuations. 

3.3. Flow around a NACA0012 airfoil with a flexible flap 

Until now we have explored the effects of a rigid flap on the aerodynamic performance of NACA0012 airfoil, and 

obtained a partially-optimized flap configuration (L*=1.0, P*=0.9 and θ=90°). In this section we use this configuration 

as a benchmark and replace the rigid flap with a flexible flap. The root of flexible flap is clamped on airfoil surface in 

order to keep the deployment angle θ constant. To describe the material properties of flexible flap, we define two 

dimensionless parameters: the bending coefficient
2 3*= ( )fK EI U L  and the mass ratio * s fM h L = , where h is the flap 

thickness, s is the flap density and f is the fluid density chosen as
31.225f kg m = .  

To describe the flap deformation clearly, a new coordinate system x’y’ is established in which two axes are normal and 

tangential to the flap equilibrium position, respectively, as shown in Figure 2. Figure 8a and 8b show the mean x’-

displacement 'xD and x’-displacement vibration amplitude 'xD of flap tip normalised by the flap length L. The flap 

bending coefficient K* varies from 0.01 to 2 and the flap mass ratio M* varies from 5 to 50. It can be seen from these two 

Figures that as the flap tends to becoming rigid (K* increases), the mean x-displacement 'xD of its tip increases while the 
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x’-displacement vibration amplitude xD  decreases. When K*≥1.5, both 'xD and 'xD tend to zero. When the flap 

becomes heavier (M* increases), its tip x’-displacement has a smaller mean value but bigger vibration amplitude. As the 

mean x’-displacement of flap tip 'xD is always negative, the mean value of 'xD may therefore be bigger than 'xD , this 

indicates the asymmetry of the oscillations with the flap oscillating always on one side of its starting position. When the 

value of 'xD is smaller than 'xD , this indicates that the flapping motion is more symmetrical. These two different flapping 

patterns will be discussed in next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. (a): The mean x’-displacement and (b): The x’-displacement vibration amplitude of flap tip for different cases. 

 

Figure 9a, 9b, 9c, 9d and 9e show the overall mean lift coefficient LC , mean drag coefficient DC , mean lift-drag ratio

/L DC C , maximum lift fluctuation LC and maximum drag fluctuation DC of the NACA0012 airfoil together with a flexible 

flap in different test cases. For comparison, the results are normalized by the corresponding results of airfoil with a rigid 

flap case obtained in previous section. For 0.5≤K*≤2, because the differences in the results of these cases are very 

small, we do not include them in the figures. Figure 9 shows that the mean lift coefficient LC , the mean drag coefficient

DC , the mean lift-drag ratio /L DC C , the maximum lift fluctuation LC and the maximum drag fluctuation DC have 

variations similar to the rigid cases shown in Figure 6. So we discuss the results shown in Figure 9a in detail as with 

earlier results, analogous conclusions can be drawn from Figure 9b, 9c, 9d and 9e. 

From Figure 9a, it can be seen that when the flap stiffness K* is very small, the airfoil with a lighter flap (M* is small) 

has a higher mean lift coefficient. For the flap with M*=5, the mean lift coefficient is higher than that in rigid flap case, 

while for the flap with M*=50, the mean lift coefficient is much smaller than that in rigid flap case, even smaller than that 

in the clean airfoil case. For a fixed mass ratio M*, as K* increases, the mean lift coefficient of the airfoil with the flexible 

flap increases first and then reaches a peak (except for M*=5). For smaller mass ratios, this peak is reached more quickly. 

For M*=15, the mean lift coefficient has the highest peak value of LC =1.0368. As K* continues to increase, the mean lift 

coefficient decreases from the peak tending to the results of rigid flap case. The heavier flaps (M* is bigger) generally 

have higher values of lift during this descent. 

