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Passivity-based control of a class of Blondel-Park transformable
electric machines*
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In this paper we study the viability of extending, to the general rotating electric
machine’s model, the passivity-based controller method that we have developed for
induction motors. In this approach the passivity (energy dissipation) properties of
the motor are taken advantage of at two different levels. First, we prove that the
motor model can be decomposed as the feedback interconnection of two passive
subsystems, which can essentially be identified with the electrical and mechanical
dynamics. Then, we design a torque tracking controller that preserves passivity for
the electrical subsystem, and leave the mechanical part as a “passive disturbance”.
In position or speed control applications this procedure naturally leads to the well
known cascaded controller structure which is typically analyzed invoking
time-scale separation assumptions. A key feature of the new cascaded control
paradigm is that the latter arguments are obviated in the stability analysis. Our
objective in this paper is to characterize a class of machines for which such a
passivity-based controller solves the output feedback torque tracking problem.
Roughly speaking, the class consists of machines whose nonactuated dynamics are
well damped and whose electrical and mechanical dynamics can be suitably
decoupled via a coordinate transformation. The first condition translates into the
requirement of approximate knowledge of the rotor resistances to avoid the need
of injecting high gain into the loop. The latter condition is known in the electric
machines literature as Blondel-Park transformability, and in practical terms it
requires that the air-gap magnetomotive force must be suitably approximated by the
first harmonic in its Fourier expansion. These conditions, stemming from the
construction of the machine, have a clear physical interpretation in terms of the
couplings between its electrical, magnetic and mechanical dynamics, and are
satisfied by a large number of practical machines. The passivity-based controller
presented here reduces to the well known indirect vector controller for current-fed
induction machines. Our developments constitute an extension, to voltage-fed
machines, of this de facto standard in industrial applications. Furthermore, our
analysis provides it with a solid theoretical foundation.

1. Introduction

One of the main driving forces of control theory has traditionally been the
characterization of classes of systems for which a certain control objective is achievable.
This allows us to identify the system structural constraints—usually expressed in terms
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of system invariants—which are compatible with the desired performance. A fairly
complete theory along this line is now available both for linear [7], [36] and nonlinear
systems [24], [52]. From the practical viewpoint the interest in identifying the systems
invariants is to be able to attach to them some physical interpretation that can be used
in the controller design. Although in the linear case this characterization is readily
available and practically useful, for instance in the form of effective transmission delays
or sensor actuator couplings, their nonlinear counterparts developed to date seem to be
less suitable for practical applications. A good example of this state of affairs concerns
the fundamental problem of stabilizability. Stabilizable systems have been identified
via geometric conditions for linearization [24], [52], [45] or transformation to particular
(triangular, pure feedback) forms [49], [30], [46]. (See [26], [59], [30], [46] for recent
surveys and other characterizations of stabilizable systems). In the authors’ opinion
there are several shortcomings to these results. First, the geometric conditions seem to
be hard to verify in practical applications and are usually unrelated with the physical
constraints of the system. Second, the control laws typically require full state
measurement, hence the inclusion of observers for their practical implementation.
Finally, since they are derived neglecting the systems physical constraints, they are
often not well defined in all the operating regimes.

An alternative approach to systems stabilization that, to a certain extent, overcomes
the aforementioned shortcomings is to relate stabilizability of the system to the
possibility of rendering it passive via feedback. This idea, first advanced in an adaptive
control context in [60], has been explored in', e.g., [54], [9], {62], [27]. The relevance
of using passivity as a building block for control systems design stems, not just from
the important role this concept plays in systems stability analysis and its close
connection with the systems physics, but also in the invariance of this property vis a
vis feedback interconnection [13]. This aspect is particularly relevant in our work where
the key steps in the controller design are the decomposition of the system into passive
subsystems, and the choice of a feedback control that preserves the passivity of the
closed loop.

Our motivation in this paper is to contribute, if modestly, to the development of a
stabilization theory for physical systems that incorporates at a fundamental level the
systems physical structure. To achieve this objective we restrict ourselves to a
particular, but practically very important, class of systems—the general rotating
electric machine [47], [71], and establish conditions for stabilizability which are
interpretable in terms of the systems physics, Our main contribution is the definition
of a class of machines such that the output feedback torque tracking problem can be
solved via a passivity-based controller. Roughly speaking, the class consists of
machines whose nonactuated (rotor) dynamics are suitably damped and whose
electrical and mechanical dynamics can be “partially” decoupled, via a coordinate
transformation. Machines satisfying the latter condition are known in the electric
machines literature as Blondel-Park transformable [41]. In practical terms it requires
that the air-gap magnetomotive force be suitably approximated by the first harmonic
in a Fourier expansion. These two conditions, stemming from the construction of the
machine, have a clear physical interpretation in terms of materials and the couplings

'Some efforts to reinterpret from a passivity perspective the currently popular “backstepping
technique™ [32], [31] derived for systems with special forms are reported in [43], [35], [30]. See
also [59] for some interesting connections between input to state stability and dissipativity.
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between its electrical, magnetic and mechanical dynamics, and are satisfied by a large
number of practical machines.

The idea of passivity-based controller designs is to reshape the systems natural
energy and inject the required damping in such a way that the control objective is
achieved. Expected advantages of this approach are the enhanced robustness properties
and lack of (controller calculation) singularities, properties which stem from the fact
that cancellation of systems nonlinearities is avoided. The technique has its roots in
classical mechanics [21], [2] and was introduced in control theory in the seminal paper
[66], see also [58] for an early reference. This method has been instrumental in the
solution of several robotics [55], [3], [37], [1], induction motor [16], [56] and power
electronics [63] problems which were untractable with other stabilization techniques.
See also the recent interesting book [68].

The passivity-based controller design we present here is the extension of a class of
Blondel-Park transformable machines of the one used in [16] for induction motors, and
proceeds as follows. First, we carry out a decomposition of the system dynamics as a
feedback interconnection of passive subsystems where the outputs of the forward
subsystem are the measurable and the regulated outputs. A lemma that gives conditions
on the energy function under which this is possible is given. Second, we design an inner
feedback loop that, via the injection of a nonlinear damping term, ensures the controlled
subsystem defines a strictly passive map from conrrol signals to measurable outputs.
Third, the passivity-based technique is applied to this subsystem leaving the feedback
subsystem as a “passive perturbation”. As explained in [16] this last step involves the
definition of the desired closed-loop energy function whose associated (target)
dynamics evolves on a subspace of the state space insuring zero error tracking®. The
overall procedure leads to a nonlinear dynamic output feedback controller that ensures
global asymptotic torque tracking with internal stability.

In position or speed control applications an outer loop is added to the torque
controller [56]. As pointed out in [39], there appears to be universal agreement that this
structure, (with a fast inner current loop that can be regarded as creating impressed
currents to the stator windings necessary to achieve the desired torque specified by the
outer loops), is the most effective control scheme for electrical drives. This procedure
naturally leads to the well known cascaded controller structure which is typically
analyzed invoking time-scale separation assumptions. A key feature of the new
cascaded control paradigm is that stability is now established without these arguments.
See [57] for further discussions on this topic.

The remainder of the paper is organized as follows. In Section 2 we present a simple,
but important, passive systems feedback decomposition lemma. The class of systems
considered in the paper—the generalized electric machine’s model—is given in Section
3, and in Section 4 we formulate the control problem and describe the design procedure.
Conditions for strict passifiability of the electrical subsystem are established in Section
5. In Section 6 and 7, we explain how the passivity based approach is used to achieve
current and torque tracking, and in Section 8 we present the main results in this paper.
Examples and experimental results are given in Section 9 and Section 10. Finally,
concluding remarks are given in Section 11.

7t is worth pointing out that to overcome the singularity problems on a backstepping-based
controller for induction motors the authors in [12] borrowed this last step from [56].




