

Abstract Passwords are the first line of defense for many

computerized systems. The quality of these passwords decides
the security strength of these systems. Many studies advocate
using password entropy as an indicator for password quality
where lower entropy suggests a weaker or less secure password.
However, a closer examination of this literature shows that
password entropy is very loosely defined. In this paper, we first
discuss the calculation of password entropy and explain why it
is an inadequate indicator of password quality. We then
establish a password quality assessment scheme: password
quality indicator (PQI). The PQI of a password is a pair

),(LD=λ , where D is the Levenshtein's editing distance of
the password in relation to a dictionary of words and common
mnemonics, and L is the effective password length. Finally, we
propose to use PQI to prescribe the characteristics of good
quality passwords.

I. INTRODUCTION
uthentication Authentication and authorization are the
foundation of information security. Authentication is

responsible for verifying that a person is really who he/she
claims, and authorization is about assigning appropriate
privileges to the person after the verification of his/her
identity. There are 3 types of authentications [10, p 209]: (i)
something the user knows, for example, password and PIN
(personal identity number), (ii) something the user has, for
example, physical keys, access cards, and smart cards etc.,
and (iii) something the user is so called biometric
authentication, such as voice recognition [14], fingerprints
matching, and iris scanning etc. Password authentication is
simple, accurate, and effective and will continue to be the
working horse of information security. According to [11],
who reported the panel discussion at RSA 2005 conference,
“Password will be with us forever”, because “We've got to
make security simpler to use if it's going to be effective”, as
suggested by the panel members.

The strength of password authentication relies on the

Manuscript received May 10, 2010.
Wanli Ma is with the Faculty of Information Sciences and Engineering,

University of Canberra, Australia (phone: +61-2-62012838; fax:
+61.2.62015231; e-mail: Wanli.Ma@canberra.edu.au).

John Campbell is with the Faculty of Information Sciences and
Engineering, University of Canberra, Australia (e-mail:
John.Campbell@Canberra.edu.au).

Dat Tran is with the Faculty of Information Sciences and Engineering,
University of Canberra, Australia (e-mail: Dat.Tran@canberra.edu.au).

Dale Kleeman is with the Faculty of Information Sciences and
Engineering, University of Canberra, Australia (e-mail:
Dale.Kleeman@canberra.edu.au).

strength of the passwords. Therefore, measuring the quality
of password becomes an interesting topic. For example, how
can we accurately measure the quality difference of
passwords “akjuwfg” and “D$f9” and therefore provide a
quantitative measurement on which one is better? Password
entropy is mentioned as a quality indicator for passwords in
many occasions. Higher entropy means better quality. Most
of the literature just briefly mentions that one should choose
the passwords with higher entropy, for example [15]. There
are just a few which actually provide the details on the
calculation or estimation of password entropy [2]. After
carefully examining the literature, we realize that the concept
of password entropy is actually loosely defined. The
suggested estimations are far from indicating the quality of a
password. The concept of information entropy was
introduced by Shannon [12] to measure information content.
It has been widely used in communication, coding, and
cryptography etc. areas [8]. The calculation of the entropy is
based on a statistic distribution model of a language and is
conducted on a model of n order Markov process. This is
actually the fundamental reason why entropy cannot be used
as a quality indicator for passwords

• As all agreed, there is no statistic distribution for
passwords. We doubt if it is possible to establish
this distribution, even with a collection of large
number of sample passwords. Unlike English
words, where we follow certain rules to
communicate with each other, choosing a password
is not for communication purpose. There is no
uniform rule for everybody to follow. It may
therefore not exist a converge model.

• Password guessing is not a Markov process. There is
no such thing as knowing the first several
characters of a password and then proceeding to the
following characters, where the knowledge of these
leading characters can help to guess the next
characters. Guessing a password is an all or
nothing game. Either you get the password exactly
as it is, or nothing at all. Therefore, it is
meaningless to calculate password entropy based
on the composing characters.

