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Abstract. Password hashing is the common approach for maintaining
users’ password-related information that is later used for authentication.
A hash for each password is calculated and maintained at the service
provider end. When a user logins the service, the hash of the given pass-
word is computed and contrasted with the stored hash. If the two hashes
match, the authentication is successful. However, in many cases the pass-
words are just hashed by a cryptographic hash function or even stored
in clear. These poor password protection practises have lead to efficient
attacks that expose the users’ passwords. PBKDF2 is the only standard-
ized construction for password hashing. Other widely used primitives are
bcrypt and scrypt. The low variety of methods derive the international
cryptographic community to conduct the Password Hashing Competi-
tion (PHC). The competition aims to identify new password hashing
schemes suitable for widespread adoption. It started in 2013 with 22
active submissions. Nine finalists are announced during 2014. In 2015,
a small portfolio of schemes will be proposed. This paper provides the
first survey and benchmark analysis of the 22 proposals. All proposals
are evaluated on the same platform over a common benchmark suite.
We measure the execution time, code size and memory consumption of
PBKDF2, bcrypt, scrypt, and the 22 PHC schemes. The first round re-
sults are summarized along with a benchmark analysis that is focused
on the nine finalists and contributes to the final selection of the winners.

1 Introduction

Poor password protection practices [1] have been exploited by attackers, with
mounts of user passwords being exposed [2, 3]. Simple use of cryptographic func-
tions is not enough. More advanced password hashing schemes (PHS) have been
proposed, like the PBKDF2 [4], bcrypt [5] and scrypt [6].

However, the evolution of parallel computing and dedicated hardware devices
empower attackers to perform more efficient attacks [7]. Password crackers on
GPUs, FPGAs and ASICs try out several attempts in parallel, gaining a signif-
icant boost in disclosing the user information. The widely used PBKDF2 and
bcrypt are vulnerable to such attacks.
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The trend to defend these attacks are memory-hard PHSs. The memory is
bounded on parallel platforms as every parallel component must have access to
it. Moreover, the memory elements on dedicated hardware implementations are
considered expensive. Thus, the number of parallel attempts that the password
cracker can perform is significantly reduced when a PHS with high memory
requirements is countered. The defender adjusts the hash iteration count and
memory requirements to design secure schemes. The goal is that the password
scrambling on parallel cores isn’t much faster than it is on a single core. scrypt
adopts this strategy. However, it is vulnerable to other types of attacks, like
cache-timing [8] and garbage-collector attacks [9].

This limited set of available solutions lead the international cryptographic
community to announce the Password Hashing Competition (PHC) [10] in 2013.
The goal is to attract researchers in deploying modern and secure schemes for
password hashing. An overview of the 22 initial candidates is presented in [11]. In
2014, 9 finalists are selected based on security, efficiency, and simplicity criteria
and the extra features that they provide. A small portfolio of about 5 schemes
will be announced in the second quarter of 2015 based on further performance
and security analysis. They are expected to become ”de facto” standards and be
further examined by NIST [12] and other organizations for formal standardiza-
tion.

This paper provides a survey and benchmark analysis of the 22 PHC submis-
sions and the 3 current solutions for password hashing. Implementations of all 25
schemes are evaluated on the same platform and the results are summarized on
an unitary benchmark table. At present, this is the only performance evaluation
of the PHC proposals.

2 Background Theory

2.1 Passwords

Passwords are user-memorable secrets [13], consisting of several printable char-
acters. They constitute the main mean for authentication in computer systems.
For each active user account, a service provider maintains a pair of the user’s
identity and his secret password. The user inputs this information to login the
service (e.g. [14–16]).

Passwords are also utilized in order to generate cryptographic keys. Key
Deviation Functions (KDF) [17] parse a password to derive one or more keys that
are related with this input password. The keys are then used on cryptographic
operations, like the encryption of session communication [18].

A password of 8 characters (8 bytes) is the ordinary option. Such user-
originated secrets may suffer from low entropy and be vulnerable to attacks.
Attackers launch exhaustive search attacks by trying out all character combina-
tions until they found the right password for a user account. Then, they own
the account as the legitimate user does. Newer trends of user-drawn graphical
passwords also exhibit low-entropy properties, offering an average security of 4-5
bytes [19].
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Key stretching is the typical method for protecting such attacks. Usually,
hash functions process the password and produce a fix-length output, which
now acts as the password. The result is longer than the original password (e.g.
32 or 64 bytes), making the attacks less feasible. The hashed password is further
fortified by iterating the hash function several times. Thus, the attacker is slow
down by a factor of 2n+m, where n is the number of the iterations and m is
the number of the output bits. However, the user is also slowed down. The
parameters of key stretching are bounded by the user’s tolerance to compute a
robust hash password.

As we aforementioned, the user-related information is maintained by service
providers. In services where a high volume of users have to be verified simul-
taneously the load on the server may become unmanageable. Server relief (SR)
protocols are established between the clients and the server to balance the total
effort. The clients perform part of the PHS computations (e.g. some of the PHS
iterations) while the server performs the final steps and the account verification.

The service provider could decide to increase security (e.g. increase the PHS
iterations or the hash size). Hash password upgrade independent from the user
(HUIU) is an imperative feature of a candidate PHS to enable the seamless
operation of the service and the convenience of the user. The provider upgrades
the security of the stored hash passwords without the user’s involvement and
knowledge of the password.

When two or more users have the same password, they result the same hashed
password too. The disclosure of this information for one of these users could
erase security issues for the rest ones. The problem is exponentially evolved
as many users utilize the same password in different services. To prevent the
correlation of hashed passwords that are created by the same password, a small
parameter of random bytes, called salt (usually 8 bytes long), is utilized. The
salt is commonly generated when the user account is created and is concatenated
with the password during hashing. Thus, the same password produces different
hashes for different users or services. Normally, it is stored in plaintext along with
the hashed password. The authentication procedure uses the salt to validate the
password of a login request. Figure 1, illustrate the generic PHS.

2.2 Applications

Password hashing and key deviation are applied in many domains. Different
applications exhibit diverse features and properties that the candidate scheme
must comply with. PHSs are mainly used in general applications on mainstream
computers, web applications and embedded systems.

General password hashing applications on mainstream computers process
infrequent and low volumes of authentication data. As computers, like PCs, have
sufficient computational resources, the main goal is to achieve the highest level
of security. Both PHS and KDF are important. The user can further improve
the security by applying tools that detect low-entropy or widely-used passwords
[20].
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Fig. 1. PHS generic scheme.

Web applications serve thousands of users. The server maintains the authen-
tication data for all users and must respond to high volumes of simultaneous
login requests from clients. The authentication process must be fast enough to
comply with the communication protocol requirements and the client’s toler-
ance. In terms of security, the overall computational demands of handling a
single login request must enable the uninterrupted service of many clients while
avoiding DoS attacks. The SR functionality can provide a good tradeoff among
the client and server, accomplishing the aforementioned performance and secu-
rity features. Successful attacks on the web service infrastructure expose mounts
of user-related data, including passwords. Usually, users own a few low-entropy
passwords that are utilized in different web applications [21]. Online dictionary
attacks with login histories are also common [22]. Thus, security concerns arise
not only for the vulnerable services but for other applications which are used by
exposed users as well. This cause motivates PHC and derive PHS as the main
goal of a web application. The analysis of the stolen hashed passwords is further
fortified by HUIU functionality, where the service provider periodically upgrades
security to adapt to the technology evolution and the increasing computational
capabilities of the attacker.