276 Per J. Nicklasson, Romeo Ortega and Gerardo Espinosa-Pérez

Notation

See also [13]. #—field of real numbers; || - |—Euclidean norm; ( - y*—transpo-
sition; .#, — n X n identity matrix; e ’—matrix exponential;

%( -)= (- )—total time derivative;

L3, L%, Lo, L% —spaces of n-dimensional square integrable, essentially bounded
functions and their extensions; a causal system 2: #3,+> %%, is said to be passive (resp.
output strictly passive) if 3a=0 (resp. >0) and 3B € # such that

ru‘-"(r)(zu)(t)draa f |Zu|?dt+ B, Vu € ¥, Vy=0.
0 0

2. Passive subsystems feedback decomposition

We consider nonlinear electromechanical systems described by the Euler-Lagrange
equations of motion [47]

d [&_y(q, q_)] EACK )
dt ag oq

where’ ¥ = #°(4, q) — ¥ (q) is the system Lagrangian, ¢" : #>"— # is the total
system coenergy-state function, ¥~ : 2" — 4 is the total system energy-state function,
q € A" are the generalized coordinates and Q € #" are the external (dissipative and
control) forces. We assume that the system energy-state function (potential energy) is
bounded from below.

From the well known energy balance equation of Euler-Lagrange systems [68]

0 (2.1

1

H(1)— H(0)= L q"Qds

~
stored energy dissipated + supplied

where
AL\T
H'_(a_q)q <

is the overall system’s total energy, it follows immediately that the system (2.1) defines
a passive operator X: %5, — ¥5.:0> 4.

Lemma 2.1.
Assume the Lagrangian of (2.1) can be decomposed in the form

Y= .Sf’e(qe. ‘?e’ Qm) + gm(Qm, Qru)

3To simplify the notation, here and throughout the rest of the f)ﬂper we will omit the arguments
of the functions, giving them explicitly only when they are first defined.
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where g : = [gJ, ¢%1" with g, € #" and g,, € Z". Then, X can be represented as the
negative feedback interconnection of two passive subsystems

so e a| & ]-—)[q‘]
—qm y
2 L L5 (Y + Om) > Gm
where
g,
=3,
is the subsystems coupling signal, and Q : =[Q/[, QL.]" with Q. € ™, Q,, € A™.

y:

Proof
Using the Euler-Lagrange procedure to derive the equations of motion, we get

d [az’e] 0,
a|9Le) 9L 2.2
alage ) og. 2 @2

d[0Lm| 08FLm

— f— = m -|- .

dr aqm] oqm O @3

Evaluating the total time derivative of %, we get
S K2 B L2 S L
ge__—_ jet—Ge+—dn 2.4
8g. 7" 3. 7" ag, 1 &8

Noting that

%ﬁu_dﬁﬁ?]_ﬁrfﬂ-
ag. 1" arl ag. 9¢] arlag. 19
inserting this into (2.4), using (2.2) and rearranging the terms, we obtain

& H.=0T4.~ Ly
where
ag!
H(qes ey Gm) 1= 24, Ge— L
Using the arguments of Section 9.1 in [11] we can show that H. is the total energy of
the subsystem Z.. Integrating from O to y and setting f.:= — H.(0) proves the
passivity of Z..

A similar procedure can be used to establish the passivity of 2,,, using the energy
function

¥

Hm m_agm
3Gm 1

and (2.3).

3. General Rotating Machine
2.1. Model

In this paper we treat the general rotating machine considered in [41], (see also [74],
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[72]). It consists of a total of n, windings on stator and rotor and we assume ideal
symmetrical phases and sinusoidally distributed phase windings. The permeability of
the fully laminated cores is assumed to be infinite and saturation, iron losses, end
winding and slot effects are neglected. Linear magnetic materials are considered, and
we assume that all parameters are constant and known*.

Under the assumptions above, application of Gauss’ law and Ampere’s law leads
to the following affine relationship between the flux linkage vector 1 = [ 4,,..., 4,,]"and
the current vector . = [§1,..., Ga,]"

2=D(qm)Ge+ 1(gm) (3.1)

where g, € & is the mechanical position of the motor, D,=DIX>0 is the n. X n,
multiport inductance matrix of the windings and the vector p represents the flux linkages
due to the possible existence of permanent magnets. Both D, and y are bounded and
periodic in g,.

If we define as generalized coordinates of the system the total amounts of moving
electric charge that has passed any given point on the different phase windings, g,
i=1,...,n,, and the angular position of the rotor g,,, we can compute the magnetic-field
coenergy (with ’ denoting the variable of integration) as [47]

He=2

i=170
and the mechanical kinetic coenergy as

A =3 Dude
where D,, >0 is the rotational inertia of the rotor.

Neglecting the capacitive effects in the windings of the motor and considering a
rigid shaft, we have that the potential energy ¥~ of the system is only due to the
interactions between the magnetic materials in stator and rotor’, i.e. ¥ = ¥7(gn). We
get the Lagrangian

‘ 1 . .
Ai(gh) =§qe" D.g.+ p"q.

1 1
3’(4’“ qm’ QM)=§queQe+ﬁTQc+Equ%n_ {V(qm) (3.2)

To model the external forces we will assume that the dissipative effects are linear
time invariant and only due to the resistances in the windings r;=0, i = 1,..., n., and
the mechanical friction R,,=0. The control forces are the voltages applied to the
windings u € #™, n,<n,. We consider here fully actuated as well as underactuated
machines, that is, machines where the voltages can be applied only to stator windings
(e.g., induction motor), or to both stator and rotor windings (e.g., synchronous motor
with field windings). Hence, we find convenient to partition the vector of generalized
electrical coordinates as g. = (g7, g 1" € #", g, € R, q, € R",n,= n.— n,, where
the subscripts s, r are used to denote variables related to windings with and without
actuation respectively. In the case of underactuated machines the partition coincides
with stator and rotor variables as well. Notice however, that there are also machines,
like the PM synchronous, PM stepper and variable reluctance motors, where g,

“See [14] for relaxations of the latter restriction.
SThis energy contribution is zero if there are magnetic materials in only one part (stator or
rotor), and the reluctance properties of the other part is uniform.
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consists only of stator variables which are directly actuated by the stator voltages, see
the examples in Section 3.3. Finally, we assume® that the load torque y, in the
mechanical subsystem is of the form

Yi(Gms @) = k1 + ks, tanh (%) +Kadm (33)

with a scaling parameter p > 0.
With the considerations above, and applying the Euler-Lagrange equations to (3.2),
we obtain the equations of motion of the generalized machine as

Deée + wl (qm)Qm‘?e-F WZ(q"r)q"m-i_th'e =Meu (3‘4)
Dugm—Y(Ges Gm) + Rmgm= —y1 (3.5)
where
._dDgm) ., . _dp(gm) , . _ o [,f,,J]
W.: dan W,:= dan R.:=diag{r SFn,r. %0}, M, := 0
with y the generated torque
1 . .
Y=h(ge, qn) :=5GIWige+ Wig. +n(qn) (3.6)
and
dv
n(gm)= dan 3.7

which is also bounded and periodic in g,.

Notice that the machine is fully characterized by its dynamic parameters
D :=diag{D., D}, M., p, n and the dissipation parameters R : = diag{R,, R, }.
Therefore, in the sequel we will refer to the system described by (3.4), (3.5), (3.6) as
2(D, R, M., u, n). Similarly, the electrical subsystem (3.4), (3.6) will be denoted by
2.(D., R.,M,, pi, ), and the mechanical subsystem (3.5) by 2,.(D, R.).

3.2. Remarks

1. We have derived here the model of the electrical machine using the Lagrangian
formalism. Tt is clear that the same model can be obtained from the application of the
basic force laws. Besides its esthetic appeal and generality, variational modeling is the
natural framework for passivity-based designs, where energy functions and workless
forces must be identified. Furtheremore, as pointed out in [71], we tend to believe that
“the long-term value of variational techniques precludes their dismissal merely on the
ground of conceptual difficulties or lack of physical insight when employed by the
novice”.

