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Abstract—Human sensing using WiFi signal transmissions
is attracting significant attention for future applications in e-
healthcare, security and the Internet of Things (IoT). The
majority of WiFi sensing systems are based around processing
of Channel State Information (CSI) data which originates from
commodity WiFi Access Points (AP) that have been primed to
transmit high data-rate signals with high repetition frequencies.
However, in reality, WiFi APs do not transmit in such a
continuous uninterrupted fashion, especially when there are no
users on the communication network. To this end, we have
developed a passive WiFi radar system for human sensing
which exploits WiFi signals irrespective of whether the WiFi
AP is transmitting continuous high data-rate OFDM signals,
or periodic WiFi beacon signals whilst in an idle status (no
users on the WiFi network). In a data transmission phase, we
employ the standard cross ambiguity function (CAF) processing
to extract Doppler information relating to the target, whilst a
modified version is used for lower data-rate signals. In addition,
we investigate the utility of an external device that has been
developed to stimulate idle WiFi APs to transmit usable signals
without requiring any type of user authentication on the WiFi
network. In the paper we present experimental data which
verifies our proposed methods for using any type of signal
transmission from a stand-alone WiFi device, and demonstrate
the capability for human activity sensing.

Index Terms—WiFi Sensing, Doppler Radar, Stand-Alone
WiFi Device

I. INTRODUCTION

Over the last decade, the increase in the ageing population

has led to a focus on addressing the risks which the elderly

are exposed to; from falling down and sudden heart attacks, to

longer-term conditions relating to mental health, diabetes and

cardiovascular disease [1]. The financial and human resource

impacts from these emergency events and medical conditions

on healthcare services are significant and need to be addressed

using a range of approaches. Daily activity monitoring and be-

havior recognition in residential and working environments are

therefore important for both long-term and short-time tasks,

and are extremely useful for preventing chronic diseases and

health risks, in which early diagnoses are critical. Compared

to the traditional monitoring systems like wearables [2] and

camera systems [3], WiFi-based sensing technology is consid-

ered as an emerging potential solution for various healthcare

applications. The reason is, in part, due to the unobtrusive

characteristics of RF based sensing and ubiquitous nature of

WiFi in both residential and commercial environments which

can lead to large coverage areas and flexible deployments.

Additionally, unlike camera system, wireless signals are not

able to generate images of people, which alleviates many

privacy concerns.

The fundamental concept around WiFi sensing is that

when a person moves, the motion of their body will affect

the communication channel in terms of signal attenuation,

frequency shift and propagation paths. As a result, the time-

varying communication channel is related to the physical

activities which can be used for various purposes like activity

recognition and breathing detection. Early approaches use

Received Signal Strength (RSS) from WiFi signal [4], however

such systems require intensive offline training to assess the

surrounding environment and also suffer from coarse resolu-

tion. More recently, WiFi-based human sensing systems have

been used to measure the WiFi signal variations in the CSI

data, yet these systems [5], [6] treat CSI information as a black

box. They use machine learning methods to discover the CSI

patterns related to certain activities or position, whereas the

lack of quantitative models that connect the CSI information

to human activities limits the understanding on WiFi signal

dynamic and further development of WiFi sensing technology.

Furthermore, it is hard to separate useful signal dynamics from

the random noise, and most CSI activity recognition systems

are constrained to trail-and-error methods when optimizing

the system performance [7]. Conversely, passive radar directly

outputs a Doppler spectrogram which can be visually analysed

to interpret some basic human motions and can be easily

understood for continuous development. Moreover, previous

CSI [5], [8], [9] and passive radar systems [10], [11] have used

bespoke WiFi devices or high gain antennas with a tapped off

reference channel, whereas we use a stand-alone WiFi AP

as the illuminator without any modified hardware, swapped

antennas or bespoke software.

The term ’stand-alone’ refers to a WiFi AP without any spe-

cific modification such as an integrated Network Interference

Card (NIC), swapped-in high gain antenna for broadcasting,

or overwriting the AP’s firmware to setup a high transmission

data rate. According to the work in [12], the default beacon

interval in commodity WiFi APs is 100 Time Units (1TU

= 1024 ns). Some recent work such as [13] and [14] have

focused on using passive radar to exploit the WiFi beacon

signal but these studies have all increased the repetition rate

of the WiFi beacon bursts from the 100 ms default setting to 20
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ms (the maximum allowable periodicity on many WiFi APs).

These adjustments to make the system usable would again

require a level of cooperation with the WiFi AP (in this case

password authentication) and therefore cannot be relied on

for many real-world deployments. Our previous work shows

the feasibility of using continuous WiFi signal for breathing

detection [15] and activity recognition [16] with passive

radar configuration and Line-of-Sight (LoS) environment. This

paper further increases the potential of passive WiFi radar to

be able work with sparse beacon frame under AP’s idle status

and Through-The-Wall (TTW) scenario.

To cope the with the low duty cycles associated with

beacon frame transmissions, a modified Cross Ambiguity

Function (CAF) is implemented to reduce redundant samples

and maximize the use of beacon frame. However, this method

only allows a limited Doppler detection due to low amount of

effective data. To further improve the detection, an external

device has been used to simulate a client device for higher

data transmission by talking to the WiFi AP continuously.

This device uses the probe request-response protocol in WiFi

standard which exchanges information between the WiFi AP

and client devices. The probe protocol can be used for

requesting the WiFi AP information to increase the bandwidth.

Our processing also includes a CLEAN algorithm [17] to

remove the strong Doppler peak due to strong direct signal

and a Constant False Alarm Rate (CFAR) for target detection.

Compared to previous work [5], [8]–[11], the following

contributions are made by this study:

• Stand-Alone WiFi AP: Prior to our knowledge, this

is the first work study on stand-alone WiFi AP which

has no specific modification to either the hardware and

software. With the stand-alone system, we further extend

the usability of WiFi based sensing for a wider range of

use cases.

