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Abstract—It is a well known fact that user-chosen passwords a sound cost-benefit analysis for attacks based on password
are somewhat predictable: by using tools such as dictionaries guessing on an authentication system.

or probabilistic models, attackers and password recovery tools Known Results: Current studies only provide partial
can drastically reduce the number of attempts needed to guess :

a password. Quite surprisingly, however, existing literature does answers to the question of determining .the percentage of
not provide a satisfying answer to the following question: given a Passwords that would be broken as a function of search space
number of guesses, what is the probability that a state-of-thera  Size: they generally focus on passwords discovered with a

attacker will be able to break a password? single kind of attack, and neglect to quantify how strong the
effocivoness of currontly known altacks sing various datadsof | 'NING Shate of passwords are against more generdttac
known passwords. We find that a “diminishing returns” principle Analyses on dictionary attacks report a percentage of loroke

applies: in the absence of an enforced password strength policy, Passwords varying between 17% and 24% [4]-[6], depending
weak passwords are common; on the other hand, as the attack on the dataset and dictionary size. These dictionaries ean b
goes on, the probability that a guess will succeed decreases byextended by systematically mangling the words; a technique

orders of magnitude. Even _extremely powerful attackers won't proposed recently by Weir et al. manages to discover up to
be able to guess a substantial percentage of the passwords. roughly a third of the passwords [7]

The result of this work will help in evaluating the security of ) .
authentication means based on user-chosen passwords, and our Narayanan and Shmatikov [8] proposed a technique that
methodology for estimating password strength can be used as auses Markov chain modeling instead of naive brute force to
basis for creating more effective proactive password checksrfor  perform guessing at a larger scale. Unfortunately, theirkwo
users and security auditing tools for administrators. was only validated on a dataset of 142 hashed passwords;
while 96 (67.6%) were successfully broken, nothing is known
about the remaining and stronger ones.

Even though much has been said about their weaknessesn some studies [9], [10], the ratio of cracked passwords
passwords still are — and will be in the foreseeable futureis- reported against the running time of a specific password
ubiquitous in authentication systems for Internet apgilices. cracker over an hashed password file. While this metric
They have an inherent trade-off between usability and &igcuris useful to compare implementations of password recovery
while strong passwords are hard for attackers to guessatieeyprograms, it falls short when trying to decouple password
on the other hand also difficult for the user to remember. A®mplexity (which is dependent on guessing strategies and
Richard Smith paradoxically notes, password best prextiagser behavior) from system-specific characteristics sueh a
imply that “the password must be impossible to remembaashing algorithm and computational power of the attacker.
and never written down” [1]. In light of this, it is not very Our measurement of the search space avoids these limitation
surprising that users often knowingly choose to use weakin a 2007 study [11], Florencio and Herley analyzed data
passwords or circumvent security best practices, since thebout the passwords of about 500,000 users. That work pro-
perceive that following them would get in the way of doingides interesting insights about user habits, but only tifies
their work [2], [3]. password strength with a simple “bit strength” measure dbase

To think sensibly about the security of systems that usm their length and on the use of uppercase, numeric, and
passwords, it is therefore essential to properly evalua@ t non-alphanumeric characters; from that measure, it i<htgi
resilience to guessing attacks: this is done by compariagghe impossible to infer resilience against advanced password-
space size (i.e., number of guesses) against the percentageking techniques (e.g., [7], [8])-
of passwords that would be broken by such an attack. This Our Contribution: In this paper, we compare the search
measure does not depend on the particular nature of #mace versus number of cracked passwords for guessing
authentication system nor on the attacker capabilities:ahly techniques including dictionary attacks, brute force,tidic
related to the attack technique and to the way users choosey mangling, probabilistic context-free grammars [fda
their password. The attack model and the characteristics Markov chains [8]. We cross-validate our experiments oadhr
the system will instead define the cost that the attacker Hagge datasets of passwords, different in terms of apjpbicat
to pay for each single guess. By combining this cost with @domain and of user localization.
measure of the search space, it becomes possible to obtailm our analysis we evaluate different password cracking

I. INTRODUCTION



techniques using homogeneous metrics and on the differenfAn alternative approach blocks accounts after a given num-
datasets, allowing us to compare the effectiveness of edmdr of failed attempts. This response, however, opens tbe do
technique. We benefit from having access to the passwotdglenial of service attacks on user accounts and is ineféect
in plain text, thus being able to evaluate passwords that ewegainst attacks not targeted towards a single user [14].
very powerful attackers would not be able to break. We find Offline Attacks:In most cases, the authentication server
that different attack techniques are more effective dejpgnd does not store passwords in plain text. Instead, it keeps an
on the search space size that the attacker can afford torexpléencrypted” version of them which is conceptually analogou
and we propose an elaborate attack model using a combined hash: when a user attempts to log on, the password they
approach that adopts different guessing techniques iradasc provide is hashed and compared to the stored value. In this

