Romeo Ortega, Antonio Loría, Per Johan Nicklasson and Hebertt Sira-Ramírez

Passivity-based Control of Euler-Lagrange Systems

Mechanical, Electrical and Electromechanical Applications

Contents

Notation

xxxi

1	Inti	oducti	ion	1
	1	From	control engineering to mathematical control theory and back . $\ .$	1
	2	A rou	te towards applications	3
	3	Why l	Euler-Lagrange systems?	4
	4	On th	e role of interconnection	7
	5	Why p	passivity?	8
	6	What	is passivity-based control?	10
	7	Some	historical remarks	12
		7.1	Euler–Lagrange systems and nonlinear dynamics	12
		7.2	Passivity and feedback stabilization	12
2	Eul	er-Lag	range systems	15
	1	The E	Culer–Lagrange equations	16
	2	Input-	-output properties	19
		2.1	Passivity of EL systems	20
		2.2	Passivity of the error dynamics	22
		2.3	Other properties and assumptions	24
		2.4	Passive subsystems decomposition	25
		2.5	An EL structure-preserving interconnection	26
	3	Lyapu	nov stability properties	27
		3.1	Fully-damped systems	27
		3.2	Underdamped systems	28
	4	Exam	ples	30

CON	TE.	NTS

		4.1	A rotational/translational proof mass actuator	30
		4.2	Levitated ball	32
		4.3	Flexible joints robots	34
		4.4	The Duffing system	35
		4.5	A marine surface vessel	36
	5	Concl	uding remarks	37
I	M	echar	nical Systems	39
•		contai	neur Systems	00
3	Set	-point	regulation	41
	1	State	feedback control of fully-actuated systems	42
		1.1	A basic result: The PD controller	42
		1.2	An introductory example	44
		1.3	Physical interpretation and literature review $\ldots \ldots \ldots$	46
	2	Outp	ut feedback stabilization of underactuated systems	48
		2.1	Literature review	48
		2.2	Problem formulation	48
		2.3	Euler-Lagrange controllers	49
		2.4	Examples	51
	3	Boun	ded output feedback regulation	61
		3.1	Literature review	61
		3.2	Problem formulation	61
		3.3	Globally stabilizing saturated EL controllers	63
		3.4	Examples	68
	4	Set-p	oint regulation under parameter uncertainty	75
		4.1	Literature review	76
		4.2	Adaptive control	77
		4.3	Linear PID control	79
		4.4	Nonlinear PID control	82
		4.5	Output feedback regulation: The $\mathrm{PI}^2\mathrm{D}$ controller $\ \ .$	85
	5	Conc	luding remarks	91

4	Tra	jectory	v tracking control	93
	1	State	feedback control of fully-actuated systems	94
		1.1	The PD+ controller	95
		1.2	The Slotine and Li controller	96
	2	Adapt	ive trajectory tracking	97
		2.1	Adaptive controller of Slotine and Li $\ \ldots\ \ldots\ \ldots\ \ldots$	97
		2.2	A robust adaptive controller	98
	3	State	feedback of underactuated systems	100
		3.1	Model and problem formulation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	100
		3.2	Literature review	101
		3.3	A passivity–based controller	102
		3.4	Comparison with backstepping and cascaded designs $\ . \ . \ .$	104
		3.5	A controller without jerk measurements	105
	4	Outpu	t feedback of fully-actuated systems	108
		4.1	Semiglobal tracking control of robot manipulators	109
		4.2	Discussion on global tracking	110
	5	Simula	ation results	111
	6	Conclu	uding remarks	113
5	Ada	aptive	disturbance attenuation: Friction compensation	115
	1	Adapt	ive friction compensation	116
		1.1	The LuGre friction model	117
		1.2	DC motor with friction	119
		1.3	Robot manipulator	122
		1.4	Simulations	124
	2	State-	space passifiable systems with disturbances	127
		2.1	Background	127
		2.2	A theorem for passifiable affine nonlinear systems	129
	3	Conclu	uding remarks	131

xv

	CO.	NTI	ENT	ĽS
--	-----	-----	-----	----

II	E	lectri	cal systems	133	
6	Mod	Modeling of switched DC-to-DC power converters			
	1 Introduction				
	2	Lagran	ngian modeling	137	
		2.1	Modeling of switched networks	137	
		2.2	A variational argument	138	
		2.3	General Lagrangian model: Passivity property	140	
		2.4	Examples	145	
	3	Hamil	tonian modeling	157	
		3.1	Constitutive elements	158	
		3.2	LC circuits	160	
		3.3	Examples	161	
	4	Averag	ge models of PWM regulated converters	168	
		4.1	General issues about pulse-width-modulation	169	
		4.2	Examples	171	
		4.3	Some structural properties	176	
	5	Conclu	isions	180	
7	Pass	sivity-l	based control of DC-to-DC power converters	181	
	1	Introd	uction	181	
	2	PBC o	f stabilizing duty ratio	182	
	P	2.1	The Boost converter	183	
		2.2	The Buck–boost converter	187	
		2.3	Simulation results	188	
	3	Passiv	ity based sliding mode stabilization	191	
		3.1	Introduction	191	
		3.2	Sliding mode control of the Boost converter \ldots	192	
		3.3	Passivity-based sliding controller	198	
	4	Adapt	ive stabilization	206	
		4.1	Controller design	206	
		4.2	Simulation results	211	
	5	Experi	imental comparison of several nonlinear controllers \ldots .	213	