• Deal with beacon frame: We overcome the limitation

of low effective WiFi signal during idle status. Two

solutions are provided: modified CAF for sparse beacon

frame and a client ’handshaker’ to increase the bandwidth

for enhancing performance.

• Radio Architecture & Proof-of-Concept System: The

proposed concepts are built into a Software-Defined-

Radio (SDR) based Proof-of-Concept (PoC) system. The

performance of PoC system is supported by the exper-

iment under TTW scenario with promising results for

WiFi sensing.

The rest of this paper is organized as follows: Section II

outlines related work in WiFi sensing; Section III describes the

basic mechanism of WiFi signal in real-world deployments;

Section IV presents the signal processing employed in the

standalone WiFi radar system; which is then described in Sec-

tion V; Finally, experimental results are presented in Section

VI and conclusions are given in Section VII.

II. RELATED WORK

Generally, there are two major types of WiFi-based ac-

tivity capture system, which known as the CSI system (col-

lects channel information) and passive radar system (collects

Doppler information).

A. CSI System

A time-series of CSI measurements captures the changes of

wireless signal travel through surrounding objects and humans

in terms of time, frequency and spatial domain which can

be further used for various purposes. Also, different sensing

applications have specific requirements of their signal process-

ing techniques and classification/estimation algorithms. All

discussed works in this section are based on the Intel 5300

WiFi NIC.

CSI has been widely used in device-free activity recogni-

tion. Work [7] implements an activity monitoring system with

a package fame rate of 1,500 pk/s. The system contains three

receiving channels to monitor at different angel to reduce the

limitation of single channel. They also propose a CSI-activity

model based on the frequency components of CSI to quantify

the relationship between CSI variation and human movement

speed to eliminate the effect of environment.

Another work [8] sets the frames rate of 2,500 pk/s and

collects 2,500 CSI values for each of the 180 (2 transmitter

antenna × 3 receiver antenna × 30 OFDM subcarriers) CSI

streams in one second. This work uses Short-Time Fourier

Transform (STFT) technique to transfer the CSI measurements

into spectrogram with covered range up to 14 m. However,

data can only be collected on a predefined path in a predefined

walking direction, which means a training is required for every

new environment of activity.

Fall detection is another interesting area in WiFi sensing.

Work [18] demonstrates a system that is able to detect falls

automatically from other different activities with a package

frame rate of 100 pk/s. It exploits the phase and amplitude

changes in CSI, and calculates the power profile in time-

frequency domain. But the detection performance is affected

by the surrounding environment and location due to the direct

signal path.

CSI has also been used for fine-grained finger gesture

recognition. Work [19] detects the finger gesture with a much

lower package frame rate of 20 pk/s that is more realistic as a

real application. It calculates principal components of CSI as

the feature vector and classifies finger gesture with Dynamic

Time Warping (DTW). This system has a fixed coverage area

where the transmitter and receiver are configured as bistatic

setup and the target personnel was sitting between them.

Breathing detection by CSI has been shown in [9] with

a package frame rate of 20 pk/s. This work quantifies the

user location and body orientation based on Fresnel model

with an ellipse-shape. It has a similar bistatic setup as [19],

whereas the monitoring area is among the middle area between

transmitter and receiver.

These works use bespoke WiFi device to collect CSI

information, and manually setup a high package frame rate

to ensure the bandwidth, which conflicts with the original

communication purpose for a WiFi AP. Also, CSI systems

are constrained by the changing of surrounding environment

which require various degree of training process as well as

the transmitter-receiver location towards monitoring target.
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B. Passive WiFi Radar System

In addition to CSI systems, passive radar systems have

also been used for WiFi sensing. The fundamental aim of

passive radar is to use the wireless signal from third-party

opportunistic transmitters, and it measures the time difference

between the signal arriving directly at the transmitter and

the signal arriving via reflection from the object of interest.

Different from CSI systems, a typical passive radar contains

two coherent channels: a surveillance channel which points to

the surveillance area and a reference channel which points to

the WiFi AP to reconstruct transmitted signal. Passive radar

uses the Cross Ambiguity Function (CAF) to calculate range

(bistatic distance) and Doppler (bistatic velocity) information.

However, due to the bandwidth of WiFi signal is limited (20-

40 MHz), normally only the Doppler information has been

used for indoor scenario.

An early attempts of passive WiFi radar is shown in [17]

which demonstrates the feasibility of using WiFi signal to

detect personnel at a stand-off (12 m) distance and TTW

scenario. It successfully detects the Doppler of a moving

personnel and improves the Signal-to-Interference Ratio (SIR)

with a CLEAN algorithm. Its reference channel was been

connected directly to the WiFi AP for a perfect signal re-

construction which eliminates the risk of interference.

Work [10] further verifies the passive WiFi radar in an

outdoor scenario, and able to correct both range and Doppler

information for a moving car and a running human. This work

connects a high gain (30 dB), narrow beam (15◦) antenna to

the WiFi AP to improve the SIR, and puts both transmitter

and receiver antenna at same location. This configuration is

more like a Frequency-Modulated Continuous-Wave FMCW

radar but transmits WiFi signal.

Lately, work [20] built a prototype base on the Software-

Defined-Radio (SDR) platform with low-complexity pipeline

design to enable real-time processing ability. This system

shows some preliminary results for several applications like

TTW activity recognition and finger gesture recognition

within laptop area. It has a classical passive radar configura-

tion but assumes that reference channel is stable without any

interference from surrounding, and also modified a continues

WiFi signal.

Passive WiFi radar has also been used for vital sign

detection, in [15] we demonstrate that the micro-Doppler

can be obtained from chest motion as a representative of

breathing signal. With appropriate signal processing, it can

be further applied to multiple tasks [21]. However, due to the

complicated geometry, both [15] and [21] systems are affected

by the location among transmitter, receivers and personnel.