2. If we introduce the flux” 1 as defined by (3.1) into (3.4), we get the voltage

5The presence of a load torque y; of this form ensures that to every bounded y there exists
abounded §,.. Except from this, as will be shown below, the load torque y; plays no role in the
torque tracking problem. Also, as shown in [16] it can be treated as an external disturbance for
the speed tracking problem.

"We recall that fluxes and currents are the generalized electrical momenta and velocities of
the Hamiltonian formalism [71].
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balance equation A+ R,§.=M.u. Particularly useful for further developments is the
following relationship between motor fluxes and rotor currents for motors where the
rotor windings are short circuited (induction motors)

A +R.Gg.=0 (3.8)

where A:=[AF, i7" and R.=diag{R,, R,} with R.,=r. %, € A™""™,
R,=r.¥, € #"*"_ The importance of (3.8) is that it defines a dynamic relationship
between ¢, and A, which is unaffected by the control action, hence we will have to take
this into account when defining a “desired behaviour” for the machine.

3. Aninteresting property of 2(D, R, M., i, n) and other magnetic field devices
in which currents are of main interest, is that the electric charges are ignorable [71],
(also known as cyclic in mechanics [2]). That is, the Lagrangian of the system does
not contain g, (although it contains the corresponding currents g. ). It must be pointed
out that when choosing the form (2.1) of the Euler-Lagrange equations, it is crucial
that the currents are expressed in their natural frames (where electric charges can be
obtained by integration of currents) to avoid introduction of quasi coordinates. See
also [71].

4. For machines with mechanical commutation, the relation between port and rotor
currents introduces non-holonomic constraints [71], [50] and the dynamic equations
cannot be obtained directly from (2.1) with the given Lagrangian. Instead quasi
coordinates could be introduced, and the dynamic equations derived by using the
Boltzmann-Hamel [71] or Gaponov [50] form of the Euler-Lagrange equations. These
procedures are however quite involved, and the dynamic equation for this class of
machines is therefore usually not derived from variational principles, but by the use
of basic laws as Faraday’s law, Ohm’s law and Euler’s law. Also, since the
Euler-Lagrange procedure is based on energy properties, the dynamic equations for
machines with nonlinear magnetics can also be derived by this procedure. The switched
reluctance machine is an example of a machine in which the magnetic nonlinearitics
must be taken into account. We will not consider machines with mechanical
commutation or nonlinear magnetics in this paper, but refer the reader to [20] where
the latter issue is addressed.

3.3. Examples

In [41] several examples of electric machines described by 2(D, R, p, 17) are given.
We present here two examples of fully actuated machines, i.e., where n,=n. and
M € b j nge

(i) For the 3¢ PM synchronous motor [33] we have n, = 3 and the parameters
De(Qm) =
1

1
Lis+ Ly — Lpcos2npgm — 2.’..,4. — LscosZ(npq,.. g) — -ZL,q — LBCOSZ(PIpqm 1 ;)

L

1 n 2
- ELﬁ . Lsoos2(npq... e ) L+ La— L.Bcosz(”qu'm - _3?[) - 2LA - LBCOSZ(”FQM +=)

3

1 1 2
= ELA . Lscos‘l(n,q,,. + g) - ELA — Lpcos2(npgm+ 1) L+ Ly— LsODS2(Hme + ?ﬂ)

(3.9
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[ sinnyGm

) 2
w(Gm) = 4An sm(npqm - ?n) (3.10)

sin( + ZR)
Fpgm+—
{ pq 3/

where Ly, L,, Lg are inductance parameters, 7, is the number of pole pairs and 4,, is
the amplitude of the flux linkage established by the permanent magnet.

(ii) The 2¢p PM stepper motor has n. =2 and the following parameters [75]

LO
D,—[O L] (3.11)
_Ka cos(N,qm)]
p(gm) N, [Sin(qum) (3.12)

L is the self-inductance of each winding, and K, is the torque constant. N, is the number
of rotor teeth of same polarity. In this case the torque has a term due to the interaction
between the permanent magnet and the magnetic material in the stator (detent torque),
and 7(g.)= — Kpsin(@N,q,.), Kp=5 — 10% of Knio, where io is the rated current.

4. Problem formulation and Design Procedure
4.1. Problem formulation

We will assume here that the currents of the actuated windings g, and rotor position
qmand velocity ¢, are available for measurement. Also, we will take as basic regulated
variable the generated torque y, which is however unmeasurable since it depends on
the variables ¢,. Notice that the motor speed is related to the latter via a simple linear
passive operator (3.5). Thus by regulating y — y and ensuring passivity in closed loop,
as can be done in passivity-based control, we can expect to have a good behaviour in
the mechanical subsystem with a simple (PI) speed outer loop.
Our control problem can therefore be formulated as follows:

Output feedback torque tracking problem. Consider the 2n, + 2 dimensional machine
model (D, R, M, p, n) with state vector [, §., Gm, §m]", inputs u € #", regulated
output y, measurable outputs ¢, gm, ¢m and smooth disturbance y;(#) € & .. Find
conditions on D, R, p, # such that, for all smooth desired output functions y.(t) € & -
with known derivative y4(t) € & «, global torque tracking with internal stability is
achieved, i.e. lim,—.(y—ys)=0 with all internal signals bounded. Further, for
underactuated machines, we will require asymptotic flux amplitude tracking, that is,
for a given bounded function f(t) = 8 > 0, we must have that lim, .| || = B(£) [ =0.

4.2. Design procedure

The rationale of our design, takes off from the passive subsystems decomposition
of Section 2 and, “disregarding” the mechanical dynamics, attempts to regulate the
generated torque y by imposing a desired value to the currents g.. There are therefore
three natural steps to follow:

1. Apply the passive subsystems decomposition of Section 2 to the motor, to view
3. as the “system to be controlled”, and X.,, as a passive disturbance. To ensure
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u q.'s
Q Le

Gm y

5 é—y:,

Figure 1. Passive subsystem decomposition.

the latter does not “destroy” the stability of the loop we must inject damping to
Z. so as to strengthen its passivity property to strict passivity.

2. Define aset of “atrainable” currents §.q, i.e., those for which we can find a control
law that ensures lim;~ « g, = §,,. To this end we shape the energy of the closed
loop to match a desired energy (storage) function, which we choose here as

R 1 =T =
Hey:= 2@2Deq’e,
where the current error is defined as
Ge'= qe—qed “.1)
3. Among the attainable currents choose .4 to deliver the desired torque y,, that

is, such that if g.=¢g.q then y=y,. Finally, give conditions under which
lim, »y =y, with internal stability.

5. Strict passifiability via damping injection
In this section we will carry out the first step of our design procedure, namely,

decomposition of the model into passive subsystems 2., X,,, and strict passifiability
of Z,.

5.1. Feedback decomposition

Proposition 5.1.  The system 2(D, R, M., p, 1) can be represented as the negative
feedback interconnection of two passive subsystems (see Fig. 1)

SoRT Lt [ y ]H [q,]
“{m Yy
22 L2 (Y= YV1)>Gm

Proof

The proof is a corollary of Lemma 2.1 noting that the Lagrangian of the electric
machine (3.2) can be decomposed into

) 1, . . . 1.
FGes Gm) = Eq! D.get 1 Ges L n(Gms Gm) = -szqi. — ¥ (Gm)
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5.2. Conditions for damping injection

We now identify a class of machines for which-—injecting damping to 2 —we can
ensure that the map from control input to measurable output is output strictly passive.
The physical interpretation of the assumptions is given after the proposition.