From the above discussion, it can be concluded that when K*=0.08 and M*=15, the airfoil with a flexible flap achieves 

its optimal aerodynamic performance: highest mean lift coefficient, smallest mean drag coefficient, highest mean lift-

drag ratio, smallest lift fluctuation and smallest drag fluctuation. Compared to the rigid flap case, the mean lift coefficient 

of the present case is improved by 3.68%, the mean drag coefficient is decreased by 1.15%, the mean lift-drag ratio is 

improved by 4.89%, while the maximum lift and drag fluctuation are both decreased by 0.60%. Compared to the clean 

airfoil case, the mean lift coefficient of present case is improved by 13.51%, the mean drag coefficient is decreased by 

3.67%, the mean lift-drag ratio is improved by 17.84%, the maximum lift fluctuation is decreased by 40.90% and the 

maximum drag fluctuation is decreased by 56.90%. 
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(c) 

 

(d) 

 
(e)  

 

Figure 9. Results for airfoil with flexible flap (a): mean lift, (b): mean drag (c): mean lift-drag ratio (d): maximum lift fluctuation 

(e): maximum drag fluctuation. 

4. Mechanism of separation control via flap 

In this section we further analyse the results we obtained in previous sections and explore the physical separation control 

mechanism. We first present the flow mechanism of a clean NACA0012 airfoil. Figure 10 shows the velocity contour of 

the fluid and streamlines of the flow around a NACA0012 airfoil with AoA=10° and Re=1000. As shown in Figure 10a, 

there is a long clockwise vortex on the airfoil upper surface as reported elsewhere [44]. This clockwise vortex is termed 

a “bubble” in the rest of the present paper. The separation point is near the leading edge and the reattachment point is near 

the trailing edge. In this situation, the airfoil has the highest lift and drag (point A in Figure 5a). Then the long bubble 

moves towards the trailing edge and induces a small anticlockwise vortex there (Figure 10b), this induced vortex weakens 

the strength of bubble and causes the airfoil lift and drag to decrease (point B in Figure 5a). In Figure 10c, the induced 

vortex grows in size and strength at the airfoil trailing edge, and collapses the bubble further, causing the airfoil lift and 

drag to achieve their minimum values (point C in Figure 5a). At point D in Figure 5a, the airfoil lift and drag increase due 

to formation of new bubble with a single clockwise vortex trapped inside (Figure 10d).The cycle then repeats. 

4.1 Mechanism of separation control via a rigid flap 

Considering the optimal rigid flap case obtained in the previous section, we now explore the separation control mechanism 

behind it. Figure 11a and 11b show the velocity contours of the fluid and streamlines of flow around the airfoil with a 

rigid flap with position P*=0.9, length L*=0.1 and deployment angle θ=90º. It can be observed that, due to the obstruction 

of the flap, the separation point of the airfoil moves backward and the reattachment point moves forward, causing the 

present case to have a higher lift and smaller drag than the clean airfoil. The bubble on the airfoil upper surface is split 

into two parts by flap, one big bubble on the upstream side and one small bubble on the downstream side. When the 

induced vortex at the trailing edge grows, it only influences the downstream bubble, with the upstream bubble remaining 

unchanged. Hence, lift and drag fluctuations of this case are smaller than those of the clean airfoil. 
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Figure 10: The fluid field velocity contour and streamline of flow around NACA0012 airfoil. 

Figure 11c and 11d show the time evolution of the mean lift and drag coefficients of the airfoil with flap, respectively. 

For comparison, the separate lift and drag coefficients of airfoil and the flap are also included. From these two figures, it 

can be seen that the lift coefficients of the airfoil and flap are in almost phase whereas their drag coefficients are almost 

completely out of phase. However, it should be noted that the drag coefficients of the flap are always negative, meaning 

that when the airfoil has maximum lift and drag coefficients, the flap also has maximum lift and drag coefficients but the 

drag acts in the opposite direction to the freestream.  

Similar conclusions can also be obtained by analysing the streamlines in Figure 11a and 11b. As shown in Figure 

11a, the small downstream bubble has little contact with the airfoil upper surface, while the rear part (from the flap 

position to the trailing edge) of airfoil is mainly affected by the induced vortex. From Figure 11b it can be seen that even 

though the induced vortex is anticlockwise, the vortex acting on the rear part of the airfoil is actually in a clockwise sense 

(as the red arrow pointed in Figure 11b) due to the obstructing flap. When the induced vortex is strongest, this local effect 

is most pronounced, at which point the lift and drag achieve maximum values (point A in Figure 11c and 11d). However, 

when the small downstream bubble exists, as shown in Figure 11a, it weakens the strength of induced vortex due to their 

opposing directions. When the small downstream bubble has highest strength, the rear vortex becomes anticlockwise (at 

the location indicated by the red arrow in Figure 11a), and the lift and drag of the airfoil achieve their minimum values 

(point B in Figure 11c and 11d). 