Embedded systems are deployed in a wide range of domains including perva-
sive and ubiquitous computing [23, 24]. The resource-constrained nature of the
underlying devices and the persistent need for smaller size and lower production
costs derived efficient lightweight implementations. Security is just a part of the
whole functionality and becomes prominent issue. Security primitives must con-
tribute with lightweight designs that consume low computational resources and
memory. The most constrained devices, like sensors, devote only a few bytes or
KBs of memory to provide moderate level of security [25, 26]. Typical embedded
systems maintain a small amount of authentication-related data, in contrast to
web applications. Device-to-device short-term communication is the most com-
mon interaction (e.g. in wireless sensor networks) [27], making session key de-
viation a desirable goal to enhance security. Garbage-collector attacks [9] are
countered be build-in memory safety techniques for embedded applications [28].
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3 Mainstream Password Hashing Schemes

Hash-based schemes constitute the most common solution for password pro-
tection. KDFs that produce one or more secret keys from a secret value (e.g.
password) are usually implemented by secure cryptographic hash functions or
HMACs. PBKDF2, bcrypt and scrypt are currently the widely-used PHSs and
KDFs for mainstream applications.

3.1 PBKDF2

The Password-Based Key Derivation Function 2 (PBKDF2) [4], which is included
in the RSA Laboratories’ Public-Key Cryptography Standards (PKCS) series
(PKCS #5 v2.0) [29] and the RFC 2898 [30], constitutes the only standardized
scheme. PBKDF2 uses HMACs and takes as input the password and a salt.
The salt hardens dictionary (try hundreds of likely possibilities to determine
the secret) [8] and rainbow table attacks (ability to use tables of precomputed
hashes) [9, 31] and it must be up to 8 bytes. The data is processed several times to
produce the derived key. The standard was established in 2000 and recommended
a minimum of 1000 iterations, but today this is not considered adequate. One
drawback is its implementation as a small circuit with low RAM. This fact
enables cheap brute-force attacks on ASICs and GPUs.

3.2 bcrypt

bcrypt [5] is a KDF and is based on the block cipher Blowfish [32]. It is the
default PHS of the BSD operating system. The password is up to 56 bytes and
the produced hash value is 24 bytes. The iteration count is a power of 2. It is
increased to counter brute force attacks due to the increasing computation power
of the attackers. The 16 byte salt defends against rainbow table attacks. bcrypt
uses 4KB RAM and is slightly stronger than PBKDF2 in defending attacks on
ASICs and GPUs. Still the memory requirements permit efficient attacks on
FPGAs.

3.3 scrypt

In 2012, scrypt [6] was announced as an Internet Draft by the IETF with the
intention to become an informational RFC [33]. PBKDF2 and the stream cipher
Salsa [34] are internally utilized. scrypt uses arbitrarily large amounts of memory
and is the most resistant KDF to such attacks. It is estimated that the cost of
a hardware brute force attack is around 4000 and 20000 times larger than in
bcrypt and PBKDF2 respectively. However, the huge memory requirements can
be exploited by denial-of-service attacks on servers, while handle frequent login
requests.
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Fig. 2. PHC globe.

4 Password Hashing Competition

Password Hashing Competition (PHC) [10] evaluates 22 new PHSs [35] in terms
of security, performance and flexibility. The candidates are: AntCrypt, Argon,
battcrypt, Catena, Centrifuge, EARWORM, Gambit, Lanarea DF, Lyra2, MAKWA,
MCS PHS, ocrypt, Parallel, PolyPassHash, POMELO, Pufferfish, Rig, schvrch,
Tortuga, TwoCats, Yarn and yescrypt. Two more PHSs (Catfish and M3lcrypt)
were submitted but withdrawn before the evaluation process. All the 22 PHC
candidates are detailed in the following subsections. Figure 2, illustrates the
11 countries with submissions in PHC (USA 8, Russia 3, Germany 2, Brazil 1,
Canada 1, Croatia 1, Haiti 1, Hungary 1, India 1, Luxembourg 1, Singapore 1,
Spain 1).

The competition advances our knowledge in designing secure and efficient
PHSs. After the first round evaluation, 9 state-of-the-art finalists are announced
for password protection.

4.1 Technical Guidilines and API Compliance

All PHC submissions are available worldwide on a royalty free basis with no
patent or patent application covering their use or implementation. They take as
input parameters at least:

– A password of any length between 0 and 128 bytes regardless of the encoding

– A salt of 16 bytes

– An output size of up to 32 bytes

– One or more cost parameters that tune time and/or space requirements
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A reference implementation of each submission is provided in C/C++ that
complies with the PHC API:

int PHS(void ∗ out, size t outlen, const void ∗ in, size t inlen,
const void ∗ salt, size t saltlen,

unsigned int t cost, unsigned intm cost);
(1)

where t cost and m cost parameterize time and memory usage. Optional im-
plementations are submitted to other languages, like Python, PHP, or given
CPU/GPU and micro-architectures. Also, a comprehensive set of test vectors is
included in each code submission.

4.2 Evaluation Criteria

All candidates were evaluated in terms of security, simplicity and offered func-
tionality.

A secure PHS should behave as a random one-way function providing fea-
tures like random-looking output, collision resistance and immunity to length
extension. It must be secure against known attacks and analysis on current PHS
(e.g. cryptanalytic attacks and time-memory tradeoffs) and prevent speed-up or
other improvement of optimized crackers on parallel platforms (e.g. multi-core
CPUs, GPUs, ASIC, FPGA). No information is leaked on a password’s length
and resilience to side-channel attacks, like timing attacks and leakages, is guar-
anteed. Protection against fully or partially compromised servers should also be
considered.

The elegance and clarity of the design, like modularity and symmetry, are in-
duced to corroborate the security analysis and enhance admissibility. The scheme
should be easy to understand and implement for coding, testing, debugging or
integrating in existing systems. Simple and sound algorithms are appropriate.
The encapsulation of other known primitives is desirable but should not be ex-
tensive. A decent submission should include qualitative documentation regarding
the scheme and the reference implementation. Original and novel proposals are
also expedient.

Except from the core password hashing functionality the submissions are
evaluated in terms of additional functionality. The appropriate PHS should act
as a secure KDF too. Operations like SR and HUIU are deliberated. The inter-
activity of the cost parameters for time and memory should be effective enough
and the expected requirements could not be bypassed by attackers. Schemes that
excel in specific applications, like web service authentication, client login, key
deviation or embedded devices, are examined.

4.3 Finalists

The nine finalists that are selected among the 22 initial candidates are: Ar-
gon, battcrypt, Catena, Lyra2, MAKWA, Parallel, POMELO, Pufferfish and
yescrypt. The high diversity among the algorithms is beneficial as the different
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PHSs are suitable for a wide range of password hashing applications (e.g. KDF,
client login). Four to five winners will be announced in the second quarter of
2015.

Argon. Argon is a memory-hard and secure hash function, optimized for se-
curity, clarity, and efficiency. It can be used for password hashing, key deriva-
tion and any other memory-hard operation. The main feature is the protection
against tradeoff attacks by imposing a significant penalty on the running time of
the algorithm for any reduction of the available memory by the attacker. Argon
utilizes XORs, block permutation, and the round function of the block cipher
AES [36] with a 5-round 128-bit fixed-key. It applies a t-byte permutation and
the efficiency is linear to the memory and time parameters. Memory can occupy
any number of kilobytes and is not bounded to power of 2 values only. t cost
represents the time that can be spent by the authentication application. Each
building block is motivated by a certain goal and the overall design can be easily
understood and analysed. On the server side, Argon offers SR and HUIU.

Argon follows the design strategy of building cryptographic hash functions
and block ciphers. The memory is filled and a sequence of identical rounds pro-
cesses the data. The permutation is data-dependent and is similar to the stream
cipher RC4 [37] state permutation. These fast diffusion and data-dependent per-
mutation operations provide a strong defence against memory-saving attacks. It
is estimated that the penalty factor to tradeoff attacks is 50 and 150 when 1/2
and 1/4 of memory is used respectively.