Proposition 5.2. Consider the subsystem 2.(D., R., i, n). Assume

A.l. R.:=diag{R,, R,} with R, € #"™, R, € #™" diagonal matrices and
R,>0

A.2. The n, X n,-dimensional (2, 2) block of the matrix
_dab,

W, = dan

is zero, i.e.

w, =] (Wou (Wl)u]

(W21 On,xn,

A.3. The non-actuated rotor components of the vector y are independent of g, that
is

du [ Wls]
=—1 = W € R™
W2 dqm 0 s W €
Under these conditions there is a nonlinear output feedback of the form
u=v+ WZs‘jm_Kl(Qm9 q»-)q: G.1n

such that the map v ¢, is output strictly passive for all ¢,., gm € £ ..

Proof
The dynamics of 2, is described by (3.4) which we repeat here for ease of reference

D.g.+ Wignge + Wogm+ Rege=M.u
Closing the loop with (5.1) we get
D.g.+ Ce(qm* Qm)‘?e + Res(qm Gm)ge=M.v (5.2)
where we have defined

C—IW'R—R+1W'+KI0] 53
e-_z' 1Gms es - = Ig 5 19m 00 (5.3)
Taking the time derivative of the total energy of 2., that is
|
Hr =5 -; elfes
-1 =59 Deq
along the trajectories of 2, we get
He=q;'v_quesQ.'a

Suppose that

E 1 i

KL=Kf>SUP[%(W1)|2Rr"(W| Tz—i(wl)nqm} (5.4)
Gme G

Then, by using standard matrix results, the symmetric matrix R, can be shown to be
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uniformly positive definite in the sense that inf g, gmAmn{ Res} =0 >0, where (- );;
denotes the (i, j)-th submatrix of a block matrix and A,,{ -} is the minimum
eigenvalue. Integration of H, completes the proof.

5.3. Remarks

1. Notice that strict passivity is achieved, via the nonlinear damping term K, 4,
(with K, explicitly depending on g, and 4,.) which recovers the positivity of the
“damping” matrix R.,.

2. In the case of full actuation, i.e. n,=n,, the required positivity of R, is
guaranteed if

1
Ki=Kf{> —-R.— Ew'q"‘ (5.5)

3. Assumption A.l. is a reasonable condition of damping of the nonactuated
dynamics whichis satisfied in all electric machines. The problem is with condition (5.4),
which shows that to overcome the imprecise knowledge of the rotor resistances we will
have to inject high gains into the loop.

4. A.2. is a decoupled dynamics condition equivalent to requiring that in the
magnetic coenergy the contribution of the terms quadratic in ¢, be independent of g,,..
Physically, this translates into the condition that if there are rotor windings, then the
rotor flux induced by the rotor currents must be independent of the rotor position. This
means that the stator must have uniform reluctance properties (non-salient and of
uniform magnetic material). This assumption is satisfied by many machines, e.g.
classical Park [74] and poly-phase [72] machines.

5. Since the torque (3.6) consists of one component due to the currents, and the other
of purely magnetical origin, and since we have no control on the magnetic fields from
the permanent magnets, it is reasonable to expect that we must eliminate the effect on
2, of the flux linkages due to the permanent magnets. This explains the need for
assumption A.3. Physically, this assumption also means that if the machine has rotor
windings, then the stator must have uniform reluctance properties i.e., if the machine
has permanent magnets, then they can only be placed on the rotor. As can be seen from
(5.1), the term from the permanent magnets must be cancelled out. The need for this
cancellation is a drawback of the scheme. However, the term is generally a vector with
periodic functions in a measurable quantity (position), and proportional to a constant
which can be precisely identified.

6. Current tracking via energy shaping
We now define the “attainable” currents g.s of the second step of the design

procedure.

Proposition 6.1.  Ifin (5.1) v and §.q € & satisfy
MV=D.Geg+ Ce§ea+ ResGea 6.1

then (see (4.1) for the definition of the current error) §,—0 as 1 — o independently of
Gm, m and the choice of §... Furthermore, when ¢, is bounded then ¢,,, §. and y also
bounded. In addition, boundedness of g4 ensures that ¢, and v are also bounded.
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Proof
Rewriting (5.2) in terms of the error signals gives
DG+ Coiet+ Resie + W (6.2)
with
Y:=Mv—(Defea+ Cejea+ Resqea) (6.3)
Then (6.1) implies { =0, and the dynamics of the system is fully described by
DeG,+ C.g.+ R.g, =0 (6.4)
Dyim+RuGgm=y—yr (6.5)

These equations are locally Lipschitz in state, and under the assumptions on the desired
torque and load torque, they are continuous in ¢, so there exists ¢, > 0 such that in the
time interval [0, #;) the solutions exists and are unique.

Taking the time derivative of the desired energy function

1- .
Hey=< ~3 D € —t
ed = 54 e

along the trajectories of (6.2) we get

He= — §'ResGe, V1 €10, 11) (6.6)
It follows from (6.6) and the proof of Proposition 5.2 that

Hu= —§RuGe= — allgl’, Vi €10, 1) (6.7)
and we can conclude that
GO < ml|é.©e #<, V2 € [0, 1) (6.8)
holds with
_ [Amax(De)
"7\ Ann(D2)
and
o«
P e DY

which are independent of z,.

From this, and since §.s € ¥"%, we deduce that ¢, is bounded on the open interval
[0, £,). Now, we are going to prove that it remains bounded also on the closed interval
[0, ;). To this end, notice that the right hand side of (6.5) is also bounded on [0, t,),
thus its solution cannot grow faster than an exponential, and consequently §,., g remain
bounded V't e [0, ¢,]. This in its turn ensures the boundedness of R.,, and consequently
[|Z]l cannot escape to infinity in this time interval.

Since m,, p. and « are independent of #,, it is possible to repeat this argument for
a new initial condition, to define solutions on the time interval [t,, 2¢,]. This shows
that it is possible to extend this procedure to prove existence of solutions for the whole
real axis, and the system cannot have finite escape time. It follows from (6.8) that

lim G.=0 (6.9)

and we can conclude that g, is bounded, which implies that y is also bounded. From
this, and the definition of the load torque (3.3), it follows from §,, remains bounded.
Now, it follows from (6.4) and (6.3) that g, and v will be bounded if § .4 is also bounded.
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7. From current tracking to torque tracking

It is now convenient to take a brief respite and recapitulate our derivations. The first
step of Subsection 4.2 was carried out in Section 5 where we designed an inner control
loop to ensure that (5.2) defines a strictly passive mapping v+ ¢,. In Section 6 we
carried out the second step, that is, we established a relationship between the control
signal v and § .4 (6.1) which implies lim, - « §, = §4. The third step, to which this section
is devoted, demands the definition of ., from the “attainable” set that delivers the
desired torque and the establishment of conditions under which current tracking implies
torque tracking. Notice that these steps are not straightforward since D,, C, and R,
(6.1), and y (3.6), depend on g, and ¢, thus some additional conditions on the couplings
between the subsystems must be satisfied. These conditions are expressed in terms of
restrictions on the parameters D., R., p, 5 of the general electric machine model.

7.1. Desired current behaviour

Motivated by (3.6) we proposed to define ¢.4 such that, for a given desired torque
ya the equation

1
}’d=§4§dW|qed+ Wageat 1 (7.1)
holds. This gives
1. . . .
Y —Ya Z"iqfwlqﬁe + G Wigea+ Wig.

with the error signal g, : = §, — §.s. Since W, and W, are bounded, it follows that
asymptotic torque tracking will be achieved if we can ensure lim, - o § g With g € £

o [tis clear then that to attain the torque tracking objective we must define bounded
gee and v such that (7.1) and (6.1) both hold.

Towards this end, first notice that in the case of fully actuated machines M, = .# ., and
there are no restrictions on the set of “attainable” currents. That is, in this case, for any
given §.q, .4, we can make =0 by a suitable selection of v.