All above works have made some changes to the WiFi AP to

enable a high bandwidth signal to broadcast or attached a high

gain antenna to the AP. Such configurations are hard to direct

applying to real-world scenarios in terms of the bandwidth in

communication network and high cost for antenna. In addition,

these system geometry are too optimal to be real, like the

perfect reference channel and active radar like geometry.
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Fig. 1: An example of WiFi status (a) transmission status (full

bandwidth WiFi signal), (b) idle status (only contains beacon

frame), (c) zoom in of beacon frame and (d) zoom in of probe

request & response frame.

III. WIFI PROTOCOLS FOR SENSING

A. WiFi AP Status

In passive sensing, the WiFi signal is considered as an

independent pseudo-noise waveform that is either OFDM

modulated for high date-rate communications or a lower-

bandwidth signal generated when the WiFi AP is in an idle

state. As discussed in last section, most current WiFi sensing

systems [8], [10], [18], [20] rely on the high frame rates to

generate sufficient CSI/Doppler information. However, such

situation may not always true in case of real life, as com-

munication devices are designed to be bandwidth effective.

Here we provide two examples of WiFi signals; first example

shows a busy AP which is transmitting data continuously,

named as the transmission status; and the second example

illustrates the case when there is no internet usage so contains

only beacon frames, named as the idle status. The data for

both examples were captured for one second, and their time

domain representations are illustrated in Fig 1. As shown in

the figure, the WiFi signal occupies almost full time domain

(>90%) during the transmission status with small time gap.

This provides a large amount of effective data to be used by

the passive radar system. In comparison, during idle status,

the beacon frame has a small duty cycle with large spaces

of redundancy. In fact, manual measurements show that the

duty cycle of the beacon frame is 0.42% of that of a data

transmission signal. As a consequence, the effective energy

one could reuse for processing from the beacon frame is very

limited, and as a result the classical CAF processing struggles
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Fig. 2: Frame rate captured over 24 hour period.

to work effectively.

B. Beacon and Probe Response Frame

Typically, beacon frames are transmitted periodically to

declare the presence of a WLAN with information about the

network such as its modulation type, code rate, compatible

standards etc. A wireless enabled device generally scans all

RF channels to search for WiFi beacons, which then allows the

device to choose to connect the optimal network. Increasing

the beacon interval will reduce the load on the network and

increase throughput, however it delays the association and

roaming processes. Alternatively, decreasing beacon interval

decreases throughput for users and increases the network load.

A zoom in of beacon frame is shown in Fig 1(c) with a

duration less than 0.5 ms.

The WLAN clients use probe request frames to scan the

area for availability of WLAN network. In response to the

received probe request, the network sends out a probe response

frame when parameters are compatible. Probe response frames

are exclusive to physical layer in use as mentioned in beacon

frame. A zoom in of probe request and response frame is

shown in Fig 1(d). As it can be seen, the first frame with lower

amplitude is a probe request signal and the second is probe

request frame due to WiFi AP has higher transmission power.

In this work, we use a client simulator to trigger probe request

and response frames at relatively high transmission rates. This

approach is similar to the mechanism in CSI system but avoids

any firmware modifications and hardware changes for WiFi

AP.

Both the beacon and probe response frames are not en-

crypted in IEEE 802.11 family of standards. The difference

is that the beacon frame broadcasts constantly from a WiFi

AP, whereas probe response signal is a response to the client

device. Both signals can be used for opportunistic sensing, but

their performance depends on the amount of effective data.

The duration of beacon and probe response frame are varied

depending on the standard, setting and information contained.

C. Monitoring a public access WiFi Access Point

To better understand the WiFi usage in a real scenario, we

use the WiFi network analysis tool ’Wireshark’ to monitor

the WiFi traffic from the ’Eduroam’ wireless network over a

24 hour period. Eduroam is an university wide WiFi network

and the AP of interest was located in an office consisting

of an approximately 40 staff and students who are present

during typical office hours. The transmitted frame number

WiFi AP

Reference Channel

Surveillance Channel

Fig. 3: Passive WiFi radar sensing.

versus frequency of occurrence is shown in Fig 2. It is found

that even during the working hours (between 9am to 5pm), the

peak is around 100 frames per second which is much lower

than the request frame rate in the previous activity recognition

work [7], [8], [19]. Outside of working hours, the frame rate

drops to around 4-5 frames per second which is of similar

order to the beacon frame rate. In addition, it is reasonable

to assume WiFi usage in a residential area will be lower than

this level due to lower user numbers. Thus, it is necessary to

consider the effect of low frame rates when designing a real

WiFi sensing system.

IV. SIGNAL PROCESSING FOR PASSIVE WIFI RADAR

A. Preliminary of Passive WiFi Radar

Passive radar systems employ two synchronised receiver

channels, the surveillance channel records reflected WiFi

signals from the monitoring area whilst the reference channel

records the signal from the transmitter. In a typical indoor

scenario, as illustrated in Fig 3, WiFi transmissions propagate

through the space and the signal environment is characterised

by both the topology and clutter. If a person is present in

the environment, additional changes are introduced to the

signal which correspond to the effects of human presence

in the environment. If there is no one or no motion in the

environment, the signal will be relatively stable. However, as

shown by the red lines in Fig 3, along with the person moving

to a new location, the geometry of passive radar system is

changing which results in the change of amplitude attenuation

and phase shift in WiFi signal.