xvi

5.1	Feedback control laws	213
5.2	Experimental configuration	219
5.3	Experimental results	221
5.4	Conclusions	236

III Electromechanical systems

8	8 Nested-loop passivity-based control: An illustrative example							
	1	Introduction						
		1.1	Model and control problem	245				
	2	Passi	vity-based control with total energy-shaping	246				
	3	Neste	ed-loop passivity-based control	247				
		3.1	Control structure	248				
		3.2	Passivity–based controller design	249				
	4	Outp	ut–feedback passivity–based control	253				
	5	Com	parison with feedback linearization and backstepping	254				
		5.1	Feedback-linearization control	255				
		5.2	Integrator backstepping control					
		5.3	Comparison of the schemes	257				
		5.4	Simulation results					
		5.5	Conclusions and further research					
9	Co	onalia	zed AC motor	265				
9								
	1		duction					
		1.1	AC motors	265				
		1.2	Review of previous work	268				
		1.3	Outline of the rest of this chapter	279				
	2	Lagra	angian model and control problem	280				
		2.1	The Euler–Lagrange equations for AC machines	281				
		2.2	Control problem formulation	283				
		2.3	Remarks to the model	284				
		2.4	Examples	287				

xvii

241

COI	TT	T	MO	PC'
COI	LΥ	\mathbf{L}_{1}	N 1	0

3	A pass	sivity-based approach for controller design	288		
	3.1	Passive subsystems feedback decomposition	288		
	3.2	Design procedure	289		
4	A glob	ally stable torque tracking controller	289		
	4.1	Strict passifiability via damping injection	290		
	4.2	Current tracking via energy-shaping	292		
	4.3	From current tracking to torque tracking	294		
	4.4	PBC for electric machines	297		
5	PBC o	of underactuated electrical machines revisited	302		
	5.1	Realization of the PBC via BP transformability	302		
	5.2	A geometric perspective	304		
6	Examp	ples	305		
7	Conclu	1sions	307		
	7.1	Summary	307		
	7.2	Open issues	308		
10 17 1					
	9	d induction motors	311		
10 Vol	Induct	ion motor model	312		
	Induct	ion motor model	312 312		
	Induct	ion motor model	312		
	Induct	ion motor model	312 312		
	Induct 1.1 1.2	ion motor model	312 312 313		
	Induct 1.1 1.2 1.3	ion motor model	312 312 313 315		
	Induct 1.1 1.2 1.3 1.4 1.5	ion motor model	312 312 313 315 318		
1	Induct 1.1 1.2 1.3 1.4 1.5 Proble	ion motor model	312 312 313 315 318 320		
1	Induct 1.1 1.2 1.3 1.4 1.5 Proble	ion motor model	312 312 313 315 318 320 320		
1 2 3	Induct 1.1 1.2 1.3 1.4 1.5 Proble A nest	ion motor model	 312 312 313 315 318 320 320 321 		
1 2 3	Induct 1.1 1.2 1.3 1.4 1.5 Proble A nest 3.1	ion motor model	 312 312 313 315 318 320 320 321 323 		
1 2 3	Induct 1.1 1.2 1.3 1.4 1.5 Proble A nest 3.1 3.2	ion motor model	312 312 313 315 318 320 320 321 323 327		
1 2 3	Induct 1.1 1.2 1.3 1.4 1.5 Proble A nest 3.1 3.2 3.3	ion motor model	312 312 313 315 318 320 320 321 323 327 331		
1 2 3	Induct 1.1 1.2 1.3 1.4 1.5 Proble A nest 3.1 3.2 3.3 3.4	ion motor model	312 312 313 315 318 320 320 321 323 327 331 333		