Now, to treat the case of underactuated machines, where we do not have enough
control actions to directly set » = 0 for any given .4, we find it convenient to partition
v =L I withy, € #™. Since .= 0 can always be solved with a suitable choice
of v, (see the definition of M), we concentrate our attention on the solution of i, =0.
We will show in the sequel that, although (6.1) and (7.1) are intimately related,
additional restrictions on the machine model are required for a simultaneous solution.
Interestingly enough, it turns out that these “decoupling” conditions are (a stronger
version of) the well known Biondel-Park (BP) transformation conditions which are
fundamental in the analysis of rotating machines [41], [47].

7.2. Decoupling conditions
The following definition is in order:

Definition 7.1. 'We say the machine (D, R, M., u, 1) is BP transformable if there
exists a current transformation

Ze=P(Qm)‘?e=Ple-quqr (7'2)
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such that the dynamics of 2. in these coordinates are independent of g, (but still depend
on §,,). P is any nonsingular constant matrix. If furthermore the matrix U is of the form

(oo }|__,_[0 o0
v [oun] v [o---ugz‘]

then we say the machine is strongly BP transformable.

From the structure of the matrix U above we can see the strong BP transformability
means that the decoupling is achieved rotating only the rotor variables. As will become
clear later, this condition is needed when the rotor circuits are not actuated, as in the
induction motor case.

In the fundamental paper [41] necessary and sufficient conditions for BP
transformability are given. Since our definition of the BP transformation slightly differs
from the one given in [41], and for the sake of self-containment, we give below a
simplified version of their theorem, whose proof is given in Appendix A.

Proposition 7.1.  If there exists a constant matrix U e %#"¢™" solution of

UD,— D U=W, (7.3)
R.U=UR, (7.4)
UW,= % (7.5)

dgn,

then 2(D, R, m., p, i) is BP transformable. In this case the dynamics of 2. (see 3.4))
in the coordinates 7, is described by

D.(0)P{ 'z, + UD(O)P "gmie+ Wo(0)gm+ R.P{ '2.=€ Yi"M,u=M.,u' (7.6)

while the dynamics of Z,, (see (3.5)) is described by
qum+Rm4m=y_yL (7.7)
y=2/P; "UD. Q)P ‘2. + WI(O)P, 'z, +1 (1.8)

Example 7.1. Park’s transformation

For a class of synchronous machines with inductance matrix as in (3.9), the BP
transformation to the dg0-frame is given as [33]

2n 2n
cos(fpgm) €OS (npq,,, - —) oos(npqm + -—)
3 3
P(gm) =§ sin(n,qm) sin(npq,,, - 2—;) sin(npq,,, + 2311:) (7.9)
1 1 1
| 2 2 2
This transformation can also be written as
P(g,)=P,e Vin
where
0o -1 1 2 -1 -1

n, 1
= 1 0 -1 P=—| 0 —-V3 \3
U=\3 73

-1 1 0 11 1
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and U satisfies (7.3)-(7.5). The inverse transformation is given as

cos(n,G.) sin(n,g,) 1

2 2
P '(gm)=eVimp 1= oo\s(npqm—-;) sin(npqm—?n) 1 (7.10)

cos(npq,,,-l—%ﬁ) sin(npqm—k%t) 1

Several slightly different forms are encountered in the literature, [19], [23]. This stems
from the choice of the matrix P, which is sometimes chosen from a power preserving
objective, or with the objective of making P, orthogonal.

1.3. Remarks

1. For the purpose of the present paper, the key feature of BP transformable
machines is that the components of torque that also involves currents become
independent of rotor position (see (7.8)) when expressed in suitable coordinates.
Notice also that, for constant speed, the electrical subsystem in (7.6) is linear
time invariant when u’ is taken as the new input. This fundamental property has
been exploited in the literature to determine stability properties in stationary operation
[70].

2. The underlying fundamental assumption for the machine to be BP transformable,
is that the windings are sinusoidally distributed [74], giving a sinusoidal air-gap
magnetomotive force (MMF) and sinusoidally varying elements in the inductance
matrix D,. For a practical machine, this means that the first harmonic in a Fourier
approximation of the MMF must give a sufficiently close approximation of the real
MMF. Examples of machines in which higher order harmonics must be taken into
account, are the squarewave brushless DC motors in [48], and machines with significant
saliency in the air gap [65].

3. It is interesting to remark that the BP transformation cannot be derived from a
canonical transformation [21] z = z(g) of the generalized coordinates and momenta.
This fact is presented in Appendix B.

4. Since the matrix U is real and skew-symmetric, it follows that e Uam is an
orthogonal transformation, and the transformation P(g,,) is bounded.

Main results

We now proceed to relate the property of BP transformability with our problem of
definition of desired currents g... This is carried out in the following subsections, where
we treat underactuated (n,<n.) and fully actuated machines (n,=n,) separately.

8.1. Underactuated machines, n; <n.

Proposition 8.1. Assume the machine 2(D, R, M,, u, n) is strongly BP
transformable, satisfies u =#n =0, the (2, 1) block of D, is nonsingular, and that £(¢)
is a bounded strictly positive twice differentiable function with bounded first and second
order derivatives. Under these conditions, the following definition of §.4 satisfies (6.1)
and (7.1) for any given y,
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JUR" +‘—?R _l}]).ﬂ;

1
- 1
= ‘?sd]= (De)ar I:jn,+(De)22[ﬁ2yB B
Gra ﬁ23’dU22 +ﬂRr I]Ard (8.1)
where ., is the solution of the differential equation
I ﬁ(t)
Dra= 7 r);m*? Un' Dt g A (8.2)

with initial conditions such that || 1,.(0)]| = B(0). Furthermore,
40l = B(1), V2=0

Proof

The last statement of the proposition follows immediately by taking the time
derivative of

l 2
I,

substituting (8.2), and using the fact that strong BP transformability implies
RrUZ-zl + (R,-Uzzl T= 0.

To simplify the notation of the rest of the proof we find it convenient to introduce
the desired flux A= A%, A7,]" as

Ad: =D G (8.3)
Some simple calculations using (6.3), (5.3) and (8.3) show that®
VU, =044+ R Gua=0 (8.4)

Now, notice that BP transformability of the machine allows us to write (7.1) as (see
(7.3))
Ya=GtaUD e
which, in terms of the desired fluxes and currents looks like
Ya=qGeaUls
If further the machine is strongly BP transformable then
Ya=q¢ruUnly
= — LR, "Unlu (8.5)
where we have set i/, = 0 and used (8.4) in the last equation. From this we see that for
(7.1) to hold, we must define/ ,4 such that (8.5) always holds. It is straightforward to
verify that this is the case when 4, is defined as in (8.2), using Un"= — Uz’ (see
Definition 7.1), the symmetry of R, and the fact that A = B(2).
The proof is completed using (8.4) to obtain §,, and the definition of 1, to calculate
o Our main result for underactuated machines is contained in the theorem below.

Theorem8.1. Consider the machine model (3.4), (3.5), (3.6). Assume that the machine

See (3.1) and the first remark in Subsection 3.2 for the physical motivation behind this choice
of relations between desired fluxes and currents.
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is strongly BP transformable (Definition 7.1), u =0, # =0, (D.) is nonsingular and
A.1.-A.2. of Proposition 5.2. hold. Under these conditions, there exists a dynamic output
Jfeedback controller that ensures global asymptotic torque tracking with internal
stability. Furthermore, for all f(¢) (bounded strictly positive twice differentiable with
bounded first and second order derivatives), we have lim,— ||| 2] — f(#)| = 0.

Proof

The control law is obtained from (5.1) and (6.3), setting yr, = 0. To this end, we use
the definition of §.. of Proposition 8.1. Notice that §.. is bounded, and can be computed
from the available measurements provided J; is known.

Convergence of g— 0 follows from the arguments of Section 6. Boundedness of § g
follows from (8.1) and the boundedness of /,,and y,. This establishes asymptotic torque
tracking.

