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Abstract

Real-life cyber-physical systems, such as automotive ve-

hicles, building automation systems, and groups of un-

manned vehicles are monitored and controlled by net-

worked control systems. The overall system dynamics

emerges from the interaction among physical dynamics,

computational dynamics, and communication networks.

Network uncertainties such as time-varying delay and

packet loss cause significant challenges. This paper pro-

poses a passive control architecture for designing wireless

networked control systems that are insensitive to network

uncertainties. We describe the architecture for a system

consisting of a robotic manipulator controlled by a digi-

tal controller over a wireless network and we show that the

system is stable even in the presence of time-varying delays.

We present simulation results that demonstrate the advan-

tages of the architecture with respect to stability and per-

formance and show that the system is insensitive to network

uncertainties.

1 Introduction

The heterogeneous composition of computing, sensing,

actuation, and communication components has enabled a

modern grand vision for real-world Cyber Physical Systems

(CPSs). Real-world CPSs, such as automotive vehicles,

building automation systems, and groups of unmanned air

vehicles are monitored and controlled by networked control

systems and the overall system dynamics emerges from the

interaction among physical dynamics, computational dy-

namics, and communication networks. Design of CPSs re-

quires controlling real-world system behavior and interac-

tions in dynamic and uncertain conditions.

Figure 1 represents a simplified model-based design flow

of a CPS composed of a physical plant and a networked

control system. In a conventional design flow, the con-

troller dynamics is synthesized with the purpose of opti-

Figure 1. Simplified CPS design flow.

mizing performance. The selected design platform (abstrac-

tions and tools used for control design in the design flow)

is frequently provided by a modeling language and a simu-

lation tool, such as MATLAB/Simulink [17, 18]. The con-

troller specification is passed to the implementation design

layer through a “Specification/Implementation Interface”.

The implementation in itself has a rich design flow that we

compressed here only in two layers: System-level design

and Implementation platform design. The software archi-

tecture and its mapping on the (distributed) implementation

platform are generated in the system-level design layer. The

results - expressed again in the form of architecture and sys-

tem models - are passed on through the next Specification

and Implementation Interface to generate code as well as the

hardware and network design. This simplified flow reflects

the fundamental strategy in platform-based design [21]. De-

sign progresses along precisely defined abstraction layers.

The design flow usually includes top-down and bottom-up

elements and iterations (not shown in the figure).
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Effectiveness of the platform-based design largely de-

pends on how much the design concerns (captured in the

abstraction layers) are orthogonal, i.e., how much the de-

sign decisions in the different layers are independent. Het-

erogeneity causes major difficulties in this regard. The

controller dynamics is typically designed without consid-

ering implementation side effects (e.g. numeric accuracy

of computational components, timing accuracy caused by

shared resource and schedulers, time varying delays caused

by network effects, etc.). Timing characteristics of the im-

plementation emerge at the confluence of design decisions

in software componentization, system architecture, coding,

and HW/network design choices. Compositionality in one

layer depends on a web of assumptions to be satisfied by

other layers. For example, compositionality on the con-

troller design layer depends on assumptions that the effects

of quantization and finite word-length can be neglected and

the discrete-time model is accurate. Since these assump-

tions are not satisfied by the implementation layer, the over-

all design needs to be verified after implementation - even

worst - changes in any layer may require re-verification of

the full system.

An increasingly accepted way to address these problems

is to enrich abstractions in each layer with implementation

concepts. An excellent example for this approach is True-

Time [16] that extends MATLAB/Simulink with implemen-

tation related modeling concepts (networks, clocks, sched-

ulers) and supports simulation of networked and embedded

control systems. While this is a major step in improving

designers’ understanding of implementation effects, it does

not help in decoupling design layers and improving orthog-

onality across the design concerns. A controller designer

can now factor in implementation effects (e.g., network de-

lays), but still, if the implementation changes, the controller

may need to be redesigned.

Decoupling the design layers is a very hard problem

and typically introduces significant restrictions and/or over-

design. For example, the Timed Triggered Architecture

(TTA) orthogonalizes timing, fault tolerance, and function-

ality [8], but it comes on the cost of strict synchrony, and

static structure. In an analogous manner, we propose to

encompass passivity into traditional model-driven develop-

ment processes in order to decouple the design layers and

account for the effect of network uncertainties.