• Guessing entropy [9] is not an appropriate indicator
for the quality of individual password either. It only
establishes the low boundary for how many guesses
needed to crack passwords.

In this paper, we advocate a different means of measuring
password quality password quality indicator (PQI) [7]. We

Password Entropy and Password Quality

A

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.18

58

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.18

583

believe that the quality of a password is decided by the time
required to crack the password. The longer time it requires,
the stronger the password is. The PQI of a password is a pair

),(LD=λ , where D is the Levenshtein's editing distance
(Levenshtein, 1965) of the password to the base dictionary
words, and L is the effective password length. The effective
password length is the equivalent length of the password in
the standard password format, which consists of only the 10
digit characters (0-9). From PQI, we further develop a
concise rule for choosing a good password: a good password
should be at least 8 characters long, with at least 3 special
characters plus other alphanumeric characters. The rule is
easy to remember and easy to be checked by a computer
program. It avoids the costly operation of proactive
password checking [5,1,15].

The paper is organized as follows. We first study
password entropy and then develop the rationale of our
password quality indicator theory. We conclude the paper
with a summary.

II. CALCULATING PASSWORD ENTROPY
Let’s envisage a device which randomly generate lower

case English letters (a to z), one character after another. We
guess what letter is before it comes. If the device does not
have any predefined patterns to follow, each of the 26 letters
has the equal chance (26

1) to be generated. We just randomly

guess a character out of the 26. As we cannot precisely
predicate the letter to be generated, there is therefore
uncertainty. The uncertainty is decided by how rare or
common an event (a letter being generated) happens. In this
case, it is the same (26

1) for every letter. However, if we

know that the device only generates 3 letter long English
words, the guess game will be different. At very beginning,
without any existing knowledge about the word to be
generated, we may try a more likely leading letter, say “t”.
After we see the second letter, say “h”, we can almost certain
that the third letter will be “e”, and the word is “the”.

Let Nωωω ...21=Ω be the stream of characters (letters)
generated by the device, where 1ω , 2ω , …, or nω takes the
value from a character set },...,,{ 21 MC ααα= . In the case of
the previously discussed letter generating device, C has the
26 lower case English letters. 1α represents the letter a, 2α
represents the letter b, and so on, and 26=M . The
possibility of the ith character generated is)(iP ω , or simply

iP . The uncertainty can be calculated by the following
formula:

))(log(1log i
i

i P
P

u ω−==

The overall uncertainty on Ω is:

))(log()(
1

0 i

N

i
PH ω�

=
−=Ω

This formula just simply sums each individual uncertainty
together. In the calculation, we assume that the characters
generated are independent from each other. The knowledge
of previously generated characters does not have any impact
on our guess of the next character. After seeing large amount
of the characters generated by the device, we can calculate
the average uncertainty of the character set:

))(log()(
1

0 ii

M

i
i PPH αα�

=
−=

or simply

)log(
1

0 i

M

i
i PPH �

=
−=

This is the famous Shannon entropy formula. Uncertainty
is just the other name of entropy. The subscript 0 of 0H
indicates that the combinations of characters are independent
from each other.

In the guessing game, if we know that the device only
generates 3 characters long English words, we then can have
the knowledge of already being generated characters to help
us more accurately guess the next character, because the yet
to come character, to certain degree, depends on the
previous 1, 2, 3, or more characters. This process is thus a
Markov process.

III. MARKOV PROCESSES

Let },...,,{ 21 TXXXX = be a sequence of T random

variables, 0≥T , },...,,{ 21 MVVV=V be the set of M states in
a Markov process. V is actually the character set C
discussed before. There is a 1 to 1 mapping between iV and

iα , Mi ≤≤1 . Consider the conditional probabilities:

),...,|(1111 xXxXxXP tttt === −−
where t = 1, 2, …, T are values taken by the corresponding
variables tX , x1, x2, ,,, xt take values from V . If the event at
time t depends only on the immediately preceding event at
time t 1, i.e.,

