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Abstract: This paper presents a new integral control law for a boost converter that ensures the stab-
ility of large-signal operation. The integral controller is derived in two steps by means of passivity-
based control theory. First, a static law, which ensures global stability, is obtained. Secondly, a
combination of the storage function of this static law and a new positive semidefinite storage
function results in a new integral control law. The proposed regulator satisfies the usual transient
specifications and behaves robustly for parameter uncertainty. Global stability is guaranteed even if
the duty cycle saturation is taken into account. Simulation and experimental results verify the
theoretical predictions.

1 Introduction

DC-to-DC switching converters exhibit a nonlinear dynamic
behaviour and the control to output transfer function of their
linearised models is in many cases of nonminimum phase
type. The use of linear controllers in such converters only
ensures the local stability of the switching regulator.
The nonlinear nature of switching converters has prom-

pted some authors to use nonlinear control for regulation
purposes. Feedback linearisation, sliding-mode control
and passivity-based control are some of the nonlinear strat-
egies that have been used in recent years in the field of
switching converters. In [1] and [2], feedback linearisation
is applied in converters with no uncertainty in the par-
ameters. These papers do not consider the saturation of
the duty cycle and the implementation of the control law
requires some analog divisions which constrain the oper-
ation region where control exists. The use of the sliding-
mode has been analysed in [3, 4] where only local stability
is guaranteed in spite of the nonlinear nature of the control.
More recently, passivity-based control techniques have also
been studied in [5], although the resulting control assumes
perfect knowledge of all converter parameters, includ-
ing input voltage and load resistance. Another interesting
approach is reported in [6] where passivity-based control-
lers are derived using the concept of incremental energy.
Also, experimental prototypes of passivity control law in

converters have been reported in literature [7] and [8]. A
digital control is reported in [7], although the solution is
too expensive for commercial purposes. In [8], the analog
control law proposed is linear but does not solve the uncer-
tainties in the parameters.

Although the application of passivity techniques to
control switching converters is a relatively new subject in
the field of Control Theory, passivity concepts have long
been used [9–11] to analyse systems represented by state
equations.

The idea of passivity stems from Circuit Theory’s
definition of the energetic behaviour of n-port linear net-
works, which were later extended to the interconnection
of nonlinear passive circuits [12].

A passivity-based control of switching converters should
not assume linear dynamic behaviour of the power cell nor
neglect the control saturation problem when a large-signal
perturbation appears.

This paper analyses control laws that consider a possible
saturation of the duty cycle. These laws guarantee that there
will be no steady-state error in the output voltage tracking of
step-type references even if there is uncertainty in the con-
verter parameters or switching ripple influence.

2 Boost converter dynamics—review

Figure 1 shows a boost converter whose dynamic behaviour
during TON and TOFF can be expressed as follows

_xa ¼ Aixa þ bi i ¼ 1; 2 ð1Þ

where

A1 ¼
0 0

0 �1=RC

� �
b1 ¼

Vg=L

0

� �

A2 ¼
0 �1=L

1=C �1=RC

� �
b2 ¼

Vg=L

0

� �

and

xa ¼
ia
va

� �

The state vector components are ia, which represents the
inductor current, and va, which represents the capacitor
voltage. These variables are measurable or available for
feedback purposes.
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Equation (1) can be expressed in compact form as follows

_xa ¼ ðA1xa þ b1Þuþ ðA2xa þ b2Þð1� uÞ ð2Þ

or, equivalently:

_xa ¼ A2xa þ b2 þ ðA1 � A2Þxauþ ðb1 � b2Þu ð3Þ

where u ¼1 during TON and u ¼ 0 during TOFF.
If the switching frequency is significantly higher than the

converter’s natural frequencies, this discontinuous model
can be approximated by a continuous averaged model,
which contains a new variable da. In the [0,1] subinterval,
da is a continuous function and constitutes the converter
duty cycle.
In the boost converter b1 ¼ b2, which leads to

_xa ¼ A2xa þ b2 þ ðA1 � A2Þxada ð4Þ

Considering that the system variables consist of two
components:

xa ¼ xe þ x

da ¼ de þ d
ð5Þ

where xe and de represent the equilibrium values and x and d
are the perturbed values of the state and duty cycle.
Equation (4) can be written as follows

