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Passivity and Global Stabilization of Cascaded 
Nonlinear Systems 

Rogelio Lozano, Bernard Brogliato, and 
I. D. Landau 

Abstract-In this note, we present an alternative stability analysis for 
recent results on global stabilization of a nonlinear system in cascade 
with a linear system. The analysis is carried out using passivity argu- 
ments. We also present the relationship between passivity and an 
important class of Lyapunov functions. 

INTRODUCTION 
Global stabilization of nonlinear systems has recently been 

studied with renewed interest [1]-[3]. The interest has been 
focused on partially linear composite systems due to the normal 
forms and zero dynamics introduced by Isidori, Byrnes, and 
co-workers 141, [SI, 181, and 191. 

In [2], the analysis has been carried out for the case of 
partially linear composite systems whose linear system is of 
relative degree one. In this case, the passivity analysis tools were 
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used to prove global stability. On the other hand, the analysis of 
the general case when the linear system is of relative degree 
greater than one has been treated in [1]. In the latter case, 
global stabilization was ensured using the Lyapunov approach. 

Passivity is a useful analysis tool in the sense that the results 
can easily be interpreted in terms of energy in the system. 
Besides, many important processes exhibit passivity properties as 
mechanical systems. Meanwhile, the composite system studied in 
[l] contains a linear subsystem of relative degree r 2 1, and this 
apparently rules out passivity as an analysis technique. 

In this note, we show that the results in [1] for systems with 
relative degree greater than one can indeed be alternatively 
obtained using passivity arguments. Furthermore, we present a 
general result which provides a deeper insight into the relation- 
ship between Lyapunov and passivity analysis tools. In particu- 
lar, we show roughly that if a system is asymptotically stable in 
the Lyapunov sense and the Lyapunov function is the sum of 
two positive definite functions, then the system can be repre- 
sented as the feedback interconnection of two passive nonlinear 
systems. Reference [3] gives an interpretation in terms of the 
passivity of the problem also when the first subsystem is nonlin- 
ear. One of our motivations is to extend the results in [3]  to the 
case r > 1. 

We will consider, as in [l], the partially linear composite 
system 

i =f(x,O) + G ( x ,  50,5)5, x E R“ (1) 

i l  = 5 2  

5,-1 = tr 

The nonlinear system in (1) is already in a particular form 
where G depends only on the output y = t1 and the linear 
zero-dynamics to is induced by this output. It is assumed that 
the equilibrium x = 0 of i = f ( x ,  0) is globally asymptotically 
stable and a smooth Lyapunov function V ( x )  > 0, x # 0; V(0) = 

0 is known such that V ( x )  + m as JIxI( -+ 00 and 

V V ( x ) f ( x , O )  < 0 for all x # 0. 

The linear part of the system is in the form to which every 
invertible relative degree r system can be transformed using the 
special coordinate basis of [7]. We assume also that the zero 
dynamics is stable but without loss of generality, we consider 
that A ,  does not have an asymptotically stable part, i.e., 

A ; + A o  = 0. (3) 

We then have the following. 
Proposition 1: The composite system (1)-(3) is globally asymp- 

totically stabilizable at ( x ,  5) = (0,O) by a smooth state feedback 
control. 

The above proposition has been proved in [1] using the 
Lyapunov approach. In spite of the fact that the linear subsys- 
tem (2) is of relative degree r 2 1, we show next that a proof of 
Proposition 1 can be developed using passivity arguments. 
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The following variable modification will allow us to obtain a 
positive real linear subsystem 

where u1 is to be chosen later and 4, is a new variable. 
Therefore, (5) can be rewritten as 

["]-I; 42 2 O ; ] [ ~ ] + B U ~ + [ ~ ] ( U ~ - - ~ ~ )  O 52 (8) 

where 

B = [o z 01' (9) 

Note that B = C so that the system in (6) and (8) verifies the 
condition PB = C with P = I which is one of the conditions for 
the closed-loop system to be positive real. Therefore, we only 
need to define U, and u2 in such a way that the closed-loop 
system matrix satisfies some stability conditions [see (16)l. For 
that purpose let us consider the following: 

1 -  
2 U 2  = lil - - -t2 (10) 

and 
1 
2 U1 = -AT50 - -51 + 4 x 3  t O , t l > .  (11) 