This paper is motivated by the rapidly increasing use of

network control system architectures in constructing real-

world CPSs and aims at addressing fundamental problems

caused by networks effects, such as time-varying delay, jit-

ter, limited bandwidth, and packet loss. To deal with these

implementation uncertainties, we propose a model-design

flow on top of passivity, a very significant concept from sys-

tem theory [5]. A precise mathematical definition requires

many technical details, but the main idea is that a passive

system cannot apply an infinite amount of energy to its en-

vironment. The inherent safety that passive systems pro-

vide is fundamental in building systems that are insensitive

to implementation uncertainties. Passive systems have been

exploited for the design of diverse systems such as smart

exercise machines [15], teleoperators [13], digital filters [6],

and networked control systems [2, 10, 19].

Our approach advocates a concrete and important trans-

formation of model-based methods that can improve or-

thogonality across the design layers and facilitate com-

positional component-based design of CPSs. By impos-

ing passivity constraints on the component dynamics, the

design becomes insensitive to network effects, thus es-

tablishing orthogonality (with respect to network effects)

across the controller design and implementation design lay-

ers. The primary contributions of this paper are three-

fold: (i) we present a passive control architecture for a

system consisting of a robotic manipulator controlled by

a digital controller over a wireless network, (ii) we pro-

vide analytical results that prove that our architecture en-

sures stability of the networked control system in the pres-

ence of time varying delays assuming that the communi-

cation protocols does not process duplicate transmissions,

(iii) we implement the passive control architecture using

MATLAB/Simulink/TrueTime models and present simula-

tion results for a typical 6 degree-of-freedom robotic arm

controlled by a digital controller over a 802.llb wireless

network. Furthermore, the simulation demonstrate that the

passivity-based design offers significant advantages with re-

spect to stability and performance. Specifically, the pro-

posed solution: (a) allows for lower sampling rates which

reduces bandwidth requirements, (b) allows for higher gains

which improve settling times, and (c) ensures robustness to

time-varying network delays.

The work presented in the paper demonstrates that pas-

sivity can be exploited to account for the effects of network

uncertainties, thus improving orthogonality across the con-

troller design and implementation design layers and em-

powering model-driven development. Preliminary results

of the approach have been presented in [12]. This paper

contains a comprehensive description of the proposed archi-

tecture, theoretical analysis for stability in the presence of

time-varying delays, and extensive simulation results based

on systematic tuning of the control gains. It should be noted

that passive structures offer additional advantages for ro-

bustness to finite length representations and saturation [6]

but this paper focuses on network effects which is one of

the most significant concerns in the development of CPSs.

2 Background on Passivity

There are various precise mathematical definitions for

passive systems [10]. Essentially all the definitions state
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that the output energy must be bounded so that the sys-

tem does not produce more energy than was initially stored.

Continuous (discrete) strictly-output passive and strictly-

input passive systems with finite gain have a special prop-

erty in that they are Lm
2 (lm2 )-stable. Passive systems have a

unique property that when connected in either a parallel or

negative feedback manner the overall system remains pas-

sive. By simply closing the loop with any positive defi-

nite matrix, any discrete time passive plant can be rendered

strictly output passive. This is an important result because it

makes it possible to directly design low-sensitivity strictly-

output passive controllers using the wave digital filters de-

scribed in [6].

When delays are introduced in negative feedback con-

figurations, the network is no longer passive. One way to

recover passivity is to interconnect the two systems with

wave variables. Wave variables were introduced by Fet-

tweis in order to circumvent the problem of delay-free loops

and guarantee that the implementation of wave digital fil-

ters is realizable [6]. Wave variables define a bilinear trans-

formation under which a stable minimum phase continuous

system is mapped to a stable minimum phase discrete-time

system, and thus, the transformation preserves passivity.