As for the flap, because the strength of larger upstream bubble is much higher than the small downstream one, the 

flap is sucked forward by the big bubble, causing the negative drag values of the flap. In Figure 11a, the small bubble will 

counteract the suction of big bubble because they are on opposite sides of flap and have the same rotation directions. This 

causes the flap lift and drag to decrease. When the small bubble has highest strength, the flap lift and drag have minimum 

values (point D in Figure 11c and 11d). However, when the small bubble disappears (or it is too weak to be considered), 

as shown in Figure 11b, the flap is almost exclusively affected by the big bubble and its drag has a maximum value in the 

opposite direction of the freestream (point C in Figure 11c and 11d).  

 

   

(a) (b) 

  
(c) (d)  

Figure 11: (a) and (b): Fluid field velocity contours and streamline of flow around airfoil with a rigid flap (P*=0.9 L*=0.10 θ=90º). 

(c): Time evolution of lift coefficient of airfoil and (with) flap. (d): Time evolution of drag coefficient of airfoil and (with) flap. 
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Figure 12: The fluid field velocity contour and streamline of flow around airfoil with a rigid flap for (a-b): P*=0.9 L*=0.04 θ=90º. 

(c-d): P*=0.9 L*=0.16 θ=90º. (e-f): P*=0.5 L*=0.1 θ=90º. (g-h): P*=0.9 L*=0.1 θ=30º. 

When the length of the flap is small, the corresponding velocity contours of the fluid and streamlines of flow around the 

airfoil are shown in Figure 12a and 12b where the rigid flap has position ratio P*=0.9, length ratio L*=0.04 and 

deployment angle θ=90º. Similar to the previous case, the separation point of airfoil moves backward and the reattachment 

point moves forward because of the obstructing flap. This causes the present case to have higher lift and smaller drag than 

the clean airfoil. Again, it can be seen in Figure 12a and 12b that the bubble on the airfoil upper surface is split into two 

parts, one big upstream bubble and one small downstream bubble. However, because the flap is too short, these two 

bubbles do not separate entirely and still influence each other. When the induced vortex grows, it affects both of these 

two bubbles but mainly the small bubble. As the upstream bubble is only marginally affected, the lift and drag fluctuations 

is still smaller than the clean airfoil. It should be noted that because the flap has a smaller length than the previous case, 

its obstruction function is weaker and its effect on the aerodynamic performance of the airfoil is subsequently smaller.  

When the flap has a longer length, the corresponding results are shown in Figure 12c and 12d where the rigid flap has 

position ratio P*=0.9, length ratio L*=0.16 and deployment angle θ=90º. It can be observed from these two figures that a 

longer flap not only blocks the whole bubble on airfoil upper surface, but also blocks some non-recirculating flow from 

the airfoil leading edge. On the tip of flap, a small bubble is shed and this small bubble interacts with the induced vortex. 

As with Figure 11, this small downstream bubble has not direct action on the airfoil upper surface (Figure 12c). The rear 

part (from flap position to trailing edge) of the airfoil is mainly affected by the induced vortex. Even though the induced 

vortex is anticlockwise, because of the obstruction of flap, the vortex acting on the rear part of the airfoil is actually 

clockwise (Figure 12d). When the induced vortex becomes strongest, the rear part vortex is also strongest, making the lift 

and drag of the airfoil achieve its maximum values. As shown in Figure 12c, when the small bubble exists, it weakens the 

strength of induced vortex because they have different rotation directions, making the rear part vortex weak. When the 

small bubble is at its highest strength, the rear part vortex becomes anticlockwise。 

When the flap moves forward to the airfoil leading edge, a new phenomenon is observed. Figure 12e and 12f show the 

results of the airfoil with the rigid flap which has position ratio P*=0.5, length ratio L*=0.1 and deployment angle θ=90º. 

