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PASSIVITY AND LINEAR SYSTEM STABILITY*

By
Y. V. VENKATESH

Universitit Karlsruhe

Abstract. Using the network concept of passivity (or positive realness), new criteria
for stability and instability of linear systems (with time-varying coefficients) are derived.

1. Introduction. Consider a system governed by the linear differential equation
L]
p(D)y + ; ki()q:(D)y =0 on [t , =), @)

where
p(D) = D"+ Pn-lDﬂ_l + - 4o
Qi(D) = Qi.mDm + q;,m-le_l + - 4+ qi.o0

q(D) = Za; ¢:(D) = guD™ 4+ qui D™+ - + o

are constant-coefficient differential operators with the order n of p(D) at least one higher
than the order m of ¢(D), and k,(t) are real not necessarily continuous but L-integrable
on [ty , »). Let G(s) = q(s)/p(s), ¥y = 1, 2, = dx,/dt, -+ z, = dx,-,/dt, and x =
col [x, , 2., - -+, z,). Then (1) can be written as the vector differential equation

dx/dt = A(D)x ()

where A(f) is a n X n matrix.

Notation. ||x|| denotes the norm of x where ||x||° = x'x; X, denotes x(t,); x(t, to , Xo)
denotes the solution of (2) which takes the value x, at ¢t = ¢, .

Definition 1. The null solution of (2) is said to be exponentially stable if there
exist positive constants e, , e such that for¢ > ¢, ,

[[X(t, to , X)|| < € [[%o|| exp (—ea(t — o). 3)

Remark. If the constant ¢ in (3) is zero, then the null solution of (2) is said to
be stable.

Definition 2. The null solution of (2) is said to be completely unstable if there
exist positive constants ¢, and e, such that for ¢t > ¢,

[|X(, to , Xo)|| 2 €2 ||%o|| exp (F+ et — 4)). 4)
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Definition 8. A real function of a complex variable Z(s) = m(s)/n(s), where m(s)
and n(s) are finite polynomials in s, is positive real if (i) n(s) 4+ m(s) has no zeros in
the closed right halfplane (Re s > 0), and (ii) Re Z(jw) > 0 for all real w.

Assumption 1. For some positive (known) constant K, and for some 8 > 0, G(s — 8)
+ (1/K) is positive real.

Problem 1. Based on assumption 1, find conditions for the null solution of (1) to be
exponentially stable (stable) when k,(f) takes valuesin (—®, »), 72 =1,2, --- , n.

Assumption 2. TFor no positive value of K is G(s) + (1/K) positive real, but for a
known value of 8 > 0 and a known K > 0, (s + 8) + (1/K) is positive real.

Problem 2. Based on Assumption 2, find conditions for the null solution of (1) to be
completely unstable when k,(¢) takes valuesin (—», ®), 7 =1,2, --- | g

First we consider Problem 1, and in Scc. 3 we take up Problem 2.

A number of stability results concerning (1) arec known. We now present the relevant
few for comparison with the result of the present paper (for reference to the existing
instability results, see Sec. 3 below).

Tueorem 1. (Dini-Hukuhara). If k,;(¢), 0 < t < « are measurable functions and

[k —eldi< o, =1,
0

if ¢; are real numbers such that

p(D)y + z c.q:.(D)y = 0 )

has all solutions bounded on [0, «), then the system (1) also has all solutions bounded.

THEOREM 2 (Cesari). If the real-valued continuous functions k;(t), t, < t < « are
of bounded variation in [t, , ©) and k;(f) — 0 as ¢t —» «; if ¢; are real numbers such
that Eq. (5) has all solutions bounded in [¢,, «);if the roots ¢;(t) (functions of ¢) of the
algebraic equation

p(e) + 2 k(0)q.(g) = 0 ®)

have real parts Re [¢, (f)] < Oforallt, < ¢ < o, then all solutions of Egs. (1) are bounded
on [tO ’ °°)~

Infante [1a] has obtained, using the second method of Lyapunov, stability criteria
for an equation of the tyvpe

&y 7y dy _
dtn + Bn—l(t) dtn—l + 6l(t) dt + ﬂO(t)y - 0

(where the B,(f) are real continuous functions). The criteria depend on n parameters
which determine a family of elliptic paraboloids in the n-dimensional space 8. (f).
Infante [1b] and Infante and Plaut [9] consider the system

dx/dt = (A, + F(t))x Q)

where 4, is a constant n X n stable matrix and F(t) is a » X n time-varying matrix,
and derive asymptotic stability conditions in terms of the maximum eigenvalue of
(Ay + F' + BA, + FB™") where B is some positive definite (constant) matrix. Infante
[1b] presents the idea of finding the optimum form for B. Even for a second-order scalar
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differential equation (see Example 2 below), Infante concludes that the computation
of an optimal matrix B is impossible and is not amenable to analysis in general.