Networks consisting of a passive plant and a controller

are typically interconnected using power variables. Power

variables are generally denoted with an effort and flow pair

whose product is power. However, when these power vari-

ables are subject to communication delays, the communica-

tion channel ceases to be passive which can lead to instabil-

ities. Wave variables allow effort and flow variables to be

transmitted over a network while remaining passive when

subject to arbitrary fixed time delays and data dropouts. If

additional information is transmitted along with the contin-

uous wave variables, the communication channel will also

remain passive in the presence of time-varying delays [19].

More recently it has been shown that discrete wave vari-

ables can remain passive in spite of certain classes of time-

varying delays and dropouts [2, 22]. In addition, a method

which states how to properly handle time-varying discrete

wave variables and maintain passivity has been developed

in [10] and is used in our passive control architecture.

Before discussing our passive control scheme in Sec-

tion 3 we recall the following definitions in regards to pas-

sivity and Lm
2 -stability. These standard definitions which

generalize “input-output” properties of many linear and

nonlinear systems will be particularly useful when dis-

cussing the proof for Theorem 2 and understanding Corol-

lary 1. In doing so, we choose to use the following compact

notation.

〈G(u), u〉T
△
=

∫ T

0

G(u(t))Tu(t)dt

‖(G(u))T ‖2
2

△
=

∫ T

0

G(u(t))TG(u(t))dt

We also denote Lm
2e

(U) as the extended Lm
2 space for the

function u(t) ∈ U in which U ⊂ R
m as all possible func-

tions for a given T ≥ 0 which satisfy:

‖(u)T ‖2
2 < ∞.

In the limit as T → ∞, then u ∈ Lm
2 (U) is any function

which satisfies
∫ ∞

0

uT(t)u(t)dt < ∞ or more compactly,‖u‖2
2 < ∞.

Note also that Lm
2 (U) ⊂ Lm

2e(U).

Definition 1 [23] Let G : Lm
2e

(U) → Lm
2e

(U) then for all

u ∈ Lm
2e

(U) and all real T ≥ 0:

I. G is passive if there exist a constant β such that (1)

holds.

〈G(u), u〉T ≥ −β (1)

II. G is strictly-output passive if there exists some con-

stants β and ǫ > 0 such that (2) holds.

〈G(u), u〉T ≥ ǫ‖(G(u))T ‖2
2 − β (2)

Definition 2 [23, Definition 1.2.3] Let G : Lm
2e

(U) →
Lm

2e
(U), it is said to be Lm

2 -stable if

u ∈ Lm
2 (U) =⇒ y = G(u) ∈ Lm

2 (U), (3)

and G is said to have finite-Lm
2 -gain if ∃γq, βq s.t. for all

T ≥ 0

u ∈ Lm
2e(U) =⇒ ‖(y)T ‖2 ≤ γq‖(u)T ‖2 + βq. (4)

Any G : Lm
2e

(U) → Lm
2e

(U) which has finite-Lm
2 -gain is

Lm
2 -stable.

The following theorem will allow us to complete the

proof of our main result (Theorem 2) in which it is shown

that the network control system depicted in Fig. 2 is strictly-

output passive for any passive robot (plant).

Theorem 1 [23, Theorem 2.2.14] Let G : Lm
2e

(U) →
Lm

2e
(U) be strictly-output passive. Then G has finite Lm

2 -

gain.

The definitions chosen for passivity are chosen from the

input-output perspective similar to the definition for positive

systems given in [24]. Numerous linear and non-linear sys-

tems satisfy the above passivity definition such as positive

real systems and dissipative passive systems [7]. When a

dissipative dynamical system can be described by a Hamil-

tonian (the sum of kinetic and potential energy, H = T +V)

a passive mapping typically exists in which the Hamilto-

nian serves as −β [7]. This is illustrated in our discussion

of the passive structure of robotic systems. However, there

are some limitations with the study of passive systems. For

example, systems which consist of cascades of passive sys-

tems (such as two integrators in series) are not necessarily a

passive system.
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Figure 2. Proposed Wireless Control Scheme

3 Passive Control Architecture

3.1 Robotic System

Our control strategy takes advantage of the passive struc-

ture of a robotic system [20]. The robot dynamics which are

denoted by Grobot(τ(t)) in Figure 2 are described by

τ = M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + g(Θ). (5)

The state variables Θ denote the robot joint angles, τ is the

input torque vector, M(Θ) is the mass matrix, C(Θ, Θ̇) is

the matrix of centrifugal and Coriolis effects, and g(Θ) is

the gravity vector. The inertia matrix M(Θ) = M(Θ)T > 0
and the matrix C and Ṁ are related as follows:

−(Ṁ−2C) = (Ṁ−2C)T =⇒ xT(Ṁ−2C)x = 0, ∀x ∈ R
n.

