
Password Strength: An Empirical Analysis
Matteo Dell’Amico, Pietro Michiardi and Yves Roudier

Eurecom
2229, Route des Crêtes

Sophia Antipolis, France
Email: {matteo.dell-amico, pietro.michiardi, yves.roudier}@eurecom.fr

Abstract—It is a well known fact that user-chosen passwords
are somewhat predictable: by using tools such as dictionaries
or probabilistic models, attackers and password recovery tools
can drastically reduce the number of attempts needed to guess
a password. Quite surprisingly, however, existing literature does
not provide a satisfying answer to the following question: given a
number of guesses, what is the probability that a state-of-the-art
attacker will be able to break a password?

To answer the former question, we compare and evaluate the
effectiveness of currently known attacks using various datasets of
known passwords. We find that a “diminishing returns” principle
applies: in the absence of an enforced password strength policy,
weak passwords are common; on the other hand, as the attack
goes on, the probability that a guess will succeed decreases by
orders of magnitude. Even extremely powerful attackers won’t
be able to guess a substantial percentage of the passwords.

The result of this work will help in evaluating the security of
authentication means based on user-chosen passwords, and our
methodology for estimating password strength can be used as a
basis for creating more effective proactive password checkers for
users and security auditing tools for administrators.

I. I NTRODUCTION

Even though much has been said about their weaknesses,
passwords still are – and will be in the foreseeable future –
ubiquitous in authentication systems for Internet applications.
They have an inherent trade-off between usability and security:
while strong passwords are hard for attackers to guess, theyare
on the other hand also difficult for the user to remember. As
Richard Smith paradoxically notes, password best practices
imply that “the password must be impossible to remember
and never written down” [1]. In light of this, it is not very
surprising that users often knowingly choose to use weak
passwords or circumvent security best practices, since they
perceive that following them would get in the way of doing
their work [2], [3].

To think sensibly about the security of systems that use
passwords, it is therefore essential to properly evaluate their
resilience to guessing attacks: this is done by comparing search
space size (i.e., number of guesses) against the percentage
of passwords that would be broken by such an attack. This
measure does not depend on the particular nature of the
authentication system nor on the attacker capabilities: itis only
related to the attack technique and to the way users choose
their password. The attack model and the characteristics of
the system will instead define the cost that the attacker has
to pay for each single guess. By combining this cost with a
measure of the search space, it becomes possible to obtain

a sound cost-benefit analysis for attacks based on password
guessing on an authentication system.

Known Results: Current studies only provide partial
answers to the question of determining the percentage of
passwords that would be broken as a function of search space
size: they generally focus on passwords discovered with a
single kind of attack, and neglect to quantify how strong the
remaining share of passwords are against more general attacks.

Analyses on dictionary attacks report a percentage of broken
passwords varying between 17% and 24% [4]–[6], depending
on the dataset and dictionary size. These dictionaries can be
extended by systematically mangling the words; a technique
proposed recently by Weir et al. manages to discover up to
roughly a third of the passwords [7].

Narayanan and Shmatikov [8] proposed a technique that
uses Markov chain modeling instead of naive brute force to
perform guessing at a larger scale. Unfortunately, their work
was only validated on a dataset of 142 hashed passwords;
while 96 (67.6%) were successfully broken, nothing is known
about the remaining and stronger ones.

In some studies [9], [10], the ratio of cracked passwords
is reported against the running time of a specific password
cracker over an hashed password file. While this metric
is useful to compare implementations of password recovery
programs, it falls short when trying to decouple password
complexity (which is dependent on guessing strategies and
user behavior) from system-specific characteristics such as
hashing algorithm and computational power of the attacker.
Our measurement of the search space avoids these limitations.

In a 2007 study [11], Florencio and Herley analyzed data
about the passwords of about 500,000 users. That work pro-
vides interesting insights about user habits, but only quantifies
password strength with a simple “bit strength” measure based
on their length and on the use of uppercase, numeric, and
non-alphanumeric characters; from that measure, it is basically
impossible to infer resilience against advanced password-
cracking techniques (e.g., [7], [8]).

Our Contribution: In this paper, we compare the search
space versus number of cracked passwords for guessing
techniques including dictionary attacks, brute force, dictio-
nary mangling, probabilistic context-free grammars [7], and
Markov chains [8]. We cross-validate our experiments on three
large datasets of passwords, different in terms of application
domain and of user localization.

In our analysis we evaluate different password cracking

2

techniques using homogeneous metrics and on the different
datasets, allowing us to compare the effectiveness of each
technique. We benefit from having access to the passwords
in plain text, thus being able to evaluate passwords that even
very powerful attackers would not be able to break. We find
that different attack techniques are more effective depending
on the search space size that the attacker can afford to explore,
and we propose an elaborate attack model using a combined
approach that adopts different guessing techniques in cascade.

Until now, the Markov chain technique has only been imple-
mented and evaluated by taking into account the frequenciesof
substrings of fixed length (2 or 3) [8], [10], [12]; we find that
the length of substrings is a key parameter that, when properly
tuned, allows to discover some “easy” passwords with orders
of magnitude of spared guesses.

We discover that password strength has an extremely wide
variance: as a first approximation, the probability to guessa
password at each attempt decreases roughly exponentially as
the size of the explored search space grows; a surprisingly
high percentage of users have extremely strong passwords that
appear very difficult to guess. These diminishing returns imply
that, in most cases, an attacker would eventually find a point
where the cost of continuing the attack would not be justified
by the probability of success. This study provides figures that
can help system designers in assessing the security of their
systems by evaluating where that point resides.