B. Collecting Doppler Information

In IEEE 802.11 standard, signals are modulated by OFDM

scheme [22]. This also applies to the beacon and probe

response signal. Let the transmitted OFDM signal defined as:

x(t) =
1√
N

N−1
∑

n=0

ane
j2πnt (1)

where N is the number of OFDM symbols for each carrier

an and n is the index of OFDM symbol. The received signal

y(t) consists of both direct signal and target reflections. These

reflections from a stationary clutter or a moving person can

be described by a summation of delayed and phase shifted

transmitted signal. The received signal can be written as:
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y(t) =
∑

p

Ape
j2πfdfctx(t− τ) + n(t) (2)

where p is the number of reflected paths, and Ap, τ , fd are the

attenuation factor, delay, Doppler shift for p-th path respec-

tively, n(t) is the Additive White Gaussian Noise (AWGN).

In passive radar, CAF processing is commonly used to

obtain the range τ and Doppler fd information by taking

Fast Fourier Transform (FFT) of cross-correlated signals from

surveillance channel Ssur(t) and reference channel Sref (t).
In terms of a passive WiFi radar, Ssur(t) represents the y(t)
which is collected from the surveillance area and Sref (t)
recreates the transmitted signal x(t) without any interference

as possible. In this case, CAF equation can be written as:

CAF (τ, fd) =

∫ Ti

0

Ssur(t)S
∗
ref (t− τ)ej2πfdfctdt (3)

where Ti is the integration time which defines the Doppler

resolution as: ∆fd = 1/Ti, ∗ is the complex conjugate.

However, above equation requires a high computational load

which prohibits our system for operating in real-time. Thus, a

batch processing technique [20] has been used for complexity

reduction. This is achieved by dividing a long sequence into

several short batches so that the cross-correlation and FFT

process over each batch are faster.

One of the limitations of Eq 3 is that it cannot generate

meaningful Doppler signature during the idle status (Fig 1(b))

due to the ultra-low-density of the beacon signal, as well as

the high amount of redundant noise. To that end, the modified

CAF is proposed to maximize the effective data contained

within the beacon signal. The idea is to synchronize and

extract the beacon signal before them passing to the CAF.

This can ensure only useful data are collected and processed,

whereas the noisy data can be filtered out. In this work, beacon

synchronization is implemented based on the energy curve

Xi which is calculated as the cumulative sum of the absolute

value of WiFi signal. Then the normalized energy curve X
′

i

as suggested in [23], is calculated as:

X
′

i = Xi − iδ =

i
∑

k=0

(x2
k − iδ) (4)

where k is the index of signal, i is loop variable ranging

through all samples. δ is a negative trend and depends on the

total energy of the selected signal XNe
with window length

of Ne as determined by δ =
XNe

α·Ne
. In this work, Ne is the

length of signal of one integration time Ti.

A demonstration of one second beacon synchronization is

shown in Fig 4. The energy curve for beacon signal Fig 4(a) is

calculated in Fig 4(b), and the corresponding normalized curve

is plot in Fig 4(c). Afterwards, we search the smallest value

within each beacon interval as the start time of a beacon frame,

for example Fig 4(c) is an example of 100 TU. Afterward, the

modified CAF with synchronized beacon signal can be written

as:

CAF (τ, fd) =

Nb−1
∑

n=0

∫ Tb

0

Sn
sur(t)S

n
ref

∗(t− τ)ej2πfdfctdt

(5)
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Fig. 4: The beacon synchronization process.
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Fig. 5: An example of CAF surface during WiFi idle status, (a)

classical CAF (Eq 3), (b) modified CAF (Eq 5), (c) classical

CAF with CLEAN algorithm, and (d) modified CAF with

CLEAN algorithm.

where, Nb is the batch number ans id equivalent to the number

of Doppler bins or the number of beacon, Tb is the time

duration of each batch or the duration of a beacon, and n
is the index of batch. To optimise performance, the beacon

synchronization is designed based on the signal recorded in

the reference channel as it has a higher SNR and is subject to

less fluctuations that the signal measured in the surveillance

channel. Note however, there are still interference components

in reference channel (for example, other data packets or from

a WiFi AP transmitting in the same frequency band), which

may lead to synchronization distortions.

Examples of a CAF output surface using classical CAF (Eq

3) and modified CAF (Eq 5) after processing the beacon signal

are shown in Fig 5(a) and (b). This data is captured from a

walking person. As it can be seen, there are significant side-

lobes in both Doppler and range on CAF surface with classical

CAF, and no meaningful information can be extracted. We

attribute this output to the sparse nature of beacon frame. For

this reason, the modified CAF is applied. Visual inspection

of the output shows a much cleaner surface with a dominant
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Fig. 7: Peak-Noise Ratio (PNR) vs the batch duration.

peak at zero range/Doppler bin. Note that the boundary of

Doppler is limited in sparse mode since there are only ten

WiFi beacon bursts available in each second which can be

used in the batched processing. This means the maximum

detectable boundary is five Doppler bins for 1 second (in

both positive and negative domain). To better demonstrate the

Doppler pulse, the integration time Ti for sparse mode was

set as two seconds so that twenty beacons are available in the

range-Doppler surface.

To further demonstrate the effect of frame rate in the

CAF processing, the Peak-Noise Ratio (PNR) between the

dominant Doppler peak and rest CAF surface is measured.

Higher PNR generates a higher quality Doppler spectrogram.

For modified CAF, the frame rate also determines its batch

number Nb, where the classical CAF has a constant Nb = 100.

The PNR plot of both CAF processing are shown in Fig 6. As

it can be seen, there is a significant improvement of proposed

modified CAF, in average, modified CAF delivers 8 dB higher

PNR than the classical CAF between 10 to 50 frame rate. PNR

values become similar after 100 frame rate with very small

difference between two CAF processing.

Another important factor is the batch duration Tb which

defines the length of data used for the cross-correlation

processing, and also affects the noise level in CAF surface.