(6)

It is the skew-symmetry property given by (6) which makes

it possible for the robot (with or without gravity compen-

sation) to achieve a passive mapping. Despite the com-

plexity of robotic manipulators, simple control laws can be

used in a number of cases. A fundamental consequence

of the passivity property is that a simple independent joint

continuous-time proportional-derivative (PD) control can

achieve global asymptotic stability for set-point tracking in

the absence of gravity [14]. Therefore, we employ a PD

controller but we consider a discrete-time equivalent imple-

mentation that communicates with the robotic system via a

wireless network. To compensate gravity, we select as the

control command τu = τ − g(Θ). Then the following sup-

ply rate

s(τu(t), Θ̇(t)) = Θ̇T(t)τu(t)

and corresponding storage function

V (Θ̇(t)) =
1

2
Θ̇T(t)M(Θ(t))Θ̇(t)

can be used to show that the robot is a passive dissipative

system which is also lossless in which all supplied energy

is stored as kinetic energy in the robot [7]. Mathematically,

this lossless property is characterized as follows:

∫ T

0

Θ̇(t)Tτu(t)dt = V (x(T )) − V (x(0)) (7)

∫ T

0

Θ̇(t)Tτu(t)dt ≥ −V (x(0)). (8)

V (x(0)) represents all the available storage energy which

can be extracted from the robot at time t = 0.

Furthermore, the robot can be made to be strictly-output

passive by adding negative velocity feedback [10]. There-

fore, we select the control command τu to have the follow-

ing final form

τu = τ − g(Θ) + ǫΘ̇, ǫ ≥ 0. (9)

The gravity compensation and the velocity damping are im-

plemented locally at the robotic system and it can be shown

that the gravity compensated system with velocity damping

denoted G : τu 7→ Θ̇ is passive when ǫ = 0 and strictly-

output passive for any ǫ > 0 respectively. Therefore, the

following conditions are satisfied:

∫ T

0

[

Θ̇(t)Tτu(t) − ǫΘ̇T(t)Θ̇(t)
]

dt ≥ V (x(T )) − V (x(0))

(10)
∫ T

0

Θ̇(t)Tτu(t)dt ≥ ǫ

∫ T

0

Θ̇T(t)Θ̇(t)dt − V (x(0)).

(11)

Note that the velocity damped robot is a strictly-output pas-

sive system which is a Lm
2 -stable system. It is the robots’
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strictly-output passive property which allows us to intercon-

nect a strictly-output passive controller over a wireless net-

work using wave variables such that the overall system re-

mains strictly-output passive and Lm
2 -stable. The proof for

Theorem 2 requires these properties in order to show that

digital control system depicted in Fig. 2 is Lm
2 stable.

3.2 Wireless Control Architecture

Figure 2 depicts the proposed wireless control architec-

ture. The robotic system G : τu 7→ Θ̇ is controlled by a a

passive digital controller Gpc : ė1[i] 7→ τuc[i] using wave

variables defined by the bilinear transformation denoted as

b in Figure 2. The communication of the wave variables is

subject to time-varying delays incurred in the wireless net-

work that must be accounted for in order to ensure passivity

and stability of the overall closed loop system.

The digital controller Gpc is interconnected to the robot

via a passive sampler (PS) at sample rate Ts which converts

the continuous wave variable up(t) to an appropriate scaled

discrete wave variable up[i]. Conversely, a passive hold

device (PH) converts the discrete time wave variable vucd[i]
to an appropriately scaled wave variable vucd(t) which is

held for Ts seconds.