Until now, the Markov chain technique has only been implavay, even if an attacker obtains the hashed passwords, they
mented and evaluated by taking into account the frequentiesannot be used right away to log on to the system. To make it
substrings of fixed length (2 or 3) [8], [10], [12]; we find thaicostly for the attacker to guess the password by hashingfots
the length of substrings is a key parameter that, when plyopepassword candidates, key strengthening techniques aie aga
tuned, allows to discover some “easy” passwords with ordespplied. Attacks based on pre-computing the hashed ves§ion
of magnitude of spared guesses. the most likely passwords [8], [15] are defeated with “sayti

We discover that password strength has an extremely wigppending a random number to the password before hashing it,
variance: as a first approximation, the probability to gugssand then storing this number along with the hashed password.
password at each attempt decreases roughly exponentsally aSince these techniques are based on the idea of making
the size of the explored search space grows; a surprisinglyessing attacks costly, the password strength that we esie m
high percentage of users have extremely strong passwatls Huring is also a key parameter when evaluating the resdienc
appear very difficult to guess. These diminishing returnslym of a password system to offline attacks.
that, in most cases, an attacker would eventually find a point Proactive Password CheckingA proactive password
where the cost of continuing the attack would not be justifieshecker is a system that forces (or advises) the user to ehoos
by the probability of success. This study provides figures thcomplex enough passwords. The impact of these checkers
can help system designers in assessing the security of thgiractual password security is debatable: as Wu [16] notes,
systems by evaluating where that point resides. “lusers are] very good at selecting passwords that are just

Our evaluation of the search space tied to a password candsod enough’ to pass whatever checking is in place”. Sae, fo
straightforwardly used in real systems to create betteagivee example, the discussion on MySpace passwords in Section Il
password checkers for users and security auditing tools firthermore, a proactive password checker could encourage
system administrators; coupled with information about thgsers to use non-dictionary passwords that are relateceto th
cost of a single guessing iteration, the cost of breaking apgrsonal life such as dates, telephone numbers or liceage pl
password can be estimated. numbers [2]. For a motivated attacker, these passwords are
even easier to guess than dictionary words.

Existing password checkers are based on quite naive metrics

In this section we provide a short review of studies aboﬂn [18]: they are generally based on password length
password security, and make the case for the |mportancer8§”ience to “brute force”, dictionary based attacks and/

megslurlng pas_swordh strer;\gth. Att.aCk‘?' Isuc_h as ph'sh'ng,h%ruristics based on presence of non-alphabetic and upgerca
sr:)ua englnzerlnﬁ,w erit e useris Imls(;ad n Commumtﬁat'characters; still, they do not take into account advanced
the password to the attacker, are unrelated to passwordyiire cracking techniques. Our measure of strength as searck spac

and the_zr_efore outside th_e scope of this wprk._ size can be used as the basis for more effective password
Pricing Via Processing:To defend against intruders Whocheckers

repeatedly try password after password, it is possiblenit i
the rate at which the attacker is allowed to try new passwords I1l. DATASETS

by requiring the user to perform an action with a moderate ) ) _
IT: The “ltalian” dataset: This dataset contains the unen-

cost. The following measures belong to this category: . o
. . . crypted passwords for the registered users of an Italiganns
o CAPTCHAs [13], which require solving puzzles that are ; . -
e . . o messaging server adopting the XMPP protécatiministered
difficult without human intervention;

. key strengthening techniques, which require a few sel?:y one of the authors. Our analysis only discloses aggregate

onds of computation to derive a key from the passwordltgformatlon about the passwords of users, and actuallytcons

) ; i Utes part of a security audit of the system. Storing passsvor
It is noteworthy that these techniques impose a trade-off {9, ain text on the server is required by authenticatioroalg
legitimate users: if an honest user has to pay a epshe

. rithms such as CRAM-MD% User registration is free (any
attacker must pay at most s, wheres is the strength of the

, unused username may be taken) and no policy for password
password in terms of the number of attempts needed to gugﬁﬁngth is enforced.

it. The measures obtained in this paper can be used to estimat
costs and benefits of these systems, and thus to properly tungp:/;xmpp.org/
this ¢ parameter. 2http://tools.ietf.org/html/rfc2195

Il. RELATED WORK



[ Dataset| Size [ #unique | Avg. length [ #characters] [ Expression [ Example] 1T [ FI [ MS |

T 9,317 | 7,848 7.86 124 [a-z] + abcdef | 51.21% | 53.06% | 1.09%

Fi 15,812 | 13,395 7.60 90 [AZ+ ABCDEF | 0.29% | 0.17% | 0%

MS | 33,671 | 30,690 8.10 96 [AZa-z] + AbCAET | 53.74% | 54.04% | 1.09%
TABLE | [0-97+ 123456 | 9.10% | 3.43% | 0.15%

[a-zA 20-9]+ | ALb2C3 | 93.43% | 95.43% | 90.43%
[a-z] +[0-9] + | abci23 | 14.51% | 27.10% | 77.39%
[a-z] +1 abcdel | 0.26% | 1.43% | 19.89%
[a-zA Z] +[0-9] + | aBci23 | 16.30% | 28.03% | 77.48%
[0-9]+[a-zA-Z] + | 123aBc | 1.80% | 2.16% | 5.76%