Our evaluation of the search space tied to a password can be
straightforwardly used in real systems to create better proactive
password checkers for users and security auditing tools for
system administrators; coupled with information about the
cost of a single guessing iteration, the cost of breaking any
password can be estimated.

II. RELATED WORK

In this section we provide a short review of studies about
password security, and make the case for the importance of
measuring password strength. Attacks such as phishing or
social engineering, where the user is misled in communicating
the password to the attacker, are unrelated to password strength
and therefore outside the scope of this work.

Pricing Via Processing:To defend against intruders who
repeatedly try password after password, it is possible to limit
the rate at which the attacker is allowed to try new passwords
by requiring the user to perform an action with a moderate
cost. The following measures belong to this category:

• CAPTCHAs [13], which require solving puzzles that are
difficult without human intervention;

• key strengthening techniques, which require a few sec-
onds of computation to derive a key from the passwords.

It is noteworthy that these techniques impose a trade-off to
legitimate users: if an honest user has to pay a costc, the
attacker must pay at mostc · s, wheres is the strength of the
password in terms of the number of attempts needed to guess
it. The measures obtained in this paper can be used to estimate
costs and benefits of these systems, and thus to properly tune
this c parameter.

An alternative approach blocks accounts after a given num-
ber of failed attempts. This response, however, opens the door
to denial of service attacks on user accounts and is ineffective
against attacks not targeted towards a single user [14].

Offline Attacks: In most cases, the authentication server
does not store passwords in plain text. Instead, it keeps an
“encrypted” version of them which is conceptually analogous
to a hash: when a user attempts to log on, the password they
provide is hashed and compared to the stored value. In this
way, even if an attacker obtains the hashed passwords, they
cannot be used right away to log on to the system. To make it
costly for the attacker to guess the password by hashing lotsof
password candidates, key strengthening techniques are again
applied. Attacks based on pre-computing the hashed versionof
the most likely passwords [8], [15] are defeated with “salting”:
appending a random number to the password before hashing it,
and then storing this number along with the hashed password.

Since these techniques are based on the idea of making
guessing attacks costly, the password strength that we are mea-
suring is also a key parameter when evaluating the resilience
of a password system to offline attacks.

Proactive Password Checking:A proactive password
checker is a system that forces (or advises) the user to choose
complex enough passwords. The impact of these checkers
on actual password security is debatable: as Wu [16] notes,
“[users are] very good at selecting passwords that are just
‘good enough’ to pass whatever checking is in place”. See, for
example, the discussion on MySpace passwords in Section III.
Furthermore, a proactive password checker could encourage
users to use non-dictionary passwords that are related to their
personal life such as dates, telephone numbers or license plate
numbers [2]. For a motivated attacker, these passwords are
even easier to guess than dictionary words.

Existing password checkers are based on quite naive metrics
[17], [18]: they are generally based on password length,
resilience to “brute force”, dictionary based attacks and/or
heuristics based on presence of non-alphabetic and uppercase
characters; still, they do not take into account advanced
cracking techniques. Our measure of strength as search space
size can be used as the basis for more effective password
checkers.

III. D ATASETS

IT: The “Italian” dataset: This dataset contains the unen-
crypted passwords for the registered users of an Italian instant
messaging server adopting the XMPP protocol1, administered
by one of the authors. Our analysis only discloses aggregate
information about the passwords of users, and actually consti-
tutes part of a security audit of the system. Storing passwords
in plain text on the server is required by authentication algo-
rithms such as CRAM-MD52. User registration is free (any
unused username may be taken) and no policy for password
strength is enforced.

1http://xmpp.org/
2http://tools.ietf.org/html/rfc2195

3

Dataset Size #unique Avg. length #characters

IT 9,317 7,848 7.86 124
FI 15,812 13,395 7.60 90
MS 33,671 30,690 8.10 96

TABLE I
SUMMARY INFORMATION ABOUT DATASETS: NUMBER OF USERS, OF

UNIQUE PASSWORDS, AVERAGE PASSWORD LENGTH AND TOTAL NUMBER

OF CHARACTERS IN ALL PASSWORDS.

FI: The “Finnish” dataset: This dataset comes from a
list of passwords that were publicly disclosed in October 2007
by an unknown group3. The list contained both hashed (MD5)
and unencrypted passwords, mostly from different Finnish web
forums. We limited our analysis to the unencrypted disclosed
passwords, all from the same website.

MS: The MySpace dataset:These passwords were ob-
tained through a phishing attack on a fake MySpace login
page, and were disclosed in October 2006 [19], [20]. User-
names, in this case, are email addresses. While this is the
largest dataset we are analyzing, there are some shortcomings
with it: first, we only have the passwords of less security-
conscious users who fell for the attack; second, users may
have (on purpose or inadvertently) put wrong passwords on
their phishing page. MySpace requires users to insert both
alphabetic and non-alphabetic characters in their passwords;
this imposes an artificial impact on passwords that users, left
alone, would choose. By analyzing the differences between
this dataset and the former ones, we can estimate the effect of
this requirement on password strength.

Dealing With Dataset Quality:Since the FI and MS
datasets come from lists of publicly disclosed passwords,
we cannot be completely confident that they are an accurate
representation of the users’ actual passwords. On the other
hand, we are confident in the quality of the IT dataset: it
contains the passwords of all registered users, and we know the
policies enforced on the server. For this reason, we will base
our analysis on IT, turning onto the other datasets to confirm
that our results generalize beyond a single set of passwords.

Our datasets reflect the common case where users are free to
register on a network service, and use it to establish a persistent
identity. The threat to the user is that attackers stealing their
passwords would be able to impersonate them, perhaps to harm
the reputation of the attacked user, to exploit the trust obtained
from other users or to gain access to sensitive information.
The same kind of threat would apply to any system that
uses authentication to establish the origin of communications
between users such as, for example, e-mail.