The inner-product equivelant sampler (IPES) and zero-

order-hold (ZOH) blocks at the input of the digital con-

troller are used to ensure that the overall system Gnet :
[Θ̇T

−t(t), τ
T

d (t)]T 7→ [τT

uc(t), Θ̇
T(t)]T is (strictly output)

passive. Θ̇−t(t) denotes a (negative) desired velocity pro-

file for the robot to follow, τuc(t) is the continuous time pas-

sive control command, and τd(t) is a corresponding “distur-

bance” torque applied to the robots joints.

3.3 Wave Variables

The continuous robot input and output wave variables

vucd(t), up(t) ∈ R
m depicted in Figure 2 are related to the

corresponding torque and velocity vectors τucd(t), Θ̇(t) ∈
R

m as follows:

1

2
(uT

p (t)up(t) − vT

ucd(t)vucd(t)) = Θ̇T(t)τucd(t). (12)

The wave variable vucd(t) and velocity measurement Θ̇(t)
are considered inputs and the wave variable up(t) and de-

layed control torque τucd(t) are considered outputs and are

computed as follows:

[

up(t)
τucd(t)

]

=

[

−I
√

2bI

−
√

2bI bI

] [

vucd(t)

Θ̇(t)

]

(13)

where I ∈ R
m×m denotes the identity matrix.

The digital control input and output wave variables

upd[i], vuc[i] ∈ R
m depicted in Figure 2 are related

to the corresponding discrete torque and velocity vectors

τuc[i], Θ̇d[i] ∈ R
m as follows:

1

2
(uT

pd[i]upd[i] − vT

uc[i]vuc[i]) = τuc[i]
TΘ̇d[i] (14)

The wave variable upd[i] and control torque τuc[i] are

considered inputs and the wave variable vuc[i] and delayed

velocity Θ̇d[i] are considered outputs and are computed as

follows:

[

vuc[i]

Θ̇d[i]

]

=





I −
√

2
b
I

√

2
b
I − 1

b
I





[

upd[i]
τuc[i]

]

(15)

The received wave variables upd[i], vucd[i] are delayed

versions of the transmitted wave variables up[i], vuc[i] such

that

upd[i] = up[i − p(i)]

vucd[i] = vuc[i − c(i)].

3.4 Passive Sampler and Passive Hold

The passive sampler denoted (PS,Ts) in Figure 2 and the

corresponding passive hold denoted (PH,Ts) must be de-

signed such that the following inequality is satisfied ∀N >

0:
∫ NTs

0

(uT

p (t)up(t) − vT

ucd(t)vucd(t))dt−

N−1
∑

i=0

(uT

p [i]up[i] − vT

ucd[i]vucd[i]) ≥ 0. (16)

This condition ensures that no energy is generated by the

sample and hold devices, and thus, passivity is preserved.

Denote each jth element of the column vectors

up(t), up[i] as upj
(t), upj

[i] in which j = {1, . . . ,m}. An

implementation of the PS that satisfies condition (16) is

given by

upj
[i] =

√

∫ iTs

(i−1)Ts

u2
pj

(t)dt sign(

∫ iTs

(i−1)Ts

upj
(t)dt).

(17)

in which j = {1, . . . ,m}.

Denote each jth element of the column vectors

vucd(t), vucd[i] as vucdj
(t), vucdj

[i] in which j =
{1, . . . ,m}. An implementation of the PH that satisfies

condition (16) is

vucdj
(t) =

1√
Ts

vucdj
[i − 1], t ∈ [iTs, (i + 1)Ts]. (18)

We note that the PS effectively scales the feedback ve-

locity from the robot as follows:

Θ̇d[i] ∝
√

TsΘ̇((i − 1)Ts − τ((i − 1)Ts)). (19)
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Furthermore, we note that the passive controller Gpc has

infinite DC gain, and for a small ǫc > 0 at steady state:

Θ̇[i] ≈ −Θ̇−t[i].

Therefore, Θ̇−t[i] can be related to a discrete time sampled

robot velocity trajectory Θ̇t[i] = Θ̇t(iTs) as follows:

Θ̇−t[i] = −
√

TsΘ̇t[i].

3.5 Passive controller

Typically a passive continuous-time PD controller is im-

plemented as

ė1(t) = (Θ̇d(t) + Θ̇−t)

τuc(t) = Kpe1(t) + Kd(Θ̇d(t) + Θ̇−t).