ð_xeþ _xÞ¼A2ðxeþxÞþb2þðA1�A2ÞðxeþxÞðdeþdÞ ð6Þ

which results in

_x¼AxþBxdþbd ð7Þ

where

A¼A2þðA1�A2Þde B¼ðA1�A2Þ

and

b¼ðA1�A2Þxe

and matrices A, B and b are given by

A¼
0 �d0e=L

�d0e=C �1=RC

� �
B¼

0 1=L
�1=C 0

� �
ð8Þ

and

b¼
ve=L
�ie=C

� �
where de

0 ¼ 12 de.
The dynamics of the perturbed system are summarised in

the following equations

L
di

dt
¼ �d0evþ vd þ ved ð9Þ

C
dv

dt
¼ d0ei�

1

R
v� id � ied ð10Þ

The purpose of the sections below is to find a control law
that guarantees stability even if perturbations are large:

that is to say, the system guarantees a return to the equili-
brium point taking into account that the control variable d
belongs to the [2de, 12 de] interval. On the other hand,
once nominal stability in the large is assured, the regulator
should fulfil the robustness and the usual transient specifica-
tions in small-signal operation.

3 Linear control laws for large-signal stability
in boost converter

This Section derives a static control law for the boost con-
verter that guarantees global stability. As is stated in
Appendix 9.1, the passivity-based control of a system req-
uires a storage function and a passive output that satisfy
condition (29). In the case of a boost converter, multiplying
(9) by i and (10) by v, we obtain:

Li
di

dt
¼ �d0eviþ vid þ vedi ð11Þ

Cv
dv

dt
¼ d0evi�

1

R
v2 � vid � iedv ð12Þ

Adding (11) and (12) yields

Li
di

dt
þ Cv

dv

dt
¼ �

1

R
v2 þ ðvei� ievÞd ð13Þ

Choosing as passive output

y ¼ hðxÞ ¼ ðvei� ievÞ ð14Þ

leads to

_V ðxÞ þ
1

R
v2 ¼ yd ð15Þ

where

V ðxÞ ¼ L
i2

2
þ C

v2

2

We can conclude that the system has a passive input-
output characteristic and, also, that term (1/R)v2 adds
dissipativity to the system [13–15].

From theorem 2 in Appendix 9.1, the feedback connec-
tion of a memoryless function will modify the regulator
dynamics and will guarantee the global asymptotic stability.

Therefore, choosing

dðtÞ ¼ �fyðtÞ ¼ �fðvei� ievÞ ð16Þ

as the control law results in asymptotic stability in the large.
The term f( ) makes it possible to assume that gain is

constant around the equilibrium point and that the duty
cycle is saturated far from the equilibrium point. It can be
observed that, since 2de � d � 1–de, then f will be:

fðyÞ ¼

fmax �
de

fmax

� y �
1� de

fmax

1� de

y
y .

1� de

fmax

de

y
y ,

de

fmax

8>>>>>><
>>>>>>:

ð17Þ

Once global asymptotic stability has been guaranteed, an a
posteriori small-signal analysis can be made to choose the
correct value for constant fmax .

The linearised control law is d ¼ 2fmax(vei – iev ). In
addition, according to (9)–(10), the small-signal model of

Fig. 1 Equivalent circuit of a boost convertor
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a boost converter will be expressed as

_i
_v

� �
¼

0 �d0e=L
d0e=C �1=RC

� �
i

v

� �
þ

ve=L
ie=C

� �
d ð18Þ

Hence, the corresponding loop gain will be given by

T ðsÞ ¼ �fmax ve
IðsÞ

DðsÞ
� ie

V ðsÞ

DðsÞ

� �

¼ �fmax

v2e
L
þ

i2e
C

� �
sþ

1

LC

v2e
R

� �

s2 þ
1

RC
sþ

ðd0eÞ
2

LC

ð19Þ

Although the model can consider inductor losses, the corre-
sponding parasitics do not affect the previous derivations.
Figure 2 shows the root loci as a function of fmax for the

linearisation of control law (16) for a converter whose set of
parameters is L ¼ 200mH, C ¼ 200 mF, R ¼ 10 V,
Vg ¼ 12 V and de ¼ 0.5. The coordinates of the equilibrium
point are ve ¼ 24 V and ie ¼ 5 A. Notice that linear control
techniques are applied once the global asymptotic stability
of the switching regulator has been established.
Figures 3 and 4 show the simulation results which depict

the converter start-up when fmax ¼ 1023, where the switch-
ing period is TS ¼ 20 ms and RL ¼ 220 mV. The parameter
fmax has been chosen for settling time minimisation.