Electrical rotor flux tracking is a consequence of the convergence of the currents
to their desired values and the chosen norm of 4,,, since

Ara— Ar=(De)21(Gsa— ¢s) + (De)22(gra— Gr)
and D.(q..) is bounded with respect to g,,.

8.2. Fully actuated machines, n,=n,

For fully actuated machines M, = .#,,, and as previously explained, we can make
Y =0 by a suitable selection of v for given ¢,, and §.,. The main difficulty is to find
Gea Such that (7.1) is satisfied. This is done by choosing the desired currents from the
BP transformed torque equation, since the matrices relating the transformed currents
and the torque are not dependent on g,,, which considerably simplifies the choice.

Theorem 8.1. Consider the machine model (3.4), (3.5), (3.6). Assume the machine is
BP transformable (Definition 7.1), and A.1.—A.3. of Proposition 5.2. hold. Under these
conditions, if the desired currents and their derivatives are defined as

Gea=eY"mP e (8.6)
Gea = UV P Gz eq+eVmPi 17y 8.7

where Z.4 is chosen to satisfy
Ya—N=25aP{ TUDO)Py '2og + WI(O)P{ 'z oq (8.8)
With 2.4, Zea € £ %, and the dynamic output feedback controller defined in (5.1), with
V=D.§feat+ CeGeat Res(ea (8.9)

ensures global asymptotic torque tracking with internal stability.

Proof
The expression for the torque in the transformed system is, according to (7.7)
. y—n=2PT"UD(0)P, 'z, + WI(0)P 'z,
Setting Z = Z. — Z.s and using (8.8) gives
Y= ya=ZPi TUDO)Py "% + 27" P "UD.(0)P ~'Zea+ WI(0)Pi'Z (8.10)
Since Z =P(q,,,)cj‘e, and P(g,,) is a bounded transformation, it follows that

lim G, =0 o limZ=0
oo u [—+ o
lim;—. cny = yd

It is clear that {ye L gue Lo, and Zue LY, ne Lo=Dfuc L.
Defining v as in (8.9) gives y =0, and the arguments of Section 6 hold.
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8.3. Remarks

1. Notice that the assumption in Proposition 8.1. that the (2, 1) block of D, is
nonsingular implies that the number of actuated and nonactuated windings must be
equal. This is the case for typical induction motors, where this matrix is a nonsingular
rotation matrix.

2. Eq. (8.2) has a solution of the form

A1) = Me(Uz:»)"' a1 Aa(0), pulD) = ar—yu(1), pa®)=0  (8.11)
" BO) - Ay " ’
This gives an interpretation of the desired flux in terms of its rotation angle, whose speed
is related to the desired torque.

3. During the derivation of the model and controller, we have assumed the use of
a voltage source inverter for the input to the actuated windings. If the inverter used is
a current source inverter or a fast current control is used, it follows that the inputs to
the actuated windings will be the currents §,= ¢, where ¢ is the vector of desired
currents for the actuated windings, as defined in the previous sections.

4. The quadratic form in (8.8) is in general not easy to solve for the components
of Z.4. Examples of solutions for certain motors are given in Section 9.

5. For 3¢h machines the currents of the transformed system are usually denoted with
subscripts d, g and 0. For machines in which the symmetrical windings has an isolated
neutral, the zero sequence of the transformed currents is exactly zero, which defines
a natural choice for desired value of this current.

6. The desired transformed currents could be chosen from a similar objective as
in the field oriented approach. The transformed torque equation is generally given as

y=cflaiq— AgZa) (8.12)

where c is a constant, and A4, 4, are d and g components of the transformed flux vector.
If we can make 4,Zq€qual to zero and A, constant, it will be possible to control the torque

by specifying z,.

9. Examples
9.1. Two-phase model of uniform air gap squirrel cage induction motors

In this section the controller (5.1), (6.1) with desired currents from (8.1)-(8.2), will
be applied to the two-phase o model of an n, pole pair squirrel cage machine with
uniform air gap. This model could be interpreted as an equivalent model of the usual
3¢ machine, or stemming from a reduction of phases in the more general polyphase
machine through transformations like those presented in [71]. It is common practice
to substitute the (single)-cage rotor which has a uniform conductor distribution with a
fictitious sinusoidally wound rotor (poles and phases corresponding to stator windings)
for analytical purposes. This implies that only the first harmonic of the rotor MMF is
modelled, but this is not detrimental for the subsequent analysis and controller design.
However, care should be taken in cases of double-cage or deep bar rotors [71], [69].

The model has n. =4, ny,=n,= 2, and its parameters are

_ szz L_rreynpqm _ o
Dqn)= [L,,e EEACCLI ] #=0.1=0 ©D
_[RS 0 ] =
Re_[ 0 Rrjz ’Me"jz (9'2)
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where L, L, L, are inductance parameters, R,, R, are resistances, and

[0 -1 woam _ | COS(Npgm) = SIN(N,Gm)
f_[l 0 ]’ei " “[sin(npq,,.) cos(n,qm) ] ©-3)

Equations (7.3)—(7.5) are satisfied for
0 1
U= “"‘”f="‘°[~ 1 0]

and e”"r%m is the BP transformation of the rotor quantities from the rotor reference
system to the stator reference system. This gives the desired rotor flux (see (8.2) and
(8.11))

_ pO] . _ R, _
lm—eﬂd’[ 0 ], pd_npﬁz(t)yd(t)v Pd(o)—o

where the rotation angle (relative to the rotor system) is defined by the familiar relation
between desired slip, p, and desired torque y .
The choice of desired currents then follows from (8.1), and the input to the stator
windings is given by
u=v—Ki(gmgs
v= Ls‘?sd + Lsrefnﬂmfird + Lsr"pjejnpqm‘j'mqm + qum + Kl(ém)é‘m
where

2r2
Ki(gm)= (%éi- +k )fz, 0<e<min{R,, R;}, ki=0
has been chosen to satisfy (5.4).

The application of this observerless control scheme was first proposed in [16], and
its extension to speed and position control is presented in [56].

Itis important to underscore that in [56] it has been shown that under the simplifying
assumptions of constant speed and that the inverter can be modelled as a current source,
the passivity-based control reduces exactly to the well known indirect field oriented
control (FOC). For a voltage source inverter, the difference from indirect FOC is the
additional nonlinear damping term introduced in the input. Furthermore, in [73] it is
shown that the global stability properties are preserved for all estimates 7, of rotor time
constant

such that
1
—T,<T, <o,
2 oo
which is a condition that will be satisfied in most practical applications.

9.2. Synchronous motors

In the last years, synchronous motors, and especially permanent magnet motors
have become an attractive alternative to induction motors in the low to medium power
range [6]. These machines are generally more expensive than induction motors®, but

“The difference in price will be reduced as low price high-energy permanent magnets become
available.
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have higher efficiency due to the fact that the rotor losses are negligible. They also have
reduced size compared to the induction motors.

The controller as given by (5.1), (8.9) with currents satisfying (8.8), can be applied
to this type of motor as follows.

Using the transformation givenin (7.9)—(7.10), and the model givenin (3.9)3.10),
the torque can be expressed in new coordinates 7, = [Z4, Z4, Zo]” as

3
= %{ (La—Ly)2aiy+ Aniy) 9.4)
where
3 3
Lo=Li+ 2'(LA +Lp), Ly=L;+ 'Z‘(LA — Lg).

The desired currents are chosen as
0
ta=| 22
“ 3nphn
0

from which it follows that Z.4, Z.g € £, whenever y4, ys € L «.
To satisfy (5.5), taking the uncertainty of the resistances into account, we choose
K 1 as

K, = _éW|qm+kf3,k>0

The input is then given from (8.9) and (5.1).