The performance on modern CPUs can be improved when AES-NI assembly
instruction set (NIS) [38] are used for the AES computations. Moreover, Argon
can be parallelized in CPU with up to 32 threads by processing slice permutations
and group transformations. However, it isn’t efficient in GPUs as it extensively
uses memory, which produces large latency on memory-unfriendly architectures.

battcrypt. battcrypt (Blowfish All The Things) is a simplified scrypt and tar-
gets server-side applications. It utilizes the block cipher Blowfish and the hash
function SHA-512 [39] to achieve password hashing. Blowfish is used in CBC
mode of operation and it is selected because it is well-studied, included in PHP,
and is slow on GPUs. The overall design is considered secure even if the Blowfish
is found to be broken.

The memory usage is determined only by the m cost parameter and t cost
parameter affects only the execution time. This is a design choice which is suit-
able for web services where small amount of memory are used each time hashes
are upgraded. battcrypt is considered faster on CPUs than GPUs. It can par-
allelize two or three Blowfish calculations on CPUs which would approximately
double the speed. Moreover, battcrypt supports SR when the salt and setting
are public.

In comparison to bcrypt that also utilizes Blowfish, battcrypt is faster as
it performs about 0.752% to 1.726% less Blowfish blocks. In PHP, battcrypt
processes the double amount of work done by bcrypt under equivalent settings.
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Catena. Catena is designed for usage in multiple environments, like user-
database backup, multi-core CPUs, and low-memory devices. It is simple and
easy to analyse as it is a composed cryptographic operation based on a cryp-
tographic hash function. Catena follows a graph-based structure called ”Bit-
Reversal Graph” and is instantiated by a cryptographic hash function. The de-
fender can choose any strong hash function. The reference implementation sug-
gests the hash functions SHA-512 and BLAKE2b [40]. SHA-512 is a standardized
and widely supported hash function. BLAKE2b implements the Simple Instruc-
tion Multiple Data (SIMD) approach and provides protection against massively
parallel attacks by GPUs.

The reference paper is well-documented and provides a thorough security
analysis with proofs. The time-memory tradeoff analysis is based on the pebble-
game approach [9]. Catena provides preimage security, indistinguishability from
random, resistance against side-channel (e.g. cache-timing attacks), and lower
bounds on the time-memory tradeoff. It produces a high computational cost for
massively parallel crackers in GPUs, ASICs and FPGAs.

Catena supports HUIU by increasing the t cost and m cost parameters. SR is
achieved by enabling the client to compute most of the iterations while the server
computes only the last one. It can also operate in a keyed password hashing mode
by XORing the output of the unkeyed Catena with the hash of the user ID, the
m cost and the secret key.

Lyra2. Lyra2 utilizes hash functions with sponge structure to enable password
hashing. It improves the previous version of Lyra2 and is simple to implement in
software. The design is strictly sequential to counter attacks by multi-core plat-
forms. The reference version uses the hash function BLAKE2b in a duplex sponge
structure. The memory is organized as a large matrix which must be stored in
RAM during the whole password hashing process. Moreover, an optional param-
eter, called ”basil”, can be used as an additional salt to avoid collisions for trivial
pairs of password and salt.

The reference paper provides a thorough security analysis. Lyra2 intends to
make the derived key non-invertible, keep the memory matrix in RAM during
the password hashing, and prevent attackers from parallelizing the algorithm.

The legitimate user can improve the performance by storing the memory ma-
trix in volatile memory. Although Lyra2 is strictly sequential, the version Lyra2p
is proposed to allow parallel execution on multiple cores for the defender, increas-
ing the cost of an attack. The security properties of Lyra2p are also analysed.

MAKWA. MAKWA is a PHS and KDF. It uses modular squaring and oper-
ates on big numbers, similar with the public-key cryptosystem RSA [41]. The
prime factors of the modulus aren’t required to execute MAKWA. If the fac-
tors are known to a trusted entity, the expensive operations are avoided and
the processing effort is reduced. The NIST standardized HMAC DRBG over the
SHA-256 [42] is utilized internally as a deterministic KDF. The cost parameter
affects only the execution time while the memory requirements are constant.
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Its main feature is the SR procedure that allows the bulk of processing cost to
be offloaded to an external untrusted entity. This operation is called delegation
and resembles the blind signatures and the RSA private key operation. Moreover,
MAKWA supports offline hash upgrade and password escrow.

The security analysis on GPUs, FPGAs and ASICs resembles the feasibility
of performing attacks on RSA. MAKWA is resistant to similar attacks and fulfils
its design goals.

Parallel. Parallel password based key derivation function (PPBKDF) is design
for applications with low memory. The design is compact with constant and
low memory requirements. It isn’t a memory-hard function and is optimized for
parallel execution. It is simple and as collision resistant as the internal hash func-
tion. The reference implementation utilizes the SHA-512.The attacker-defender
ratio is considered 1 with any advancements in cracking are advancements for
the defender too.

POMELO. POMELO has simple design and is easy to implement. It operates
on 8-byte words and uses three state update functions. The first function is a
simple non-linear feedback function and the other two functions provide simple
random memory access over data. These tree functions protect POMELO against
preimage, low memory and SIMD attacks. The memory size and the computa-
tional complexity are adjusted by the m cost and t cost parameters respectively.
POMELO is efficient even when large state is used and retains security against
cache-timing attacks and attacks by GPUs and dedicated hardware. Moreover,
it supports HUIU in a straightforward manner.

Pufferfish. The Pufferfish PHS, utilizes Blowfish and HMAC-SHA-512 and is
based on bcrypt. The Blowfish cipher is extended in order to use 8-byte words
and dynamic, arbitrarily-sized and password-dependent S-boxes. The extended
cipher is applied on the bcrypt algorithm with minimal modifications. Moreover,
it supports variable-length output and functions as a KDF.

The m cost parameter increases the memory requirements by log2 KB and the
t cost parameter increases complexity by log2 iterations. On CPUs, Pufferfish
is faster than bcrypt while on GPUs it is slower. Also, it inherits the GPU
resistsnce of bcrypt.

The cryptographic properties of the extended Blowfish that is implemented
by Pufferfish haven’t been validated. However, it is considered that Pufferfish
retains its security properties while HMAC and SHA-512 remain unbroken.

yescrypt. yescrypt is built upon scrypt and tweaks its security. The overall
functionality is managed via bit flags. A set of these flags offers a mode of
operation that is compatible with scrypt.

In contrast to scrypt, yescrypt supports more parallelism options at the
thread- and instruction- level. It extensively uses SIMD and the reference im-
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plementation include OpenMP support [43]. Moreover, a modified ROMix algo-
rithm is proposed which can make use of an optional pre-filled read-only lookup
table (ROM) along with the usual sequential-wite, random-read lookup table
(RAM) of the original scrypt. Most of the Salsa20/8 computations that are used
by scrypt can be replaced by the yescrypt’s custom pwx-form algorithm, while
the two primitives can be also inter-mixed.

The computational complexity can be increased while keeping the memory
requirements constant. As with scrypt, the security is based on the HMAC,
SHA-256 and PBKDF2 primitives. yescrypt enhances security against attacks
on GPUs, FPGAs and ASICs.

4.4 Non-finalists

The 13 non-finalists are: AntCrypt, Centrifuge, EARWORM, Gambit, Lanarea
DF, MCS PHS, ocrypt, PolyPassHash, Rig, Schvrch, Tortuga, TwoCats and
Yarn. Non-selection does not impose that these schemes are found less suitable
than the finalists. Many of the non-finalists are less mature, analysed and un-
derstood, receiving less support by the panel. Some of them contribute original
ideas and can be suitable for practical applications.

