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Passivity-Based Control by Series/Parallel Damping

of Single-Phase PWM Voltage Source Converter
Dunstano del Puerto-Flores, Jacquelien M. A. Scherpen, Marco Liserre,

Martijn M. J. de Vries, Marco J. Kransse, Vito G. Monopoli

Abstract—This paper describes a detailed design procedure
for passivity–based controllers developed using the Brayton–
Moser framework. Several passivity-based feedback designs are
presented for the Voltage-Source Converter, specifically for the
H–bridge converter, since nowadays it is one of the preferred
solutions to connect direct current (dc) loads or distributed
sources to the alternating current (ac) grid. Independent of the
operating mode, namely, the rectifier and regenerative operating
mode, the achieved control aims are: high power-factor correction
in the ac-side and optimal dc voltage regulation capability in
the dc-side. The proposed controllers can use series or paral-
lel damping-based solutions for the error dynamics, naturally
providing the conditions for stability and tuning of control
parameters. Moreover, the Brayton-Moser structure facilitates
the addition of virtual RLC filter circuits to the control design
for the rejection of low frequency harmonics. The effectiveness
of series/parallel damping is investigated in case of abrupt
changes in the load, using conductance estimators. Simulation
and experimental results validate the analysis.

Index Terms—Passivity-based control, harmonic compensa-
tion, load estimation, Brayton-Moser systems, mixed-potential
function, tuning rules, voltage source converter, power converters.

I. INTRODUCTION

THE single-phase Voltage Source Converter (VSC), like

the H–bridge or full bridge converter, can be used as

universal converter due to the possibility to perform dc-dc,

dc-ac or ac-dc conversion [1]. Moreover, it can be used as

basic cell of the cascade multilevel converters [2] and [3].

Independent of the operating mode, namely the rectifier or

regenerative operating mode, the control aims are: high power-

factor correction at the ac-side and dc voltage regulation at the

dc-side. These objectives should be satisfied, regardless of the

conditions of the grid, the dc load/source and the converter

nonlinearities.

The control of such power inverter/rectifier converters has

been subject of many scientific studies, though conventional

linear control techniques are most often applied in practice,

see e.g. [3]–[8] and the references therein. Among them,

proportional-resonant (PR) controllers and filter-based active

damping control achieve the above objectives with small

steady-state error and high power factor correction [5], [6].

However, the use of linear techniques require a linearization of
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the dynamical behavior around the steady-state operating point

(or trajectory) and therefore these controllers are suitable in

those cases where the converter operates within fixed operating

points and the variation of system parameters and disturbances

are small. Thus, such controllers only ensure local stability.

The models of power converters are nonlinear since the

control signals (the switches) appear in a nonlinear (bilinear)

form in the model. Furthermore, there are often nonlinear

components present in the converters, e.g. nonlinear loads

or/and sources. When the converters are required to function

over a wide operating range, linearization is not suitable. For

instance, in [9] it is shown that three-phase VSC controlled

by regular linear controllers, e.g. cascaded PI’s, may become

unstable in the regenerative operating mode. Many nonlinear

control strategies overcome such problems, both for single-

phase and three-phase H–bridge converters, see e.g. [8], [10]–

[16] and [9], [17]–[21] respectively. But most of the obtained

results for three-phase power inverter/rectifier converters are

not directly applicable for single-phase systems, specifically

when d-q transformation theory is used [5].

Among the nonlinear control techniques, Passivity-Based

Control (PBC) is an important framework for the control of

nonlinear systems and widely used for controlling switched-

mode power converters, see e.g. [22]. The main advantage

of PBC is the explicit use of knowledge of the physical

system structure in the controller, e.g. energy, dissipation and

interconnection. Therefore, the basic idea behind PBC design

is to modify the energy of the system and add damping

by modification of the dissipation structure [22]. The PBC

approach has been investigated both for single-phase and

multilevel configurations although in the majority of cases

for the rectifier operating mode [10]–[13], [16]. Also, the

bidirectional power flow control of this converter using passive

Hamiltonian techniques was studied in [23], but there is still a

steady-state error of about 5 % in the regulated voltage of the

dc-side in the regenerative operating mode, due to the lack

of harmonics compensation and/or damping injection in the

proposed controller.

Based on the Brayton-Moser (BM) framework [24], in [25]

a PBC design method which produces a control signal such

that the closed-loop dynamics are forced to act as if there

are virtual resistors connected in series and/or in parallel to

the circuit elements has been presented. These findings were

in fact related to the results from [26], where it is shown

that the widely used current-mode programming effectively

introduces lossless series damping resistance. The BM PBC

approach presents advantages over other model based ap-



IEEE TRANSACTION ON..., VOL. , NO. , 2013 2

proaches, e.g.; a natural description of the dynamics in terms

of easily measurable quantities, namely the inductors currents

and capacitors voltages; the derived controllers are in terms

of dynamic damping of the errors in the controlled variables;

and straightforward tuning rules for damping injection. Output

voltage regulation by BM-based series/parallel damping injec-

tion of the basic buck and boost dc-dc converters and through

a pre-compensation scheme to the three-phase ac-dc boost

rectifier for load perturbation have been presented in [25] and

[27]. respectively. Experimental validations were presented for

dc-dc interleaved current-fed full-bridge converter in [28] and

for single-phase ac-dc full bridge boost rectifier in [13]. In

this paper, unlike the previous cited work, a rigorous stability

analysis of the overall system, i.e. the closed loop of the

converter with the proposed controllers, is presented.

The aim of this paper is to develop and validate the

BM modeling framework for PBC in a systematic way for

the H bridge converters. For such converters the obtained

controllers indirectly stabilize the dc voltage at the dc-side and

directly achieves a unity power-factor at the ac-side. Moreover,

the control objectives are achieved during the rectifier and

regenerative operating mode. In [27] a PBC is developed

for a three phase boost rectifier, but these results are not

straightforwardly extended to single-phase systems. Therefore,

we include an adaptation scheme in the designs, and robustness

of the adaptive PBC design is tested in an experimental set-

up. PBC with adaptive scheme was studied previously in

[10], [11], however the inductor resistance was neglected and

consequently there is a steady error in the input current.

Here, it is shown that series-damping injection overcomes this

problem.

Furthermore, the problem of grid current harmonic rejection

is covered in this paper. This is particularly of interest for

single–phase grid connected applications due to the fact that

the desired current is a sinusoidal quantity and its tracking is

rather demanding [7], [29]. Specifically, a dynamic damping

injection scheme for the compensation of harmonic distortion

is proposed, see [6], [30] for a related development. Here, we

study grid harmonic rejection for the H-bridge converter and

it is implemented by means of bandpass filters that filter out

selected harmonics of the ac-side current. These filters can

be physically interpreted as RLC filters, fitting nicely into the

BM framework. The resulting design is also included into the

experimental validation we perform.