SUMMARY INFORMATION ABOUT DATASETS: NUMBER OF USERS OF
UNIQUE PASSWORDSAVERAGE PASSWORD LENGTH AND TOTAL NUMBER
OF CHARACTERS IN ALL PASSWORDS

FI: The “Finnish” dataset: This dataset comes from a [0-9]Ha z] + 123abc | 1.65% | 2.09% | 5.75%
list of passwords that were publicly disclosed in Octobed720 TABLE Il
by an unknown group The list contained both hashed (MD5) PERCENTAGE OF PASSWORDS MATCHING VARIOUS REGULAR
and unencrypted passwords, mostly from different Finnish w EXPRESSIONS
forums. We limited our analysis to the unencrypted disalose
passwords, all from the same website. In Table 1l we compare the matching ratio of different regu-

MS: The MySpace dataseffhese passwords were obdar expressions in our datasets. In all cases, non-alphancim
tained through a phishing attack on a fake MySpace logiharacters are present only in less than 10% of the passwords
page, and were disclosed in October 2006 [19], [20]. Usdtds very interesting to compare the matching ratios of ITtigw
names, in this case, are email addresses. While this is tiestrength enforcement measures) with MS (where a mixture
largest dataset we are analyzing, there are some shortgemief alphabetic and non-alphabetic characters is required).
with it: first, we only have the passwords of less securityMS, a small number of all-alphabetic or all-numeric passisor
conscious users who fell for the attack; second, users maig present, and this may be due to users inadvertently or
have (on purpose or inadvertently) put wrong passwords howingly inserting wrong passwords in the phishing page.
their phishing page. MySpace requires users to insert bothAs already noticed by Sebastian Porst [20], most MyS-
alphabetic and non-alphabetic characters in their passyorpace users comply with the requirement of inserting a non-
this imposes an artificial impact on passwords that usefts, lglphabetic character by appending a number at the end of
alone, would choose. By analyzing the differences betwe#lre password — roughly 20% of the users actually comply
this dataset and the former ones, we can estimate the effecby adding a “1”. The impact of this measure on password
this requirement on password strength. strength may appear therefore quite debatable, espedially

Dealing With Dataset Quality:Since the FI and MS the case that the attacker knows about the requirement.
datasets come from lists of publicly disclosed passwords,Some users in IT appear to have a stronger tendency towards
we cannot be completely confident that they are an accurateosing stronger passwords with less easily detectafle-st
representation of the users’ actual passwords. On the othée: as we will show in the following, the complex passwords
hand, we are confident in the quality of the IT dataset: ftom that dataset are the most difficult ones to break.
contains the passwords of all registered users, and we Kmow t
policies enforced on the server. For this reason, we wilebas
our analysis on IT, turning onto the other datasets to confirmDictionary attack is the most effective technique to guess
that our results generalize beyond a single set of passwordbe weakest passwords. We adopted the dictionaries aleailab

Our datasets reflect the common case where users are frei@ thie well knownJohn the Ripper(JtR) password recovery
register on a network service, and use it to establish agtergi tool. The extended dictionaries that we used are availaple f
identity. The threat to the user is that attackers stealiedrt paid download from the program website
passwords would be able to impersonate them, perhaps to harm The Dictionaries: The JtR dictionaries contain words
the reputation of the attacked user, to exploit the trusaioetl from 21 different human languages, plus a list of frequently
from other users or to gain access to sensitive informatiotsed passwords. For some languages (like English andhitalia
The same kind of threat would apply to any system ths@rious dictionaries of different sizes are available:shreller
uses authentication to establish the origin of commurdcati ones contain only the most frequently used words while the
between users such as, for example, e-mail. bigger ones also contain more obscure words, the rationale

A First Look At the DatasetsTable | summarizes somebeing that more common words are more likely to be chosen as
information about our datasets. It is interesting to notat thpasswords. Taken together, all dictionaries account fooat
in all cases some users share the same password. This shagillion words.
be due to coincidences and use of too frequent passwordsh known technique to create strong but easy to remember
but this may be also caused by the same people registefi@pswords is to turn phrases into passwords by extracting
under different usernames at the same server. The averageacronym, possibly also using punctuation. For example,
password length is close to 8 in all cases, and the numiiee phrase “Alas, poor Yorick! | knew him, Horatio” be-
of used characters is higher in IT because arbitrary Unicodemes “A,pY!lkh,H”. We also evaluated such acronyms with
characters are allowed, and used sparingly by the users. a dictionary created by Kuo et al. [21] that was put together

IV. DICTIONARY ATTACK

Shttp://www.f-secure.com/weblog/archives/00001293.html 4http://www.openwall.com/wordlists/



Dictionary
(size)

IT

Fl

Found [ Guess pr.