AntCrypt. AntCrypt takes its name from the anthill construction. It sepa-
rates the computational effort from the cryptographic hardness and provides a
clear and well-motivated design. The computational overhead is based on a set
of functions with floating point arithmetic and the security on a secure hash
function.

The computational functions are called once and the execution order is de-
termined by the inner state. After all functions process the data, the results are
XORed. They affect the branch divergence factor and harden the parallel exe-
cution for an attacker (e.g. on GPUs). The floating point arithmetic is chosen as
its implementation is costly on FPGAs and ASICs. The selection of the proper
functions depends on several factors, like the attacker’s architecture, and the
current set is likely to change in future versions.

The security of the current version is based on the SHA-512 hash function,
which is extended in order to adapt a larger output size. SHA-512 is widely
accepted and implemented by cryptographic libraries and its security is proven
and tested over several years. The choice is not restricted and can be substituted
by any hash function with sufficient large state and output size. In AntCrypt,
the hash function hashes the inner state and determines the entropy.

AntCrypt supports the password and output sizes that are requested by PHC.
The salt is fixed at 16 bytes. The m cost parameter determines the rounds of
the inner loop and the amount of memory that is consumed by the state. The
t cost parameter defines the iterations of the outer loop.

AntCrypt provides hash upgrade within certain constraints. If the interme-
diate hash is stored, the strength can be increased by increasing the t cost pa-
rameter and resuming the computation from this point. The knowledge of the
password isn’t required while the m cost parameter is fixed.
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Moderate memory resources are consumed starting from 256 bytes, with
32KB suggested as a reasonable choice. AntCrypt restricts the parallel execution
for an attacker on CPUs, GPUs, FPGAs and ASICs while it can provide low
parallelism for legitimate users on GPUs (for the execution of the computational
functions).

AntCrypt is not selected in the finalists list due to the usage of float-point
arithmetic and data-dependent branching. Float-point arithmetic reduces porta-
bility and reproducibility. The data-dependent branching that is not sufficiently
analysed in the current security information theory and the the overall design
imposes more risks than benefits.

Centrifuge. Centrifuge consists of a block cipher acting as a pseudorandom
number generator (PRNG), a hash function, a large table of pseudorandom
sequences, and a substitution box. For the reference implementation, the AES-
256 block cipher is utilized in CFB mode of operation. The initialization vector of
the cipher is produced by the password and the salt. The SHA-512 hash function
seeds the PRNG. The large table is combined to form the resulting password
hash. The 8x8 S-box adds complexity and prevents parallelization. Centrifuge
is configurable in byte increments and operates with variable-length password,
salt and output.

For PHC, the t cost and m cost parameters must be smaller than 64 and are
interpreted as the exponents of the relevant powers of 2. The original algorithm
can use higher values than 64.

Centrifuge benefits from NIS on modern CPUs. The AES in CFB mode is
selected in order to prevent the parallelization of the sequence generation in
GPUs, ASICs or FPGAs.

However, Centrifuge is not included in the finalists. The byte-grained random
memory accesses results in a too slow implementation for the concrete memory
usage.

EARWORM. EARWORM intends to provide password hashing security at
low time-cost and targets server-side applications. It utilizes the AES encryption
round function to process the data and the scheme PBKDF2-HMAC-SHA-256
to produce the output. Arena, a large pre-initialized array, is taken as input,
imposing arbitrarily high memory-cost with arbitrarily low time-cost. Arena’s
data are read-only and are initialized randomly. They are used as the round
keys of AES. The security is based on this high demand of memory bandwidth,
known as ROM-port hardness. On the contrary, the large ROM requirements
makes EARWORM impractical for constraint platforms.

EARWORM satisfies the design goals of cryptographic one-way functions but
it is not suitable for key derivation. Dictionary attacks should be the most effi-
cient way for preimage attacks. It is not resistant to second-preimage or collision
attacks and it is not a sequential memory-hard function.

On CPUs, EARWORM can be parallelized on multiple cores and can be
benefited from NIS. On GPUs, it produces high latency due to the high memory
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requirements. FPGAs lack of sufficient I/O bandwidth and aren’t viable means
of attacking EARWORM.

EARWORM is not a finalist. It is not second-preimage resistant and does
not constitute a secure KDF. The security is based on a complex ROM-hardness
approach. Other similar and better understood techniques that are affordable in
the targeted server-side applications should be considered instead. The multiple
external primitives that are utilized were taken as a drawback.

Gambit. Gambit utilizes hash functions with sponge structure and large state.
It is not intended to win the competition and is an attempt to draw attention
on some of its techniques and design principles. The reference implementation
embodies the Keccak[1600] hash function [44]. Keccak is the winner of the SHA-
3 competition and the new hash function standard. Gambit also incorporates
a keyfile in ROM. The file increases the cost for an attacker (especially when
specialized hardware is used) and can be utilized as a second factor of authen-
tication, representing something that the client ”has”. Moreover, it supports
generation of multiple keys and an easy SR procedure. The design conforms to
the Crypto Coding Standard [45] recommendations and is considered resilient
to cache timing attacks. Gambit is sequential in nature and only the internal
sponge hash function can offer some degree of parallelization.

As it is presumed, Gambit did not pass to the first evaluation phase. It
exhibits a similar but less mature design than the finalist Catena. Also, it is less
resistant to attacks that exploit ASIC due to the usage of Keccak.

Lanarea DF. Lanarea Derivation Function (DF) is a heavily serialized KDF.
The main design goal is to harden the parallel execution on GPGPUs or ASICs.
The algorithm is initialized by a simple process and then a convoluted scheme
is applied to rearrange data in the main loop. Lanarea utilizes a pseudorandom
function (PRF) to produce the output key, which is multiple of 32 bytes length.
The reference implementation uses the BLAKE2b as the PRF.

The security is mostly based on the PRF. BLAKE2b has been thoroughly
verified and is considered safe. Lanarea is secure for server-client and system
level authentication, and stream and long term encryption.

As with Centrifuge, it is rejected as it is too slow for the specific memory
usage.

MCS PHS. MCS PHS is a PHS and KDF. The core of the scheme is the hash
function MCSSHA-8 [46]. For deriving encryption keys, MCS PHS uses the KDF
PBKDF MCS [47] – a simple algorithm based on PBKDF and MCSSHA-8.

The security of MCS PHS is strongly determined by MCSSHA-8. The MC-
SSHA hash function family was candidate on the SHA-3 competition and inde-
pendent security analysis was conducted. MCSSHA-8 is the latest version and
the most secure one.
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The required memory is about 1KB and the complexity is mainly depends
on the t cost parameter that specifies the iteration count. The performance of
MCS PHS is comperable to PBKDF2 with SHA-1 [48].

It is rejected as the design is similar with PBKDF2 but with no significant
improvement. Also, the security of the underlying function MCSSHA-8 is not
clear with early versions being broken.

Omega Crypt. Omega Crypt (ocrypt) is a memory-hard function for password
hashing and key derivation. It realizes data-dependent branching and very wide
SIMD architectures. The hash function CubeHash [49] hashes the input param-
eters and derives a key. The stream cipher ChaCha [50] is then instantiated with
this key and initializes a large block of memory. In each iteration, the output
of ChaCha derives one of several branches that manipulate the memory block.
Cudehash processes the data in the final step and outputs the result.

CudeHash is simple and flexible while ChaCha is simple and fast. The overall
structure of ocrypt provides more computational and memory difficulty than the
two individual primitives.

The proposal also considers the attacks that can exploit the SIMD architec-
ture, like side-channel attacks on GPUs, and avoids them. It is configured in
execution time and memory usage providing many of the anti-ASIC and anti-
FPGA properties of scrypt.