II. PASSIVITY-BASED CONTROL OF BM SYSTEMS

In order to make this paper self-contained, we briefly present

Brayton-Moser systems, and review the passivity and power-

balance inequality properties for a class of BM networks, first

pointed out in [31].

A. Brayton-Moser Systems as Passive Systems

Consider the BM equations as the gradient system affine in

the input

Q(x)ẋ = ∇xP(x) + g(x)u (1)

where ẋ := dx/dt, ∇x = ∂/∂x, x ∈ R
n, Q(x) : Rn → R

n×n

is a full rank matrix containing the incremental inductance and

capacitance matrices, P(x) : Rn → R is the circuit’s mixed-

potential function (which has the units of power), g(x) the (full

rank) input matrix and input signal u ∈ R
m, m ≤ n. Stability

of a BM system is proven by finding an alternative pair Q̃(x)
and P̃(x), which equivalently describe (1) and where P̃(x)
can be used as candidate Lyapunov function, see [24], [32].

Lemma 1: [31] For a given pair (P, Q) and for any arbitrary

constant λ and any smooth symmetric matrix M(x) ∈ R
n×n,

the pair

Q̃ = λQ+ 1

2

(
∇x (M∇xP) +∇2

xPM
)
Q, (2)

P̃ = λP + 1

2
(∇xP)

⊤
M∇xP, (3)

where ∇2
x := ∂2/∂x2, equivalently characterizes the dynamics

(1) as the form

Q̃(x)ẋ = ∇xP̃(x) + g̃(x)u (4)

y = −g̃⊤(x)ẋ, (5)

where g̃ = Q̃Q−1g and y is now added as an output.

If the matrix Q̃(x) satisfies the condition Q̃(x)+ Q̃⊤(x) < 0,

then Q̃(x) is invertible for all x ∈ R
n. Furthermore, since P̃

is non-negative, then (4-5) defines a passive system with port

variables u and y and storage function P̃ , that is,

˙̃P = ẋ⊤(Q̃(x) + Q̃⊤(x))ẋ+ u⊤y ≤ u⊤y. (6)

The system (4-5), and consequently (1), satisfies the power

balance inequality

P̃(x(t))− P̃(x(0)) ≤

∫ t

0

u⊤(τ)y(τ)dτ. (7)

Remark 2: Lemma 1 and the power balance inequality (7)

motivated, together with the problem of pervasive dissipation

in electrical circuits, the development of the paradigm of power

shaping control in [32]. This approach have been recently

extended to general nonlinear systems in [33].

B. Passivity-based control through power shaping

In the paradigm of power shaping, as suggested by its name,

stabilization is achieved by shaping the power instead of the

energy. The starting point of power shaping is a description

of the system by BM equations of the form (4-5). By Lemma

1, let us assume that the system equivalently defines a passive

system with port variables u and y with respect to the non-

negative storage function P̃ , that is,

˙̃P = ẋ⊤(Q̃(x) + Q̃⊤(x))ẋ+ u⊤y ≤ u⊤y,

where the invertible matrix Q̃(x) satisfies Q̃(x)+ Q̃⊤(x) ≤ 0
for all x ∈ R

n.

Hence, if x̄ is a strict local minimum of P̃ , then x̄ is a stable

equilibrium point of the unforced system with u = 0. In order

to stabilize to another point x⋆, the mixed-potential function

P̃ is shaped into a nonnegative function having x⋆ as a strict

local minimum. That is, the control u = β(x) where

g̃(x)β(x) = ∇xPa(x),
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for some Pa : Rn → R, yields the closed-loop system

Q̃(x)ẋ = ∇xP̃d(x), (8)

with total Lyapunov function P̃d(x) := P̃(x) + Pa(x). The

new equilibrium will be stable if x⋆ = argmin P̃d(x).

C. Averaged Mixed-Potential Shaping

Switching power converters are complex hybrid devices that

can be represented as switched-BM systems. Such converters

are controlled by using a high frequency pulse-width modu-

lation (PWM) technique. Moreover, under the assumption of

high frequency operation switched-BM equations can be re-

placed by its continuous-time averaged approximation models

and can be rewritten in the averaged-BM form

Q(z)ż = ∇zP
µ(z) + gµ(z)u, (9)

where −1 ≤ µ ≤ 1 is the duty ratio function and the actual

state x(t) is replaced by the average state z(t), see [25] for

further details.

Following the PBC methodology of Subsection II-B we

will achieve the control objective by making the closed-loop

system passive with respect to a desired storage function.

Motivated by the form of the average BM system model (9),

we propose as desired error dynamics

Q ˙̃z +∇z̃P
µ
d (z̃) = Θ, (10)

where z̃ , z−ξ, and ξ the desired value of z, yet to be defined,

Θ is the perturbation term, and the desired mixed-potential

function satisfies Pµ
d (z̃) = 0 always when z̃ = 0. This is

tantamount to modifying the dissipative voltage and current-

potentials associated with the averaged mixed-potential, result-

ing in a desired error mixed-potential of the form

Pµ
d (z̃) = Pµ

o (z)|z=z̃
︸ ︷︷ ︸

Power shaping

− (Gµ
a (z̃)− J µ

a (z̃))
︸ ︷︷ ︸

Injected damping

. (11)

where Pµ
o (z) describes the desired power circulating in the

circuit’s passive elements, Gµ
a (z̃) and J µ

a (z̃) are the added

dissipative voltage and current-potentials in terms of the errors,

respectively.

Motivated by the Lemma 1, we assume that:

Assumption 3: There exists a constant λ and a matrix M(z̃)
in Lemma 1 such that Q̃µ + (Q̃µ)⊤ < 0, with Q̃µ as in

(2) and P̃µ ≥ 0 as in (3). The pair {Q̃µ, P̃µ} equivalently

characterizes the dynamics (10) as the form

Q̃µ ˙̃z +∇z̃P̃
µ
d (z̃) = g̃µΘ, (12)

where g̃µ = Q̃µ(Qµ)−1.

If we set Θ ≡ 0, then the time derivative of P̃µ
d along (12) is

dP̃µ
d

dt
=

1

2
˙̃z⊤
(

Q̃µ + (Q̃µ)⊤
)

˙̃z. (13)

Since Q̃µ+(Q̃µ)⊤ < 0, with µ ∈ [−1, 1], then
˙̃Pµ
d ≤ 0. In fact,

boundedness of the trajectories and convergence of z → ξ,

as t → ∞ can be proven by applying Lasalle’s invariance

principle.