However, the control law analysed in this section requires
precise knowledge of the equilibrium point: that is to say,
the values of parameters Vg, R. If these parameter values
are not known, there will be a steady-state error in the
capacitor voltage. To avoid this problem, in the next
Section we present passivity-based controllers that elimin-
ate the steady-state error of the output voltage.

4 Passivity-based integral control of the
boost converter

In the Section above, the storage function was derived by
means of incremental energy concepts [6] and it has been
demonstrated that this function is of the Lyapunov type.
In this Section, we move away from the physical concept
of incremental energy to analyse a storage function that
includes an integral function of the capacitor voltage
error; i.e. the variable to be regulated.

The dynamics of the incremental values for boost conver-
ters are given by

di

dt
¼ �

d0e
L
vþ

1

L
vd þ

ve

L
d

dv

dt
¼

d0e
C
i�

1

RC
v�

1

C
id �

ie

C
d

dz

dt
¼ v

ð20Þ

where z is the integral of the voltage incremental error.
On the basis of the previous passivity results, combined

storage functions will be built for system (20) so that a
new integral control can be derived that guarantees asympto-
tic stability for large signal perturbations. For this purpose,
the storage function defined above will be used and combined
with a new one, which includes an integral term.

Thus, consider the following storage function

V ðxÞ ¼ V1ðxÞ þ V2ðxÞ ð21Þ

where V1(x) ¼ L(i2/2)þ C(v2/2) and V2(x) ¼ 1/
2g2((L/d0e)iþ z )2. This storage function is positive definite
and radially unbounded for the extended boost dynamics
(20), and its time-derivative is

_V ðxÞ ¼ _V 1ðxÞ þ _V 2ðxÞ ð22Þ

whose components, from (13) and (42)–(43) respectively,

Fig. 2 Root loci for a passivity-based static control
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Fig. 3 Convertor start-up current

Fig. 4 Converter start-up voltage
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are

_V 1ðxÞ ¼ �
1

R
v2 þ ðvei� ievÞd ð23Þ

_V 2ðxÞ ¼
g2

d03e
ðVg þ d0evÞðd

0
ezþ LiÞd ð24Þ

Hence,

_V ðxÞ ¼ �
1

R
v2 þ ðvei� ievÞd þ

g2

d03e
ðVg þ d0evÞðd

0
ezþ LiÞd

ð25Þ

With the following output

y ¼ vei� ievþ
g2

d03e
ðVg þ d0evÞðd

0
ezþ LiÞ ð26Þ

(26) becomes

_V ðxÞ � yd ð27Þ

and the passive behaviour of the input-output characteristic
is proven.
We will introduce a memoryless function f( ), which rep-

resents a feedback gain that takes saturation into account,

d ¼ �fðyÞ ð28Þ

and we shall define k ¼ g2/de
02, where g and de

0 are constant
values.

Therefore, the control law:

d ¼ �fy ¼ �fðvei� ievþ kðVg þ d0evÞðd
0
ezþ LiÞÞ ð29Þ

guarantees the global asymptotic stability of the switching
regulator.

Note that if only V2(x) is taken as the storage function,
then according to Appendix B, the control law becomes
d ¼ 2f1(Vgþ de

0v)(d0e zþ Li ). Nevertheless, this simpler
version of the control law cannot provide any additional
damping, since V̇2(x) ¼ yd, and, so it is not suitable for
most DC-to-DC converter applications.

Once the nonlinear control law has been established, f
and k will be selected to ensure that the regulator system
behaves satisfactorily in small-signal operation. By linear-
ising the control law (29), we obtain:

dlin ¼ �fmax ve þ k
Vg

d0e
L

� �
i� ievþ k Vg z

� �
ð30Þ

The corresponding loop gain is given by

T ðsÞ ¼ �fmax ve þ k
VgL

d0e

� �
IðsÞ

DlinðsÞ

�

�ie
V ðsÞ

DlinðsÞ
þ kVg

ZðsÞ

DlinðsÞ

� ð31Þ

where I(s)/Dlin(s), V(s)/Dlin(s) and Z(s)/Dlin(s) are derived
from a linear model of system (20).