Generally, a longer batch duration leads to a lower noise level,

but requires more computational power. A plot of PNR versus

batch duration is shown in Fig 7. As it can be seen, PNR of the

classical CAF improves gradually until 10 ms then remains

constant thereafter. For the modified CAF, PNR is constant

because the duration of beacon signal is fixed at 0.8 ms. In this

work, batch duration of both enhanced mode and transmission

status were set as 10 ms to fully use the received data, i.e.

Ti(1s) = Nb(100)× Tb(10ms).

C. Cancellation of the Direct Signal Interference

The surveillance channel of a passive radar system consists

of a direct signal interference (DSI) component, target clutter,

Doppler-shifted target echoes, and thermal noise. The expres-

sion of received signal in surveillance channel can be written

as:

Ssur(t) = Sdsi(t) + Sclutter(t) + Star(t) + n(t) (6)

where Sdsi(t) is the signal from direct path, Sclutter(t) is the

signal reflected from surrounding clutter and Star(t) is the

signal reflected from target. Replacing Ssur(t) in Eq 6 with

its full expression from Eq 5 allows the final CAF surface to

be written as the sum of the CAF surfaces of each components

as:

CAF (τ, fd) =

LL
∑

ll=1

CAF
(ll)
dsi (τ, fd) +

LM
∑

lm=1

CAF
(lm)
clutter(τ, fd)

+

LN
∑

ln=1

CAF
(ln)
tar (τ, fd)

(7)

where CAFdsi, CAFtar and CAFn are the CAF surface

due to DSI, target and noise respectively. LL represents the

number of reflected paths due to DSI, LM represents the

number of reflected paths due to the surrounding clutter and

LN represents the number of reflected paths due to the target.

We note that in Eq 7, item
∑LL

ll=1 CAF
(ll)
dsi (τ, fd) would

be expected to generate a main peak in the zero Doppler

bins, whereas item
∑LM

lm=1 CAF
(Lm)
clutter(τ, fd) can produce

both range and Doppler sidelobe responses.

There are two types of technique to implement the CLEAN

algorithm for removing the effect from DSI and stationary

clutter, known as pre-processing and post-processing. Pre-

processing techniques aim to perform subtractions in the

signal domain rather than in the CAF surface, however this

process requires significant computational power considering

the size of raw WiFi signal received by SDR system. Al-

ternatively, post-processing method subtracts the interference

at CAF surface, and is a less complex approach requiring

lower computational power. We therefore focus more on post-

processing techniques to achieve real-time outputs.

In this work, we adopt the method suggest by [17] with a

shifted magnitude-scaled and phase-corrected version of the

self CAF surface to provide a model of the cross-ambiguity

surface. Let CAF k(τ̂ , f̂d) represents the cleaned CAF map-

ping at kth iteration, it can be written as:

CAF k(τ̂ , f̂d) = CAF k−1(τ, fd)− αkCAFself (τ − Tk, fd)
(8)

where αk is the maximum absolute value of CAF k(τ, fd), Tk

is the phase shift factor refers to the αk. CAFself is the self

CAF over the reference channel. The phase of CAF k(τ̂ , f̂d)
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is shifted by multiplication with a complex phasor ej∆φ,

where ∆φ is the difference in phase between the peak in

CAF k(τ̂ , f̂d) and the peak found along the zero Doppler bin.

From observation, one iteration (k = 1) is sufficient for our

system.

The cleaned CAF surface of Fig 5(a) and (b) are shown in

Fig 5(c) and (d) respectively. For classical CAF, even after

the CLEAN algorithm, there is still no meaningful Doppler

information. In contrast, the dominant peak in modified CAF

surface has been successfully removed. As a result, the desired

peak is present clearly on the map at 5 Hz which corresponds

to the persons velocity.

Afterwards, a Doppler spectrogram D(fd, t) is generated

by extracting one column with maximum value in the CAF

surface.

D. Motion Indicator

In this work, we consider a person as being in one of two

states: an active state (e.g. walking, body swing and other

types of full/part body movement) and a stationary state such

as sitting or standing still, where only the motion of the chest

wall during breathing is detectable. Thus it is necessary to

distinguish these two periods, since their Doppler signatures

are significantly different.

This is based on the fact that human movements generate

much higher power in terms of Doppler pulse. When there are

no human movements, the power in Doppler spectrogram is

mostly low since there is no frequency shift in the surveillance

channel. In this work, we consider it as a pulse detection

problem by estimating the noise level N̂(t) using a mov-

ing average (MA) algorithm during the stationary period as

N̂(t) = 1
w

∑w

t=0 |D(fd, t)|2, where w is the window length

which is set as 5 seconds.

We set the detection threshold as four times of the noise

level, so that a movement can be detected when the Doppler

power deviates from the average noise level. Once a move-

ment is detected, we use a standard constant false-alarm rate

(CFAR) algorithm to detect the Doppler response associated

with a moving person, and record the spectrogram.

E. Breathing Response

During stationary periods, the velocity of the chest wall is

considerably lower than that of body movements. Detection

of the periodic chest wall motion associated with breathing

can therefore be achieved with a higher Doppler resolution

by extending the integration time Ti used in Eq 3. However,

the target’s velocity is assumed constant during the period of

integration time whereas this is not suitable for our system

to capture fast movement. Thus we use a micro Doppler

extraction method to extract the breathing signal B(t) while

maintaining the Doppler resolution as normal. The idea is to

use the macro imbalance between the Doppler positive and

negative domain caused the chest motion.

B(t) =

1

2
MAX{fd}
∑

fd=− 1

2
MAX{fd}

D(fd, t)(n) ∗
⌈

MAX {fd}
2

− i

⌉

(9)

Fig. 8: Block diagram of proposed system.

where i is the index of Doppler bin, MAX {fd} represents the

maximum of Doppler bins in Doppler spectrogram D(fd, t),
it is equivalent to the number of beacon in terms of sparse

mode and was set as 100 in terms of enhanced mode and

during transmission status. When the target is in stationary,

the breathing response signal B(t) can be obtained directly

from the spectrogram as it only contains chest movement.