)|(),...,|(111111 −−−− ====== tttttttt xXxXPxXxXxXP

The process is called a first order Markov process. If we
look at the guessing game discussed previously, when we see
character “t”, we will guess the next character `based on the
knowledge of “t”, and most likely, we will guess the
character “h”, as there is more chance for “h” to follow “t”
than any other characters. However, after we see the
character “h”, we won’t have the knowledge of “t” any more,
and we only base on “h” to guess the next character. We may
not be able to guess “e”. To be able to guess the next
character based on the knowledge of previous 2 characters,

58584

we need second order Markov process:

),|(

),...,|(

2211

1111

−−−−

−−

===

====

tttttt

tttt

xXxXxXP

xXxXxXP

IV. CALCULATING ENTROPY ON MARKOV PROCESSES
If every character is independent from the others, we have

zero order Markov process. The calculation of entropy is
straightforward:.

))(log()(
1

0 i

N

i
PH ω�

=
−=Ω and)log(

1
0 i

M

i
i PPH �

=
−=

as discussed before. For the first order Markov process,
where a character depends on its immediate previous
character, we have)(1 ΩH and 1H :

)))(log()()(

))((log()(

1
11

2
1

11

��
=

−−
=

− ×

+−=Ω
M

j
ijij

N

i
i PPP

PH

ωωωωω

ω

and

)log(
11

1 ij

M

j
ij

M

i
i PPPH ��

==
−=

where ijP is short for)|(1 itjt xXxXP == − . For the second
order Markov process, where the character depends on its
immediate previous 2 characters, we have 2H ()(2 ΩH is
omitted):

)log(
111

2 ijk

M

k
ijk

M

j
ij

M

i
i PPPPH ���

===
−=

where ijkP is short for),|(21 itjtkt xXxXxXP === −− .
Let’s take the second order Markov process for example.

If we restrict our discussion within the words of 3 characters,
the entropy of “the” is for sure lower than a randomly
chosen words, say “thv”, “txy”, or “jzv”. The calculation of
the entropy is based on our understanding of the probability
distributions of the letters under the context of legitimate
English words. We can almost certain that the 3rd character is
“e” after seeing “t” and “h”.

The entropy of a password heavily depends on if it is on
the list of patters or not. If it is, the entropy will be low;
otherwise, high. Therefore, the problem now is reduced to: if
a spelling (pattern) is on the list. The next logic question is
thus what a pattern is. For example, “zoe” is a popular name.
It is on the list of any password cracking dictionary, but it is
not on the Fedora Core 5 Linux dictionary. By common
sense, we would all agree to include “zoe” in the dictionary,
and thus the entropy for “zoe” will be low, and therefore it is
not a good password. However, if we go a step further, do

we accept “abc”, “xyz”, “qwe”, “qru”, “qaz”, and “esz”
etc. as legitimate patterns? On the keyboard, you can easily
realize the position patterns of the later 4 spellings. More
complicated patterns can also be made in this manner. We
may be reluctant to accept that these spelling are legitimate
patterns, perhaps just because they are not popular or
oblivious. However, when talking about passwords, we
cannot expect popular or oblivious patterns. To keep all
kinds of unthinkable patterns in the dictionary not only
enlarges the dictionary but also impossible. Therefore, from
password guessing point of view, exhaustive search is not
avoidable. Performing exhaustive search is the same as
assuming that every character has the exactly same
probability and leads to higher entropy.

V. ENTROPY OF GUESSING A PASSWORD
Guessing a password is different from guessing an English

word. It is not a Markov process, where we are able to more
accurately guess the next character based on the knowledge
of previous characters. To guess a password, we have to
guess the spelling completely right. There is no partially
correct guess some characters are right, and the others are
wrong. Guessing entropy was proposed by Massey [9] to
estimate the average number of successive guesses of a set of
passwords. The lower boundary is:

12)(4
1 +×≥ HGE

Guessing entropy is about the low boundary for the
number of successive guesses. To the contrary of some
claims, it is inappropriate to be used as the measurement of
the quality of individual password.