Dickerson [8] also considers systems of the form (7) and derives criteria which,
in essence, imply that the system (7) is stable if the system is asymptotically stable
in the absence of F(t), and either the time derivative of F(f) or the time integral of
F(t), in some suitable sense, is small. But the idea of an optimal B is not employed.

We now apply Theorem 1 to an example and compare with Infante’s [1a)] criterion.

Ezample 1. The second-order system

2
Y oWk =0 ®)

is, according to Theorem 1, stable if

[ k) = eol dt < o ©

for some constant ¢, > 0.
According to Infante [la], the system (8) is asvmptotically stable if for some ¢ > 0

e < ko(t) <4 — ¢ t>0. (10)

Remarks. (1) A time-varying function k,(f) can be chosen such that it obeys in-
equality (10) but violates (9); (ii) Theorem 2 is not applicable if k,(f) assumes values
in (— o, ®) and k() does not to zero as t — ; (iii) The inequality (10) is no different
from that obtained by the so-called circle-criterion (see references in [2]). Brockett [3]
has shown that (10) is a conservative bound on k,(f) and that the system (8) is stable
if 0 < ko(t) < 11.6,¢ > 0.

In what follows, we obtain a more general stability condition for systems of the
type (1). To this end, we exploit the assumption that G(s) + (1/K) is positive real
for a known (positive) value of K. The method adopted is the generation of a Lyapunov
function candidate (due to Brockett) from G(s)+ (1/K) and then the use of Corduneanu’s
theorem [4]. When the system is described by an equation of the type (7) it is not known
how to extend Brockett’s technique to generate a Lyapunov function candidate. We
show how this difficulty can be overcome by employing Anderson’s (7] results on positive
real matrices. It is believed that the present approach is superior to those of Infante
and others in avoiding the construction of an optimum matrix B. As applied to Example 1,
the criterion of the paper asserts that the system (8) is stable if

[ i {ko(t)<l - %@)}_l)dt < 1)

where the superscript ~ denotes negative lobes of the time function inside the curly
brackets. Inequality (11) includes (8) as a special case and permits k.(f) to assume
values in (— », ),

2. Stability criteria. In order to state the main stability results of the paper,
many preliminaries are needed. To conserve space, only a summary is given; for details,
see [2].

Based on the positive realness of G(s — 8) + (1/K) for some 8 > 0, and by suitably
choosing a path for integration, we can generate the following positive definite quadratic
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function in x:

t(x)

Vix, ) = exp (=) [ {{p(D — B)ly exp (8]}

(o)

) I:(q(D - B8) + P(_DIT—‘@)[y exp (37)]] — {r.(D)[y exp (ﬂ‘l’)]}2} dr (12)

where 7,(s) is the negative spectral factor of G(s — 8) 4+ (1/K) (see (2] for explanation).
Let ¢(¢) be a nonnegative (integrable and bounded) function on [¢, , ) and

h(t) & exp (— f t(r) df). (13)
Assume that

¢ t
ff(r)d1§M<ooforalltin[to,oo) and 0<e£limf§'(r)d-r$M<oo.
to to

t—o

Now let
Vx, t) £ h@)V.(x,¢) (14)

and

7 1 n
Wex, 0 & — 3 0a@(a@y — % 3 k0w) 15)

Based on a property of quadratic forms, it is possible to find a function of time A(Z)
as a solution to n algebraic inequalities such that

AOVA(x, ) — WX, ) 20, t2>t. (16)
Then

Wx, ) <sup MOVi(x, 8), t21. (17)

ki

The proof of the following lemma is straightforward and is hence omitted (see, for
instance, [2]).

Lemma 1. Let V,(x, t), h(t) and V (x, t) be as defined by (12), (13) and (14) respec-
tively. Then for some positive constants v, and v, , we have

vo llxII* S V@&, &) <7 Ix]]’.
Further, the time derivative of V (x, t) along the trajectories of (1) satisfies the inequality

avix, y/dt |, < [-28 + sup M) — sV (x, 1) (18)

which, on integrating and assuming that for some (small) constant ¢ > 0 and some
(arbitrarily large) positive constant M

T>0 (19)

1 to+T M
i-/:o S}‘l'p)\(r)dr$2ﬁ—eo T

leads to the inequality
”x(t)llz < e ||%ol|” exp (—eolt — 1)), t2t




PASSIVITY AND LINEAR SYSTEM STABILITY 23

for some (positive) constant ¢, .

The main stability theorem and its proof are now given.