A First Look At the Datasets:Table I summarizes some
information about our datasets. It is interesting to note that
in all cases some users share the same password. This may
be due to coincidences and use of too frequent passwords,
but this may be also caused by the same people registering
under different usernames at the same server. The average
password length is close to 8 in all cases, and the number
of used characters is higher in IT because arbitrary Unicode
characters are allowed, and used sparingly by the users.

3http://www.f-secure.com/weblog/archives/00001293.html

Expression Example IT FI MS

[a-z]+ abcdef 51.21% 53.06% 1.09%
[A-Z]+ ABCDEF 0.29% 0.17% 0%

[A-Za-z]+ AbCdEf 53.74% 54.04% 1.09%
[0-9]+ 123456 9.10% 3.43% 0.15%

[a-zA-Z0-9]+ A1b2C3 93.43% 95.43% 90.43%
[a-z]+[0-9]+ abc123 14.51% 27.10% 77.39%

[a-z]+1 abcde1 0.26% 1.43% 19.89%
[a-zA-Z]+[0-9]+ aBc123 16.30% 28.03% 77.48%
[0-9]+[a-zA-Z]+ 123aBc 1.80% 2.16% 5.76%
[0-9]+[a-z]+ 123abc 1.65% 2.09% 5.75%

TABLE II
PERCENTAGE OF PASSWORDS MATCHING VARIOUS REGULAR

EXPRESSIONS.

In Table II we compare the matching ratio of different regu-
lar expressions in our datasets. In all cases, non-alphanumeric
characters are present only in less than 10% of the passwords.
It is very interesting to compare the matching ratios of IT (with
no strength enforcement measures) with MS (where a mixture
of alphabetic and non-alphabetic characters is required).In
MS, a small number of all-alphabetic or all-numeric passwords
are present, and this may be due to users inadvertently or
knowingly inserting wrong passwords in the phishing page.

As already noticed by Sebastian Porst [20], most MyS-
pace users comply with the requirement of inserting a non-
alphabetic character by appending a number at the end of
the password – roughly 20% of the users actually comply
by adding a “1”. The impact of this measure on password
strength may appear therefore quite debatable, especiallyin
the case that the attacker knows about the requirement.

Some users in IT appear to have a stronger tendency towards
choosing stronger passwords with less easily detectable struc-
ture: as we will show in the following, the complex passwords
from that dataset are the most difficult ones to break.

IV. D ICTIONARY ATTACK

Dictionary attack is the most effective technique to guess
the weakest passwords. We adopted the dictionaries available
in the well knownJohn the Ripper(JtR) password recovery
tool. The extended dictionaries that we used are available for
paid download from the program website4.

The Dictionaries: The JtR dictionaries contain words
from 21 different human languages, plus a list of frequently
used passwords. For some languages (like English and Italian),
various dictionaries of different sizes are available: thesmaller
ones contain only the most frequently used words while the
bigger ones also contain more obscure words, the rationale
being that more common words are more likely to be chosen as
passwords. Taken together, all dictionaries account for almost
4 million words.

A known technique to create strong but easy to remember
passwords is to turn phrases into passwords by extracting
an acronym, possibly also using punctuation. For example,
the phrase “Alas, poor Yorick! I knew him, Horatio” be-
comes “A,pY!Ikh,H”. We also evaluated such acronyms with
a dictionary created by Kuo et al. [21] that was put together

4http://www.openwall.com/wordlists/

4

Dictionary IT FI
(size) Found Guess pr. Found Guess pr.

Frequent (2.8K) 5.95% 2.1 · 10−5 2.86% 1.0 · 10−5

English 1 lc (27K) 4.91% 1.8 · 10−6 3.38% 1.2 · 10−6

English 2 lc (297K) 9.42% 3.2 · 10−7 6.26% 2.1 · 10−7

English 3 lc (390K) 11.59% 3.0 · 10−7 7.53% 1.9 · 10−7

Extra lc (445K) 8.03% 1.8 · 10−7 8.16% 1.8 · 10−7

Italian 1 lc (63K) 3.71% 5.9 · 10−7 0.79% 1.3 · 10−7

Italian 2 lc (344K) 14.89% 4.3 · 10−7 6.62% 1.9 · 10−7

Finnish lc (359K) 8.45% 2.4 · 10−7 20.24% 5.6 · 10−7

All above (1.45M) 24.79% 1.7 · 10−7 26.02% 1.8 · 10−7

All JtR dicts (3.9M) 25.94% 6.6 · 10−8 26.97% 6.6 · 10−8

Mnemonics (406K) 1.27% 3.1 · 10−8 0.35% 8.7 · 10−9

TABLE III
DICTIONARY ATTACKS .

by scraping websites displaying memorable phrases, such as
citations and music lyrics.

Experimental Results:We simulated dictionary attacks
with all the JtR dictionaries on the IT and FI datasets. The rule
requiring non-alphabetical characters makes basic dictionary
attacks essentially pointless on the MySpace passwords. Table
III shows the results for the most representative instances.

The “lc” acronym stands for all-lowercase dictionaries:
those containing uppercase letters are matched by very few
words in our dataset. The English 1, English 2 and English 3
dictionaries, like Italian 1 and Italian 2, are listed in growing
size; each word belonging to a smaller dictionary is also con-
tained in the bigger versions. The “Extra” dictionary contains
likely passwords such as proper nouns, misspellings or alter-
ations of words. The “found” column lists the percentage of
passwords appearing in that dictionary; the “guess probability”
column reflects the probability that a random word from that
dictionary matches a random password; it can be computed by
dividing the ratio of found passwords by the dictionary size.
A rational attacker would try a word from that dictionary only
if the benefit of cracking the password exceeds the inverse
of that probability times the cost of the effort for trying that
password.