As with AntCrypt, data-dependent branching is considered a disadvantage
along with partially predictable branches and memory addresses. The security
and performance analysis are inadequate and not convincing.

PolyPassHash. PolyPassHash applies a PolyHashing scheme to provide pro-
tection above PHS. On systems that employ simple PHS, an attacker can obtain
the stored hash passwords and analyse them independently. With PolyHashing
the attacker must obtain a threshold of passwords before he becomes capable in
verifying stolen hashes. Then, the PHS protection must be also overcame.

PolyPassHash is composed of two building blocks: a threshold scheme for
PolyHashing and a salted hash function. The reference implementation suggests
the Shamir Secret Sharing (SSS) [51] as the threshold scheme and the SHA-256
as the hash function. The computational complexity of SSS is based on the k
degree polynomial over a finite field. The default k value for PolyPassHash is
3. The standardized SHA-256 is used to hash the password and the salt. The
hashes are encrypted with the AES.

The overall scheme process the password file at the server-side when the
system restarts. Then,a threshold of users must login before the passwords can be
verified. After this step, the login requests are served with similar computational
overhead as for PHS-only systems. The storage cost is one byte per user account.
The memory overhead is about 1KB independent of the number of passwords.
Moreover, PolyPassHash suggests an alternative partial verification process that
allows users to login immediately after a restart without this need of verifying a
threshold of users.
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PolyPassHash can be applied on current applications without modification
of the client applications or the login process. It is based only one software and
the system administrator can change the threshold factor without affecting the
users.

An attacker must guess 3 passwords simultaneously. On GPUs, this fact
imposes about 23 orders of magnitude more effort than on PHS-only systems.
On CPUs, even a threshold of 2 secrets would provide sufficient security.

PolyPassHash is actually a protocol that recovers a symmetric key used to
encrypt passwords and does not constitute a PHS. The offered functionality is
out of the competition’s scope.

Rig. Rig is a memory-hard and strictly sequential PHS. The design is sim-
ple, flexible in adjusting the memory usage, and easy to implement in software.
It functions on 8-byte words and performs bit-reversal permutation techniques
independent of the password. Rig executes a cryptographic hash function re-
peatedly, with Blake2b being proposed for the reference implementation.

It supports HUIU and SR. For a fixed number of internal iterations, the
hash upgrade is achieved by increasing the number of rounds. Each round takes
as input the output of the previous round and consumes the double memory.
For the SR protocol, the server sends the salt to the client, who then bears the
maximum effort to calculate the hashed password. The server calculates the final
hash by concatenating the salt, a counter value, and the result sent by the client.

The scheme mimics the Random Oracle Model for providing theoretical jus-
tification of the security. Rig counters cache-timing and memory-free attacks as
well as DoS attacks on server.

There is little scope for parallelism as the update of each iteration depends
on the calculations of the previous hash operation. This makes Rig inefficient in
dedicated hardware platforms that try to exploit multiple computational units in
parallel. Moreover, the high demands in memory is expensive in such platforms.

Although its design is similar to the finalist Catena, Rig received less atten-
tion by the selecting panel. The submission is less qualitative with errors and
bugs being found in the specification and code.

Schvrch. Schvrch is a novel PHS and proposes a new class of functions for mod-
elling hash functions. The scheme uses three functions, separating the slow and
big computations with an extra round for more slow down. Schvrch operates as
a Cellular Automata (CA). The security analysis of the software implementation
is based on cyclomatic complexity special case [52] – a software testing metric.

However, Schvrch is cryptographically weak and ASIC-friendly. The total
cost is based on the addition of time and memory features.

Tortuga. Tortuga is design for key stretching applications. It is based on a
sponge function with a recursive Feistel network for permutation, called Turtle
algorithm [53]. A block cipher with an enormous key is created on the fly. Tortuga
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can also work as a memory-hard KDF. The basic principles that are proposed by
Totruga have neither been tested in practice nor been subjected to independent
analysis.

Therefore, it is rejected in the first round evaluation as it fails in basic sta-
tistical tests.

TwoCats. TwoCats is a compute-time and sequential memory-hard PHS. It
uses a two-loop architecture, as scrypt, where the first loop performs password-
independent memory addressing while the second loop performs password-dependent
memory addressing at an early stage. Thus, TwoCats supports thread- and
instruction-level parallelism. Moreover, the scheme utilizes integer multiplication
which is fast in GPUs and enhances the overall multiplication chain hardening.
The scheme can operate with the Blake2b, Blake2s, SHA-256 or the SHA-512 as
the internal hash function. TwoCats can operates as a KDF and supports HUIU
and SR.

Three APIs are implemented to enhance usability. The APIs take different
input parameters to support users with basic to advanced password hashing
knowledge. SkinnyCat is a forth API, which implements a simpler subset of the
TwoCats.

The scheme is secure against cache-timing and time-memory tradeoff attacks.
Also, it provides strong defence against attacks on GPUs, FPGAs and ASICs.

The scheme performs well both on 32- and 64-bit platforms. It is suitable for
PC, web server, mobile and embedded applications. The defender can be also
benefited for parallel execution both by the multi-threading and SIMD capabil-
ities of TwoCats.

It is an interesting mix of ideas. However, the overall design is less understood
than other competing schemes, provoking its rejection.

Yarn. Yarn is a memory-hard PHS designed for x86 processors. The design is
simple and compact. The AES round encryption function from NIS is utilized in
order to implement an AES-like component. Blake2b is also used for compressing
data and producing hashes. Yarn consists of five phases where the AES-like
component and the Blake2b hash function process the data to produce the final
hash. The scheme performs repeatable and sequential memory lookups. The AES
computations and the memory lookups can be performed in parallel. The salt
is optional and an additional parameter can be provided to adjust the level of
internal parallelism. It deliberately does not use multi-threaded parallelism, as
it would inquire a higher level primitive for computing parallel Yarn functions
and combining the results.

The security is based on Blake2b properties and the AES permutation. The
sequential computations affect the performance which is determined by the
memory latency. The computation demands of AES along with m cost parame-
ters that consume large memory, derive Yarn inefficient on GPUs, FPGAs, and
ASICs.
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Yarn’s design is less mature and friendly-tuned than other relevant schemes
and it is not including in the finalists.

5 Evaluation

5.1 General features

We analyse the general properties of the examined PHSs and discuss their main
features. Table 1 summarizes the design details of PBKDF2, bcrypt, scrypt and
the 22 PHC submissions based on their main cryptographic primitives, the in-
ternal memory requirements and the offered functionality.

Symmetric ciphers and hash functions constitute the main cryptographic
primitives for a PHS. For block ciphers, AES and Blowfish are utilized by five and
three schemes respectively. For stream ciphers, two schemes use Salsa and one
ChaCha. For hash functions, SHA256 and SHA512 are the most common choices
with seven PHSs for each function. Blake2b also gains significant attention with
5 schemes adopting the hash function while SHA1 is used by three schemes. Each
of the functions Keccak, Blake2s, CudeHash and MCSSHA-8 is presented by one
scheme. Other cryptographic primitives that are utilized by novel proposals are
the Shamir Secret Sharing, the cellular automata and the turtle algorithm. The
PHC finalists relay on the well-studied and understood AES, Blowfish, Salsa,
SHA256, SHA512, Blake2b and SHA1.

Regarding the memory requirements, 7 schemes use less resources than bcrypt
(4KB) and only 6 schemes use high volumes of memory as scrypt (more than
1GB). From the nine PHC finalists, MAKWA, Parallel and yescrypt require
neglected memory, battcrypt, Catena and Pufferfish take a few KBs-MBs of
memory to operate, and Argon, Lyra2 and POMELO can use GBs of memory.

