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It is shown that the alternate passivity-based control schemes can be designed which explicitly exploit the passivity properties of
the Timoshenko model. This approach has the advantage over the conventional methods in the respect that it allows one to deal
directly with the system’s partial differential equations without resorting to approximations. Numerical results for the tracking
control of a translational and rotational flexible Timoshenko arm are presented and compared. They verify that the proposed
control schemes are effective at controlling flexible dynamical systems.

1. Introduction

In recent years, there has been a great deal of interest in the
modeling and control of flexible arms [1–11]. This interest
has been motivated by the prospect of fast, light, robot
whose links, due to material characteristics, will flex under
heavy loads. As a first step towards designing controllers
for such robots, researchers have begun studying controllers
for simple flexible links. These links, in most cases modeled
as Euler-Bernoulli beams because of the small deflections
involved, are often analyzed through an eigen-function series
expansion of the solution to beam equation. The infinite
term expansion is typically truncated after a finite number of
terms and the controller designed using one of the various
available linear control design techniques. Most practical
controllers are designed based on models that are truncations
of infinite-order transfer function models. There are several
reasons for using the reduced-order models. First, these
finite-order models agree very well with experimental results,
assuming that an adequate number of modes have been
retained. Second, there are no infinite-order transfer func-
tion models that coincide with experimental results past
the first few modes. Finally, the use of a finite-order model
greatly simplifies the controller design procedure. Most

existing control design methods for flexible system, such as
the Independent Modal Space Control, low-authority high-
authority control design, frequency-weighted LQG, and
positivity require modal truncation. One disadvantage of this
kind of approach is that a controller, based on a truncated
model, cannot guarantee stability of the closed loop system.
This disadvantage arises because the model does not include
the higher frequency terms. A second disadvantage is that
the criteria for designing the controller for such a model are
usually arbitrary and the design becomes more difficult as the
truncated model order is increased.

In this paper, it is shown that the alternate passivity-based
control schemes can be designed, which explicitly exploit the
passivity properties of the Timoshenko model [12, 13]. From
standard nonlinear control theory, the passivity theorem tells
us that any strictly passive controller with finite gain will
stabilize the system in an L2 sense. This allows the design of
very simple controllers for the systems. This approach has
the advantage over the conventional methods in the respect
that it allows one to deal directly with the system’s partial
differential equations without resorting to approximations.
Moreover, it is potentially applicable to the control of
nonlinear flexible systems. Numerical results for the tracking
control of a translational and rotational flexible Timoshenko
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arm are presented and compared. They verify that the pro-
posed control schemes are effective at controlling flexible
dynamical systems.

2. Equation of Motions and
Boundary Conditions

2.1. Translational Arm. Figure 1 shows a sketch of a transla-
tional Timoshenko arm. The equation of motions of the arm
and mobile stage are
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Applying the Laplace transformation method with respect to
t to equations (1) and (2) gives
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2.2. Rotational Arm. The rotational Timoshenko arm
depicted in Figure 2 of total length L, area moment of inertia
I , cross-sectional area A, density ρ, Young’s modulus E, shear
modulus G, and shear coefficient κ, is attached at one end to
a payload of mass m and inertia Ic and on the other end a
hub of inertia Ih, which in turn is connected to an actuator
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Figure 1: Translational Timoshenko arm.
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Figure 2: Rotational Timoshenko arm.

that supplies a torque u. We obtain the following equations
of motion with the boundary conditions.
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y(0, t) = 0, (15)

φ(0, t) = 0. (16)

Taking the Laplace transform of (10)–(16), we get
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3. Stabilizing Feedback Controls

3.1. Translational Arm. The objective is to derive explicit
expressions for feedback control u for controlling the arm.
The approach taken here is to consider the total energy of the
arm at any time t given by
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that is positive definite with respect to y = 0, dy/dt = 0.
The Time derivative of (24) is given by
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By substituting (1) reduces to
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We wish to derive stabilizing feedback controls u such
that the resulting feedback-controlled arm is dissipative and
stable
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=
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Since our goal is to design a stabilizing control input,
the most natural choice is to make the time derivative of
the Lyapunov function negative in such a way. The following
stabilizing feedback control is chosen:
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This means that a control input should be chosen with
as large as possible and should generate a base velocity that
ensures asymptotic stability of the tip bending motion of the
arm.