The dictionaries have non-empty intersections, correspond-
ing to words that are quite common. This explains why Italian
users seem keen on choosing Finnish words as passwords and
vice versa, and why the guessing probability in the “all above”
row is lower than for each of the contained dictionaries: those
repeated words are counted only once in the union dictionary.

An interesting feature is the noticeably higher density of
common English words (those present in the small “English
1” dictionary); that phenomenon is much less relevant with
respect to Italian in the IT dataset (unfortunately, we don’t
have a dictionary of common Finnish words to confirm this
finding on FI). We think that this is caused by the fact that
most users know English as a second language, and thus are
less inclined to use an obscure word as their password. This
suggests that basing the password on one’s native language
could be a good advice to increase password strength without
requiring significant additional effort.

The most important lesson drawn from this data is the
principle of diminishing returns: the probability of guessing

a word sharply decreases as the dictionary grows. A small
dictionary of 2,800 frequent passwords cracks 6% and 3%
of the passwords respectively in IT and FI; with a 500-
fold increase in the size of the dictionary up to almost 1.5
million, the number of cracked passwords rises to 25% and
26%. By increasing again the dictionary size by a factor of
2.7 (including other language dictionaries), only 1% more
passwords are discovered. To put it in another way, the
probability of guessing a given password by trying an element
of the “frequent passwords” dictionary is one in 47,000
in IT and one in 99,000 in FI. On the other hand, after
having tried all the frequent passwords, the Italian, Finnish,
and English dictionary, the probability of guessing by using
another dictionary word is less than one in 200 million! Since
the guessing probability decreases so sharply, it is conceivable
that in many cases it won’t be worth trying a bigger dictionary
for the attacker.

We also observe that the mnemonic dictionary is quite
ineffective. This may be due to several reasons: first, few
users actually use mnemonics for their passwords; second,
they are actually much harder to break with dictionary attacks.
Moreover, we are not able to ascertain whether the habit
of choosing English passwords for Italian and Finnish users
would carry over to the use of mnemonics. Our data is, at the
moment, insufficient to point towards one of these reasons.

V. M ANGLING

Many users adopt simple techniques to protect passwords
against dictionary attacks. Some examples are juxtaposition
of words, appending or prepending sequences of digits or
symbols to passwords, or capitalizing words. The technique
of mangling is directed towards this goal: new candidate pass-
words are generated by rules altering dictionary words.John
the Rippercan use mangling rules to generate extended set of
passwords; we applied them to the “all dictionaries” list (3.9
million elements) to generate a mangled list of 147,945,837
candidate passwords. With the extended dictionaries described
in the previous section, JtR also ships a hand-tuned dictionary
containing 40,532,676 candidates – mangling rules are chosen
depending on the dictionary, with a different number of rules
applied to each dictionary. This smaller dictionary is not a
proper subset of the first, and contains some words that cannot
be generated using the default rules of JtR.

Probabilistic Context-Free Grammars:Recently, Weir et
al. proposed a new technique for dictionary mangling based on
probabilistic context-free grammars (PCFGs) [7]. According
to this technique, a probabilistic model is obtained from a
training set of clear-text passwords, in two steps. First, the
“structure” of the password is obtained and mapped to a
context-free grammar production: for example, the “$abc123”
password maps to theS → S1L3D3 production (S is the
starting non-terminal), representing a sequence of one symbol,
three letters, and three digits; the production is assigneda
probability equivalent to its frequency in the training set.
The Li productions are created based on the words from the
dictionary to be mangled, while theSi and Di productions

5

are obtained, again, from the training set: for example, if
the D3 → 123 production is assigned a probability 0.4, this
means that 40% of all sequences of three digits in the dataset
correspond to the string “123”.

This technique makes it possible to create a set of candidate
passwords, and to assign a probability to each one of them.
In their work, Weir et al. designed an efficient algorithm to
return an arbitrary number of productions by decreasing order
of probability (details can be found in [7]).

Experimental Setup:We created a training set from each
of our datasets, randomly choosing half of the passwords in
each of them. We then used each training set to create three
PCFG dictionaries mangling the “all languages” dictionary
of JtR, with different sizes. To allow easy comparison with
dictionary attack and the two JtR mangled dictionaries, we
selected the following sizes: 1.45 million, to match the “all
above” line in Table III; 40.5 millions and 147.9 millions to
match the JtR dictionaries. We then simulated a dictionary
attack using the nine dictionaries generated, plus the two JtR
dictionaries, against our three datasets.

When evaluating a PCFG dictionary against the dataset from
which we obtained the training set, we only used the half of
the passwords that was not part of the training set.

Since the MySpace passwords must contain alphabetic and
non-alphabetic characters, it is pointless for an attackerto
use candidates that don’t satisfy this requisite. We therefore
considered an attack where those passwords were filtered out
from the mangled dictionary. A small number of additional
passwords are found when the algorithm is run using the non-
filtered dictionary: this is due to the passwords in MS that
do not conform to the security requirements of MySpace, as
discussed in Section III.

Results: The results of our experiments, using the same
format we used for standard dictionary attacks previously,are
reported in Table IV. Our major conclusions are:

1) The principle of diminishing returns continues to apply:
as the dictionary size grows, the probability that the
password will be found decreases with each single guess.

2) The strength enforcement policy applied by MySpace
appears to pay off only if the attack does not expand
to include mangled dictionaries: with a size of 1.45
million candidates, the passwords in the MS dataset
appear stronger; this advantage is lost when the mangled
dictionaries reach the size of 41 million.