The associated implicit controller dynamics can be obtained

from the perturbation term Θ, which is defined as

Θ := Qξ̇ −∇ξP
µ
c (ξ). (14)

where Pµ
c (ξ) is the controller mixed-potential function, given

by

Pµ
c (ξ) = Pµ(z)|z=ξ + (Gµ

a (z − ξ)− J µ
a (z − ξ)) . (15)

The next step of the design is to obtain, using (14), an explicit

expression for the control signal µ, required to assign the

desired average mixed-potential function, that is, to ensure that

Θ = 0. In the context of model-based PBC designs for power-

converters1, one fundamental question arises:

• Which variables have to be stabilized to a certain value in

order to regulate the output(s) of interest toward a desired

equilibrium value?

Such a question involves a study of the zero-dynamics yielding

either a regulation scheme based on forcing the inductor

currents to their desired values or a regulation scheme based

on the forcing the capacitor voltages to their desired values.

D. Tuning of the power-based passivity-based control

Damping injection to modify the dissipation structure of

the system is an important part of PBC design. In [25] a

systematic tool for tuning of various control parameters have

been developed based on the BM formulation, instead of the

form of the open-loop structure of the system.

Returning to the average BM system model, let ĩ =
col(z̃1, . . . , z̃nL

) and ṽ = col(z̃nL+1, . . . , z̃nL+nC
) denote the

error-currents through the inductors and error-voltages across

the capacitors, and, from (12), consider the unperturbed error

dynamics as follows

Q̃ ˙̃z −∇z̃P
µ
d (z̃) = 0, (16)

with the average desired mixed potential has the form

Pµ
d (z̃) = ĩ⊤Ψ(µ)ṽ + Gµ

d (̃i)− J µ
d (ṽ), (17)

where Gµ
d
(z̃) and J µ

d
(z̃) are the modified dissipative voltage

and current-potentials in terms of the errors, resp., and the

modified error resistance matrices Rd

(
ĩ
)

and the modified

error conductance matrix Gd (ṽ) are defined as

Rd(̃i) = ∇2

ĩ
Pµ
d (z̃) (18)

Gd(ṽ) = ∇2
ṽP

µ
d (z̃), (19)

and the stability theorems, as presented for a class of BM

networks in [24] and for non-switching BM networks in [25],

are slightly reformulated as follow:

Theorem 4: (Series damping) If Rd

(
ĩ
)

is a symmetric,

constant and positive definite matrix, Gµ
d (ṽ)+ |ṽ⊤Ψ(µ)| → ∞

as |ṽ| → ∞, and
∥
∥
∥L

1

2 (̃i)R−1

d Ψ(µ)C−
1

2 (ṽ)
∥
∥
∥ ≤ 1− δ, (20)

1See for instance [18], [22] for Euler-Lagrange, [34] for Port-Hamiltonian,
and [25] for Brayton-Moser models.
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with 0 < δ < 1, then for all bounded |µ| ∈ [0, 1] the solutions

of (10) tend to zero as t → ∞2.

Theorem 5: (Parallel damping) If Gd(ṽ) is a symmetric,

constant and negative definite matrix, Rµ
d (̃i)+ |̃i⊤Ψ(µ)| → ∞

as |̃i| → ∞, and
∥
∥
∥C

1

2 (ṽ)G−1

d Ψ⊤(µ)L−
1

2 (̃i)
∥
∥
∥ ≤ 1− δ (21)

with 0 < δ < 1, then for all |µ| ∈ [0, 1] the solutions of (10)

tend to zero as t → ∞.

III. PROBLEM FORMULATION

In this section the dynamic model of the Voltage Source

Converter (VSC) is first presented and, after identifying its

desired operation, the control problem that will be solved in

this paper is formulated. Finally, a corresponding average BM

model of the converter is given.

A. Converter Dynamics

Consider the single–phase VSC topology shown in Fig. 1.

The converter is composed in its main part by a complete (two

legs) bidirectional bridge.

u4u2

u3

iL

vac C idcvC

u1

L r

Fig. 1. Single–phase voltage-source converter

The switches in each leg of the converter are complementary

operated, i.e., u1 = 1− u2 and u3 = 1− u4, and, because the

switches operate in pairs, u = u1 − u3 with u = {−1, 0, 1}.

If the switches are controlled with high frequency PWM, then

an averaged model can be derived and the parameter u can

be replaced by a continuous switching function µ ∈ [−1, 1]
where µ = µ1 − µ3 with µ1 ∈ [0, 1] and µ3 ∈ [0, 1], see [22]

for more details. The model describing the averaged behavior

of the circuit is given by

−L
diL
dt

= µvC + riL − vac (22)

C
dvC
dt

= µiL − idc (23)

where iL is the average inductor current, vc is the average

capacitor voltage, L is the inductance, C is the capacitance,

vac is the voltage of the ac-side grid, with vac(t) = E sin (ωt),
r is the parasitic inductor resistance, and idc is the current at

the dc-side. The parameters L, C and r are all assumed to

be known constants, where r models dissipation effects in the

inductor.

2The notation ‖K‖ denotes the spectral norm of a matrix K, defined as
‖K‖2 = max|x|=1{(Kx)⊤Kx}.

B. Control Objectives

We deal with the control of the single-phase bidirectional

power flow ac-dc converter, namely, the boost-like full bridge

converter. The control objectives are formulated as

• The ac-side: the converter must be operated with high

power factor and zero total harmonic input current, which

implies that the desired sinusoidal input current i⋆L should

be proportional to the input voltage, i.e., i⋆L = Id sin (ωt).
However, for the regenerative operating mode the current

iL and ac voltage vac must be phase-shifted by 180o.

• The dc-side: the dc-component or the root mean square

(RMS) value of the voltage in the dc-side vC has to be

equal to some constant3 desired value Vd > E in both

rectifier and regenerative operating modes.

In [23] it has been shown that a necessary and sufficient

condition for the existence of a steady-state regime, i.e., the

RMS value of vC equals to Vd and i⋆L = Id sin (ωt), is that

idcVd = 1

2
(E − rId)Id, (24)

i.e., a power balance must hold. From (24) it can be concluded

that the amplitude of the input current, Id, which corresponds

to minimum power that drives the output voltage to the desired

level Vd is given by

Id =
E

2r
−

√
(
E

2r

)2

−
2idcVd

r
. (25)

Remark 6: As in [23] has been emphasized, a bidirectional

flow is allowed since there is no assumption on the sign of

idc ∈ R, although idc is considered constant. Furthermore, for

given values of E, r, Vd, and with the constraint Vd > E we

have that |idc| <
E2

8rVd
.