A state-space realization of the controller can be described

by

ẋ(t) = Ax(t) + Bu(t) (20)

y(t) = Cx(t) + Du(t). (21)

where A = 0, B = I, C = Kp = KT

p > 0, D = Kd =

KT

d > 0} (all matrices are in R
m×m).

To obtain a digital controller, we implement the discrete-

time equivalent passive controller Gpc : ė1[i] 7→ τuc[i] com-

puted from the state-space realization (20,21) with sampling

period Ts. The resulting controller is implemented as

x[k + 1] = Φox[k] + Γou[k]

y[k] = KsCpx[k] + KsDpu[k]. (22)

where Ks > 0 is a real diagonal scaling matrix and u[k] =
(Θ̇d[k] + Θ̇−t[k]). Details for computing the digital con-

troller and a theoretical result showing that the controller is

strictly-output passive can be found in [9, Section 2.3.1].

4 Stability of the Networked Control System

This section presents the main analytical result that

proves the stability of the networked control system. The

proof can be found in [11, Appendix A].

Theorem 2 For the wireless control architecture depicted

in Fig. 2 consists of the passive robot described by (5) and

(6) and the passive digital controller described by (22), if

the communication protocol ensures that

∫ NTs

0

Θ̇T(t)τucd(t)dt ≥
(N−1)
∑

i=0

τT

uc[i]Θ̇d[i] (23)

always holds then when

ǫc = ǫ = 0

the system depicted in Figure 2 is passive. Furthermore, if

ǫc > 0, and ǫ > 0

then the system is both strictly-output passive and Lm
2 sta-

ble.

Condition (23) can be imposed on the wireless commu-

nication protocol by not processing duplicate transmissions

of wave variables [10, Lemma 3-I]. The proof is fairly in-

tuitive in noting that if the controller or plant processes du-

plicated transmitted wave variables the system will gener-

ate energy which is a non passive operation. Communi-

cation protocols such as TCP are appropriate because they

provide an un-duplicated ordered stream of data where as

the User Datagram Protocol UDP protocol is not appropri-

ate (without checking for duplicated transmissions) since

checking of duplicated datagrams is not required. Note that

(23) does not require that the data needs to be ordered or for

all the data to arrive as is guaranteed by the TCP protocol,

so choosing to use the UDP protocol may be a better choice

for transmitting data as long as the control application is

able to drop duplicated datagrams.

Corollary 1 For the wireless control architecture depicted

in Fig. 2 in which the robot (Grobot(τ(t))) is replaced by any

passive system satisfying Definition 1-I (with gravity com-

pensation disabled g(Θ(t)) = 0) and the passive digital

controller (Gpc(ė1[i])) satisfies Definition 1-I, if the com-

munication protocol ensures that

∫ NTs

0

Θ̇T(t)τucd(t)dt ≥
(N−1)
∑

i=0

τT

uc[i]Θ̇d[i] (24)

always holds then when

ǫc = ǫ = 0

the system depicted in Figure 2 is passive. Furthermore, if

ǫc > 0, and ǫ > 0

then the system is both strictly-output passive and Lm
2 sta-

ble.

5 Evaluation

5.1 Experimental Setup

We consider the Pioneer 3 (P3) arm which is a robotic

manipulator built for the P3-DX and P3-AT ActivMedia
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mobile robots. The P3 Arm has two main segments, the