It must be pointed out that if L # 0, the airgap is nonuniform. According to Remark
5.3. our method can be used for such machines as long as there are no rotor windings,
which is the case here.

The above approach can also be extended to synchronous reluctance motors'® with
the same inductance matrix as in (3.9). In these machines there are no permanent
magnets or windings in the rotor, hence 4,, =0 and the torque is given as [22]

y= ?;—p(l«f— Lp)z4Z,
from which it follows that one of the desired currents should be constant, and the other
proportional to desired torque.

Also, if the synchronous machine has a field winding on the rotor instead of
permanent magnets, 4,, will be proportional to the current in the field winding, which
is usually chosen to be constant or varying according to a field weakening objective.
The choice of the other desired currents could be done as previously explained.

9.3. PM stepper motor

As a last example, we show in this section how to apply the proposed controller
(5.1), (8.9) with currents satisfying (8.8), to a PM stepper motor.
With the model given in (3.11)~(3.12), the transformation to the dg-frame is [41]

_ g _ | cos(N.gn) sin(N:gn)| [0 N
Plgn)=e™ [—sm(mqm) cos(N,gm)’ [N, 0]

19This motor has been proposed as an alternative to other AC-machines, see [40].
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where U satisfies (7.3)«7.5). This transformation is orthogonal, and
P~ '(gm)=P"(q,,)-
The torque expressed in new coordinates 7z, = [Z4, Z,]7 is
Yy=KnZ;— Kpsin(4N,q,,)
and we choose the desired currents as
0

Zaa= Kilya + Kpsin(4N,¢,.)}

Notice that (5.5) is satisfied for the choice K, =k.# , >0, where k> 0,and y, € ¥ .
implies 7.4 € %%, and boundedness of .. follows from the boundedness of y, and §,..
The input is then given from (8.9) and (5.1).

As previously pointed out, the underlying assumption of BP-transferability is the
sinusoidally distribution of the MMF. It can be discussed whether this is a good
approximation in the case of stepper motors, with concentrated windings, significant
air gap saliency and often hybrid rotor construction. The BP-transform above has
however been used in several applications, and we have adopted this convention here.

Its worth to point out that the controller in [4] can be obtained from the passivity
based approach if it is applied to the full system, without dividing the system into
electrical and mechanical parts as done here.

10. Experimental results

To illustrate the performance of the proposed method, we implemented the scheme
in Sub-section 9.1. to control speed/position of a 4-pole 3¢ squirrel cage induction
motor with 4-connected stator phases from the German company Lust GmbH. We give
here only a brief description of the equipment and the experiments and refer the reader
to [51] for further details.

The equivalent parameters'! are:

Nominal parameters of motor system

R, Stator resistance 19 2
R, Rotor resistance 300
L, Stator inductance 0-130 H
L, Rotor inductance 0-130 H
L, Mutual inductance 0120 H
np Number of pole pairs 2
Gmn Rated speed 3000 rpm
By Rated rotor flux amplitude 02 Wb
D, Inertia (rotor and load) 5-53 kgem?
¥ Nominal torque 1-5 Nm
Proed Rated power 400 W
Upc DC-link voltage of inverter 300V
Taax Maximum line currents 4.5 A

""Identification of all 2¢p motor parameters was carried out by the manufacturer on sample
motors in the same production series. They were given in the motors data sheet with + (5 — 10)%
accuracy.
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Position was measured with an incremental encoder and a quadruple counter, giving
a position resolution of
2n
4-4096

Speed was estimated from position measurements using a backward difference
approximation, and computed at one third of the main sampling frequency to increase
resolution. A dSPACE controller board with a TMS320C31 main processor and a
TMS320P14 slave processor were used for controller implementation. Two of the line
currents were measured using LEM transducers, and converted to digital signals using
12 bit A/D converters. The controller was first implemented in SIMULINK, and then
converted to C-code, compiled and downloaded to the board using dSPACE software.
Symmetric carrier-based PWM was implemented on the slave processor. The switching
pattern is calculated at a frequency of 10 kHz for the three phases, from voltage
references transferred from the main processor at the end of each sampling interval. For
the discretization a simple first order Euler approximation was used, with a sampling
time of Ty = 300 ps. The combination of this sampling time with the number of
encoder lines and backward difference estimation, gave a speed resolution of

~4.0-10* rad.

1
4—!(3TW) -60=4-1 rpm

(See [42]) for speed or position tracking, the desired torque was chosen as in [56],
with an extra integral term to compensate for the unknown load torque (friction in
bearings of motor and inertial load), giving

Yd=Dnma =2~ f(Gm = gma) + I

2= —az+b(q,,— Gma), a, b>0, 2(0) = G(0) — §na(0)

= —ve,7=0
where gma, §ma are the rotor position and speed reference, and f= 0 for speed tracking.
The error term in the integral action was set to ¢ = g,, — ¢4 fOr position tracking, and
€ = gm — gmain the case of speed tracking. The references were generated by linear first
order filtering of step/square-wave signals from implementations of the SIMULINK
signal generator. Higher order derivatives of references for position/speed and flux
amplitude f(#) were obtained from state space representations of linear filters.

The only true way of verifying flux tracking is to compare measured flux with its
reference. Unfortunately, flux measurement is far from trivial, and hence not
implemented in the experimental setup. We have therefore used the current model
observer from [5] to estimate flux amplitude Ja

i =_Lsr ‘s‘ p=__
T+t P ar

ia=c08(6,)i,+ sin(f,)ip
i,= —sin(0,)i, + cos(0,)if

Lo i
0.,=n,q,+ T L dr
an ] Tr}_d

where T, = L,/R, and i,, iy are stator currents of the equivalent 2 ¢ model. These were
calculated from the 3¢ line current measurements I, and /. Due to the singularity in
the flux speed calculation, it was necessary to substitute J 4 in the division above by
a small constant ¢ = 0-001 whenever idﬂc. This estimator was run in parallel with
the controller, and not used for feedback purposes.
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Figure 2. Position reference ¢,.4(¢) (upper figure) and tracking error (g,, — gma)-

A sampling time of 300us was high enough to allow for simultaneously logging
of several signals, without significant response deterioration. By running only the code
strictly necessary for the implementation (no observer, only logging of execution time),
the sampling time could be set to 7= 147 ps.

The following parameters were used for position tracking: a = 1000, b = 95, f= 41,
y=70. For speed and flux tracking we used a = 1000, b =320, f=0, y = 3-85.

Figure 2 shows position reference and tracking error for a 180° turn of the motor.
As can be seen from the lower plot the maximum error is approximately 1°. The next
figure shows that precision of position control was only restricted by the resolution of
the position measurement. The digital jittering could be removed by using a deadzone
in the position controller. Due to position dependent friction, controller parameters had
to be set low enough to avoid oscillatory behaviour at certain “worst-case” positions.
In the lower plot of Fig. 3 the flux error during position tracking for a constant reference
of f=0-2 Wb is shown. Perfect control can hardly be expected with parameters taken
directly from the data sheet and a simple discretization, and there is a maximum error
of 0-009 Wb during transients. Reference voltages for PWM and measured line currents
for two of the three phases are shown in Fig. 4. Voltage references were below the
theoretical limits for the PWM ( * 150 V), and the line currents did not saturate. This
was also the case for all of the experiments reported here, but for space limitations we
do not include more than one plot of currents and voltages.

In Figs. 5 and 6 we have shown examples of flux tracking and speed regulation with
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Figure 3. Window of position tracking error and flux error (14— ).

and without the term f3(#) in the controller. Comparison shows that this term is necessary
for high quality flux tracking. Finally, in Fig. 7 an example of speed tracking with a
reference close to a step, and constant § = 0-2 Wb is shown. The speed follows its
reference closely, and results in only minor peaks in flux during transients, due to
unmodelled effects.

The parameter tuning was done online while observing responses, and the scheme
was easy to tune, as compared to implementations of other observer-based FOC
schemes.