C. Averaged-Switched BM Model

The dynamic behavior of the converter system (22-23) can

be rewritten in the BM form as follows. Let z1 and z2 be the

average inductor current, iL, and the average capacitor voltage,

vC , respectively. If the vector z is defined as z = [z1 z2]
⊤

,

then the PWM BM equations are defined as

−Lż1 = ∇z1P
µ(z, t) = µz2 + rz1 − vac (26)

Cż2 = ∇z2P
µ(z, t) = µz1 + idc. (27)

For ease of notation, consider the compact form

Q(z)ż −∇zP
µ(z, t) = 0, (28)

where Q(z) = diag(−L,C). For this power converter it can

be shown that the averaged mixed–potential function can be

decomposed as

Pµ(z, t) = Pµ
o (z) + Pµ

s (z, t) (29)

3As a consequence of the sinusoidal input current, as demonstrated in [17],
the output voltage will inevitable have a ripple component with frequency
equal to twice the grid frequency. For this reason the control objective is to
drive the RMS value of vC to Vd instead of just the value of vC .
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with the individual terms of the form

Pµ
o (z) = µz1z2 +

1

2
rz21 , (30)

Pµ
s (z, t) = −z1vac(t) +

∫ z2

0

îdc(τ)dτ. (31)

The term Pµ
o (z) represents the power circulating across the dy-

namic elements (µz1z2), and the dissipative current–potential

(G(z1) =
∫ z1

0
v̂r(τ)dτ = 1

2
rz21 , with v̂r(z1) = rz1 by Ohm’s

law.) by the current–controlled resistors. The total supplied

power by the (input) sources is denoted by Pµ
s (z, t), i.e.,

when îdc(t) = idc denotes a constant input current source,

then Pµ
s (z, t) = −z1vac(t) + idcz2.

IV. PASSIVITY-BASED CONTROLLERS FOR A

SINGLE-PHASE AC-DC POWER CONVERTER

In this section we present controllers designed with the PBC

approach in the Brayton-Moser framework which have been

introduced in [25], [27].

A. Adaptive Passivity-Based Controller

Consider the single–phase Rectifier VSC topology with

resistive load. Let z1 and z2 represent the averaged inductor

current and the averaged capacitor voltage, respectively, and

µ ∈ [−1, 1]. It can be shown that its averaged open-loop

mixed-potential is given by

Pµ(z, t) = −vac(t)z1 + µz1z2 +
1

2
rz21 − 1

2
Gℓz

2
2 , (32)

which is decomposed as

Pµ
o (z) = µz1z2 +

1

2
rz21 − 1

2
Gℓz

2
2 , (33)

Ps(z, t) = −vac(t)z1, (34)

where Gℓ = R−1

ℓ . Note that due to the resistive load, now

a dissipative voltage–potential (J (z2) =
∫ z2

0
îg(τ)dτ , with

îg(z2) = Gℓz2 we have J (z2) = z22/2Rℓ) from the voltage–

controlled resistors is added to Pµ
o of (30). The respective

gradients of (32) yield the corresponding averaged differential

equations

−Lż1 = ∇z1P
µ(z, t) = µz2 + rz1 − vac (35)

Cż2 = ∇z2P
µ(z, t) = µz1 − θℓz2, (36)

where the value of the load θℓ = Gℓ is assumed to be

unknown. Therefore, as in [13], [17], an estimator is used to

estimate the correct value of Gℓ. Following the methodology

of Subsection II-C, for the converter (35-36), an indirect

regulation policy of the output voltage is summarized in the

next proposition.

Proposition 7: Consider the switched BM system (35-36),

where C, L, E > 0 are known constants parameters, and Rℓ >
0 is the unknown load resistance but constant. The adaptive

nonlinear dynamic feedback PBC controller

µ =
1

ξ2
(vac − rz⋆1 − Lż⋆1) (37)

Cξ̇2 = µz⋆1 − θ̂ℓξ2 +Gaz̃2, ξ2(0) > 0 (38)

˙̂
θℓ = αξ2z̃2 (39)

where z̃2 = z2 − ξ2, ξ2 is the controller state and θ̂ℓ is the

estimated value of θℓ, with the dynamical controller initial

condition is chosen so that ξ2(0) > 0 and θ̂ℓ(0) > 0. z̃1 =
z1−z⋆1 and z⋆1 is the desired sinusoidal current for the ac-side,

and Ga verifies

Ga ≥
max |µ|

1− δ

√

C

L
− θ̂ℓ, δ ∈ (0, 1). (40)

Under these conditions, the controller solves the tracking

problem for the ac-side, i.e. limt→∞ z1 = z⋆1 and for the dc-

side indirectly stabilizes the RMS value of z2 to Vd.

Proof: Let, again, z − ξ stand for the error vector z̃. In

terms of the error signals (35–36) are rewritten as,

Q ˙̃z +∇Pµ
o (z)|z=z̃ = Θ (41)

The controller dynamics is determined by taking the respec-

tive gradients of the controller mixed potential

Pµ
c (ξ, z, t) = Pµ(z, t)|z=ξ +

1

2
ra(z1 − ξ1)

2 − 1

2
Ga(z2 − ξ2)

2,
(42)

by replacing Gℓ with θ̂ℓ, indeed the controller is implicitly

described by

−Lξ̇1 = −vac + µξ2 + rξ1 − ra(z1 − ξ1) (43)

Cξ̇2 = µz⋆1 − θ̂ℓξ2 +Ga(z2 − ξ2), (44)

Substraction of (43–44) from (35–36) yields the following

perturbed error dynamics, i.e.,

−L ˙̃z1 = µz̃2 + (r + ra)z̃1 (45)

C ˙̃z2 = µz̃1 − (θℓ +Ga)z̃2 + θ̃ℓξ2, (46)

where the term θ̃ℓ now appears in the above equations and the

estimation error is defined as θ̃ℓ = θ̂ℓ − θℓ. In order to increase

the stability margin, θ̂ is forced to be positive and bounded

away from zero and to make sure that the perturbation term

θ̃ℓξ2 converges to zero the parameter update law is chosen to

be, as suggests in [17],

˙̂
θℓ = −Proj(τ) =

{

τ = αz̃2ξ2, θ̂ℓ > ǫ
τ = 0, otherwise

(47)

where α > 0 is the adaptive gain and ǫ > 0 with ǫ an

arbitrarily small constant.