F. Target Detection

A CFAR threshold has been used to detect the target in CAF

surface and further reduce the levels of noise and interference.

There are multiple interference sources which may arise from:

incorrect beacon synchronization that captures an ineffective

signal; interference from WiFi signals from other AP; and

other packet transmission interrupting the beacon synchroniza-

tion.

Λ =
1

Nτ ·Nfd

Rτ
∑

i=1

Rfd
∑

j=1

CAF (τi, fdj) (10)

where Λ is the threshold mapping for CAF. i and j are the

index for range and Doppler bin, Nτ and Nfd are the training

length in range and Doppler bin respectively. This threshold

mapping is then used for normalizing the power and remove

the noise as P (i, j) = |CAF (i, j)|2/Λ. For P (i, j) < 1
are considered as noise and replaced with zeros, others are

considered as activities.

The effectiveness of above signal processing will be pre-

sented in Section VI.

V. SYSTEM IMPLEMENTATION

A. System Overview

The proposed passive WiFi radar system is implemented

based on the popular USRP platform. The overall block
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TABLE I: System parameters for each mode.

sparse mode enhanced
mode

transmission
status

WiFi signal beacon
frame only
(100 TU,
default
setting)

probe response
frame (13 TU)

data frame
(varied time
gap, base on
the internet
usage)

effective data around 0.4% around 18% around 90%

integration time
Ti

2 second 1 second 1 second

number of batch
Nb

20 100 100

batch duration Tb 0.8 ms 10 ms 10 ms

maximum
detectable
velocity
max {fd}

0.625 m/s
(cannot
increase)

6.25 m/s (can
increase)

6.25 m/s (can
increase)

bandwidth 1M 1M 1M

diagram of our passive WiFi radar is presented in Fig 8. It

contains mainly three parts: radio frequency front-end, passive

radar signal processing and a client simulator.

The front-end hardware uses two NI USRP-2921 [24] each

contains a tunable RF transceiver for acquiring the wireless

signal and two ADCs for digitization. A MIMO-cable is used

to share the clock source between two USRPs to synchronize

the reference and surveillance channel. Surveillance channel is

equipped with a 18 dB Yagi antenna, and reference channel is

equipped with a 14 dB Yagi antenna. The collected raw data is

then transmitted to a computing unit, which is a laptop in this

work, through an Ethernet port. Note that the NI-USRP is a

tool which allows rapid prototyping and testing, a real-world

passive WiFi sensing system would require lower technical

specification and a less complex radio architecture making it

significantly lower cost.

The key feature of our system is the capability of using

stand-alone WiFi AP for personnel monitoring. Thus, a modi-

fied CAF (using eq 5) and a client simulator are implemented

to cope with the sparse beacon signal. The signal processing

for passive radar described in Section IV is implemented with

LabVIEW. It first calculates the CAF surface from either

sparse or enhanced mode based on the quality of the Doppler

signature and the density of WiFi signal. Afterwards, a motion

indicator identifies the activity level and chooses the desired

output. A pipeline structure [15] has been used to divide the

long serial signal processing of passive radar signal processing

into short parallel processing. This structure allows the system

to run in real-time on a laptop.

The client simulator adopts the idea of probe response

protocol to generate higher bandwidth with more effective

signal. In our system, it is used aligned with the enhanced

mode during WiFi idle status. This device can be activated

when there is a need of detailed detection during the WiFi

idle status. Note that, the regular CAF is also applied to WiFi

transmission status as it has high frame rate.

Table I summarizes the system parameters for our passive

WiFi radar system. The maximum detectable velocity can be

calculated as: max {fd} = Nb ×∆fd × f
′

/2, where ∆fd =
1
Ti

is the Doppler resolution and f
′

= c
fc

= 3∗108

2.4∗109 is the

relative velocity corresponding to each Hz in Doppler which

1. Probe Request 

2. Probe Response 

3. Authentication Request

4. Authentication Response 

5. Association Request 

6. Association Response
Access Point Client Device

Fig. 9: Life-cycle of probe response signal.

is 0.125 m/Hz. The factor 2 is used for representing both

positive and negative domain. The major limitation of sparse

mode is the maximum detectable velocity (0.625m/s) which

is due to the number of beacon of frame as 10 frames per

second. To better demonstrate the Doppler signature, we use

2 seconds of integration time Ti in sparse mode to double

the Nb but half the ∆fd. Thus the max {fd} = Nb remains

the same. In comparison, enhanced mode has no limitation on

maximum detectable velocity by having higher Nb as in Eq

3.

B. Implementation of Client Simulator

A Raspberry Pi running Kali Linux has been developed

to stimulate a client device which continuously sends probe

request frames to the target WiFi AP. The waveform of a

response frame is shown in Fig 1(d). It is processed according

to the 802.11 protocol [25] and includes three consistent

request frames and three response frames as shown in Fig

9. To avoid the mechanism in WiFi protocol that prevents

a device repeatedly sending the request frame, the client

simulator changes its MAC address after each probe request

is sent.

In our tests, the maximum achievable frame rate for current

setup is 75 probe requests per second (approximately 13 TU)

which provides much higher density than the default setting

of beacon signal (100 TU). A higher frame rate could be

achieved with more powerful system like a WiFi NIC. Despite

the enhanced mode being able to generate a large amount of

effective data to be used by our passive WiFi radar system, the

bursty nature of probe response signal means there are still

considerable time gaps compared to the WiFi transmission

status (Fig 1(a)).