It can be observed from these two figures that because the flap is close to the airfoil leading edge, even though it is not 

very long, it still blocks some flow from leading edge. A new bubble is generated on the airfoil rear part (from flap positon 

to trailing edge) and it is much bigger than the upstream bubble, this new bubble still acts on the rear part of the airfoil 

and is affected by the induced vortex. As shown in Figure 12e, when the upstream bubble and new downstream bubble 

cover the entire airfoil upper surface, the airfoil has a maximum lift and drag like the clean airfoil. When the induced 

vortex grows, as shown in Figure 12f, it weakens the strength of downstream bubble, and the airfoil lift and drag decreases.     
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When the induced vortex becomes strongest, the airfoil has a minimum lift and drag. 

Table 3: The corresponding values of distance ratio S* for different position ratio P* 

P* 0.5 0.6 0.7 0.8 0.9 

S* 0.0318 0.0493 0.0658 0.0827 0.0987 
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Figure 13: Velocity profile coordinate system Figure 14: Distribution of velocity Ux in direction normal to 

airfoil upper surface in one period at different positions, with inset 

zoom. 

 

When the flap has a smaller deployment angle, the corresponding results are shown in Figure 12g and 12h where the 

rigid flap has position ratio P*=0.9, length ratio L*=0.1 and deployment angle θ=30º. It can be observed in these two 

figures that the fluid velocity contours and streamlines are very similar to the results of the clean airfoil case, except for 

one more small bubble on the corner between the flap and the airfoil upper surface. Because the rear part of the airfoil is 

always covered by the corner bubble, we concentrate on its front part. As shown in Figure 12g, when the long bubble 

covers the whole front part, the airfoil has a maximum lift and drag coefficients. In Figure 12h, when the induced vortex 

grows, it weakens the strength of long bubble, causing the airfoil lift and drag to decrease. When the induced vortex 

becomes strongest, the airfoil has a minimum lift and drag. 

Based on the above discussion, it is easy to see that when the flap tip is at the red dashed line shown in Figure 10a, it 

bisects the bubble on the airfoil upper surface but does not block the non-recirculating flow from airfoil leading edge. To 

obtain the exact position of the red dashed line in Figure 10a, we extract the velocity profile along the normal direction 

of airfoil upper surface. As shown in Figure 13, the distance from the flap root along the normal direction is S, and it is 

scaled by the airfoil chord c as: S* = S/c, where S* is called the distance ratio.  

Figure 14 shows the distribution of velocity Ux along normal direction of airfoil upper surface in one period at five 

different positions (P* is from 0.5 to 0.9), it should be noted that each line in this figure actually represents a group of 

lines because the velocity profile always changes with time. From this figure, it can be seen that when the distance ratio 

S* equals zero, all five lines equal zero because of the no-slip boundary condition. As S* increases, these five lines 

decrease first to negative values, and then increase rapidly to a peak. As S* continues to increase, these lines begin 

decrease tending to a x- lattice velocity of 0.05, which is also the x- lattice velocity of the freestream.  

It can be seen that the red dashed line in Figure 10a is actually a line where velocity in the x direction equals zero, 

so we draw a line Ux = 0 in Figure 14 and obtain corresponding values of S*, as shown in Table 3. Again, it should be 

noted that these values are approximations (or mean values) because the velocity profiles always change with time. The 

obtained distance ratio values are actually the optimal lengths of flap at five different positions, from Figure 6a and 6b, it 

can be seen that these values agree very well with the results we obtained in previous section.  

4.2 Mechanism of separation control via a flexible flap 

When the flap becomes flexible, as discussed in the Section 3.3, the flap has two flapping patterns: flapping on one side 

and flapping on both sides of its initial position. To analyse the first flapping pattern, we choose the optimal flexible flap 

case obtained in previous section and explore the separation control mechanism behind it. Figure 15 shows the results of 

the airfoil with a flexible flap which has position ratio P*=0.9, length ratio L*=0.1, deployment angle θ=90º, bending 

coefficient K*=0.08 and mass ratio M*=15.  