Fig. 5 Root loci for gain loop (30)

Fig. 6 Inductor current and capacitor voltage during start-up

Fig. 7 Inductor current and capacitor voltage responses for step
perturbations in the input voltage

Fig. 8 Inductor current and capacitor voltage responses for step
perturbations in the load resistance
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Figure 5 shows the root loci for the gain loop (30) and the
converter parameters of the previous section. A value of
k ¼ 500 is used and the values of fmax are within the inter-
val [0.0001–0.01].
Figure 6 illustrates an ACSL simulation of the control

law (29) with fmax ¼ 0.003, which was chosen for settling
time minimisation. The waveforms depicted in the
Figure are for the inductor current and capacitor voltage
during start-up which, in fact, represents a large-signal
perturbation around the equilibrium point of the state
variables. Fig. 7 shows the system response when the

input voltage has step changes: first it decreases from
17 V to 12 V and then returns to 17 V. Notice that the
system behaves robustly by returning to the desired output
voltage with zero steady-state error after a short transient
period. We should point out that the control was designed
using a nominal input voltage of 12 V. Similarly, Fig. 8 illus-
trates the system responses for step changes in the resistance
load from 10 V a 20V and then a return to 10V. Again we
point out that the system, which was designed considering a
nominal value of the load resistance of 10V, behaved
robustly.

Vg

current sensor

BC327

Rc IL

Vo

Ie

Ve/10

Vg

control law circuit

AD633

3524
switching
regulator

Vg

BC327

BC337
Rg

d de +

Diode
MBR1660

MOSFET (N)
IRFP250

power stage

RL L

C Ro

+
-

-
+

-
+

Fig. 9 Curcuit scheme

Fig. 10 Detail of control law circuit
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5 Experimental results

Figures 11, 12 and 13 show the experimental waveforms for
the set of parameters used in the sections above and Figs. 9
and 10 show the regulator implementation scheme.
Figure 11 shows the measured converter start-up, which is
in perfect agreement with the simulated response of
Fig. 6. Similarly, measured system responses for input

variations (Fig. 12) and load perturbations are in good
agreement with the respective simulations of Figs. 7 and 8.

6 Conclusions

This paper has shown that passivity-based integral control is
an effective solution for regulating DC-to-DC nonminimum
phase switching converters under large-signal operation.
The control law can be easily implemented by means of
an analog multiplier, standard operational amplifiers and a
pulse width modulator. In addition, as global stability is
assured, it does not require start-up aid circuits.

It is a simple task to apply it to canonical converters such as
buck or buck-, and research is currently in progress to deter-
mine whether it can be extended to higher order converters.
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5 Sira-Ramı́rez, H.J., Pérez-Moreno, R.A., Ortega, R., and Garcı́a
Esteban, M.: ‘Passivity-based controllers for the stabilization of DC-
to-DC converters’, Automatica, 1997, 33, (4), pp. 499–513

6 Sanders, S.R.: ‘Nonlinear control of switching converters’, PhD
Thesis, EECS Dept., MIT, 1989

7 Escobar, G., Ortega, R., Sira-Ramı́rez, H., Vilain, J.P., and Zein, I.:
‘An experimental comparison of several nonlinear controllers for
power converter’, IEEE Control Syst. Mag., 1999, 19, (1), pp. 66–82

8 Leyva, R., Martı́nez-Salamero, L., Valderrama-Blavi, H., Maixé, J.,
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Fig. 11 Experimental start-up
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Fig. 12 System response to input voltage variations
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9 Appendices

9.1 Basic passivity concepts

Consider a single-input-single-output (SISO) nonlinear
system represented by

_x ¼ f ðxÞ þ gðxÞu

y ¼ hðxÞ
ð32Þ

where x [ Rn, u [ R and y [ R. The function f is locally
Lipschitz, and the functions g and h are continuous.

Definition 1: System (32) will be passive if there exists a
differentiable continuous positive semidefinite function
V(x(t)) such that

uy �
@V

@x
_x ð33Þ

where V(x(t)) is known as the storage function.

Definition 2 [14]: System (32) will be strictly passive with
respect to the output if there exists a continuous differenti-
able positive semidefinite function V(x(t)) such that

uy �
@V

@x
_xþ dy2 ð34Þ

where d is a positive constant.
If a system is strictly passive with respect to the output,

we often need to know if the following property is satisfied

yðtÞ ; 0 ¼) xðtÞ ¼ 0 when uðtÞ ¼ 0 ð35Þ

Condition (35) is known as zero-state observability.