3) PCFGs prove themselves very useful for the search
space range under scrutiny: they perform better than the
automatic mangling rules applied by John the Ripper,
and they are comparable to the hand-tuned mangled dic-
tionary. Wise attackers would not however use PCFGs
before relevant dictionaries, since the latter ones are
more likely to find the correct password early on.

The passwords in IT are more complex to break using these
techniques, reflecting a difference in user behavior when
choosing the password.

Using IT as a training set for FI, and vice versa, appears
quite effective, despite of the difference in user languageand

application. On the other hand, MS is a poor training set
for both IT and FI; this is easily explained by the password
strength enforcement rules.

To evaluate the limits of the PCFG approach, we verified
the percentage of passwords that would be found if the PCFG
generator would be left running indefinitely, as described in
the following. A password will obviously never be generated
if the corresponding productions don’t exist in the grammar
(because the training set does not contain passwords with the
same structure or matching sequences of symbols or digits,
or because the password contains a sequence of letters not
appearing in the starting dictionary). When taking into account
the matching training set, it is possible to break 60.95% of the
MySpace passwords (the grammar can produce a total of4.52·
1018 guesses), 52.30% of the “Finnish” passwords (totaling
2.00 · 1026 guesses), and 44.17% of the “Italian” passwords
(3.87 · 10155 guesses). The huge variations in the number of
guesses are due to few complex passwords: most candidates
coming from the Italian training set are due to a single 130-
character long password. All these guesses would however be
labeled with a very low probability, and will therefore never
be generated in a realistic attack.

VI. M ARKOV CHAIN -BASED ATTACK

When even mangled dictionaries are unsuccessful, attackers
don’t need to resort to an exhaustive brute-force attack: some
passwords are much more likely to be chosen than others,
even when they are not based on dictionary words. Various
regularities exist: passwords are usually made of pronounce-
able sub-strings and/or sequences of keys that are close on
the keyboard. State-of-the-art password retrieval tools such as
John the Ripper [12] and AccessData’s Password Recovery
Toolkit [22] employ Markov chains to narrow the search space
that would need to be explored with brute force.

In this section, we describe and validate an attack based
on Markov chain-based modeling of the frequencies of sub-
strings with parametric lengthk, or k-graphs. This allows us
to label candidate passwords with variable probabilities,where
strings that are labeled as more likely are checked first. Some
password generating utilities actually use this kind of modeling
to obtain meaningless but pronounceable passwords on the
grounds that they’re easier to remember, thus sacrificing some
strength for usability5.

A. The Technique

We adopt the techniques introduced by Narayanan and
Shmatikov [8], applying the model also to substrings of
length 3 and more. This model associates each password
with a probability p, representing a password choice as a
sequence of random events: first, the length of the password
is chosen according to a given probability distribution; then,
each character of the string gets extracted according to a
conditional probability depending on the previousk − 1

5See for examplegpw (http://www.multicians.org/thvv/tvvtools.html#
gpw), apg (http://www.adel.nursat.kz/apg/),otp (http://www.fourmilab.ch/
onetime/).

6

Dictionary IT FI MS (no filter) MS (filtered dictionary)
(training set) (size) Found Guess pr. Found Guess pr. Found Guess pr. Found Guess pr. Filtered dict size

PCFG (IT) (1.45M) 24.64% 1.7 · 10−7 24.35% 1.7 · 10−7 0.90% 6.2 · 10−9 0.21% 1.3 · 10−7 17,015
PCFG (FI) (1.45M) 23.47% 1.6 · 10−7 24.43% 1.7 · 10−7 0.75% 5.2 · 10−9 0.06% 6.9 · 10−8 9,413

PCFG (MS) (1.45M) 2.14% 1.5 · 10−8 2.44% 1.7 · 10−8 13.02% 9.0 · 10−8 12.98% 9.0 · 10−8 1,447,290

JtR hand-tuned (41M) 30.11% 7.4 · 10−9 31.29% 7.7 · 10−9 31.77% 7.8 · 10−9 31.02% 1.0 · 10−8 30,258,334
PCFG (IT) (41M) 30.88% 7.6 · 10−9 36.17% 8.9 · 10−9 30.93% 7.6 · 10−9 30.22% 8.1 · 10−9 37,114,836
PCFG (FI) (41M) 29.53% 7.3 · 10−9 41.13% 1.0 · 10−8 32.88% 8.1 · 10−9 32.16% 8.8 · 10−9 36,709,144
PCFG (MS) (41M) 20.88% 5.2 · 10−9 28.97% 7.1 · 10−9 38.52% 9.5 · 10−9 37.88% 9.5 · 10−9 39,674,064

JtR mangled (148M) 29.56% 2.0 · 10−9 31.53% 2.1 · 10−9 24.16% 1.6 · 10−9 23.41% 2.2 · 10−9 105,029,406
PCFG (IT) (148M) 33.12% 2.2 · 10−9 41.81% 2.8 · 10−9 43.62% 2.9 · 10−9 42.90% 3.0 · 10−9 144,323,223
PCFG (FI) (148M) 31.52% 2.1 · 10−9 44.21% 3.0 · 10−9 42.14% 2.8 · 10−9 41.41% 2.9 · 10−9 140,673,878
PCFG (MS) (148M) 30.28% 2.0 · 10−9 41.18% 2.8 · 10−9 48.27% 3.3 · 10−9 47.46% 3.3 · 10−9 145,480,767

TABLE IV
DICTIONARY ATTACKS WITH MANGLING TECHNIQUES AND PROBABILISTIC CONTEXT-FREE GRAMMARS(PCFGS).

characters. These probabilities are obtained by observinghow
often, on a suitable training set, thesek − 1 characters are
followed by the samek-th one.