As discussed in Figure 11, when the flap is rigid, the drag of the flap is always negative because of the suction of 

upstream bubble. Now the flap becomes flexible and its tip is sucked by the upstream bubble and moves forward, as 

shown in Figure 15a.This motion suppresses the upstream bubble and make the separation point move backward further, 

so the present case has better aerodynamic performance than the rigid case. On the other hand, this forward motion causes  

S*

U
x

0 1 2 3 4

0

0.01

0.02

0.03

0.04

0.05

0.06

P*=0.5

P*=0.6

P*=0.7

P*=0.8

P*=0.9

S*=0.0987S*=0.0318 S*=0.0493 S*=0.0658 S*=0.0827

S*

U
x

0 0.05 0.1 0.15
-0.01

-0.005

0

0.005

P*=0.5

P*=0.6

P*=0.7

P*=0.8

P*=0.9

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/1

.51
18

93
3



 15 / 19 
 

 

   

(a) (b) 
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(e) (f)  

Figure 15: (a) and (b): The fluid field velocity contour and streamline of flow around airfoil with a flexible flap (P*=0.9 L*=0.1 

θ=90º K*=0.08 M*=15). (c): Time evolution of lift and (d): drag coefficient of airfoil and (with) flap. (e): Time evolution of x’- and 

y’-displacements of flap tip. (f): Superposition of the flap positions. 

 

a small gap between the upstream bubble and flap, decreasing the suction of the upstream bubble. When the flap tip 

reaches its left limit position, the suction of the upstream bubble becomes weakest while the suction of downstream bubble 

becomes strongest, causing the flap tip to flap back. As shown in Figure 15b, because of the effect of induced vortex, the 

strength of the downstream bubble is weakened, reducing the suction action. When the flap tip reaches its flap limit 

position, the flap is sucked by the upstream bubble and flaps back again. The time evolution of x’- and y’-displacements 

of the flap tip and the superposition of flap positions are shown in Figure 15e and 15f, respectively. It should be noted 

that in Figure 15a and 15b some streamlines cross through the flap, it is a normal phenomenon associated with the soft 

interface of the immersed boundary method. 

In Figure 15c and 15d, it can be seen that the lift coefficients of the airfoil and flap are out of phase while the drag 

coefficients of are in phase. However, it should be noted that the flap drag coefficients are always negative, which means 

when the airfoil has a maximum drag coefficient, the flap actually has a minimum drag coefficient in the opposite direction 

to the freestream.  

For the airfoil, as shown in Figure 15a, when the upstream bubble and downstream bubble both cover the upper 

surface, the airfoil has a maximum lift and drag coefficient (point A in Figure 15c and 15d). In Figure 15b, when the 

induced vortex grows, it weakens the strength of the long bubble, causing the airfoil lift and drag to decrease. When the 

induced vortex becomes strongest, the airfoil has a minimum lift and drag (point B in Figure 15c and 15d). 

As for the flap, because the strength of the upstream bubble is always higher than the downstream bubble, as shown 

in Figure 15a, at its left flap limit position, the downstream bubble has its maximum strength and will counteract the 

suction of the upstream bubble. This causes the flap drag to decrease. When the downstream bubble has its highest strength, 

the flap has its minimum drag (point C in Figure 15d). However, when the downstream is weakened by the induced vortex, 

as shown in Figure 15b, the flap is mainly affected by the upstream bubble, and its drag has its maximum value but in the 

opposite direction to the freestream (point D in Figure 15d). 
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Figure 16: (a) and (b): The fluid field velocity contour and streamline of flow around airfoil with a flexible flap (P*=0.9 L*=0.1 

θ=90º K*=0.01 M*=50). (c): Time evolution of lift and (d): drag coefficient of airfoil and (with) flap. (e): Time evolution of x’- and 

y’-displacements of flap tip. (f): Superposition of the flap positions. 

 

When the flap becomes more rigid, it will have smaller deformations. The fluid field velocity contour and streamlines are 

similar to the previous case. However, when the flap is more flexible, it transitions to a different flapping pattern. Now 

we choose the least optimal flexible flap case obtained in the previous section and explore the separation control 

mechanism behind it. Figure 16 shows the results of the airfoil with the flexible flap which has position ratio P*=0.9, 

length ratio L*=0.1, deployment angle θ=90º, bending coefficient K*=0.01 and mass ratio M*=50. As shown in Figure 

16a, when the flap is sucked by the upstream bubble and flaps forward, there is an anticlockwise vortex generated between 

the upstream bubble and flap. This new vortex pushes the flap tip back. In Figure 16b, when the vortex sheds from the 

airfoil trailing edge, the flap is sucked by the upstream bubble and flaps back again. The time evolution of x’- and y’-

displacements of the flap tip and the superposition of flap positions are shown in Figure 16e and 16f, respectively. 