3.2. Rotational Arm. The problem is to find feedback control
u such that the arm’s total energy given by
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The time rate-of-change of V is given by
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By substituting (10)-(11) reduces to

∂V

∂t
=

∫ L

0

[{

∂y

∂t
+ x

∂θ

∂t

}{

κGA

(

∂2y

∂x2
−

∂φ

∂x

)}

+

{

∂φ

∂t
+
∂θ

∂x

}{

EI
∂2φ

∂x2
− κGA

(

φ −
∂y

∂x

)}]

dx

+
∂θ

∂t

{

EI
∂φ(0, t)

∂x
+ u

}

+

∫ L

0

[

EI

{

∂φ

∂x

}{

∂2φ

∂x∂t

}

+κGA

{

φ(x, t)−
∂y

∂x

}{

∂φ

∂t
−

∂2y

∂x∂t

}]

dx.

(32)

The equation (32) is then integrated by parts and
boundary conditions, (12)–(16) are substituted into the
resulting equation. The result is
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Taking into consideration of the fact that there is a
feedback control law which gives nonpositive ∂V/∂t is
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which is negative semidefinite. This implies that the closed-
loop system is energy dissipative and, hence, stable.

4. Passivity of Timoshenko Arm

Taking the time derivative of the total energy, and then
integrating from 0 to t, we get the following restatement of
energy balance principle:
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Figure 3: Step response of the translational Euler arm.
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(2) rotational arm
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where the left-hand side is the supplied energy and right-
hand side is the energy at time t minus the initial energy.
Passivity of the operator u relative to the function V follows
from the equation above and positivity of the total energy.

5. Simulation Results

Numerical inversion of Laplace transform is used to obtain
the results in the time domain. The computation of the
inverse Laplace transform is based on the paper of Hosono
[14]. Numerical solutions are obtained by the Bromwich
integrating the system corresponding to (A.1) and so forth.
In the computer simulation study, we consider a typical arm
whose parameters are given in the Table 1. Figures 3–6 show
the step response of the arm-tip displacement with feedback
gains variations. Figures 3 and 5 show the results of the Euler
arm. Figures 4 and 6 show the results of the Timoshenko
arm. There are few differences with each other in the case
of this system parameters. It can be seen that the arm-tip
displacement toward the desired position. With increasing
the feedback gains, the settling times are longer and the
residual vibrations are more slightly damped. In this case,
shear deformations are small and negligible, so that the shear
angle is almost zero and the rotary inertia is small and neg-
ligible, the so-called Euler-Bernoulli beam equations result.
If the beam is long and skinny (aspect ratio, say greater than
10), the Euler-Bernoulli assumptions are appropriate.

6. Conclusion

In this paper, the passivity-based control of rotational and
translational Timoshenko arms is studied. This approach has
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Figure 4: Step response of the translational Timoshenko arm.
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Figure 5: Step response of the rotational Euler arm.

the advantage over the conventional methods in the respect
that it allows one to deal directly with the system’s partial
differential equations without resorting to approximations.
Numerical results for the control of a translational and rota-
tional flexible Timoshenko arm are presented and compared
in graphical plots. They verify that the proposed control
schemes are effective at controlling flexible dynamical sys-
tems and vibration control of mechanical systems.

Appendix

In the case of the translational Timoshenko arm, the re-
sulting solution to (3), (4), and (5) is given by

Y(x, s) =
∆k1

∆
eλ1x +

∆k2

∆
eλ2x

−
∆k3

∆
e−λ1x

−
∆k4

∆
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{
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Table 1: System parameters.

Parameter Nomenclature Values Unit

Length of the arm L 1.2 m

Arm cross-sectional
area

A 2.5× 10−4 m2

Volume mass
density

ρ 2.7667 Kg/m3

Young’s modulus E 6.8944× 1010 Pa

Internal structural
damping

C 0 Kg/sec

Payload moment of
inertia

Ic 5× 10−4 Kg ·m2

Payload mass m 0.2 Kg

Shear correction
factor

κ 5/6 –

Shear modulus G 2.6517× 1010 Pa

Slider mass Mp 0.5 Kg

Hub moment of
inertia

Ih 0.5 Kg ·m2
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Figure 6: Step response of the rotational Timoshenko arm.
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In the case of the rotational Timoshenko arm, the resulting
solution to (17), (18), and (19) can be obtained (omitted
details for want of space).
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