In the effort of creating an algorithm to generate password
guesses sorted by descending probabilities, Narayanan and
Shmatikov also described an efficient recursive algorithm to
approximate the number of passwords with a probability of
occurrence in the model higher than or equal top. For a
formal description of the model and details on the algorithms,
we refer to the original paper [8].

In the absence of a representative training set of plain-
text passwords, a dictionary can be used. As we will exper-
imentally show, using passwords from the same dataset as
training set finally results in a noticeably better model. Inthis
case, when considering a given password in our experiments,
that password itself is removed from the training set and
is not taken into account when computing its corresponding
probability p.

As mentioned in Section III, some users share the same
password. This might be due to chance and to the fact that
those passwords are quite trivial; another possibility is that
they come from the same user registering many accounts with
the same passwords. In the latter case, an attacker would
not have access to the password in a representative training
set, and it would be correct for our purposes to remove
all copies of the password from the training set. Since we
cannot discriminate between the two cases, we will adopt a
conservative approach that may result in overestimating the
capabilities of the attacker, therefore discarding only a single
copy of the password from the training set.

A model with higher values ofk should be more accurate,
but the process of creating it is more difficult and expensive. In
the extreme, a model withk exceeding the maximum password
length would explicitly list the probability of occurrenceof
each possible password: this would require prohibitive training
set size and storage capabilities (the required space is of the
order of |C|

k, where |C| is the size of the character set).
With limited resources, when ak-graph does not appear in
the training set due to under-sampling, then the probability of
a password containing thatk-graph is computed as 0. Such a
model would therefore never generate the required password.

B. Experimental results

This section describes the results of the experiments de-
scribed above when applied to our password datasets. Unless
otherwise specified, we use the passwords from the same
dataset as training set.

We use the approximated algorithm described in section
VI-A to compute the search space needed to break a password
once its corresponding probabilityp is computed, when the
search space is too big to be generated explicitly; since we
aim for a conservative estimate that approximates by excess
the capabilities of the attacker, we implemented the algorithm
so that it would always return an under-estimation of the search
space size. Our experiments with this approximated technique
(not shown due to lack of space) result in a relative error of
the order of 5%.

Password Strength:In Figure 1, we plot the fraction of
passwords guessed as a function of the search space size in
our three datasets. In all cases, the results are qualitatively
very similar. With higher values ofk, we obtain better results
for the weaker passwords due to the more precise modeling
obtained in this case. However, the passwords that includek-
graphs not represented in the training set cannot be guessed.
Methods based on smallerk values become more effective
because they can “generalize” some more. In practice, the
optimal strategy depends on the resources of the attacker,
measured by the number of attempts that can be tried. It should
be noticed, anyway, that dictionary attacks and mangling
techniques produce better guesses when the search space has
a size below roughly108.

The “diminishing returns” effect also applies to this tech-
nique: when choosing the best value ofk for each case, taking
into account the IT dataset, around 100,000 candidates needto
be tried in order to guess 20% of the passwords (k = 5); this
number rises to roughly 1.1 billion candidates for a success
rate of 40% (k = 3); the search space needed to break 90%
of the passwords grows to approximately3 · 1017 (k = 2).
Similar order of magnitude variations are observable also in
this case. With such a huge variance in the size of the search
space, it seems that no reasonable attack based on password
guessing would succeed in guessing all passwords – excepting
those cases where users are artificially forced to limit password

7

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Search space size

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 c
ra

ck
ed

 p
as

sw
or

ds
k = 1
k = 2
k = 3
k = 4
k = 5

a) Italian dataset.

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Search space size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

ra
ck

ed
 p

as
sw

or
ds

k = 1
k = 2
k = 3
k = 4
k = 5

b) Finnish dataset.

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Search space size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

ra
ck

ed
 p

as
sw

or
ds

k = 1
k = 2
k = 3
k = 4
k = 5

c) MySpace dataset.

Fig. 1. Search space size versus fraction of guessed passwords.

strength, for example by imposing a maximum length.
There are noticeable differences in terms of search space

size between the datasets. For MySpace, the search space for
weak passwords is bigger, while it is smaller for stronger

104 108 1012 1016 1020 1024 1028 1032 1036 1040 1044 1048

Search space size

10-3

10-2

10-1

100

Fr
ac

tio
n

of
 m

is
se

d
pa

ss
w

or
ds

Brute force
k = 1
k = 2

Fig. 2. Brute force and Markov-model based attacks. Dataset:IT.

passwords. We think that this is mainly due to the particu-
larities of the dataset: weak passwords are made stronger by
the requirement of non-alphabetic characters; strong passwords
created by security-conscious users, on the other hand, are
under-represented since such users are less likely to fall victim
to a phishing attack.

Passwords in IT appear stronger than those in FI. This
confirms the remarks about lower predictability in password
structure that we highlighted in the previous sections.

Brute Force: In Figure 2, we compare brute force with
the Markovian modeling on IT. The brute force approach starts
with the empty password, then proceeds with enumerating all
possible passwords with increasing length. The full Unicode
character set currently has more than 99,000 characters6, but
many of them are rare and definitely unlikely in a password;
to account for this, we again took a conservative approach
overestimating the attacker capabilities, and took into account
only the 124 characters that we have found in our dataset.

In all but the most extreme cases, the Markovian model
proves more efficient by orders of magnitude. It is not before
1040 candidates (and having found 99.7% of the passwords)
that a brute force approach becomes more effective than the
Markovian model withk = 1 (character frequencies). This
number is well beyond the capabilities of any realistic attacker:
to put this in context, a cluster of a thousand 10 GHz machines
would need more than3 · 1019 years to reach that number of
iterations, even assuming that they are able to try a password
for each clock cycle.