Therefore, (6) and (8) can be rewritten as 

f = ~ i +  ~ u ( X , t , , , t , )  (12) 

y = c y  
where 

and 

Therefore, the system (12) is positive real. In order to obtain two 

passive systems connected in feedback, it suffices to define U as 
follows: 

The nonlinear system in (4) with output defined in (17) is passive 
as shown next. From (4) and (17) 

Then 

where a(- )  is a function of class K (see [6]). 
The linear system in (12)-(16) is also passive since 

1 
2 

= - - l T ( A  + A T ) i +  CTCu 

= --(Ilsl112 1 + lli21l2) +YTV (20) 2 
then 

Adding (19) and (21) and taking (17) into account we obtain 

+ cy(llxll) - V ( x ( 0 ) ) .  (22) 

Therefore, to, tl, 12, and x are bounded and t1 and 82 are L2.  
This implies that U(X, to, tl) in (17) is also bound_ed and in view 
of (12) 5 is also bounded. Therefore, t1 and t2 converge to 
zero. Since all the system variables remain bounded and since 
the second term on the RHS of (4) converges to zero we 
conclude, in view of the asymptotic stability of the autonomous 
system i = f ( x ,  O), that x converges to zero. 

In view of the assumption on the smoothness of V(x) ,  f(x, 5 >, 
and G(x, 5) it follows from (7), (111, and (17) that is also 
bounded. 

The procedure can be extended for the case r > 2 as was 
done in [l]  using the Lyapunov approach. 

LYAPUNOV STABILITY IMPLIES PASSIVITY IN A PARTICULAR 
CASE 

We now present a generalization of the result given in the 
foregoing section. Indeed it is well known that the passivity 
theorem proof can be carried out using a Lyapunov approach. 
On the other hand, it is not clear whether Lyapunov stability 
implies passivity. In this section, we show that it is the case for a 
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particular class of Lyapunov function which is very often en- 
countered in the literature. The result is given in the following 
proposition and was motivated by 131 and [lo]. 
Proposition 2: Suppose that a system is Lyapunov stable and 

the Lyapunov function V(x,  t), where x ,  5 is the state of the 
system, satisfies 

where p 1  and p2 are class K functions and Ai 2 0 and A, + A, 
> 0. Then there exist two passive systems connected in feedback 
having x and 5 as states, respectively. These systems are defined 
as follows: 

and 

k = H ( x )  + J(  5, x ) y  

where G( 5, x )  and J( 5, x )  are arbitrary functions and F( 5) and 
H ( x )  are such that 

a Vl’ 
-F( 5) I O  a5 

and 

d V2’ 
- H ( x )  I 0. (30) 

d X  

Remarks: 

1) Systems (25)-(28) satisfy sufficient conditions to be passive 
as will be shown later. Conditions (29) and (30) imply 
stability of the two systems mentioned above. 

2) The systems in (25)-(28) should be interpreted as two 
nonlinear passive systems. The input and output of these 
systems should be chosen in such a way that they satisfy 
(26) and (28) where G ( 5 , x )  and J ( 5 , x )  are arbitrary 
functions. 

3) The above proposition states that every time a system is 
Lyapunov stable with a Lyapunov function satisfying (23) 
and (24), then there exist two nonlinear passive systems 
connected in feedback as in (25)-(28). 

Proof Let us first prove that the two systems in (25)-(28) 
are passive 

or 

Also 

v2 
= - H ( x )  - u‘y 

d X  
(33) 

or 

t avT /b( -U)Tydt  = V 2 ( x ( t ) )  - V2(x(0))  - / - - H ( x )  dt. 
0 ax  

(34) 

Therefore, the two systems in (25)-(28) are passive indepen- 
dently of J and G as long as F and H satisfy (29) and (30). 

Adding (32) and (34), and using (311, (331, and (24) we get 

Thus, 6 and x are bounded. Depending on the nature of p1 and 
p 2 ,  6 and x may be L, bounded functions. 

CONCLUSIONS 

This note has pointed out the relevance of passivity in the 
global stabilization of nonlinear systems. It has been shown that 
recent results in [l] about stabilization of partially linear com- 
posite nonlinear systems using the Lyapunov approach can also 
be obtained via passivity arguments in spite of the fact that the 
linear subsystem is of relative degree greater than one. Further- 
more, it has been proved that every time a system admits a 
Lyapunov function composed of the sum of two positive definite 
functions, there exists an interpretation in terms of two passive 
systems connected in the feedback. 
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