Further experimental results from the application of this controller can be found in
[15] (speed tracking and flux regulation), [29] (comparison to feedback linearizing
controllers) and [51] (position, speed and flux tracking with comparison to FOC).

11. Concluding remarks

We have studied in this paper the output feedback global tracking problem for the
generalized electric machine’s model. A passivity-based method is used to design the
controller which proceeded in three steps. First, the machine is decomposed as the
feedback interconnection of two passive subsystems—electrical and mechanical. Then,
a nonlinear damping is injected to make the electrical subsystem strictly passive.
Finally, an energy-shaping controller is designed to make the currents converge
exponentially to a desired value that delivers the required torque. Our main contribution
is the establishment of physically interpretable conditions on the model such that the
method can be successfully applied. To further relax these conditions, it is our belief
that we must combine passivity ideas with the powerful new dynamic extension
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Figure 4. 3¢ stator phase voltage references u,, u;, and measured line currents Lo, I5.

techniques for stabilization of nonlinear systems. Some research along these lines for
the robotics problem has been reported in [8].

The passivity-based approach gives control schemes which provides global stability
results for the resulting system. Further, there is no need for observers since
unmeasurable states are not used, and there are no singularities, hence obviating the
need for special precautions to be taken at for example start-up. The performance of
the scheme, as measured with the exponential convergence rate of desired currents (and
consequently outputs) to their desired values, can be explicitly derived for each machine
using the results in Sections 5 and 6. It follows that the rate of convergence is restricted
by the time constant of the unactuated windings. This is a consequence of the fact that
additional damping cannot be injected into this dynamics, since the involved states are
unmeasurable. As discussed in [29] the same limitation applies to feedback linearizing
schemes, where the restriction is now imposed on the observer convergence.

To establish the relationship of our controller to existing schemes we notice that
our control signal consists of anonlinear damping term added to the reference dynamics.
Henceforth, following [53], it can be classified as an indirect vector control scheme,
which is the most widely used implementation of field oriented control, (especially well
suited for operation close to zero speed [42]). In particular, for the speed control of the
induction motor, it is shown in [56] that the passivity-based controller exactly reduces
to indirect field oriented control under some simplifying assumptions, namely constant
speed and current fed inverter, (for which the additional problem of stator dynamics
is not present). Also, this connection to indirect FOC shows that under the same
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Figure 5. Example of flux tracking. Speed and its reference in upper figure. Flux amplitude
and its reference in lower figure.

assumptions, the computational burden of the passivity based approach is no greater
than in this implementation of FOC.

In practice, the assumptions of constant and known parameters will not hold. For
instance resistances will vary due to temperature changes and the skin effect at high
frequencies, and inductances will change when magnetic saturation occurs. To assess
the sensitivity of the stability of indirect field oriented control vis a vis these assumptions
we carried out in [73] a robustness analysis. In that paper we proved that stability is
preserved despite large variations in rotor resistance and inductance. In view of the
downward compatibility mentioned above, these robustness properties are inherited by
the passivity based controller. It may be possible to enhance performance by identifying
parameters on-line. Globally stable adaptive controllers have been reported in [14],
unfortunately requiring full state measurement. The relaxation of this assumption,
together with extension to the case of nonlinear magnetics, use of speed observers, and
friction compensation are the main topics for our future research in this field. Some
interesting work on rotor resistance adaptation may be found in [12].

Since the passivity based approach exploits the systems energy properties, which
are invariant under a change of coordinates, this gives the possibility of controller
implementation in a general dg-frame, chosen from the objectives of minimizing
computational burden and increasing numerical robustness.

Experimental results from the application of the proposed controller to an induction
motor have been included. Even if an ad hoc discretization and a speed estimation
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scheme not considered in the theoretical analysis have been used, high-performance
position/speed and flux tracking was experienced. As expected from a scheme with
global stability results, controller tuning was an easy task.

As pointed out in [65], there is a potential advantage in working with a general model
instead of specializing the model equations, and we hope that the results in this paper
will motivate for additional research in the area of servo applications utilizing a general
machine’s model and its passivity properties. One such problem is tracking control of
arobot manipulator with AC-drives. In a recent paper [57] we have provided an answer
to this question by extending the results in [10] to the global case and the use of a general
BP transformable machine.
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Appendices
A. Proof of Proposition 7.1.
For the proof of Proposition 7.1, we need the following lemma:

Lemma A.1.
dD.(gn)

=>U+UT= .
dan #F0=U+U'=0 (A.D)
Proof

Note that the differential equation (7.3) has the unique solution
D.(gn)=e""D (0)e U= [28].

D.=DI=e"" D, (0)e Ve =e UinD, (0)e" "

= eU"melimD (0) = D, (0)e UTgmgUdm
=eVlmely, =.F

=UT+U=0
The third implication follows from the fact that U and D, do not commute, unless
dD
dDegm) _ ¢ (73),
dqn

and this implies that f(U) = eV"4meV4m and D, cannot commute, unless f(U)= ..

Proof of Proposition 7.1.
From (7.2) it follows that

‘?e= elLWMJPI lie (A.Z)
Ge=eVmP; 'z, + UeYmP g,z (A.3)
After inserting these two equations into (7.6), and multiplying from the left by
e Y we get
e YD, (g,)e" P i te YD (g Ue" " Py guie
+e Uq"’wl (q;u)‘?meuqmpl lz'e +e” quwz(q.vrx)ij'm
+e VinR eVinplz, =e VinM u (A4)
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From D.(g.,) =eY"D._(0)e ~ V4", and since (7.4) implies that "R, = R e"m [38],
we note that

e YD, (gn)e"" =D (0) (A.5)
e UYnD, (g,)UeVn=D (0)U (A6)
7.3)
e quw| (qm)eUQM =e- qu[ Ue”""'D,(O)e —Ugm e”"’“D,(O) Ue™ qu]
=UD.(0)— D.(O)U (A7)
e UanR eVim=R, (A.8)

In addition, it follows from (7.5) that W,(g,)=e"=W,(0). This implies that
e VanWy(q,) = W2(0), which is constant with respect to g,. Finally, inserting
(A.5-A.8) into (A.4), gives

De(O)Pl lzle+ UDe(O)PI ! -m2¢ + WZ(O)Qm +R2PI lz-e=e- quMeu
q

For the transformed mechanical system %, we have the relations
q.trwl(Qm)Qe =Z. JPI emquI (q )qu“'Pl

@
=3Py Te VimW,(gn)e%mP 'z,

= sz "lUD.(0)—D (0)U]P| 'Z.

=2z Py "UD (0)Py '2.=22/Pi "D.(O)U"P; 'z, (A.9)
wZ (Qmﬁe = w{(Qm)qumPl_ lze
= WIO)P; 'z, (A.10)

B. Lemma on the BP transformation

Lemma B.I. Unless U=0, the velocities Z=[Z/, ¢n]” introduced by the BP
transformation cannot be derived from a transformation z = Z(g) of the generalized
coordinates ¢ = [¢7, gm]"-

Proof

The transformation from the generalized electrical velocities ¢, and the generalized
mechanical velocity ¢, to 2 =[z., §.]T is

P S N @

If z=Z(q), then we must have

0Z [Pe Y 0O
R ®2)
since
,_9Z,
Z—g-

From this, we find that z, must be of the form
z.=Z.q)=Pe Ying, + ¢, c € R"
Taking the total time derivative gives
8Z

Ze= = —Pe YnlUg,q. + P e Ving,

g ?
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from which it follows that since the BP transformation (see (7.2)) is defined as
2e=P e Yimg, we must have

- Ple quvq.er = 09 qu

For this to hold, U must be the zero matrix, since Pe ~ Y% is nonsingular, and
consequently for U # O there is no transformation z. = Z.(g) such that

. _9Z,
Ze aq q-
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