PHS and KDF constitute the main goal of the competition. Although a final-
ist, POMELO does not operate as KDF. All other finalists operate both as PHS
and KDF, providing SR functionality as well. Argon, Catena, Lyra2, Parallel
and POMELO implement HUIU. The finalist MAKWA provides additionally
offline hash upgrade and password escrow. Other notable functionality that is
offered by non-finalists include the multiple keys deviation of Gambit and the
poly-hashing scheme of PolyPassHash.

The one third of the finalists is originated from USA. Luxembourg, Germany,
Brazil, Canada, Singapore and Russia hold from one active finalist each.

PHS Cryptographic
Primitives

Internal
Memory

PHC Func-
tionality

Additional
Functional-
ity/Features

Country

PBKDF2 HMAC–SHA1 negl. PHS, KDF - USA
bcrypt Blowfish 4KB PHS, KDF - USA
scrypt PBKDF2,

Salsa20/8
1GB PHS, KDF - Canada
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Finalists
Argon AES128 1KB - 1GB PHS, KDF SR, HUIU Luxembourg
battcrypt Blowfish-CBC,

SHA512
18KB -
128MB

PHS, KDF SR USA

Catena Blake2b /
SHA512

8MB PHS, KDF SR, HUIU Germany

Lyra2 Blake2b 400MB -
1GB

PHS, KDF SR, HUIU Brazil

MAKWA HMAC DRBG,
SHA256

335KB PHS, KDF SR, offline
hash upgrade,
password
escrow

Canada

Parallel SHA512 negl. PHS, KDF SR, HUIU USA
POMELO - 1KB - 8GB PHS HUIU Singapore
Pufferfish Blowfish, HMAC-

SHA512
4KB -
16KB

PHS, KDF SR USA

yescrypt scrypt 44KB
- 3MB
(RAM),
3GB
(ROM)

PHS, KDF SR Russia

Non-finalists
AntCrypt SHA512 32KB PHS, KDF HUIU, float-

ing point
operations

Germany

Centrifuge AES256-CFB,
SHA512

56KB -
2MB

PHS - Spain

EARWORM AES, PBKDF2-
HMAC-SHA256

2GB
(ROM)

PHS SR USA

Gambit Keccak[1600] 50MB PHS, KDF SR, Multiple
keys

Hungary

Lanarea DF Blake2b 256 byte PHS, KDF SR USA
MCS PHS MCSSHA-8,

PBKDF MCS
1KB PHS, KDF SR Russia

ocrypt ChaCha, Cube-
Hash

1MB -
1GB

PHS, KDF - USA

PolyPassHashAES, SHA256,
SSS

1KB PHS HUIU, Poly-
Hashing

USA

Rig Blake2b 15MB PHS, KDF SR, HUIU India
schvrch Cellular Au-

tomata (CA)
4KB -
8MB

PHS - Croatia

Tortuga Turtle alg. 32KB PHS, KDF - Haiti
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TwoCats Blake2b /
Blake2s /
SHA256 /
SHA512

1KB -
192GB

PHS, KDF SR, HUIU USA

Yarn AES, Blake2b 16 byte -
192GB

PHS SR Russia

Table 1: PHS details

5.2 Software implementation benchmark

PBKDF2, bcrypt, scrypt and 22 PHC proposals are evaluated under an Intel
Core i7 at 2.10GHz CPU with 8GB RAM, running 64-bit operating systems.
The C implementations of PBKDF2 by CyaSSL [54], bcrypt by openwall [55]
and scrypt-1.1.6 by Tarsnap [56] are utilized. For the PHC proposals, the sub-
mitted reference and optimized implementations [35] are evaluated. battcrypt is
installed on Ubuntu 15.04. The rest schemes are installed on Windows 8.1 Pro
and are executed on cygwin. All implementations are assessed over a common
benchmark suite. We measure the code size, memory consumption and execu-
tion time of each scheme. Table 2 summarizes the software evaluation of each
PHS based on the default sizes for output, password and salt, and the indicative
t cost and m cost parameters as reported by each submission.

The password is defined by the user and affects the entropy of the overall
result. AntCrypt uses the shortest password of 2 bytes. In most of the PHC can-
didates (18 schemes), the password is set to 8 bytes as in scrypt. MCS PHS uses
11 byte, bcrypt 12 byte, PolyPassHash 16 byte and PBKDF2 24 byte password.
Argon has the longest password of 32 bytes.

The randomly generated salt prevents the correlation of hashed passwords
that are originated from the same password. battcrypt has a short salt of 4 bytes.
PBKDF2 doubles the size to 8 bytes. Most of the candidates (20 schemes) use
16 byte salts as bcrypt. scrypt and Argon have the longest salt of 32 bytes.

Each PHS stretches the initial password input. The larger output protects
the final outcome from attacks on short and low-entropy passwords. However,
the defender is also slowed down for large output sizes. The shortest output of
32 bytes is produced by the non-finalists Argon, PolyPassHash and TwoCats.
bcrypt outputs 54 bytes hashed passwords. The rest 19 candidates, including all
finalists, produce 64 bytes output as PBKDF2 and scrypt.

The t cost and m cost parameters are introduced by PHC in order to parametrize
the different proposals in terms of computational and memory requirements.
There is no norm in determining specific values for each parameter. The range
values vary as every scheme adopts its own convention based on the inner struc-
ture.
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The executable code size determines the space of consistent memory that
is occupied by the software implementation and reflects to the implementation
size. PBKDF2, bcrypt, battcrypt, Catena and yescrypt produce the most com-
pact implementations making them suitable for constrained devices (less than
36KB ROM with low RAM consumption). AntCrypt, Argon, centrifuge, the
optimized EARWORM, Gambit, Lanarea, Lyra2, MAKWA, ocrypt, Parallel,
PolyPassHash, POMELO, Pufferfish, Rig, schvrch, Tortuga and Yarn have mod-
erate requirements in code size (67-103KB). scrypt, the reference EARWORM,
MCS PHS, the optimized Pufferfish and TwoCats result large code sizes.

The runtime requirements of a software implementation are defined by the
RAM space that is needed to operate. PBKDF2, MAKWA, Parallel and yescrypt
are not RAM-hard PHSs. PBKDF2 and Parallel consume neglected RAM. MAKWA
has low RAM requirements as bcrypt. yescrypt consumes low to moderate RAM
(44 KB - 16.46MB) in cooperation with ROM-hard structures. From the rest
RAM-hard PHSs, Gambit, Lanarea, MCS PHS, Tortuga, TwoCats have low (less
than 1MB), PolyPassHass moderate (less than 64MB) and scrypt high memory
requirements. AntCrypt, battcrypt, Lyra2, Pufferfish and Yarn require low to
moderate memory. Catena, EARWORM and Rig takes moderate to high RAM
resources to operate. centrifuge, POMELO, ocrypt and schvrch support the full
range from low to high memory usage.

Speed is a core parameter in selecting a software implementation and is
strongly affected by the computational capabilities of the system. The time that
it takes to compute the hashed password must comply with the communica-
tion protocol’s constraints and the user’s tolerance. Gambit, Lanarea, MAKWA,
MCS PHS, Parallel, PolyPassHash, Rig, Tortuga, TwoCats and yescrypt takes
a few ms to operate. bcrypt and scrypt requires moderate time (a few secs). The
rest PHSs, offer higher degree of adaptability. AntCrypt, battcrypt, Catena, the
optimized EARWORM, Lyra2, POMELO, schvrch and Yarn requires low to
moderate time. Argon, centrifuge, the reference EARWORM, PBKDF2, Puffer-
fish and ocrypt cover the full range from low to high execution time.