Found [ Guess pr.

a word sharply decreases as the dictionary grows. A small

dictionary of 2,800 frequent passwords cracks 6% and 3%
of the passwords respectively in IT and FI; with a 500-
fold increase in the size of the dictionary up to almost 1.5
million, the number of cracked passwords rises to 25% and
26%. By increasing again the dictionary size by a factor of
2.7 (including other language dictionaries), only 1% more
passwords are discovered. To put it in another way, the
probability of guessing a given password by trying an elemen
of the “frequent passwords” dictionary is one in 47,000
in IT and one in 99,000 in Fl. On the other hand, after
having tried all the frequent passwords, the Italian, Ehni
and English dictionary, the probability of guessing by gsin
another dictionary word is less than one in 200 million! 8inc

by scraping websites displaying memorable phrases, suchyds 4essing probability decreases so sharply, it is coalble

citations and music lyrics. . o that in many cases it won't be worth trying a bigger dictignar
Experimental ResultsWe simulated dictionary attacksfgy the attacker.

with all the JtR dictionaries on the IT and FI datasets. The ru e also observe that the mnemonic dictionary is quite

requiring non-alphabetical characters makes basic d&tio jneffective. This may be due to several reasons: first, few
attacks essentially pointless on the MySpace passwort& Tg;sers actually use mnemonics for their passwords; second,
[Il shows the results for the most representative instances they are actually much harder to break with dictionary &tac
The “Ic” acronym stands for all-lowercase dictionariesioreover, we are not able to ascertain whether the habit
those containing uppercase letters are matched by very fgivchoosing English passwords for Italian and Finnish users
words in our dataset. The English 1, English 2 and Englishwhuld carry over to the use of mnemonics. Our data is, at the

dictionaries, like Italian 1 and Italian 2, are listed in @iy  moment, insufficient to point towards one of these reasons.
size; each word belonging to a smaller dictionary is also con

tained in the bigger versions. The “Extra” dictionary consa V. MANGLING

likely passwords such as proper nouns, misspellings or-alte Many users adopt simple techniques to protect passwords
ations of words. The “found” column lists the percentage @fgainst dictionary attacks. Some examples are juxtapositi
passwords appearing in that dictionary; the “guess prdibgbi of words, appending or prepending sequences of digits or
column reflects the probability that a random word from th&lymbols to passwords, or capitalizing words. The technique
dictionary matches a random password; it can be computeddfymangling is directed towards this goal: new candidatespas
dividing the ratio of found passwords by the dictionary sizgyords are generated by rules altering dictionary woddén

A rational attacker would try a word from that dictionary pnl the Rippercan use mangling rules to generate extended set of
if the benefit of cracking the password exceeds the inverggsswords; we applied them to the “all dictionaries” lisi9(3

of that probability times the cost of the effort for tryingath mijllion elements) to generate a mangled list of 147,945,837
password. candidate passwords. With the extended dictionaries itbestr

The dictionaries have non-empty intersections, corredponn the previous section, JtR also ships a hand-tuned ditjon
ing to words that are quite common. This explains why Italiagontaining 40,532,676 candidates — mangling rules areecthos
users seem keen on choosing Finnish words as passwords g#jsending on the dictionary, with a different number of sule
vice versa, and why the guessing probability in the “all @jov applied to each dictionary. This smaller dictionary is not a
row is lower than for each of the contained dictionariess#ho proper subset of the first, and contains some words that tanno
repeated words are counted only once in the union dictionagg generated using the default rules of JtR.

An interesting feature is the noticeably higher density of  Probabilistic Context-Free GrammarsRecently, Weir et
common English words (those present in the small “Englisil. proposed a new technique for dictionary mangling based o
1” dictionary); that phenomenon is much less relevant witfirobabilistic context-free grammars (PCFGs) [7]. Accodi
respect to Italian in the IT dataset (unfortunately, we tlonfo this technique, a probabilistic model is obtained from a
have a dictionary of common Finnish words to confirm thigaining set of clear-text passwords, in two steps. Fits, t
finding on FI). We think that this is caused by the fact thettructure” of the password is obtained and mapped to a
most users know English as a second language, and thus aetext-free grammar production: for example, the “$al3¢12
less inclined to use an obscure word as their password. Tpigssword maps to th8 — S;LzD3 production § is the
suggests that basing the password on one’s native langusgeting non-terminal), representing a sequence of ondslym
could be a good advice to increase password strength withchiee letters, and three digits; the production is assigned
requiring significant additional effort. probability equivalent to its frequency in the training .set

The most important lesson drawn from this data is thEhe L, productions are created based on the words from the
principle of diminishing returns the probability of guessing dictionary to be mangled, while th8; and D, productions

2.86% [ 1.0-10°°
3.38% | 1.2-10°°
6.26% | 2.1-10—"
753% | 1.9-10~7
8.16% | 1.8-10~7
0.79% | 1.3-10~7
6.62% | 1.9-10—7
20.24% | 5.6-10—"
26.02% | 1.8-10 7
26.97% | 6.6-10"8
0.35% | 8.7-1077

5.95% [ 2.1-10~°
491% | 1.8-10°°
9.42% | 3.2-10—7
11.59% | 3.0-10=7
8.03% | 1.8-107
3.71% | 5.9-10~7
14.89% | 4.3-10~7
8.45% | 2.4-107
2479% | 1.7-10~7
25.94% | 6.6-10"%
1.27% | 3.1-10°8

TABLE Ill
DICTIONARY ATTACKS.