Tueorem 3. The system (1) is exponentially stable if (a) G(s — 8) + (1/K) is
positive real for (known) values of K > 0, 8 > 0, and (b) sup,, A(f) obtained from
inequality (16) where V (x, t), W(x, t) are as defined in (12), (15) respectively, satisfies
inequality (19).

Proof. As a Lyapunov-Corduneanu function candidate for (1) choose V(x, t) as
defined in (12)-(14). Its time derivative along the trajectories of (1) satisfies inequality
(18). Lemma 1 completes the proof of the theorem.

Remark 1. If there is no positive value of 8 for which hypothesis (a) of Theorem 3
is satisfied, then only stability of (1) can be guaranteed. In this case, inequality (19)
reads:

f sup M(7) dr < =. (20)
to ki

Remark 2. The domain of the parameter space obtained from (19) is unbounded
whereas the corresponding domain of Infante and others is finite.

Ezample 1 (See Introduction). G(s) = 1/s(s + 2) and G(s) 4+ (1/4) is positive
real for 8 = 0. Let k(t) = ko(t) (1 — (ko(t)/4)) and k(t) = k*(t) — k™ (t) where k*(¢)
and (—k™(¢)) are respectively the positive and nonpositive lobes of k(¢). It can be verified
that N(¢) = vk (f), v being a certain positive constant. Satisfaction of the integral
inequality (20) guarantees stability of (8).

Ezample 2. Consider the system

a2 d
oWk % 4 ky = 0. @1)

Here G(s) = (s 4+ 1)/s(s + 2) which is positive real for 8 = 0. Note that K = .
Simple calculations yield V(x, t) = h(t)(z,* + iz,° + z,2.) and

W(x, t) = —(ky(&)z." + ko(t)z:® + (ko + ki) (t)2:22).

Inequality (16) becomes

) + Kol? + D) + ki) + BOlesz + (22 + k@)t > 0

from which

1) A = —ko(®),

() N@) + 2kON) — (ko) — ka(9))* 2 0 (22)
We then have sup;; A\(t) = —ko() + u(f) where u(t) > 0 is the solution of

E O + 20 (@) — ko@n(®) — k@) 2 0
obtained from (22). The system (21) is stable if

[ 6 - k@ di< o

3. Instability criteria. If G(s) + (1/K) is not positive real for any K > 0, but
G(s + B) + (1/K) becomes positive real for a (known) K > 0 and 8 > 0, then the
system (1) may become unstable for certain k;(t)s taking values in (— , «).
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Below we shall derive conditions on the k;(t)’s for a lower bound on x(¢) of the form
XD 2> e ||%|| exp (et — ), ¢ >ty - (23)

where ¢, and ¢, are constants and ¢, > 0. The solutions of (1) are then said to have
Property C. If ¢, > 0, we have complete instability; ¢, = 0 implies that the system
(1) is unstable in the sense of Lyapunov.

Not many results seem to be available for the instability of (1). The instability
criterion of Bickart [5] is based on the assumption that the coefficients are periodic
(with the same period), and is expressed in terms of bounds on k,(f) much as in [1]
for stability. In essence, this instability criterion is the counterpart of the circle criterion
for stability and like the latter is a sufficient condition.

For “slowly” varying systems, Skoog and Lau [6] have derived an instability criterion
using the Lyapunov—Chetaev instability theorem. Their criterion reads as follows:
suppose the matrix A(f) in (2) has some eigenvalues in the right-half plane and all
eigenvalues are bounded away from the imaginary axis; then if sup.,, ||d4/dt|| is
sufficiently small, the system (2) has unbounded solutions. Here we do not make Skoog-
and-Lau type assumptions on the eigenvalues of A(t).

Assumption. G(s) + (1/K) is not positive real for any K > 0 but G(s + 8) + (1/K)
becomes positive real for (a known) K > 0 and some (known) 8 > 0.

Problem. Find conditions for the solutions of (1) to have Property C. The method
adopted to solve the above problem is an application, perhaps for the first time, of the
Corduneanu theorem on instability [4].

Preliminaries. Based on the positive realness of G(s + 8) 4+ (1/K), choosing a
suitable path of integration, we can define the following positive definite function
quadratic in x:

t(x)

{{p(D + By exp (—B7)]}

[ (a0 + 5 + Z2EONy exp (=401 | — DIy exp (W7 ar @1

where 7,(s) is the negative spectral factor of G(s + 8) + (1/K). Now let

Ji6x ) = exp 280 [

(0)

J(x, 1) £ (h(®)(x, ) (25)
where h(t) is as defined in (13), and
U, 0 & (- 3 k0ay) a0y - & T kOuOW) (26)

Based on a property of quadratic forms, it is possible to find a function of time £(t)
such that