PHS Password
(bytes)

Salt
(bytes)

Output
(bytes)

t cost m cost ROM
(KB)

RAM
(KB)

CPU(secs)

PBKDF2 24 8 64 1000 0 30 0 0,002024
PBKDF2 24 8 64 2048 0 30 0 0,004150
PBKDF2 24 8 64 4096 0 30 0 0,008141
PBKDF2 24 8 64 10000 0 30 0 0,019386
PBKDF2 24 8 64 1000000 0 30 0 1,908592
PBKDF2 24 8 64 16777216 0 30 0 32,969576
bcrypt 12 16 54 12 0 27 492 2,668653
scrypt 8 32 64 5 0 182 450656 2,837654

Finalists
Argon 32 32 32 3 2 82 192 0,008917
Argon 32 32 32 254 1 82 144 0,037167
Argon 32 32 32 236 10 82 172 0,285078
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Argon 32 32 32 56 100 82 244 0,674987
Argon 32 32 32 3 1000 82 1216 0,551141
Argon 32 32 32 3 10000 82 10172 5,520845
Argon 32 32 32 3 100000 82 100168 55,457062
Argon 32 32 32 3 1000000 82 1000192 577,022082
battcrypt 8 4 64 0 0 27 18 0,000312
battcrypt 8 4 64 1 0 27 18 0,000395
battcrypt 8 4 64 1 1 27 30 0,000758
battcrypt 8 4 64 1 2 27 42 0,001984
battcrypt 8 4 64 1 3 27 74 0,004231
battcrypt 8 4 64 1 4 27 138 0,016379
battcrypt 8 4 64 1 5 27 266 0,022217
battcrypt 8 4 64 1 6 27 520 0,045737
battcrypt 8 4 64 1 7 27 1000 0,091217
battcrypt 8 4 64 1 8 27 2000 0,149676
battcrypt 8 4 64 1 9 27 4000 0,254784
battcrypt 8 4 64 1 10 27 8000 0,418699
battcrypt 8 4 64 1 11 27 16000 0,766960
battcrypt 8 4 64 1 12 27 32000 1,472554
battcrypt 8 4 64 1 13 27 64000 2,853051
battcrypt 8 4 64 2 1 27 25 0,001088
battcrypt 8 4 64 3 1 27 25 0,001617
battcrypt 8 4 64 4 1 27 25 0,002175
Catena–blake2b 8 16 64 3 18 25 16384 0,353742
Catena–blake2b 8 16 64 3 20 25 65596 2,619238
Catena–blake2b 8 16 64 3 21 25 128484 5,461030
Catena–sha512 8 16 64 3 18 13 16496 0,783590
Catena–sha512 8 16 64 3 20 13 65720 5,389355
Catena–sha512 8 16 64 3 21 13 131240 11,664960
Lyra2 8 16 64 5 5 98 44 0,000084
Lyra2 8 16 64 5 100 98 696 0,001463
Lyra2 8 16 64 5 1000 98 6104 0,015104
Lyra2 8 16 64 5 10000 98 60128 0,159651
Lyra2 8 16 64 5 131071 98 787416 2,916398
MAKWA 8 16 64 0 0 95 335 0,000096
MAKWA 8 16 64 10 0 95 335 0,000132
MAKWA 8 16 64 100 0 95 335 0,000273
MAKWA 8 16 64 1000 0 95 335 0,002035
MAKWA 8 16 64 4000 0 95 335 0,007838
MAKWA 8 16 64 8192 0 95 335 0,015621
Parallel 8 16 64 0 0 71 0 0,001000
Parallel 8 16 64 0 10 71 0 0,001018
Parallel 8 16 64 10 0 71 0 0,047020
Parallel 8 16 64 10 10 71 0 0,047051
POMELO 8 16 64 0 0 67 12 0,000031
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POMELO 8 16 64 0 7 67 1064 0,003537
POMELO 8 16 64 0 17 67 1048648 7,951508
POMELO 8 16 64 7 0 67 12 0,001270
POMELO 8 16 64 7 7 67 1064 0,171375
POMELO 8 16 64 20 0 67 12 8,504152
Pufferfish–ref 8 16 64 0 0 103 156 0,000057
Pufferfish–ref 8 16 64 6 2 103 120 0,003359
Pufferfish–ref 8 16 64 6 10 103 1192 2,225718
Pufferfish–ref 8 16 64 10 10 103 1188 38,341005
Pufferfish–ref 8 16 64 6 11 103 2236 19,884300
Pufferfish–opt 8 16 64 0 0 398 220 0,000055
Pufferfish–opt 8 16 64 6 2 398 180 0,002980
Pufferfish–opt 8 16 64 6 10 398 1140 2,183917
Pufferfish–opt 8 16 64 10 10 398 1132 37,668099
yescrypt-ref 8 16 64 0 0 36 44 0,000094
yescrypt-ref 8 16 64 0 7 36 1516 0,004173
yescrypt-ref 8 16 64 0 8 36 2112 0,007209
yescrypt-ref 8 16 64 1 8 36 2112 0,008901
yescrypt-ref 8 16 64 2 8 36 2112 0,012088
yescrypt-ref 8 16 64 3 8 36 2112 0,015313
yescrypt-ref 8 16 64 0 11 36 16448 0,058253
yescrypt-opt 8 16 64 0 0 44 72 0,000116
yescrypt-opt 8 16 64 0 7 44 1148 0,003296
yescrypt-opt 8 16 64 0 8 44 2124 0,005796
yescrypt-opt 8 16 64 1 8 44 2124 0,006885
yescrypt-opt 8 16 64 2 8 44 2124 0,009448
yescrypt-opt 8 16 64 3 8 44 2124 0,011544
yescrypt-opt 8 16 64 0 11 44 16460 0,046733

Non-finalists
AntCrypt 2 16 64 15 1 70 76 0,001850
AntCrypt 2 16 64 16 1 70 76 0,001507
AntCrypt 2 16 64 17 1 70 76 0,001621
AntCrypt 2 16 64 10 5 70 132 0,015143
AntCrypt 2 16 64 11 5 70 132 0,016656
AntCrypt 2 16 64 12 5 70 132 0,018127
AntCrypt 2 16 64 5 10 70 416 0,243313
AntCrypt 2 16 64 6 10 70 416 0,291065
AntCrypt 2 16 64 7 10 70 416 0,339220
AntCrypt 2 16 64 1 14 70 4256 0,834133
AntCrypt 2 16 64 2 14 70 4256 1,596931
AntCrypt 2 16 64 3 14 70 4256 2,368481
AntCrypt 2 16 64 1 17 70 32972 7,598387
centrifuge 8 16 64 0 0 69 56 0,000013
centrifuge 8 16 64 8 16 69 3764 0,810746
centrifuge 8 16 64 8 20 69 65672 13,173753
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EARWORM–
ref