To prove stability of the error system, consider the following

Lyapunov function

H⋆
ea(z̃, θ̃ℓ) =

1

2
Lz̃21 +

1

2
Cz̃22 +

1

2α
θ̃2ℓ , (48)

where the time derivative along the trajectories of (45–46),

and (47) is given by

Ḣ⋆
ea = −(r+ ra)z̃

2
1 − (θℓ +Ga)z̃

2
2 ≤ −

γ

2
{Lz̃21 +Cz̃22} (49)

with γ = 2min{r+ ra, Gℓ +Ga}/max{L,C}. Because H⋆
ea

is nonincreasing, z̃ and θ̃ℓ are globally uniformly bounded,

i.e., z̃ ∈ L2
∞ and θ̃ℓ ∈ L∞. In addition, since H⋆

cl is bounded

from below by zero, then z̃ is square integrable, i.e., z̃ ∈ L2
2.

For the use of the LaSalle-Yoshizawa theorem [35], in order

to conclude that z̃(t) → 0 as t → ∞, it must be verified that

z̃ is uniformly continuous. For this, by Barbalat’s lemma [35],
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it is sufficient to show that ˙̃z is bounded.

First, let us assume that ξ2(t) is bounded away from zero.

From the perturbed error dynamics (45–46), and the estab-

lished boundedness of θ̃ and z̃, it follows that ˙̃z is bounded if

and only if ξ2 is bounded. In order to prove that ξ2 is bounded,

we evaluate (43-44) in ξ1 = z⋆1 and solve (43) for µ, where

the dynamic controller is defined by

µ =
1

ξ2
(vac − rz⋆1 − Lż⋆1) (50)

Cξ̇2 = µz⋆1 − θ̂ℓξ2 +Gaz̃2, ξ2(0) > 0 (51)

where ra = 0 and z⋆1 = Id sin(ωt) with the desired current

amplitude of the form

Id =
E

2r
−

√
(
E

2r

)2

−
2

r

(

θ̂ℓV 2
d

)

(52)

and, because θ̂ℓ is forced to be positive and bounded away

from zero, we have that Id ∈ L∞ which implies that z⋆1 ∈ L∞.

The time derivative of ż⋆1 is given by

ż⋆1 = ωId cos(ωt)−
2αz̃2ξ2V

2
d

√

E2 − 8r(V 2
d θ̂ℓ)

sin(ωt).

where we easily see that ż⋆1 ∈ L∞, by the assumption of ξ2(t)
is bounded away from zero. Consequently, since µ depends

only on bounded signals, given by (50), this implies that µ ∈
L∞, and, from (45), it concludes that ˙̃z1 ∈ L∞, where we

used the fact that z̃1, θ̂ℓ ∈ L∞. As z̃1 ∈ L2 and by Barbalat’s

lemma [35], we have that limt→∞ z̃1 = 0.

Since by construction θ̂ is bounded away from zero and from

the previous result that µ ∈ L∞, we can infer that (51) is in

fact a first-order system which is input-to-state stable because

θ̂ is bounded away from zero. Therefore, we can state that

ξ2 ∈ L∞, which implies that ˙̃z2 ∈ L∞. Then, we conclude

that limt→∞ z̃2 = 0

Furthermore, by using Theorem 5, we can state from the set

of equations (45–46) that limt→∞ z̃ = 0, that is limt→∞ z =
ξ, is satisfied if we set Ga as (40) with tuning parameter δ ∈
(0, 1) and ra = 0.

Remark 8: An analogous result to (40) can be found for

series damping by using Theorem 4, i.e., a lower bounded on

ra to ensure non-oscillatory behavior is given by

ra >
max |µ|

1− δ

√

L

C
− r, (53)

with the tuning parameter δ ∈ (0, 1), and Ga = 0.

Practical results of this adaptive controller are shown in

Subsect. VI-A.

Remark 9: Consider the switched BM system (26-27) de-

picted in Fig. 1. Instability, in the form of oscillations, of the

dc-link voltage can occur when the current source in the dc-

side idc(t) is replaced by a constant power load (CPL). Several

loads such as electric motor, actuators, and power electronic

converters, when they are well controlled, behave as CPLs

at the input terminals. Namely, an increase in the voltage of

CPL will result in a decrease in the current, and viceversa.

To avoid impracticalities and singularities in the dynamical

model, consider the following constant power load:

idc(t) =

{
Pℓ

vC
, ifǫ0 ≤ |vc| ≤ 1/ν0,

0 if |vc| < ǫ0,
(54)

for some small positive numbers ǫ0, ν0, and Pℓ is considered

constant. Stability of the converter (26-27) is analyzed by

using Lemma 1, which amounts to proving that |u| < 1 is

bounded. Lemma 1, by selecting M = diag(L−1, C−1) and

λ = r/L, yields that if

r
C

L
>

Pℓ

z22
, (55)

then (26-27) defines a passive system. Moreover, for given

values of Pℓ, L, r and z⋆2 , we can use (55) in order to size

the dc capacitor. Similar conditions can be found by means

of linearization and small-signal analysis [36], [37]. Numer-

ical results show that the adaptive passivity-based control of

Proposition 7 ensures that the dc-link voltage vc is following

its reference Vd with CPL.

B. Passivity-Based Controller for a Bidirectional power flow

In this section we present a controller that indirectly stabi-

lizes the average constant voltage in the dc-side and directly

achieves a unity power factor on the ac-side during the rectifier

and regenerative operating mode.

Proposition 10: Consider the switched BM system (26–27),

in closed-loop with the PBC controller

µ =
1

ξ2
(vac − rz⋆1 − Lż⋆1 + raz̃1) (56)

Cξ̇2 = −µz⋆1 +
1

κ
(Vd − ξ2)− idc, (57)

where ξ2 is the state of the controller, z̃1 = z1 − z⋆1 and z⋆1 is

the desired sinusoidal current for the ac-side, Vd is the desired

voltage for the dc-side, κ is a positive scalar, and ra verifies

ra(µ) =
1

1− δ

√

µ2L

C
− r.

Under these conditions, the controller solves the tracking

problem for the ac-side, that is, limt→∞ z1 = z⋆1 and for the

dc-side stabilizes the RMS value of z2 to Vd.