Frequent (2.8K)
English 1 Ic (27K)
English 2 Ic (297K)
English 3 Ic (390K)

Extra Ic (445K)

Italian 1 Ic (63K)
Italian 2 Ic (344K)
Finnish Ic (359K)
All above (1.45M)
All JtR dicts (3.9M)
Mnemonics (406K)




are obtained, again, from the training set: for example, @pplication. On the other hand, MS is a poor training set
the D3 — 123 production is assigned a probability 0.4, thisor both IT and FI; this is easily explained by the password
means that 40% of all sequences of three digits in the dataseength enforcement rules.
correspond to the string “123". To evaluate the limits of the PCFG approach, we verified
This technique makes it possible to create a set of candidéte percentage of passwords that would be found if the PCFG
passwords, and to assign a probability to each one of thegenerator would be left running indefinitely, as described i
In their work, Weir et al. designed an efficient algorithm tehe following. A password will obviously never be generated
return an arbitrary number of productions by decreasingrordf the corresponding productions don't exist in the grammar
of probability (details can be found in [7]). (because the training set does not contain passwords vath th
Experimental SetupWe created a training set from eactsame structure or matching sequences of symbols or digits,
of our datasets, randomly choosing half of the passwordsdn because the password contains a sequence of letters not
each of them. We then used each training set to create thag@earing in the starting dictionary). When taking into amto
PCFG dictionaries mangling the “all languages” dictionarghe matching training set, it is possible to break 60.95%hef t
of JtR, with different sizes. To allow easy comparison witiMySpace passwords (the grammar can produce a totabdf
dictionary attack and the two JtR mangled dictionaries, w®'® guesses), 52.30% of the “Finnish” passwords (totaling
selected the following sizes: 1.45 million, to match thel “aR.00 - 1026 guesses), and 44.17% of the “ltalian” passwords
above” line in Table IlI; 40.5 millions and 147.9 millions to(3.87 - 10'°® guesses). The huge variations in the number of
match the JtR dictionaries. We then simulated a dictionagyiesses are due to few complex passwords: most candidates
attack using the nine dictionaries generated, plus the tRo oming from the Italian training set are due to a single 130-
dictionaries, against our three datasets. character long password. All these guesses would however be
When evaluating a PCFG dictionary against the dataset frgabeled with a very low probability, and will therefore neve
which we obtained the training set, we only used the half @k generated in a realistic attack.
the passwords that was not part of the training set.
Since the MySpace passwords must contain alphabetic and VI. MARKOV CHAIN-BASED ATTACK
non-alphabetic characters, it is pointless for an attacker When even mangled dictionaries are unsuccessful, attackers
use candidates that don't satisfy this requisite. We tloeeef don’t need to resort to an exhaustive brute-force attackieso
considered an attack where those passwords were filtered pagswords are much more likely to be chosen than others,
from the mangled dictionary. A small number of additionadven when they are not based on dictionary words. Various
passwords are found when the algorithm is run using the namgularities exist: passwords are usually made of pror®unc
filtered dictionary: this is due to the passwords in MS thatble sub-strings and/or sequences of keys that are close on
do not conform to the security requirements of MySpace, ## keyboard. State-of-the-art password retrieval tooth as
discussed in Section Il John the Ripper [12] and AccessData’s Password Recovery
Results: The results of our experiments, using the sanfoolkit [22] employ Markov chains to narrow the search space
format we used for standard dictionary attacks previously, that would need to be explored with brute force.
reported in Table IV. Our major conclusions are: In this section, we describe and validate an attack based
1) The principle of diminishing returns continues to applyon Markov chain-based modeling of the frequencies of sub-
as the dictionary size grows, the probability that thstrings with parametric length, or k-graphs. This allows us
password will be found decreases with each single guetslabel candidate passwords with variable probabilitidsere
2) The strength enforcement policy applied by MySpacgrings that are labeled as more likely are checked first.éSom
appears to pay off only if the attack does not exparghssword generating utilities actually use this kind of el
to include mangled dictionaries: with a size of 1.4%0 obtain meaningless but pronounceable passwords on the
million candidates, the passwords in the MS datasgtounds that they're easier to remember, thus sacrificingeso
appear stronger; this advantage is lost when the mangktcength for usability.
dictionaries reach the size of 41 million. .
3) PCFGs prove themselves very useful for the searéﬁ The Technique
space range under scrutiny: they perform better than theWe adopt the techniques introduced by Narayanan and
automatic mangling rules applied by John the RippeBhmatikov [8], applying the model also to substrings of
and they are comparable to the hand-tuned mangled digrgth 3 and more. This model associates each password
tionary. Wise attackers would not however use PCF@¢th a probability p, representing a password choice as a
before relevant dictionaries, since the latter ones afgquence of random events: first, the length of the password
more likely to find the correct password early on.  is chosen according to a given probability distributiorerth
The passwords in IT are more complex to break using the@dCh character of the string gets extracted according to a
techniques, reflecting a difference in user behavior whé&gnditional probability depending on the previods— 1

choosing the password. 5 ) .
. - for Fl. and vice versa. appe See for examplegpw (http.//www.muIt|C|ans.org/thvv/tvvtoqls.html#
l_JSIﬂg IT_aS a tral_nlng set O_I’ ’ ] » app aéﬁw) apg (http://www.adel.nursat.kz/apg/pt p (http://www.fourmilab.ch/
quite effective, despite of the difference in user language onetime/).