manipulator and the gripper. The manipulator has five de-

grees of freedom and the gripper has an additional one. Fig-

ure 3 shows the home position of the P3 arm including the

locations for the centers of gravity using the point mass as-

sumption. The simulation model includes three main sub-

A2 = 0.160m A1 = 0.068m

D4 = 0.137m

A5 = 0.113m

m3

m2

m1

m5

m4=0

Figure 3. Pioneer 3 Arm

systems. The dynamic model of the robotic arm is de-

scribed by (5) and simulated via a Simulink block from the

“Robotics Toolbox for MATLAB” [4]. The simulated robot

is provided gravity compensation and velocity damping as

described in Section 3. To evaluate the performance of the

passive digital control scheme over a wireless network, we

use the “TrueTime Toolbox 1.5” [16]. We consider that the

controller is interconnected to the robotic arm via an 802.llb

wireless network. The network subsystem contains three

nodes implemented as TrueTime kernel blocks. The first

node (node 1) implements the network interface of the digi-

tal controller and the second node (node 2) the interface for

the P3 arm. A third network node (node 3) is used as a dis-

turbance node in order to incur time-varying packet delay

as described in [3]. For our simulations, we use the 802.11b

wireless block in TrueTime with the throughput is set to 11

Mbps, which is the theoretical limit of 802.11b, and the re-

maining parameters set to the default values. The controller

wireless node and robot node are 10 meters apart while the

disturbance node is 5 meters away from both. The packet

size contains a 120 bit header plus preamble and a payload

of 384 bits required to fit 6 double precision floating point

values.

The controller subsystem contains two components: a

block from the robotics toolbox (jtraj) which provides the

reference velocity trajectory for the robotic arm to follow

and a discrete state-space model of the controller. The con-

troller receives as input the reference trajectory along with

the actual robot velocity and computes the torque control

command for the robot. To demonstrate the advantages of

the passive control architecture, we performed two sets of

experiments, one using a non-passive control architecture

and one using the passive control scheme presented in Sec-

tion 3. In all the experiments, the reference provided to the

controller commands the robot to go to a position of [1 0.8

0.6 0.4 0.2 0] from the start position of all joints equal to

zero.

5.2 Non-passive Control Architecture

In the first set of experiments, we consider a non-passive

control scheme. To implement the digital controller, we dis-

cretize the continuous-time PD controller described by Eqs.

(20)-(21) using a standard zero-order hold operation [1].

The digital controller communicates with the robot directly

without using wave variables. The gravity compensation

and velocity damping are implemented locally as in the pas-

sive control scheme.

Since we are using a zero-order hold operation to convert

the continuous controller to a digital controller and are ap-

plying a zero-order hold to the input of the robotic plant we

can take working control gains for the passive framework

kp−passive and kd−passive and scale them using the following

set of formulas:

α = 2T 2
s

kp = αkp−passive

kd = αkd−passive.

In spite of our best efforts to scale the gains, the non-passive

system requires ǫ > .8 in order to add enough damping to

stabilize the nominal system. As ǫ is increased the system

will begin to exhibit steady state error, so we chose to limit

ǫ = 1 for the non-passive system. Figure 4 compares the

passive system (kp−passive = 321, kd−passive = 82, ǫ = .5)

to the non-passive system (kp = 1.6, kd = .41, ǫ =
1.0). System responses are provided for both the nomi-

nal case and when subject to moderate time varying de-

lays (disturbance= 0.5). Due to the added phase lag from

the uncompensated zero-order hold, the overall non-passive

system has little flexibility in adjusting its gains. Therefore,

only the non-passive response for Ts = 0.05 seconds could

be evaluated.

To simulate the system in the case of time-varying de-

lays, we incorporate the disturbance node. The sampling

period is kept constant (0.05 sec), but the amount of distur-

bance packets on the network varies. The disturbance node

samples a uniformly distributed random variable X[k] ∈
[0, 1] every 0.01 seconds. If X[k] > d in which d is de-

noted as the disturbance parameter, a disturbance packet is

sent out over the network. Figure 5 is a graph of the net-

work delay between the controller node and the robot node

caused by the disturbance traffic when d = 0.5. For com-

parison, Figure 6 depicts the corresponding network delay

when d = 1 and Ts = .05 seconds. Figure 4 shows that the

time-varying delays (when d = 0.5) have destabilized the

robotic arm in the case of the non-passive control scheme.
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Figure 5. Network delay for d = 0.5.
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Figure 6. Network delay for d = 1.

5.3 Passive Control Architecture

The second set of experiments involves the proposed

passive control architecture. In order to choose an appro-

priate set of continuous time gains kp and kd we focus our

attention on joint 1 which is subject to the largest (changes

of) inertia J as can be deduced from Figure 3.