xviii

	3.8	Definitions of desired rotor flux norm	338
	3.9	Simulation results	340
4	A PBC	C with total energy–shaping \ldots \ldots \ldots \ldots \ldots	342
	4.1	Factorization of workless forces	343
	4.2	Problem formulation	344
	4.3	Ideal case with full state feedback	344
	4.4	Observer-based PBC for induction motors $\ldots \ldots \ldots$	346
	4.5	Remarks to the controller	348
	4.6	A dq -implementation	349
	4.7	Simulation results	351
	4.8	Concluding remarks	353
5	Field-o	oriented control and feedback linearization	353
	5.1	Rationale of field–oriented control	354
	5.2	State estimation or reference values	357
	5.3	Shortcomings of FOC	358
	5.4	Feedback linearization	361
6	Experi	imental results	363
	6.1	Experimental setup	363
	6.2	Outline of experiments	369
	6.3	Observer-less control	370
	6.4	Observer-based control	375
	6.5	Comparison with FOC $\hdotspace{1.5}$	376
	6.6	Concluding remarks	379
		fed induction motors	381
1		l of the current-fed induction motor	383
2		orientation and feedback linearization	385
	2.1	Direct field–oriented control	385
	2.2	Indirect field-oriented control	386
	2.3	Observer-based feedback-linearizing control	387
	2.4	Remarks to OBFL and FOC	390
3	Passiv	vity-based control of current-fed machines	392

xix

		3.1	PBC is downward compatible with FOC	392
		3.2	Stability of indirect FOC for known parameters	393
	4	Experi	mental comparison of PBC and feedback linearization	394
		4.1	Experimental setup	395
		4.2	Selection of flux reference in experiments	398
		4.3	Speed tracking performance	399
		4.4	Robustness and disturbance attenuation	401
		4.5	Conclusion	402
	5	Robus	t stability of PBC	403
		5.1	Global boundedness	404
		5.2	Coordinate changes and uniqueness of equilibrium	405
		5.3	Local asymptotic stability	409
		5.4	Global exponential stability	410
	6	Off-lin	e tuning of PBC	415
		6.1	Problem formulation	416
		6.2	Change of coordinates	417
		6.3	Local stability	418
		6.4	A performance evaluation method based on passivity	420
		6.5	Illustrative examples	425
	7	Discre	te-time implementation of PBC	429
		7.1	The exact discrete-time model of the induction motor	431
		7.2	Analysis of discrete-time PBC	432
		7.3	A new discrete-time control algorithm	433
		7.4	Discussion of discrete-time controller	435
		7.5	Experimental results	435
	8	Conclu	isions and further research	438
	-			S 12
12			interconnected systems: Robots with AC drives	441
	1		uction	442
		1.1	Cascaded systems	442
		1.2	Robots with AC drives	445
	2	Genera	al problem formulation	446

	3	Assum	ptions	448				
		3.1	Realizability of the controller	448				
		3.2	Other assumptions	450				
	4	Problem solution						
		4.1	Proof of Theorem 12.7	451				
	5	Applic	eation to robots with AC drives	455				
		5.1	Model	455				
		5.2	Global tracking controller	457				
	6	Simulation results						
	7	Conclu	uding remarks	464				
13	Oth	er app	lications and current research	467				
	1	Other	applications	468				
	2	Curren	nt research					
		2.1	Power electronics	469				
		2.2	Power systems	470				
		2.3	Generation of storage functions for forced EL systems	470				
		2.4	Performance	471				
A	Diss	Dissipativity and passivity						
	1	Circui	t example	476				
	2	\mathcal{L}_2 and	d \mathcal{L}_{2e} spaces	477				
	3	Passivity and finite-gain stability 47						
	4	Feedback systems						
	5	Internal stability and passivity						
	6	The K	alman–Yakubovich–Popov lemma	481				
в	Derivation of the Euler-Lagrange equations							
	1	Gene	ralized coordinates and velocities	483				
	2	Hami	lton's principle	487				
	3	From	Hamilton's principle to the EL equations	488				
	4	EL eq	uations for non-conservative systems	489				
	5	List of	f generalized variables	489				

xxi

CONTE	INTS	5
-------	------	---

	6	Hamil	tonian formulation	489		
С	Bac	ackground material				
D	Pro	ofs		495		
	1	Proofs	for the $\rm PI^2D$ controller $\ .$	495		
		1.1	Properties of the storage $\mathcal{H}_3(\tilde{q},\dot{q},\vartheta)$	495		
		1.2	Lyapunov stability of the $\mathrm{PI}^2\mathrm{D}$	497		
	2	Proof of positive definiteness of $f(\tilde{q}_p)$ defined in (3.43)				
	3 The BP transformation					
		3.1	Proof of Proposition 9.20	500		
		3.2	A Lemma on the BP Transformation	502		
	4	Proof of Eqs. (10.41) and (10.77)				
		4.1	A theorem on positivity of a block matrix	503		
		4.2	Proof of Eq. (10.77)	503		
		4.3	Proof of Eq. (10.41)	506		
	5	Deriva	ation of Eqs. (10.55) and (10.56)	507		
		5.1	Derivation of Eq. (10.55)	507		
		5.2	Derivation of Eq. (10.56)	508		
	6	Boundedness of all signals for indirect FOC		510		
		6.1	Proof of Proposition 11.10	510		
	Bib	liograp	bhy	515		
Index						

xxii