Proof: The controller dynamics is determined by making

a copy of the system in Brayton–Moser form (26–27) in terms

of ξ plus an additional damping term, Pa. Then, it follows that

the controller dynamics is described by

Qξ̇ = ∇ξP
µ(ξ) + gu+ Λ∇ξPa(ξ). (58)

where Λ = diag(−1, 1). To shape the mixed potential function

ξ1 is restricted to z⋆1 = Id sin(ωt) such that the current of the

ac-side of (58) is proportional to vac. Recall that the design

goal on the dc-side of (58) is to achieve regulation of the

RMS value of ξ2 to Vd, which is achieved by modifying the

dissipation structure and adding a parallel damping term to

the controller, in order to ensure asymptotic stability. For the

particular case of the single-phase converter, we choose the

injected dissipation quadratic in ξ2 as

Pa(ξ2) =
1

2κ
(Vd − ξ2)

2. (59)
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with κ > 0 and Vd is the desired RMS voltage for the state

ξ2 such that the power on the dc-side of (58) is 〈pdc(t)〉dc =
Vdidc + V 2

d /κ. Then, the dynamic controller is given by

−Lż⋆1 = µξ2 + rz⋆1 − vac (60)

Cξ̇2 = −µz⋆1 +
1

κ
(Vd − ξ2)− idc, (61)

where the term κ is interpreted as the parallel damping

injection term acting on the voltage error in the controller.

Then, the control action is obtained after solving (60) for µ
with respect to the minimum phase state z⋆1 , that is,

µ =
1

ξ2
(vac − rz⋆1 − Lż⋆1), (62)

where ξ2(t) > 0 for all t ≥ 0.

Stability of the controller is analyzed by using Lemma

1, which amounts to proving that ξ2 is bounded. Then, an

admissible pair (P̃, Q̃) is obtained with M = diag(L−1, C−1)
and λ = −r/L+ 1/κC and it can be shown that

Q̃ =

[
− 1

2

(
L
Cκ

+ r
)

µ
−µ − 1

2

(
rC
L

+ 1

κ

)

]

(63)

where Q̃ + Q̃⊤ < 0 holds provided that κ > 0 for all ξ =
[z⋆1 , ξ2]. P̃ is given by

P̃ =
1

4C

(

µz⋆1 −
ξ2
κ

)2

+
1

4L
(µξ2 + rz⋆1)

2

+
r + κµ2

4κL
ξ22 +

r − κµ2

4κC
µz⋆1

2. (64)

Therefore, using (63–64) we can find an equivalent dynamics

of (60–61) and, since P̃ > 0, by Lemma 1 the dynamics

defines a passive systems with port variables u = [vac, idc −
Vdc/κ] and y = −Q̃Q−1gξ̇ with g = diag(−1,−1). Then

(60–61) is stable and ξ2, ξ̇2 ∈ L∞. Moreover, from the power

balance of (60–61), as (24) in Subsect. III-B, we have that

κ < Vd/idc.

Let the average state error vector be defined as z̃ = z − ξ.

The difference between the state variables of the systems (22-

23) and (60–61) defines the error dynamics

−L ˙̃z1 = µz̃2 + rz̃1

C ˙̃z2 = µz̃1 −
1

κ
ξ̃2,

where ξ̃2 = Vd − ξ2. In order to ensure non-oscillatory

convergence of the error state, damping is added to the state,

see [25]. Therefore, consider the injected dissipation quadratic

in z̃1 as

Ga(z̃1) =
ra
2
z̃21 . (65)

with ra > 0. Then, the error dynamics is given by

−L ˙̃z1 = µz̃2 + (r + ra)z̃1 (66)

C ˙̃z2 = µz̃1 −
1

κ
ξ̃2. (67)

Again, by using Lemma 1, with M = diag(2/rs, 0), rs =
r + ra, and λ = −1, it can be shown that

Q̃ =

[
−L 0

− 2µL
rs

−C

]

(68)

where Q̃+ Q̃⊤ < 0 holds provided that

1 >
µ

rs

√

L

C
. (69)

for all z̃. And P̃ is given by

P̃µ(z̃) =
1

2rs
(rsz̃1 + µz̃2)

2 +
1

2rs
µ2z̃22 , (70)

which is strictly positive, with minimum of P̃µ is z̃ = 0, then

(66-67) defines a passive system with the input ξ̃2 ∈ L∞ and

the output ˙̃z2. Furthermore, since the RMS of ξ2 → Vd and

the average of ξ̃2 equals to zero, then the equilibrium z̃ = 0
of (66-67) is stable (see e.g., [38]).

Moreover, from (69) we have that the lower bound for the

series damping injection strategy is given as

ra(µ) =
1

1− δ

√

µ2L

C
− r Ga(µ) = 0 (71)

with tuning parameter δ ∈ (0, 1), as it was pointed out in [25].

Finally, it follows that the controller is given as (56-57).

C. Numerical results

Simulations are performed of the closed-loop behavior of

a boost full-bridge converter in the rectifier and regenerative

operating modes by means of the power-based indirect PWM

controller (56-57). The parameters that are used for simulation

are the same of the experimental setup of the next section and

are given in Table I. Control parameters have been selected as

follows: the tuning parameter of the series damping, δ = 0.5,

the gain of the parallel damping, κ = 0.05, and the initial

conditions z1(0) = 0, z2(0) = ξ2(0) = 10V .

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

250

time [s]

z
2
(t

) 
[V

]

Fig. 2. Simulated response of the capacitor average voltage z2 (red), with
the desired dc-bus voltage Vd = 200 V (blue).

Fig.2 shows transient responses of the dc voltage z2 for a

sudden change from rectifying to regenerating operation, i.e.,

the dc-load current varies from idc = 1A to −2A at t = 0.5
sec. Notice the steady state error is about 1 %, which is less

than the steady state errof of 5% in [23], where an energy
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Fig. 3. Source voltage vac (blue) and current z1 (red) waveforms

balancing controller is employed. The ac voltage and current

are depicted in Fig. 3, where the current waveform shows a

180◦ phase shift, at t = 0.5 sec., as the converter changes

from inverter to rectifier mode of operation.

Remark 11: The experimental implementation of the con-

troller (56-57) requires a current load sensor and line side

voltage and current sensors. Developing sensorless control

strategies is thus important, see for instance [39]. Therefore,

realization of bidirectional power control with a reduced

number of sensors is currently being studied.

V. CURRENT SHAPE IMPROVEMENT

As experienced in practice, the input current of the converter

contains higher harmonics. In this section we extent the

previous results to meet the design specifications where k
current harmonics have to be reduced in amplitude.

A. Harmonics Rejection Problem Formulation

The input current of the single–phase AC–DC boost con-

verter contains harmonics due to internal causes (non–ideal

transistors and diodes, blanking times and saturation in the

grid–side inductor) and external causes (grid harmonics).

Although the internal causes have not been considered for

the design of the PBC, these controllers naturally cope with

such causes, see [22]. The external causes may result in

harmonic distortion and a low power factor. To deal with that,

the current shape has to be improved. Without redesigning

the converter and inspired by the preliminary results in [40],

a passivity–based controller that is based on the frequency

domain description of periodic disturbances can accomplish

this. Theoretically, an arbitrary number of current harmonics

can be reduced by including bandpass filters in the controller

where the resonant frequency of each filter coincides with a

current harmonic to be reduced in amplitude. These bandpass

filters are regarded as damping injection filters and they can

be implemented as passive RLC networks.