VI. EXPERIMENTAL RESULTS

The test area consisted of an individual room of dimensions

4.3 m x 4.6 m, separated by a 16 cm thick wall made of

both brick and plasterboard. A stand-alone WiFi AP (Model:

DWL-2000AP+) was placed in the corner of the test area

whilst the passive WiFi radar system was located outside

of the room. The reference and surveillance antennas were

directed towards the WiFi AP and center of the room. A large

file was transmitted through the WiFi AP for experiments

which required high-data rate signal transmissions; termed

transmission status. For experiments which required only WiFi

beacon signal transmissions; termed the idle status, the WiFi

AP was left alone. This respective WiFi signal transmissions

are illustrated in Fig 1(a) and (b), and the experimental layout

is shown in Fig 11.
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Fig. 10: Doppler spectra examples: sitting still in (a) sparse mode, (b) enhanced mode and (c) transmission status; body swing

in (d) sparse mode, (e) enhanced mode and (f) transmission status; and walking in (g) sparse mode, (h) enhanced mode and

(i) transmission status.
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Fig. 11: Experiment layout.

A. System Mode Comparison

We first demonstrate our system’s detection performance

with different WiFi signal density, or duty cycles. We compare

the Doppler signature during the WiFi idle status with both

sparse and enhanced mode, and during the data transmission

status. The transmission status is considered as the optimum

signal for sensing (given the current settings) and this ’gold

standard’ is as the baseline reference when comparing to the

other two modes in idle status.

Three activity classes are measured to demonstrate the

feasibility our passive WiFi radar system. Each activity consist

of different motion velocities, For example standing still

encompasses a slow movement of the chest during breathing,

body swing involves rocking on the spot with a medium ve-

locity, and walking forward and backward within surveillance

area typically consists of a wider range of faster motions. All

obtained Doppler spectrograms are shown in Fig 10. As can

be seen, sparse mode can give the correct Doppler pattern for

breathing and body swing. The two peaks in Fig 10(a) in both

the positive and negative domain represent the Doppler change

during the process of inhalation and exhalation. Also the

sinusoidal wave in Fig 10(d) shows the periodic characteristics

associated with body swinging. Despite the fact that some

noise appears in the spectrogram, the overall Doppler shape

is distinguishable. As discussed before, the major limitation

of the sparse mode is the maximum detectable velocity. This

happens when a faster activity is performed, for example

walking. Fig 10(g) illustrates a Doppler signature that is

difficult to interpret because of the walking speed goes beyond

the Doppler boundary and appears in the other side of the

Doppler domain, from the maximum positive Doppler bin

to the negative domain or another way. In such a case, the

sparse mode of passive WiFi radar can simply act as a motion

detector.

Enhanced mode can be then activated for a better detection

with the client simulator. Benefits of the higher frame rate,

spectrogram in Fig 10(b), (e), (h) shows improved Doppler

signatured when compare that in sparse mode. All three activ-

ities are clearly captured with distinguishable trace. However,

there are some noise spread at different Doppler bin among

the spectrogram. This is because of the time gap between the

probe response frame that induces errors among correlation

and FFT in CAF process.

As expected, transmission status deliveries the best perfor-

mance in all scenarios. It outputs clear Doppler signature for

all three activities and with lowest noise level in spectrogram.

There are even some micro-Doppler can be seen across the

walking activity in the Fig 10(i). But still, enhanced mode can
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Fig. 13: (a) breathing signal from micro-Doppler and (b)

breathing rate from FFT.
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Fig. 14: Error rate of detected breathing rate versus distance.

provide close performance compare to that from transmission

status.

B. Breathing Detection

To verify the sensitivity of the proposed system for breath-

ing detection, a subject stood still and faced the surveillance

antenna. Limited by the room size, the experiment was carried

out at 1 m, 2 m and 4 m away from the wall under all three

modes. We calculate the PNR of the Doppler peak which

is caused by the chest movement and with the background

noise in CAF surface. A higher PNR corresponds to an

increased probability of detecting a breathing signal from

the Doppler spectrogram, whereas a low PNR means more

noise. The results are shown in Fig 12. As expected, the

transmission status shows the best performance, following

with the enhanced mode and sparse mode. The extracted

breathing signal and rate suggests that breathing detection in

transmission status is capable of covering the entire room,

whereas enhanced mode and sparse mode can only cover part

of the room.

We have shown the Doppler spectrogram for breathing

detection in Fig 10(a), (b), (c). Here, Eq 9 was applied to the

Doppler spectrogram to extract the breathing signal. Fig 13(a)

shows an example of a 30 second breathing signal extracted

Fig. 15: Example of two people walking (a) same velocity,

opposite direction, (b) different velocity, varying direction.

The red and yellow lines are the Doppler trajectory for each

person.

from Doppler spectrogram. The exhalation and inhalation

phases of breathing can clearly be identified. Parameters such

as the signal amplitude, frequency and periodicity in the

breathing response can be potentially used for the identifi-

cation of the subjects health condition [26]. A simple FFT

was used to calculate the breathing rate, shown in Fig 13(b),

which corresponding to the breathing signal in (a). We pick

the maximum absolute value of the output as the frequency

of the breathing rate, and avoid the first frequency component

which may contain high noise. The dominant peak clearly

indicates 4 repetitions (in 30 seconds) which equivalents to 8

breaths per minute.

Two minutes of breathing measurement were captured from

each status, and the person was asked to breathe at a constant

rate by counting the time. The rate of breathing rate was cal-

culated over 30 seconds with a moving window of 1 second,

which is expected to be constant for each measurement. We

calculate the error rate for each scenario as shown in Fig

14. It can be seen that the best error rates are obtained with

transmission status for all distances, whereas enhanced mode

shows close error rates but slightly worse. Sparse mode has

the worst performance and is unable to correctly detect the

breathing rate beyond 2 m.