Dictionary IT Fl MS (no filter) MS (filtered dictionary)
(training set) (size) Found [ Guess pr. Found [ Guess pr. Found [ Guess pr. Found [ Guess pr. [ Filtered dict size

PCFG (IT) (1.45M) 24.64% [ 1.7-10"7 [[ 24.35% | 1.7-10~7 0.90% [ 6.2-1077 0.21% [ 1.3-10~7 17,015
PCFG (Fl) (1.45M) || 23.47% | 1.6-10—7 || 24.43% | 1.7-107 0.75% | 5.2-1077 0.06% | 6.9-10~° 9,413
PCFG (MS) (1.45M) || 2.14% | 1.5-10"8 2.44% | 1.7-10~% || 13.02% | 9.0-10~% || 12.98% | 9.0.10"% 1,447,290
JtR hand-tuned (41IM)[[ 30.11% [ 7.4-10~9 [ 31.29% | 7.7-10~7 [[ 31.77% | 7.8-10~° ][ 31.02% | 1.0-10~3 30,258,334
PCFG (IT) (41M) 30.88% | 7.6-10"7 || 36.17% | 8.9-10~9 || 30.93% | 7.6-10~Y || 30.22% | 8.1-10~7 37,114,836
PCFG (FI) (41M) 2953% | 7.3-1079 || 41.13% | 1.0- 10~ 32.88% | 8.1-10"7 || 32.16% | 8.8 1077 36,709,144
PCFG (MS) (41M) 20.88% | 5.2-1077 || 28.97% | 7.1-10? || 38.52% | 9.5-10~° || 37.88% | 9.5- 10" 39,674,064
JtR mangled (148M) [ 29.56% | 2.0- 10~ [[ 31.53% | 2.1-107° || 24.16% | 1.6-10~° [[ 23.41% | 2.2-1077 105,029,406
PCFG (IT) (148M) 33.12% | 2.2-1079 || 41.81% | 2.8-1077 || 43.62% | 2.9-10~7 || 42.90% | 3.0-10~7 144,323,223
PCFG (FI) (148M) 31.52% | 2.1-1079 || 44.21% | 3.0-107 7 || 42.14% | 2.8-1077 || 41.41% | 2.9-1077 140,673,878
PCFG (MS) (148M) || 30.28% | 2.0- 1079 || 41.18% | 2.8-10~° || 48.27% | 3.3-10~9 || 47.46% | 3.3-10~9 145,480,767

TABLE IV
DICTIONARY ATTACKS WITH MANGLING TECHNIQUES AND PROBABILISTIC CONTEXT-FREE GRAMMARS (PCFGs).

characters. These probabilities are obtained by obsehdmg B. Experimental results

often, on a suitable training set, theke- 1 characters are _ _ ) )
This section describes the results of the experiments de-

followed by the samé:-th one. ) i
scribed above when applied to our password datasets. Unless

In the effort of creating an algorithm to generate passwo herwise specified, we use the passwords from the same
guesses sorted by descending probabilities, Narayanan agfiaset as training set

Shmatikov also described an efficient recursive algoritbom t
approximate the number of passwords with a probability Q}I
occurrence in the model higher than or equalpto For a

We use the approximated algorithm described in section
-A to compute the search space needed to break a password
formal description of the model and details on the algoriihmOnce Its corres_pondmg probability is computeq,_when the
we refer to the original paper [8]. sgarch space is toq big to_ be generated exphcnly, since we
aim for a conservative estimate that approximates by excess
In the absence of a representative training set of plaifiye capabilities of the attacker, we implemented the aligori
text passwords, a dictionary can be used. As we will eXp&jp that it would always return an under-estimation of thecsea
imentally show, using passwords from the same dataset@gce size. Our experiments with this approximated tecieniq
training set finally results in a noticeably better modelthis (not shown due to lack of space) result in a relative error of
case, when considering a given password in our experimeifs order of 5%.
that password itself is removed from the training set and Password Strengthin Figure 1, we plot the fraction of

is not ‘_?ke” into account when computing its CorrESpondiT)%sswords guessed as a function of the search space size in
probability p. our three datasets. In all cases, the results are quaditativ

As mentioned in Section Ill, some users share the samgry similar. With higher values of, we obtain better results
password. This might be due to chance and to the fact thef the weaker passwords due to the more precise modeling
those passwords are quite trivial; another possibilityhiatt obtained in this case. However, the passwords that include
they come from the same user registering many accounts Wiflaphs not represented in the training set cannot be guessed
the same passwords. In the latter case, an attacker womigthods based on smalldr values become more effective
not have access to the password in a representative trainie@ause they can “generalize” some more. In practice, the
set, and it would be correct for our purposes to removgtimal strategy depends on the resources of the attacker,
all copies of the password from the training set. Since Wfeasured by the number of attempts that can be tried. It dhoul
cannot discriminate between the two cases, we will adoptha noticed, anyway, that dictionary attacks and mangling
conservative approach that may result in overestimati®g tfechniques produce better guesses when the search space has
capabilities of the attacker, therefore discarding onlyngle a size below roughlyl 08.
copy of the password from the training set. The “diminishing returns” effect also applies to this tech-