Theorem 1 [14]: If system (32) is passive with a positive
definite storage function V(x), then the system origin for
u ¼ 0 is stable.

Proof: Since V̇ � uy then V̇ � 0. In addition, V(x) is
positive definite and hence V(x) is a Lyapunov function.

If the system is strictly passive with respect to the output
with a positive definite storage function V(x) and is also
zero-state observable, then the system origin is asymptoti-
cally stable.

Proof: Since V̇ � uy then V̇ � 0. On the other hand, V(x) is
positive definite and therefore V(x) is a Lyapunov function.
In addition, the observability condition establishes that the
only solution that can identically remain in S ¼ fx [ Rn/
h(x) ¼ 0g is the trivial solution x(t) ¼ 0. Hence, from La
Salle’s invariance principle the origin must be asymptoti-
cally stable. Moreover, if V(x) is not radially bounded,
then the origin is globally asymptotically stable.

Definition 3: Considering the time-invariant nonlinear
static system or memoryless function

y ¼ fðuÞ ð36Þ

where f: R ! R is locally Lipschitz.
The static system will be strictly passive with respect to

the input if

uy � du2 ð37Þ

where d is a positive constant.

Theorem 2: Considering the feedback system of Fig. 14,
where S1 is a dynamical system of the form:

_x1 ¼ f1ðx1Þ þ g1ðx1Þe1

y1 ¼ h1ðx1Þ
ð38Þ

and S2 is a memoryless function of the type

y2 ¼ fðe2Þ

where the functions f and g are continuous in t and locally
Lipschitz in u, f is continuous and f (0) ¼ 0 and h(0) ¼ 0.
Inputs to S1 and S2 are given respectively by

e1 ¼ u1 � y2

e2 ¼ y1

If S1 is a passive system and S2 is a memoryless system
that is strictly passive with respect to the input, then the feed-
back system is strictly passive with respect to the output.

Proof: Observe that

e1y1 �
@V1

@x1
_x1

e2 y2 � d2 y
2
1

ð39Þ

Then

u1y1 �
@V1

@x1
_x1 þ d2 y

2
1 ð40Þ

9.2 Storage function derivations in boost
converters

Consider the storage function for a given system

V ðxÞ ¼
1

2
ðaiþ bvþ g zÞ2 � 0 ð41Þ

To apply a passive-based control, we have to choose an output
such that the input-output characteristic is passive, i.e.:

dðtÞyðtÞ � _V ðxðtÞÞ

Observe that

_V ðxÞ ¼ ðaiþ bvþ gzÞ a
di

dt
þ b

dv

dt
þ g

dz

dt

� �

¼ a2i
di

dt
þ abi

dv

dt
þ agi

dz

dt

þ bav
di

dt
þ b2v

dv

dt
þ bgv

dz

dt

þ gaz
di

dt
þ gbz

dv

dt
þ g2z

dz

dt
ð42Þ

Substituting the values of the time-derivatives for the boost
converter case (20) into expression (42) yields

_V ðxÞ ¼ �a2 d
0
eiv

L
þ g2zvþab

iðd0eiR� vÞ

RC
þb2 d

0
eiv

C
�b2 v2

RC

þagiv�ab
v2d0e
L

� ga
zvd 0e
L

þ gb
zðd0eiR� vÞ

RC

þbgv2 þ lðxÞ � d ð43Þ

where the terms l(x) depending on the duty cycle are irrele-
vant and have not been explicitly shown.
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Some terms, such as2b2(v2/RC ), have a defined sign in
the whole domain; however, terms like b2(d0eiv/C ) do not
have a defined sign and, in order to verify the passive
nature of the input-output characteristic, we force them to
be zero. Therefore, we constrain the analysis to the case
b ¼ 0 and expression (43) becomes
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After somemanipulations, expression (B.4) can be written as
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We can observe that the first two terms do not have a defined
sign. Therefore, we will make them zero. Solving the equations
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we obtain a ¼ gL/d0e and hence expression (45) yields
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This procedure can be applied in other canonical converters, as
well as in high order converters. On the other hand, the pro-
cedure makes it possible to analyse a boost converter model,
which includes inductance losses resistance RL. In this case,
values of b and a become
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and
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