8 16 64 1 12 122 16312 0,001873

EARWORM–
ref

8 16 64 10000 16 122 262132 19,585622

EARWORM–
opt

8 16 64 1 12 94 16324 0,000423

EARWORM–
opt

8 16 64 10000 16 94 262140 1,098950

Gambit 8 16 64 16 25 81 8 0,000043
Gambit 8 16 64 128 511 81 12 0,000322
Lanarea 8 16 64 1 1 77 60 0,068024
Lanarea 8 16 64 10 10 77 188 0,113400
MCS PHS 11 16 64 0 32 122 1000 0,001
MCS PHS 11 16 64 1000 32 122 1000 0,029000
MCS PHS 11 16 64 0 256 122 1000 0,001
MCS PHS 11 16 64 1000 256 122 1000 0,026000
ocrypt 8 16 64 0 0 76 1008 0,034912
ocrypt 8 16 64 0 8 76 262184 4,845470
ocrypt 8 16 64 8 0 76 1056 4,086190
ocrypt 8 16 64 8 8 76 262184 11,992220
PolyPassHash 16 16 32 1 0 78 3412 0,000054
PolyPassHash 16 16 32 2 0 78 3412 0,000055
PolyPassHash 16 16 32 4 0 78 3412 0,000054
PolyPassHash 16 16 32 8 0 78 3412 0,000058
PolyPassHash 16 16 32 16 0 78 3412 0,000057
PolyPassHash 16 16 32 32 0 78 3412 0,000062
PolyPassHash 16 16 32 64 0 78 3412 0,000072
PolyPassHash 16 16 32 128 0 78 3412 0,000092
PolyPassHash 16 16 32 253 0 78 3412 0,000135
Rig 8 16 64 1 21 82 245776 0,531948
Rig 8 16 64 2 17 82 15416 0,044597
Rig 8 16 64 3 21 82 245824 1,156860
Rig 8 16 64 5 15 82 3896 0,011732
schvrch 8 16 64 0 0 68 4 0,007409
schvrch 8 16 64 100000 0 68 4 0,472748
schvrch 8 16 64 0 50000 68 99992 2,350343
schvrch 8 16 64 100000 50000 68 99992 2,828699
Tortuga 8 16 64 2 3 72 28 0,000052
Tortuga 8 16 64 610 987 72 32 0,001214
Tortuga 8 16 64 2584 2584 72 32 0,004607
Tortuga 8 16 64 17711 6765 72 32 0,024750
Tortuga 8 16 64 28657 89 72 32 0,032184
TwoCats 8 16 32 0 0 154 32 0,000002
TwoCats 8 16 32 0 10 154 1132 0,001221
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TwoCats 8 16 32 5 5 154 40 0,000002
TwoCats 8 16 32 10 0 154 32 0,000002
TwoCats 8 16 32 10 10 154 1140 0,191255
Yarn 8 16 64 0 0 74 8 0,000031
Yarn 8 16 64 0 5 74 8 0,000138
Yarn 8 16 64 62 5 74 8 0,000167
Yarn 8 16 64 62 10 74 24 0,003398
Yarn 8 16 64 30 19 74 8040 1,719149
Yarn 8 16 64 62 20 74 16156 3,361276
Yarn 8 16 64 30 21 74 31904 6,971758

Table 2: Software implementations of PBKDF2, bcrypt, scrypt and
the 22 PHC candidates

5.3 Finalists comparison

We analyze the features of the widely-used schemes PBKDF2, bcrypt and scrypt
and the nine finalists. PHC intends to propose a set of PHSs, covering a wide
range of diverse designs and different applications. We compare the different
schemes based on the offered functionality and efficiency. Then, we mark the
less competitive proposals and propose the most suitable solutions for different
types of applications, like general applications on mainstream computers, web
authentication and embedded systems.

Regarding design diversion, Argon, battcrypt, Catena, Lyra2, POMELO and
Pufferfish are based on RAM-hardness. Among them only Argon, Lyra2 and
POMELO consume high amounts of memory as scrypt. MAKWA, Parallel and
yescrypt are not RAM-hard PHSs. Parallel is based on computational hardness
and performs better than the relevant PBKDF2. yescrypt is based on scrypt and
tweaks its security. MAKWA has constant memory requirements and depends
on big number computations as RSA.

Argon, Catena, Lyra2 and Parallel support the full functionality of PHS,
KDF, SR and HUIU. battcrypt, MAKWA, Pufferfish and yescrypt provide PHS,
KDF with SR. POMELO is the only finalist that does not operate as a secure
KDF and functions only as PHS with HUIU.

Catena and Lyra2 are the most well-analysed schemes in terms of security.
Argon and MAKWA are also documented. battcrypt, Parallel and yescrypt do
not provide proofs for the claimed properties. Pufferfish’s security is not fully
validated and POMELO produces lower randomness properties as it doesn’t
work as KDF.

Figure 3, illustrates the code size of the examined PHSs. PBKDF2, bcrypt,
battcrypt, Catena and yescrypt produce compact implementations (less than
36KB ROM with less than 18KB RAM) making them suitable for constrained
embedded devices, like sensors. Argon, Lyra2, MAKWA, Parallel, POMELO
and Pufferfish have moderate requirements in code size. scrypt takes about the
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Fig. 3. The code size of PBKDF2, bcrypt, scrypt and the nine PHC finalists.

double code resources. The optimized implementation of Pufferfish produces the
largest code in return of slightly better speed than the reference implementation.

The most efficient implementations are estimated based on the execution time
that is needed for similar amounts of memory. Figure 4, illustrates the speed to
RAM-consumption measurements of the finalists for different levels of memory
usage. From the memory-hard schemes, Lyra2 and Catena are the most efficient
ones, followed by POMELO, battcrypt, Argon and Pufferfish. From the non
RAM-hard schemes, Parallel and yescrypt are the most efficient PHSs, followed
by MAKWA.

Here we summarize the main disadvantages for some of the finalists based
on the aforementioned analysis. POMELO is the only finalist that does not
operate as a secure KDF due to lower randomness properties – a main evaluation
criterion of PHC – which may obstruct its final selection. Similarly, security
issues of Pufferfish could arise as its security properties are not fully validated.
Moreover, Pufferfish and Argon are the least efficient schemes from all finalists,
based on memory consumption and speed. battcrypt is a simplified scrypt and
is designed for server-side applications. It provides the main functionality but
does not support HUIU, an imperative property for long-term security in this
domain. Other schemes that provide the full functionality are more efficient.

For typical RAM-hard schemes, Lyra2 is the best choice, followed by Catena.
Both schemes offer the full functionality, are well-documented and analysed, and
are the most efficient in terms of execution time and memory usage. Lyra2 is
considered better for general applications as it can operates on high amounts of
memory, like scrypt. Catena produces low code size and memory requirements,
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Fig. 4. PHC Finalists - Speed to RAM.

making it suitable for constraint environments and embedded systems. Both
schemes function well on the web domain.
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For non RAM-hard schemes, Parallel is one of the fastest finalists and the
most suitable scheme for general and web applications. It is optimized for parallel
execution, exploiting the computational capabilities of modern CPUs and imple-
ments the full functionality. yescrypt is also efficient and produces lightweight
implementations that can be applied in embedded systems. MAKWA consumes
similar amounts of RAM as bcrypt and it is two to four magnitudes faster. Its
security properties are better documented than Parallel and yescrypt and can
substitute bcrypt in general password hashing applications.

6 Conclusions

The maintenance of user passwords constitutes a significant factor related to the
provided security of a service. Security breaches on famous applications have
reveal massive amounts of user data, harming the reliability of their providers.
The poor password hashing techniques and the limited available solutions lead
the international cryptographic community to organize the Password Hashing
Competition (PHC). The competition intends to delivery a small portfolio of
modern and secure schemes for password hashing and key deviation. This paper
provides a comparative analysis among the currently available schemes and the
ones proposed in the PHC. We survey the first round results of the competition
and evaluate reference and optimized software implementations of totally 25
schemes on the same platform. The general features of each scheme are analysed
and a benchmark analysis is held, focusing on the nine finalists of the first
PHC round. We contribute to the final selection of the winners by highlighting
the efficiency of each finalist in terms of execution time, memory consumption
and code size. We notify five of the finalists that excel based on their overall
performance and documentation and map them in different types of applications.
For RAM-hard schemes, Lyra2 can be used for general and web password hashing
applications while Catena on web applications and embedded systems. For non
RAM-hard schemes, Parallel, yescrypt and MAKWA are suggested. Parallel can
exploit the computational capabilities of modern CPUs, yescrypt can be applied
in general applications and embedded systems, and MAKWA can constitute an
efficient replacement of the widely-used bcrypt.
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