The mathematical derivation of a passivity–based controller

with bandpass filters to compensate for current harmonics

follows.

C R~

rRa L

w1
Li1 wk

Cik

Rik

Ci1

Ri1

Lik

mz2
z1
~

Gamz1
~

z2
~

v1 vk

Fig. 4. Schematic interpretation for error dynamics of the power converter
with k bandpass filters and virtual series and parallel damping.

B. An Adaptive Passivity-Based Harmonic Controller

The desired error representation is shown in Fig. 4. It is

assumed that k current harmonics have to be reduced and the

desired error dynamics are formulated as

−L ˙̃z1 = µz̃2 + (r + ra) z̃1 +
∑k

h=1
vh (72)

C ˙̃z2 = µz̃1 − (θℓ +Ga)z̃2 + θ̃ℓξ2 (73)

Lihẇh = vh (74)

Cih v̇h = −wh − 1

Rih

vh + z̃1, (75)

where the latter two equations describe the dynamics of the

hth bandpass filter, with h ∈ {1, · · · , k}. Notice the value of

the load Gℓ is assumed unknown and a load estimator θℓ is

added. Indeed, if the estimator dynamics is chosen as (47),

with the Lyapunov function

H⋆
ea = 1

2
(Lz̃21+Cz̃22)+

1

2

k∑

h=1

(Lihw
2
h+Cihv

2
h)+

1

2α
θ̃2ℓ , (76)

then it can be proved that [z̃, v, w, θ̃ℓ]
⊤ = 0 is asymptotically

stable. To actually obtain the desired error dynamics, based on

the previous result of Subsection IV-A, the following controller

is used:

µ =
1

ξ2

(

vac − Lż⋆1 − rz⋆1 + raz̃
⋆
1 +

k∑

h=1

vh

)

(77)

Cξ̇2 = µz⋆1 − θℓξ2 +Gaz̃2 (78)

˙̂
θℓ = αξ2z̃2 (79)

Lihẇh = vh (80)

Cih v̇h = −wh −
1

Rih

vh + z̃1 (81)

with z⋆1 = Id sin(ωt) and Id as described in (52), h ∈
{1, · · · , k} and ξ2(0) > 0.

C. Damping Injection Filter Design

It can be verified that the transfer function Tih(s) of each

damping injection filter can be described by

Tih(s) =
Vih(s)

Z̃1(s)
=

1

Cih

s

s2 + 1

Rih
Cih

s+ 1

Lih
Cih

, (82)

where Vih(s), Z̃1(s) denote the Laplace transform of vih(t)
and z̃1(t), respectively, and the parameters Lih , Rih and Cih
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Fig. 5. Scheme of the experimental set-up

are related to important properties of the filter, namely, the

resonant frequency (ω0 = 1/
√

LihCih [rad/s]), the bandwidth

(B = 1/RihCih [rad/s]), and the filter gain at ω0 (K = Rih

[V/A]).

In general, the values of these parameters are not known a

priori. This means that the spectrum of the input current has to

be examined and based on this spectrum it has to be decided

which frequencies have to be compensated for. In other words,

the eigenfrequencies of the filters are fixed. The bandwidth

of each filter should be chosen small but large enough to

allow deviations in the input frequency. However, the gains

of the filters should be chosen reasonably large to suppress

the frequencies to be compensated for. This damping injection

filter design approach is experimentally tested in Sect. VI.

VI. EXPERIMENTAL RESULTS

In this section the results of load variation experiments and

the effects of harmonic compensation are discussed. A diagram

of the experimental set–up is schematically shown in Fig. 5.

The converter that is used for the experiments is the Danfoss

VLT 5006. This is a commercial three–phase rectifier/inverter

combination, but in this case the converter is modified and it

is used as a single–phase boost converter by using only two

switching legs of the inverter.

The parameters of the system are given in Table I. The

power dissipation in the converter is modeled by means of a

parasitic resistor with resistance r. Since this value cannot be

measured it is chosen in such a way that the RMS value of

the output voltage and the RMS value and phase of the input

current are as desired. For the set–up this value is chosen to

be equal to r = 2.5 Ω.

The original Interface and Protection Card (IPC) is re-

placed with an IPC developed by the Aalborg University

TABLE I
PARAMETERS VALUES FOR THE EXPERIMENTAL SETUP

Parameter

Input voltage amplitude E = 100 [V]

Input voltage frequency ω/2π = 50 [Hz]

Capacitance C = 340 [µF]

Inductance L = 10 [mH]

Parasitic resistance r ≈ 2.5 [Ω]

PWM frequency fs = 12.8 [kHz]

Desired output voltage Vd = 200 [V]

Nominal load Rℓ = 220 [Ω]
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Fig. 8. Output voltage z2 for the series damping injection scheme during
the step–wise load variation, using a low (top plot) and high (bottom plot)
adaption gain.

to provide external control over the gate signals. This IPC

is optically driven by a dSPACE DS1104 board, where the

control algorithm is implemented using the C-code generated

by the Real-Time Workshop Target Simulink Library. To

prevent aliasing the feedback signals, namely input-current, -

voltage, and output voltage, are filtered with first order lowpass

filters with cut-off frequencies of 2 kHz. The lowpass filtered

signals are sampled at 12.8 KHz by the dSPACE system and

consequently, an even number of 256 samples is obtained in

one fundamental period of 0.02 s. By choosing an even number

some unwanted phenomena (e.g., low frequency oscillations in

the output voltage) are avoided. Furthermore, the sampling of

the dSPACE system is synchronized with the generation of the

pulse width modulated signals. For each leg only one control

signal is needed, because the complementary control signal of

the second IGBT is generated by the IPC itself. A dead–time

of 2 µs is taken into account.

A. Robustness to Load Variation

The controller as described in Sect. IV-A is implemented

and connected to the converter. Justified by the tuning rules

only one type of damping injection is used at the same time

i.e., either (20) or (21). Two different adaption gains are

used and the adaption gains are chosen by observing the
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Fig. 6. Input current z1 for the series damping injection scheme during the step–wise load variation, zoomed in at steady state, using a low (dotted) and high
(solid) adaption gain. In steady state the current waveform is not noticeably depending on the value of the adaption gain.
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Fig. 7. Input current z1 for the parallel damping injection scheme during the step–wise load variation, zoomed in at steady state, using a low (dotted) and
high (solid) adaption gain. In steady state the current waveform is not noticeably depending on the value of the adaption gain.
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Fig. 9. Output voltage z2 for the parallel damping injection scheme during
the step–wise load variation, using a low (top plot) and high (bottom plot)
adaption gain.

converter output. The high adaption gain in the experiments

is approximately 80% of the adaption gain that causes the

system to behave in an undesired way e.g., causing undesired

oscillatory behavior or an over–current through the switches.