A model with higher values ok should be more accurate,nique: when choosing the best valuekaffor each case, taking
but the process of creating it is more difficult and expendive into account the IT dataset, around 100,000 candidatestneed
the extreme, a model with exceeding the maximum passworde tried in order to guess 20% of the passwords-(5); this
length would explicitly list the probability of occurrenag number rises to roughly 1.1 billion candidates for a success
each possible password: this would require prohibitivining rate of 40% g = 3); the search space needed to break 90%
set size and storage capabilities (the required space iseof of the passwords grows to approximately 10'7 (k = 2).
order of |C|k, where |C| is the size of the character set)Similar order of magnitude variations are observable afso i
With limited resources, when &-graph does not appear inthis case. With such a huge variance in the size of the search
the training set due to under-sampling, then the probghifit space, it seems that no reasonable attack based on password
a password containing thatgraph is computed as 0. Such ayuessing would succeed in guessing all passwords — exgeptin
model would therefore never generate the required passwdfttbse cases where users are artificially forced to limityweasds
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strength, for example by imposing a maximum length.
There are noticeable differences in terms of search spaesemble the most common ones.

size between the datasets. For MySpace, the search space for

weak passwords is bigger, while it is smaller for stronger ®http://imww.unicode.org/press/pr-ucd5.0.html
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Fig. 2. Brute force and Markov-model based attacks. Dat#Eet:

passwords. We think that this is mainly due to the particu-
larities of the dataset: weak passwords are made stronger by
the requirement of non-alphabetic characters; strongyzads
created by security-conscious users, on the other hand, are
under-represented since such users are less likely toiditv
to a phishing attack.

Passwords in IT appear stronger than those in Fl. This
confirms the remarks about lower predictability in password
structure that we highlighted in the previous sections.

Brute Force: In Figure 2, we compare brute force with
the Markovian modeling on IT. The brute force approach start
with the empty password, then proceeds with enumerating all
possible passwords with increasing length. The full Uné&od
character set currently has more than 99,000 char&ctaus
many of them are rare and definitely unlikely in a password,;
to account for this, we again took a conservative approach
overestimating the attacker capabilities, and took intmaaot
only the 124 characters that we have found in our dataset.

In all but the most extreme cases, the Markovian model
proves more efficient by orders of magnitude. It is not before
10*° candidates (and having found 99.7% of the passwords)
that a brute force approach becomes more effective than the
Markovian model withk = 1 (character frequencies). This
number is well beyond the capabilities of any realisticcktta:
to put this in context, a cluster of a thousand 10 GHz machines
would need more thaf - 10'° years to reach that number of
iterations, even assuming that they are able to try a pasiswor
for each clock cycle.

Training Sets:Figure 3 shows how the choice of training
set affects attack performance on the IT dataset. The “cammo
passwords” dictionary from JtR is more representative of
real passwords than standard dictionaries, since it amtai
combinations of characters, such as punctuation and digits
Still, it appears that “average” passwords do not closely



1.0,

— Trpasswords | Usernames:The former result suggests a consideration:
- - Flpasswords R usernames and passwords are chosen simultaneously, when
MS passwords ‘ registering a new account. A user wants both strings to be
o ;tTRUCSOeI:E;TS memorable, since the two are needed in order to log on
~ - English dict successfully. However, while there is no incentive in cliogs
| Italian dict complex usernamésa security conscious user will commit
777777777 some effort to make his password more complex.

The difference in complexity between usernames and pass-
words is therefore a way to measure the effort that users
willingly put in making their passwords more complex: while
ool usernames can be very long or difficult to guess, this is not
I likely to happen as the result of a conscious attempt to do so.
DT st s o In Figure 4, we compare the sea.rch space size associated_ to
o0 10 10 10 107 108 107 100 usernames and passwords. Matching what we have done with
Search space size passwords, the training set used to guess a given username
consists of all the usernames except the one under scrutiny.
It turns out that the effort that users put in creating comple
passwords is measurable, but it is overall quite weak: given
a choice fork and a search space size, the percentage of
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Fig. 3. Using different training sets to guess passwordsTitfd = 2). In
the inner frame: detail on the FI, IT and MS password trainiets.s

1.0

— Usernames, k = 2 P “cracked” usernames never exceeds the cracked passwords by
- - Passwords, k =2 more than 15%.
0.8k Usernames, k = 3 . |
Passwords, k=3 | ,/ /... VII. COMBINING STRATEGIES

Our results confirm that no single strategy or technique is
more effective independently of the search space: dictiesa
are most effective in discovering the weakest passwordas; th
coverage (fraction of passwords that are in the dictionary)
grows as the dictionary size grows, but this entails a loss in
precision (fraction of dictionary items that are actual $as
words). Mangling is effective when dictionaries are exheds
but it cannot be used to guess all passwords either. The
Markov-chain based technique should be used if the password
e 1o 1o 1o 1R e 1o search space b_ecomes very large; _With this strategy, higher
Search space size values ofk obtain better results at first, but after a number

of attempts they become quite ineffective and one needs to
Fig. 4. Comparison of complexity between passwords and us&sién IT. switch to lower values of.
Consistently with our approach of overestimating the capa-
bilities of the attacker in the face of uncertainty, we assum