Due to the all or nothing nature of guessing a password, it
is meaningless to calculate the entropy of a password based
on its composing characters. Without the knowledge of the
characteristics of the password, the only assumption we can
make, apart from trying our luck with a big dictionary, is that
every character has the same probability. This assumption
leads to maximum entropy. The passwords of the same
length have the same amount of entropy. As the length
becomes longer, the entropy of the password goes up, and
the average entropy per character stays the same.

In summary, entropy is not a suitable measurement for the
quality of individual passwords.

VI. PASSWORD QUALITY INDICATOR
There are many different types of password attacks [3,4].

In essence, password attacking is about trying different
character combinations until getting a match to the right
password. To effectively crack a password, some strategies
have to be in place. The obvious combinations should be
tried before the brute force enumeration of all possible
password candidates. In general, a likely path to crack a
password is, in the order of:

1. trying dictionary words,

58585

2. trying 1 (and perhaps 2) character variations to the
dictionary words,

3. trying to enumerate all possible spellings of a smaller
character set, say just lower case characters or all
lower case characters plus digit characters, and
finally,

4. brute force enumeration of all possible password
candidates with the full character set (93 characters).

The quality of a password depends on how long it takes to
find out the right match. The longer it takes, the better the
quality is. Thus, we can measure the quality of a password by
how different it is from the dictionary words, how long it is,
and how big the password character set is.

Levenshtein's editing distance [6] can accurately measure
how different two strings are. This metric calculates the
distance between two strings by counting the minimal
number of single character manipulations required, such as
an insertion, deletion, or modification, to make the 2 strings
the same [13]. For example, the distance between “zoe” and
“coe” is 1, and “the” and “zoe” 2. To measure how
different a password is from all the base dictionary words,
first, we line up all the dictionary words, and then, we check
the Levenshtein's editing distance of the password against
every single word on the line. The minimum distance is the
distance of the password to the base dictionary words.

The length of a password is the number of characters in
the password. It plays a vital role in deciding how long it
takes to crack the password.

A password is made of characters, which are from certain
groups, e.g., all characters, low case alphabet characters, or
digit characters. We call these groups character sets. We
artificially group the 93 printable characters into 4 sets:

• Character Set 1: 26 lower case letters:
abcdefghijklmnopqrstuvwxyz

• Character Set 2: 26 upper case letters:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

• Character Set 3: 10 digit characters: 01234567890
• Character Set 4: 31 special characters: �������	
���

��������������������� �!

To measure the character sets used in a password, we

propose password complexity index (PCI). We assign PCI
value 26 to Character Set 1, 26 to Character Set 2, 10 to
Character Set 3, and 31 to Character Set 4. If a password
contains a character from Character Set 1, the value 26 is
added to the PCI of the password, so long and so forth.
However, the value of each Character Set is only used once,
i.e., the second and the subsequent character in the same
Character Set do not add any extra value to the password
PCI. If the characters of a password only draw from
Character Set 3, i.e., only 10 digit characters (0-9), the
password has the Standard Password Format. A password in
the standard password format has PCI 10. For example,
passwords “125467” and “98456902” are in the standard

password format, but “s125467”, “8765t”, and “ast+Ugh”
are not.

For a password Ω , which has PCI value c and length m,
the number of all possible password candidates of the same
format is mc . To have the same number of password
candidates in standard password format, which has PCI value
of 10, we need to find out the length (L) of the password
candidates in standard password format. Thus, we have

Lmc 10= . Therefore, cmL 10log×= . We call L the effective
length of password P. For example, the effective password
lengths of passwords “akjuwfg” and “D$f9” are 7.98 and
7.88 respectively.

The password quality indicator (PQI) of a password is a
pair),(LD=λ , where D is the Levenshtein's editing distance
of the password to the base dictionary words, and L is the
effective password length. When D>=3 and L>=14, we
have a good password. D>=3 means that the password is at
least 3 characters different from the base dictionary words,
and L>=14 means that there are at least 1410 possible
password candidates to be tried to crack the password.