The low adaption gain is chosen by evaluating the response

of the system. In practice, this approach results in different

adaption gain values for the series and parallel damping

injection schemes.

For the testing of the robustness, the converter is operating

with nominal load resistance Rℓ = 220 Ω during 0 < t ≤ 0.6
s., then Rℓ is decreased from 100% to 50% (to 110 Ω) during

0.6 < t ≤ 1 s., and, finally, Rℓ is increased from 100% to

200% (to 440 Ω) during 1 < t ≤ 2 s.

1) Series Damping Injection: For this strategy, the damping

injection is described by (53). In theory the steady state

behavior does not depend on the value of the tuning parameter

δ. In addition, (53) only provides a lower bound. Nevertheless,

the damping is usually chosen close to the bound. Often the

value δ = 0.5 is chosen. In practice however, for low damping

values the input current is not sinusoidal and therefore the

tuning parameter value is increased to δ = 0.9. The input

current z1 and the output voltage z2 during the load changes

are shown in Fig. 6 and Fig. 8, respectively. In the results

the 100 Hz ripple in the output voltage is clearly visible. The

amplitude of this ripple depends on the system parameters and,

as a consequence, on the load as well. During the variation

in the load the RMS value of the output voltage returns to

the desired output voltage within a boundary of 2%. From

(79) it is clear that the load estimator dynamics depends on

the error in the output voltage z̃2. Since this error is not

damped the output of the estimator (not shown here for reasons

of space) shows an oscillatory response. When the adaption
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Fig. 10. Input voltage vac (Ch. 2: 20V/div, blue) and input current z1 (Ch.
4: 5A/div, green) with series damping injection.

gain is increased the frequencies of these oscillations are

increased, as well as the frequencies of the oscillations in the

output voltage. However, the maximum output voltage error

decreases. A look at the currents reveals that they are in phase

with the current reference. However, the currents are not purely

sinusoidal which is caused by model mismatch (nonlinear

plant characteristics and grid harmonics). For example, the

nonlinear characteristics of the diodes and transistors are not

modeled. This also causes the RMS value of the output voltage

and the output of the load estimator not to converge to their

desired values. In steady state the maximum error of the load

estimator in the experiment is approximately 4.5 % for a step

change from 220 to 440 Ω.

2) Parallel Damping Injection: For this strategy the damp-

ing injection is described by (40). Increasing the value of the

tuning parameter δ does not significantly influence the current

waveform. Therefore, the tuning parameter value is δ = 0.5.

The input current z1 and the output voltage z2 during the load

changes are shown in Fig. 7 and Fig. 9, respectively. In contrast

to the series damping injection scheme the overshoot in the

output voltage during load variations is less. Moreover, after

a load change with parallel damping injection oscillations in

the load estimator output and the output voltage are absent.

For all loads the RMS value of the output voltage is higher

than the desired value, but it remains within a boundary of

5%. The input current is higher than the desired current, out of

phase and more distorted. An explanation for this can be found

in the fact that in case of series damping injection the input

current is damped to a fixed desired input current z⋆1 . In case

of parallel damping injection the output voltage is damped to

a desired output voltage trajectory ξ2. This is a dynamic state

of the controller and therefore the parallel damping injection

scheme is more sensitive to modeling errors. In steady state

the maximum error of the load estimator in the experiment is

approximately 18 % for a load change from 220 to 440 Ω.

Fig. 11. Input voltage vac (Ch. 2: 20V/div, blue) and input current z1 (Ch. 4:
5A/div, green) with series damping injection under harmonic compensation.

Fig. 12. Frequency spectrum of the input current z1, with Rℓ = 170 Ω. (Top)
Under harmonic compensation. (Bottom) Without harmonic compensation.

B. Current Shape Improvement

From the previous part it is clear that in case of se-

ries injected damping the input current waveform is more

sinusoidal than in case of parallel injected damping. For

further improvement of the input current waveform filter-based

damping injection, introduced in Sect. V-B, is added to the

series damping injection scheme.

Fig. 10 and Fig. 12 (lower) show the waveform and fre-

quency spectrum respectively of the input current when no

filter-based damping injection is used and the load is equal

to 170 Ω. From the frequency spectrum it can be seen that

the harmonic content of the current is dominated by the third

and fifth current harmonic. To lower the total harmonic current

distortion and to improve the power factor these two harmonics

are compensated for. The resonant frequencies of the two
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TABLE II
PARAMETER VALUES OF THE TWO DAMPING INJECTION FILTERS

Filter parameters 3rd 5th

harmonic harmonic

Resistance, Rih = 400 300 [Ω]

Inductance, Lih = 5.7 1.5 [mH]

Capacitance, Cih = 198.94 265.26 [µF]

bandpass filters coincide with the frequencies of the two

current harmonics (i.e., 150 Hz and 250 Hz). The bandwidth

of each filter is chosen as 2 Hz to allow small frequency

deviations. These deviations are caused by the fact that in

practice the fundamental frequency deviates from 50 Hz.

Summarizing, the parameter values are shown in Table II.

Fig. 11 shows the resulting current waveform z1 when

the selected harmonics compensation is used, notice that the

improvement of the sinusoidal shape of z1 evidences the

harmonic reduction. Indeed, Fig. 12 depicts the frequency

spectrum of z1 with and without harmonics compensation

where it is clear that the third-harmonic decreases about 20
dB and fifth-harmonic decreases about 10 dB.

VII. CONCLUSION

In this paper, passivity-based controllers for the indirect

stabilization of the average constant output voltage in the

DC-side and unity power-factor in the ac-side for the boost

full bridge converter were derived. The control objectives

were achieved during the rectifier and regenerative operating

mode. Particularly for the rectifier operating mode, the control

scheme with series damping injection is able to reduce the

error in the input current in contrast to the control scheme

with parallel damping injection. If the load estimator is added

to the control scheme, then the estimated load and the output

voltage with the series damping injection scheme contain more

oscillations during a step–wise load variation than with the

parallel damping injection scheme. This is related to the fact

that with parallel damping injection the output voltage error is

damped. Sensitivity of the parallel damping injection scheme

to modeling errors is currently being dealt with via others

load estimators. For the series damping injection scheme the

addition of damping injection filters results in a reduction of

selected current harmonics, and thus the total harmonic input

current distortion is decreased.
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