C. People counting

Person detection experiments are typically based on data

generated by a single person. However, the presence of mul-

tiple people is a more realistic in a real-world scenario. One

such application scenario is the ability to count the number

of people in locations like a shopping mall, train station or

airport. Work [27] developed a WiFi CSI system to count

a group of walking people, however this type system needs

regularly calibration to cope the changing of surrounding en-

vironment. In comparison, our passive WiFi radar system does

not require any calibration and provide meaningful Doppler

signature. Enhanced mode was used in this experiment, since



11

1 person walking1 person walking 2 people walking2 people walking 3 people walking3 people walking

Fig. 16: Example of a random walk for (a) one person, (b) two people and (c) three people.

the sparse mode is not able to detect walking correctly as

presented in Fig 10(g).

Fig 15(a) shows two people walking in same velocity but

opposite direction in a straight line, e.g. one walk forward

to the surveillance antenna while another one backward. The

Doppler trajectory for each person is also labelled in different

color. As it can be seen, there are two sinusoidal Doppler sig-

nature in the spectrogram, each represents a trajectory for one

person. The Doppler signature for both person are clear with

same periodicity and velocity, and almost identity direction.

Fig 15 (b) shows two people walking in different velocity

and remaining in a straight line. The spectrogram shows two

sinusoidal Doppler signature but with different periodicity and

velocity. These results show how the velocity of two people

would affect spectrogram. Such Doppler spectrogram could

potentially provide velocity for indoor tracking with proper

tracking filter.

To simulate a more realistic scenario and demonstrate the

difference in the number of people, maximum three people

were asked to enter into the experiment room and walk

in random direction. The Doppler spectrogram for random

walking is shown in Fig 16. As it can be seen, the Doppler

signature is much random and no longer a sinusoidal wave

due to the direction is not in a straight line. Based on the

velocity and duration, it can be easily distinguished from other

body activities like a body swing. We can also see obvious

difference in Doppler signature among the one person, two

people and three people walking. One person shows a simple

Doppler signature with a single trajectory, whereas two people

have more complicated trajectory and three people show

the most messy trajectory. This can be understood use the

principle discussed in Fig 15 that the Doppler spectrogram is a

combination of multiple Doppler signature from each moving

person. By calculating the number of Doppler signature within

certain period, it is possible to count the number of people.

Such results could also be used for applications like people

counting.

Fig 17 shows the PNR distribution in Doppler spectro-

gram as in Fig 16. These distributions clearly show the

difference for different number of people walking. The one

person case has the lowest PNR value, while three people

walking has the highest PNR value. This is because of

the multiple Doppler peaks which contain a higher PNR

value than the single Doppler peak. To further verify the
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accuracy of people counting, a 10 minute measurements of

one, two, and three people walking in a room were collected,

including a control measurements for when the room was

unoccupied. The resulting spectrograms were segmented into

small samples consisting of a window size of half second.

In total 5,051 samples were acquired, among them 4,206

were used as training samples and 845 were used as testing

samples. A simple LeNet neural network [28] was used as

the classifier. The classification results are shown in Fig 18,

with an overall accuracy of 97.37%. All classes reach more

than 95% accuracy, especially the empty room and one person

walking classes, which both are more than 99%. The accuracy

for multiple people walking slightly decreases to around 95%

but remains at high level. Such performance illustrates the

application potential for the proposed system to be used in

occupancy detection and counting.
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Fig. 20: The Doppler spectrogram of walking activity with

weak reference channel.

D. Weak Reference Channel

One of the major challenges of our passive WiFi radar

system is the stability of the reference channel. Consider

in a real scenario, the reference channel may not always as

strong as the experiment layout shown in Fig 11. When the

antenna is not pointing to the WiFi AP directly, reference

channel becomes weak that could bring additional noise the

CAF surface. Thus, it is necessary to exam the detection

performance under weak reference channel. A typical layout

of strong and weak reference channel is illustrated in Fig

19. Recall the CAF processing in Eq 3, it assumes reference

signal Sref perfectly recreate the transmitted signal from

WiFi AP without time delays and Doppler shift. In terms of

weak channel, additional time delay τ0 (from wall reflection)

is added into the Sref . CAF surface with weak reference

channel can be then rewritten as CAF (τ + τ0, fd). Since τ0
does not affect the Doppler measurement, our passive WiFi

radar system can still function in such layout. However, the

received power is reduced due to the longer signal path and

weaker reflections from wall. In this experiment, the reference

antenna was placed to the WiFi AP with an angle of 45

degree. Here, we provide a Doppler spectrogram for walking

as shown in Fig 20. Due to the weaker reference channel,

Doppler signature is weaker than that in Fig 10(i) and Fig

15, but it is still clear and distinguishable. This spectrogram

shows that our passive WiFi radar can tolerate the imperfect

reference channel and provide similar results.

VII. CONCLUSIONS

In this paper, we have demonstrated a passive WiFi radar

system which uses a stand-alone WiFi AP. This system

does not require any specific modification to hardware nor

firmware, and it can work with any commercial WiFi AP. Two

modes are implemented to cope the sparse beacon frame dur-

ing the WiFi idle status. The sparse mode uses a modified CAF

to extract the beacon frame based on the power profile, while

it only provides limited Doppler detection. The modified CAF

shows an average of 8 dB improvement comparing to classical

CAF below 100 frame rate. Enhanced mode takes advantage

of external client simulator which increases the throughput of

WiFi signal. Enhanced mode can deliver similar performance

as compared to the case with full transmission status. We have

demonstrated the potential of the proposed system in real-

world deployment including the activity recognition (Section

VI-A), TTW breathing detection (Section VI-B) and people

counting (Section VI-C). It is envisioned that a stand-alone

WiFi sensing system can surpass current WiFi system which

requires either high frame rate or specific system layout.

Future works include the implementation of WiFi decoder

to replace the energy curve for a better synchronization. Also,

a comparison between our passive radar system and CSI

system would be very helpful to further explore the potential

of WiFi sensing.
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