In Figure 16c and 16d, it can be seen that the lift coefficients of the airfoil and the flap are in phase while the drag 

coefficients are out of phase. However, it should be noted that when the airfoil has maximum drag coefficients, the flap 

drag coefficients are negative, which means the flap drag acts in the opposite direction to the freestream. For the airfoil, 

as shown in Figure 16a, when the new generated vortex acts on the airfoil upper surface, the airfoil has minimum lift and 

drag coefficients (point B in Figure 16c and 16d). As the new vortex moves forward, the upstream bubble extends its 

region of influence and the airfoil lift and drag increases. In Figure 16b, when a new vortex is shed from airfoil trailing 

edge, the airfoil has its maximum lift and drag coefficients (point A in Figure 16c and 16d). 

As for the flap, as shown in Figure 16a, when the new generated vortex exists, the flap is pushed backward by it because 

it is anticlockwise, and the flap drag acts in the freestream direction. When the new vortex becomes strongest, the flap 

has its maximum lift and drag coefficients (point D in Figure 16c and 16d). In Figure 16b, when the new vortex moves 

to the airfoil trailing edge, the flap drag is decreased. Finally, when the new vortex is shed from airfoil trailing edge, the 

flap is sucked by the upstream bubble, and it has its maximum drag coefficient in the opposite direction to the freestream 

(point C in Figure 16d). 

5. Conclusions 

We have combined the lattice Boltzmann, immersed boundary and finite element methods to investigate the separation 

control of a NACA0012 airfoil via a rigid/flexible flap at Re=1000 and AoA=10°. For the rigid flap, the aerodynamic 
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performance of airfoil together with flap which has various lengths, attachment positions and deployment angles are 

investigated, and the positive and negative effects of the flap under different configurations are observed. The results 

show that when the rigid flap has a length ratio L*=0.1, position ratio P*=0.9 and deployment angle θ=90°, the airfoil 

with flap achieves optimal aerodynamic performance. Compared to the clean airfoil, the mean lift coefficient of this 

optimal case is improved by 9.48%, the mean drag coefficient is decreased by 2.55%, the mean lift-drag ratio is increased 

by 12.34%, the maximum lift fluctuation is decreased by 40.54% and the maximum drag fluctuation is decreased by 

56.65%.  

Under this optimal configuration, the aerodynamic performance of the airfoil together with flexible flap which has 

various bending coefficients and mass ratios are investigated, and the positive and negative effects of the flap with 

different material properties are obtained. Two flapping patterns of flap are observed: flapping on one side of its initial 

position and flapping on both sides of its initial position. The results show that when the flexible flap has a bending 

coefficient K*=0.08 and a mass ratio M*=15, the airfoil with flap achieves optimal aerodynamic performance. Compared 

to the clean airfoil case, the mean lift coefficient of this optimal case is improved by 13.51%, the mean drag coefficient 

is decreased by 3.67%, the mean lift-drag ratio is improved by 17.84%, the maximum lift fluctuation is decreased by 

40.90% and the maximum drag fluctuation is decreased by 56.90%.  

Analysis of the physical mechanism shows that under certain configurations, the flap can divide the bubble on the 

airfoil upper surface and make the separation point of airfoil move backward, which has a positive effect on aerodynamic 

performance. However, when the flap is too long or too close to the airfoil leading edge, it will also block non-recirculating 

flow from the from airfoil leading edge causing a negative effect on aerodynamic performance. Based on this conclusion, 

the optimal length of flap at different positions along the upper surface are obtained and reported. For the flexible flap, 

when its deformation is not large, the forward motion of its tip suppresses the upstream bubble and makes the separation 

point move backward further, which has a positive effect on performance. However, if the flap has large deformation, a 

new anticlockwise vortex on the airfoil upper surface is generated. This new vortex has a negative effect on performance 

compared to the clean airfoil case.  

The obtained results in this paper can provide meaningful references for engineering problems, and this biologically 

inspired passive separation control device has a real potential to be applied to realistic MAV designs due to its simplicity. 

Owing to the universality of the algorithm used in this paper, in the future, the present work will be easily to be extended 

to three-dimensional simulations such as a wing with a rigid/flexible plate attached or an array of flaps. 
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