U, t) + E&B)Ji(x, ) 20, t2>1. (27)
Then
U(X, t) 2 —Ssup E(t)J,(X, t)r t Z ly - (28)
ki

Further, let

max {[r,(D — ﬂ)ylz/']x(x: O} = bn . (29
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The following lemma (similar to Lemma 1) can be established:
LeEmMa 2. Let J,(z, t), h(t) and J(x, t) be as defined by (24), (13) and (25) respec-
tively. Then for some positive constants v, and v, , we have

o lIXII* < J(x, 1) < v [Ixl]”.
The time derivative of J(x, t) along the trajectories of (1) satisfies the inequality

dJ(x, /dt [y 2 [28 — 8, — sup EY) + s (x, 1) 30)

which on integrating and assuming that for some constant e, and some (arbitrarily
large) positive constant M,

M

1 to+T
i swHoa < —s—at+ a1

leads to the inequality

IX@®I* = e [[%|[° exp (et — ), ¢ >t

for some (positive) constant ¢, .

We now give the main instability theorem and its proof:

TueorEM 4. The solutions of (1) have Property C if

(a) G(s + B) + (1/K) is positive real for known values of K > 0, 8 > 0, and

(b) sups, £(t) as obtained from (27), where J,(x, t) and U(x, t) are defined in (24)
and (26) respectively, satisfies inequality (31) with &, given by (29).

Proof. As a Lyapunov-Corduneanu function candidate for (1) choose J(x, t)
defined by (25). Its time derivative along the trajectories of (1) satisfies inequality (30).
Invoke Lemma 2 to complete the proof of the theorem.

Remark. The parameter space guaranteeing Property C of the system (1) is un-
bounded and there is no restriction on the rate of variation of the k.(f)s unlike the
criterion of Skoog and Lau [6].

Ezample 3. Consider the system

dy _ ,dy ) (@4_ >_
(%Y - s % 4 5) 4 k(3% — 50) = 0 (32)

wh;zre G(s) = (3s — 5)/(s° — 4s + 5)and G(s + 3) = (3s + 4)/(s* + 2s + 2) is positive
real.
Jix, t) = 3(=3x, + z,)° + 11z, + 4z,(z, — 31)).
[r(D = 3)y)* = 2(52, — x.)°,
[r (D — 3y’ < 4J,(x, ¥).
Further
(Bzs — 521)° < 6J,(x, 1).

Hence

dJ (x, 8)/dt | a2y > (2 + £(t) — 6k™ () (x, 1)
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where k*(t) denotes the positive lobes of k(f). We conclude that the system (32) is
unstable if

_];f‘°+r . l_ M
Tl lc(t)dts3 eo+T, T >0,

for some small constant ¢, > 0, and some (arbitrarily large) constant M > 0.

4. More general systems. Consider the system of differential equations
dx/dt = Ax — BX(t)¢ (33)

8 = (C'x,

where X () is a n X n matrix of time-varying functions k,;(¢) assumed to be L-integrable
on [t, , »). Eq. (33) describes a negative feedback system with X (f) as time varying
matrix gain. The transfer matrix function of the linear time invariant part is given by
G(s) = C(sI — A)7'B. For lack of space, we deal only with the stability problem.
An analysis similar to that in Sec. 3 holds for instability.

Assumption. G(s — B) is positive real for some (known) 8 > 0 (see Anderson [7]
for a definition of positive real matrices and other results).

Then, according to Anderson [7], there exists a positive definite matrix P and a
matrix L such that

AP + PA = —BP — LI’
PB = C.

34

For a calculation of P from (34) see Anderson [7] and Potter [10]. Let X,(t) be the
symmetric part of X(f); .(t), —3¥_(t) denote respectively the positive definite and
nonpositive definite parts of X, (). Find sup,,; A(f):

A®x'Px — x'Cx_(t)Cx > 0, t2>t.

Then by choosing x’Px as a Lyapunov-Corduneanu function candidate for the system
(33), it can be shown that the system (33) is exponentially stable if

M
T T>0

to+ T
%,—f sup A7) dr < 28 — ¢ +
to

kij

for some (small) constant ¢, > 0, and (arbitrarily large) positive M.

Remark 1. Brockett somewhere comments that the method of path-independent
integrals for generation of a Lyapunov function candidate has not been extended to
matrix positive real functions. An interpretation of Anderson’s result [7] avoids the
use of such integrals. Such an interpretation is believed to be of independent interest
in the stability analysis of systems governed by partial differential equations.

Remark 2. If G(s — B) + X, ' is positive real for known values of 8 > 0 and
constant matrix X, , then in the stability analysis of (33) it is sufficient to replace X(t)
by X)) (I — Ko%K ()"
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