Training Sets:Figure 3 shows how the choice of training
set affects attack performance on the IT dataset. The “common
passwords” dictionary from JtR is more representative of
real passwords than standard dictionaries, since it contains
combinations of characters, such as punctuation and digits.
Still, it appears that “average” passwords do not closely
resemble the most common ones.

6http://www.unicode.org/press/pr-ucd5.0.html

8

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Search space size

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 c
ra

ck
ed

 p
as

sw
or

ds
IT passwords
FI passwords
MS passwords
IT Usernames
JtR common
English dict
Italian dict

105 106 107 108 109 10100.0

0.2

0.4

Fig. 3. Using different training sets to guess passwords in IT (k = 2). In
the inner frame: detail on the FI, IT and MS password training sets.

100 102 104 106 108 1010 1012 1014 1016 1018 1020 1022 1024

Search space size

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 c

ra
ck

ed
 p

as
sw

or
ds

Usernames, k = 2
Passwords, k = 2
Usernames, k = 3
Passwords, k = 3

Fig. 4. Comparison of complexity between passwords and usernames in IT.

Password datasets are the most effective training sets; un-
surprisingly, the most effective training set for a password in
IT is the set of remaining passwords in the same dataset.
By using passwords in FI, not much is lost; we attribute
the variation mainly to the difference in language. The case
of MS passwords as training set is interesting: they are
basically analogous to FI for strong passwords, but they do
not represent weak ones well. We believe this is due to the
over-representation of the required non-alphabetic characters
in MySpace passwords.

If a representative training set of real passwords is not
available to the attacker, usernames are by far the most
effective training set. It appears that, when users are asked
to provide a username and a password, they employ similar
criteria. This is quite surprising since the two strings need to
satisfy very different, and arguably conflicting, criteria: good
usernames are easily memorable, while a strong password has
to be as difficult to guess as possible.

Usernames:The former result suggests a consideration:
usernames and passwords are chosen simultaneously, when
registering a new account. A user wants both strings to be
memorable, since the two are needed in order to log on
successfully. However, while there is no incentive in choosing
complex usernames7, a security conscious user will commit
some effort to make his password more complex.

The difference in complexity between usernames and pass-
words is therefore a way to measure the effort that users
willingly put in making their passwords more complex: while
usernames can be very long or difficult to guess, this is not
likely to happen as the result of a conscious attempt to do so.

In Figure 4, we compare the search space size associated to
usernames and passwords. Matching what we have done with
passwords, the training set used to guess a given username
consists of all the usernames except the one under scrutiny.
It turns out that the effort that users put in creating complex
passwords is measurable, but it is overall quite weak: given
a choice fork and a search space size, the percentage of
“cracked” usernames never exceeds the cracked passwords by
more than 15%.

VII. C OMBINING STRATEGIES

Our results confirm that no single strategy or technique is
more effective independently of the search space: dictionaries
are most effective in discovering the weakest passwords; the
coverage (fraction of passwords that are in the dictionary)
grows as the dictionary size grows, but this entails a loss in
precision (fraction of dictionary items that are actual pass-
words). Mangling is effective when dictionaries are exhausted,
but it cannot be used to guess all passwords either. The
Markov-chain based technique should be used if the password
search space becomes very large; with this strategy, higher
values ofk obtain better results at first, but after a number
of attempts they become quite ineffective and one needs to
switch to lower values ofk.

Consistently with our approach of overestimating the capa-
bilities of the attacker in the face of uncertainty, we assume
that the attacker has access to a password training set whichis
as effective as the one we obtain from the clear text passwords.
Furthermore, we also assume that the attacker is able to predict
the effectiveness of techniques that we measured in Sections
IV, V, and VI. For reasons of space, we limit this analysis to
the IT dataset.

In Table V, we summarize the cumulative explored search
space size and percentage of cracked passwords after each
step. Candidates that would appear in more than one step are
counted only once. For the Markov chains withk ≤ 3, the
search space size has been estimated with the approximated
algorithm of [8]. Since the PCFGs are generated using the
training set from IT, we only consider the passwords that are
not part of that training set.

These results constitute the answer to our original question:
how many attempts would an attacker need in order to guess

7Users, however, are forced to choose a second (probably more complex)
username if the first one they choose is already registered.

9

Step #attempts Cracked

Common passwords 2,820 5.95%
Training set 10,143 26.20%
English 1 lc 36,694 28.00%
Italian 1 lc 98,606 29.77%
Italian 2 lc 373,923 34.20%

English extra lc 775,574 36.83%
English 2 lc 1,034,389 37.70%
English 3 lc 1,124,012 38.26%

PCFG (IT) (1.45M) 2,570,596 41.50%
PCFG (IT) (41M) 41,648,625 46.33%
PCFG (IT) (148M) 149,052,498 49.36%

Markov chain -k = 5 149,053,078 53.49%
Markov chain -k = 4 155,855,686 54.58%
Markov chain -k = 3 ~850,000,000 61.90%
Markov chain -k = 2 ~7 · 1016 91.44%
Markov chain -k = 1 ~1040 99.70%

TABLE V
CUMULATIVE NUMBER OF ATTEMPTS AND OF GUESSED PASSWORDS FOR

THE MULTI -STEP APPROACH.

a given percentage of the passwords? By integrating this with
system-specific knowledge such as the computational cost
needed to perform a single guess and the amount of resources
that the attacker has access to, it is possible to estimate the
percentage of passwords that are vulnerable to a given attack.