The easiest way to achieve D>=3 is to have 3 special
characters (from Character Set 4) in the password. The
requirement is easy to remember and also easy to implement
with programs to check if a password meets the requirement.
Of cause, by using 3 special characters to make D>=3, we
do miss a number of password candidates which are 3
Levenshtein's editing distance units away from the base
dictionary words. However, this simplified solution is
justified for several reasons. First, 3 special characters
guarantee the password has at least 3 units of Levenshtein's
editing distance to the base dictionary words. Second, it is
easy to remember for the end users. Third, it is also easy to
implement by computer programs to perform proactive
password checking. Finally, by forcing 3 special characters
in the password guarantees an increase in the PCI value, and
therefore, the effective length of the password.

VII. CONCLUSION
In this paper, we first studied password entropy and

realized that it cannot be used as an indicator for password
quality. Based on the assumption that the quality of a
password is in proportion to the time required to crack it, we
introduced password quality indicator (PQI). From PQI, we
further develop a simple rule for choosing and checking a
good quality password at least 8 characters long, with at
least 3 special characters plus other alphanumeric
characters.

REFERENCES
[1] BLUNDO, C., D'ARCO, P., SANTIS, A. D. & GALDI, C. (2002) A

novel approach to proactive password checking. IN DAVIDA, G. I.,
FRANKEL, Y. & REES, O. (Eds.) International Conference on
Infrastructure Security (InfraSec 2002). Bristol, UK, Springer.

[2] BURR, W. E., DODSON, D. F. & POLK, W. T. (2006) Electronic
Authentication Guideline: Recommendations of the National Institute

58586

of Standards and Technology. 1.0.2 ed., National Institute of
Standards and Technology, USA.
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-
63V1_0_2.pdf.

[3] CAMPBELL, J., KLEEMAN, D. & MA, W. (2006) Password
Composition Policy: Does Enforcement Lead to Better Password
Choices? 17th Australasian Conference on Information Systems
(ACIS 2006). Adelaide, Australia.

[4] CAMPBELL, J., KLEEMAN, D. & MA, W. (2007) The Good and
Not So Good of Enforcing Password Composition Rules. Information
Systems Security, 16, 2-8.

[5] CISNEROS, R., BLISS, D. & GARCIA, M. (2006) Password auditing
applications. Journal of Computing in Colleges, 21, 196-202.

[6] LEVENSHTEIN, V. (1965) Binary codes capable of correcting
deletions, insertions, and reversals. Problems in Information
Transmission, 1, 8-17.

[7] MA, W., CAMPBELL, J., TRAN, D. & KLEEMAN, D. (2007) A
Conceptual Framework for Assessing Password Quality. International
Journal of Computer Science and Network Security, 7, 179-185.

[8] MACKAY, D. L. C. (2005) Information Theory, Inference, and
Learning Algorithms, Cambridge University Press (also accessible
from http://www.inference.phy.cam.ac.uk/mackay/itila/).

[9] MASSEY, J. L. (1994) Guessing and Entropy. IEEE International
Symposium on Information Theory.

[10] PFLEEGER, C. P. & PFLEEGER, S. L. (2003) Security in
Computing, Prentice Hall.

[11] SAITA, A. (2005) RSA 2005: Passwords at the breaking point.
[12] SHANNON, C. E. (1948) A Mathematical Theory of Communication.

Bell System Technical Journal, 27, 379-423, 623-656.
[13] STEPHEN, G. (1994) String Searching Algorithms, World Scientific

Publishing.
[14] TRAN, D., WAGNER, M., LAU, Y. W. & GEN, M. (2004) Fuzzy

Methods for Voice-Based Person Authentication. IEEJ (Institute of
Electrical Engineers of Japan) Transactions on Electronics,
Information and Systems, 124, 1958-1963.

[15] YAN, J. (2001) A Note on Proactive Password Checking. ACM New
Security Paradigms Workshop. New Mexico, USA.

588587