Password datasets are the most effective training sets; that the attacker has access to a password training set vghich
surprisingly, the most effective training set for a passior as effective as the one we obtain from the clear text password
IT is the set of remaining passwords in the same datasetrthermore, we also assume that the attacker is able tacpred
By using passwords in Fl, not much is lost; we attributthe effectiveness of techniques that we measured in Section
the variation mainly to the difference in language. The ca$¢, V, and VI. For reasons of space, we limit this analysis to
of MS passwords as training set is interesting: they atike IT dataset.
basically analogous to FI for strong passwords, but they doln Table V, we summarize the cumulative explored search
not represent weak ones well. We believe this is due to tBpace size and percentage of cracked passwords after each
over-representation of the required non-alphabetic ders step. Candidates that would appear in more than one step are
in MySpace passwords. counted only once. For the Markov chains with< 3, the

If a representative training set of real passwords is nggarch space size has been estimated with the approximated
available to the attacker, usernames are by far the madgorithm of [8]. Since the PCFGs are generated using the
effective training set. It appears that, when users aredaskeaining set from IT, we only consider the passwords that are
to provide a username and a password, they employ simifst part of that training set.
criteria. This is quite surprising since the two strings chée These results constitute the answer to our original questio
satisfy very different, and arguably conflicting, critergpod how many attempts would an attacker need in order to guess

usernames are easily memorable, while a strong password has
Users, however, are forced to choose a second (probably rmanplex)

to be as difficult to guess as p033|ble. username if the first one they choose is already registered.
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[ Step | #attempts [ Cracked |
Common passwords 2,820 5.95%
Training set 10,143 26.20%
English 1 Ic 36,694 28.00%
Italian 1 Ic 98,606 29.77%
Italian 2 Ic 373,923 34.20%
English extra Ic 775,574 36.83%
English 2 Ic 1,034,389 37.70%
English 3 1c 1,124,012 38.26%
PCFG (IT) (1.45M) 2,570,596 41.50% any,
PCFG (IT) (41M) 41,648,625 | 46.33%
PCFG (IT) (148M) 149,052,498 | 49.36%
Markov chain -k =5 149,053,078 | 53.49%
Markov chain -k = 4 155,855,686 | 54.58%
Markov chain -k = 3 | ~850,000,000| 61.90%
Markov chain -k = 2 ~7-1016 91.44%
Markov chain -k = 1 ~10%0 99.70%

TABLE V
CUMULATIVE NUMBER OF ATTEMPTS AND OF GUESSED PASSWORDS FOR  gnq
THE MULTI-STEP APPROACH

a given percentage of the passwords? By integrating this wify)
system-specific knowledge such as the computational cost
needed to perform a single guess and the amount of resouréds
that the attacker has access to, it is possible to estimate t}3
percentage of passwords that are vulnerable to a giverkattatf

VIIl. CONCLUSION

In this work we focused on the empirical study of real-world[S]
passwords from three datasets, different in terms of bapli-ap [€]
cation domain and user localization. We implemented and usey)
a variety of state-of-the-art techniques for password gjngs
including dictionary attacks, mangling using dictionar&nd 8]
probabilistic context free grammars, and Markov chainebdas
strategies. We proposed a unique and comprehensive analysi
of the password strength of Internet applications.

We measured the resilience of passwords in terms of tﬁ
search space required for an attacker to guess a fraction of
the passwords contained in our dataset and we studied kHe
properties of the different attack techniques we implerent
Our results revealed that no single attack strategy precagr
the others: dictionary attacks are most effective in disciog
weak passwords; dictionary mangling is useful when tr{(le3]
base dictionaries are exhausted; Markov-chain technigtees [14]
powerful in breaking strong passwords.

All the attack techniques that we analyzed are affected [)13?]
diminishing returns: the probability to guess a password [as]
each attempt decreases roughly exponentially as the sthe of

o 17]
explored search space grows. Thus, the probability of ss¢c
at some point, will not justify anymore the cost for an attrck [18]
Our results can help find this point.

Our results also shed light on some aspects of user prgllcs::’J
tices in choosing their passwords: we found that, within our
datasets, users put relatively little effort in choosingith [20]
password when compared to the choice of their usernames. As
illustrated by MySpace, adopting restrictive passwordaes
does not necessarily prevent the creation of weak password$!

We believe that proactive password checkers are a bet’@q
approach, and we are currently implementing one such tool
based on the findings of this work: given one or more attack

[12]

models such as the one described in Section VII, it will
compute in real time an approximation of the number of
guesses needed to crack the password. This informatiobevill
provided to the user as an approximation of password stiengt

Our future research agenda will also focus on user behavior
based on data we are currently collecting on the Internet:
we are in particular interested in assessing the correlaifo

between password strength, user activity levels, had t

application domain.
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