VIII. C ONCLUSION

In this work we focused on the empirical study of real-world
passwords from three datasets, different in terms of both appli-
cation domain and user localization. We implemented and used
a variety of state-of-the-art techniques for password guessing,
including dictionary attacks, mangling using dictionaries and
probabilistic context free grammars, and Markov chain-based
strategies. We proposed a unique and comprehensive analysis
of the password strength of Internet applications.

We measured the resilience of passwords in terms of the
search space required for an attacker to guess a fraction of
the passwords contained in our dataset and we studied the
properties of the different attack techniques we implemented.
Our results revealed that no single attack strategy prevails over
the others: dictionary attacks are most effective in discovering
weak passwords; dictionary mangling is useful when the
base dictionaries are exhausted; Markov-chain techniquesare
powerful in breaking strong passwords.

All the attack techniques that we analyzed are affected by
diminishing returns: the probability to guess a password at
each attempt decreases roughly exponentially as the size ofthe
explored search space grows. Thus, the probability of success,
at some point, will not justify anymore the cost for an attacker.
Our results can help find this point.

Our results also shed light on some aspects of user prac-
tices in choosing their passwords: we found that, within our
datasets, users put relatively little effort in choosing their
password when compared to the choice of their usernames. As
illustrated by MySpace, adopting restrictive password policies
does not necessarily prevent the creation of weak passwords.

We believe that proactive password checkers are a better
approach, and we are currently implementing one such tool
based on the findings of this work: given one or more attack

models such as the one described in Section VII, it will
compute in real time an approximation of the number of
guesses needed to crack the password. This information willbe
provided to the user as an approximation of password strength.

Our future research agenda will also focus on user behavior
based on data we are currently collecting on the Internet:
we are in particular interested in assessing the correlation, if
any, between password strength, user activity levels, and the
application domain.

ACKNOWLEDGMENTS

The authors are very grateful to Sebastian Porst and Roger
Grimes who shared the set of MySpace passwords, to Cynthia
Kuo, Sasha Romanosky, and Lorrie F. Cranor who shared their
mnemonics dictionary, and to Matt Weir for his cooperation
and valuable feedback.

REFERENCES

[1] R. E. Smith,The Strong Password Dilemma. Addison-Wesley, 2002,
ch. 6.

[2] A. Adams and M. A. Sasse, “Users are not the enemy,”Commun. ACM,
vol. 42, no. 12, pp. 40–46, December 1999.

[3] S. Riley, “Password security: What users know and what they actually
do,” Usability News, vol. 8, no. 1, February 2006.

[4] R. Morris and K. Thompson, “Password security: a case history,”
Commun. ACM, vol. 22, no. 11, pp. 594–597, November 1979.

[5] D. V. Klein, “Foiling the cracker: A survey of, and improvements to,
password security,” inProc. USENIX UNIX Security Workshop, 1990.

[6] E. H. Spafford, “Observing reusable password choices,”in In Proceed-
ings of the 3rd Security Symposium. Usenix, 1992, pp. 299–312.

[7] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek, “Password
cracking using probabilistic context-free grammars,” inIEEE Symposium
on Security and Privacy. IEEE, May 2009, pp. 391–405.

[8] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords
using time-space tradeoff,” inCCS 2005, 2005, pp. 364–372.

[9] J. A. Cazier and D. B. Medlin, “Password security: An empirical inves-
tigation into e-commerce passwords and their crack times,”Information
Security Journal: A Global Perspective, vol. 15, no. 6, pp. 45–55, 2006.

[10] S. Marechal, “Advances in password cracking,”Journal in Computer
Virology, vol. 4, no. 1, pp. 73–81, February 2008.

[11] D. Florencio and C. Herley, “A large-scale study of web password
habits,” inWWW ’07: Proceedings of the 16th international conference
on World Wide Web. ACM, 2007, pp. 657–666.

[12] “John the ripper - cracking modes,” Retrieved on 29/07/2009. [Online].
Available: http://www.openwall.com/john/doc/MODES.shtml

[13] L. von Ahn, M. Blum, and J. Langford, “Telling humans and computers
apart automatically,”Commun. ACM, vol. 47, no. 2, pp. 56–60, 2004.

[14] B. Pinkas and T. Sander, “Securing passwords against dictionary at-
tacks,” in Proc. CCS ’02, 2002, pp. 161–170.

[15] P. Oechslin, “Making a faster cryptanalytic time-memory trade-off,” in
Advances in Cryptology - CRYPTO 2003, 2003, pp. 617–630.

[16] T. Wu, “A real-world analysis of Kerberos password security,” in Proc.
NDSS 1999, February 1999.

[17] M. Bishop, “Improving system security via proactive password check-
ing,” Computers & Security, vol. 14, no. 3, pp. 233–249, 1995.

[18] J. J. Yan, “A note on proactive password checking,” inProc. NSPW ’01.
ACM, 2001, pp. 127–135.

[19] R. A. Grimes, “MySpace password exploit: Crunching the numbers (and
letters),” InfoWorld online article, November 2006. [Online]. Available:
http://www.infoworld.com/article/06/11/17/47OPsecadvise_1.html

[20] S. Porst, “A brief analysis of 40,000 leaked MySpace
passwords,” Blog post, November 2007. [Online]. Avail-
able: http://www.the-interweb.com/serendipity/index.php?/archives/
94-A-brief-analysis-of-40,000-leaked-MySpace-passwords.html

[21] C. Kuo, S. Romanosky, and L. F. Cranor, “Human selection ofmnemonic
phrase-based passwords,” inProc. SOUPS ’06, 2006, pp. 67–78.

[22] B. Schneier, “Schneier on security: Choosing secure passwords,” January
2007. [Online]. Available: http://www.schneier.com/blog/archives/2007/
01/choosing_secure.html