Gpm(s) =
1

Js
(25)

Similarly we approximate the controller to be of the form

Gc(s) =
kp + kds

s
. (26)

Next using basic loop shaping techniques we desire

the system to have a crossover frequency (ωc s.t.

20 log10(|Gpm(jωc)Gc(jωc)|) = 0 dB), in which ωc =
ωn

N
. ωn = π

Ts
is denoted as the Nyquist frequency. There-

fore, the control gains can be computed based on a desired

phase margin 0 < φ ≤ 90 (degrees) as follows:

τ =
(φ − 40)

5ωc

kp =
ω2

c

J(τωc + 1)

kd = kpτ.

Although the phase margin will never exceed 90 degrees,

you can still calculate appropriate gains for kp and kd

for φ > 90 using the above straight line approximation.

Due to the highly non-linear nature of our system (with

ǫ = 1.0e−6) we adjusted J to closely match the expected

rise time given a 1 second trajectory since overshoot was

still quite a significant component of the system response.

All simulations given are for φ = 80 degrees, N = 2,

and J = 2.93 kg-m2. Next, we chose an appropriate tra-

jectory time (τt) which minimized overshoot and settling

time. Finally, we evaluated the effectiveness of increasing

ǫ while maintaining tracking. Since, ǫ and ǫc serve primar-

ily to show that the overall system is Lm
2 -stable we kept

ǫc = 1.0e−6 for all cases, the remaining system parameters

are summarized in Table 1.

Figure 8 shows that as the sampling period is increased

the overall system requires a larger trajectory time in or-

der to minimize overshoot. Next, Figures (7, 10, 12) clearly

show that by increasing ǫ = 0.5 the passive system achieves

faster settling times while exhibiting greater insensitivity to

time varying delays when compared to Figures (9, 11) in

which ǫ = 1.0e − 6. This robustness to time-varying de-

lays stems from the passivity constraints imposed on all the

components of the networked control architecture and the

damping effects of ǫ.
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Figure 7. Joint 1 response (Ts = .05, ǫ = 0.5,
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Figure 9. Joint 1 response (Ts = .05, ǫ =
1.0e−6, d = {0, 0.5, 1.0}).
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Figure 10. Joint 1 response (Ts = .05, ǫ = 0.5,
d = {0, 0.5, 1.0}).
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Figure 11. Joint 1 response (Ts = .20, ǫ =
1.0e−6, d = {0, 0.5, 1.0}).
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Figure 12. Joint 1 response (Ts = .20, ǫ = 0.5,
d = {0, 0.5, 1.0}).

2323

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on October 6, 2009 at 17:14 from IEEE Xplore.  Restrictions apply. 

Nicholas Kottenstette, Xenofon Koutsoukos, Joe Hall, Panos Antsaklis, Janos Sztipanovits, “Passivity-Based 
Design of Wireless Networked Control Systems for Robustness to Time-Varying Delays,” 29th IEEE Real- 
Time Systems Symposium (RTTS 2008), Barcelona, Spain, November 30 - December 3, 2008.



Table 1. Passive Control Parameters Sum-
mary.

Ts τt ǫ kp kd Figures

.05 2.0 1.0e−6 321.0 81.7 9

.05 2.0 0.5 321.0 81.7 4, 7, 10, 8

.10 3.0 0.5 80.2 40.9 8

.20 4.0 1.0e−6 20.1 20.4 11

.20 4.0 0.5 20.1 20.4 12, 8

6 Conclusions and Future Work

The paper presents a passive control architecture that of-

fers advantages in building CPSs that are insensitive to net-

work uncertainties, thus improving orthogonality across the

controller design and implementation design layers and em-

powering model-driven development. We have presented an

architecture for a system consisting of a robotic manipulator

controlled by a digital controller over a wireless network in

which stability of the networked control system is assured.

Finally, we have evaluated the system using simulations re-

sults based on a detailed model that offers significant advan-

tages especially in the presence of time-varying delays. Our

future work focuses on three major directions: (i) theoret-

ical methods that provide an effective way to interconnect

multiple passive systems and controllers, (ii) an integrated

end-to-end tool chain for the model-based design of CPSs

based on passivity, (iii) and experimental studies to evaluate

the proposed design methodology.
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