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Background: Anthropogenic emissions are rapidly altering Earth’s climate, pushing it toward a
warmer state for which there is no historical precedent. Though no perfect analogue exists for such
a disruption, Earth’s history includes past climate states – “paleoclimates” – that hold lessons for the
future of our warming world. These periods in Earth’s past span a tremendous range of temperatures,
precipitation patterns, cryospheric extent, and biospheric adaptations, and are increasingly relevant for
improving our understanding of how key elements of the climate system are affected by greenhouse gas
levels. The rise of new geochemical and statistical methods, as well as improvements in paleoclimate
modeling, allow for new opportunities to formally evaluate climate models based on paleoclimate data.
In particular, given that some of the newest generation of climate models have a high sensitivity to a
doubling of atmospheric CO2, there is a renewed role for paleoclimates in constraining equilibrium climate
sensitivity (ECS) and its dependence on climate background state.

Advances: In the past decade, an increasing number of studies have used paleoclimate temperature
and CO2 estimates to infer ECS in the deep past, in both warm and cold climate states. Recent studies
support the paradigm that ECS is strongly state-dependent, rising with increased CO2 concentrations.
Simulations of past warm climates such as the Eocene further highlight the role that cloud feedbacks play
in contributing to high ECS under elevated CO2 levels. Paleoclimates have provided critical constraints
on the assessment of future ice sheet stability and concomitant sea level rise, including the viability of
threshold processes like marine ice cliff instability. Beyond global-scale changes, analysis of past changes
in the water cycle have advanced our understanding of dynamical drivers of hydroclimate, which is highly
relevant for regional climate projections and societal impacts. New and expanding techniques, such as
analyses of single shells of foraminifera, are yielding sub-seasonal climate information that can be used
to study how intra- and interannual modes of variability are affected by external climate forcing. Studies
of extraordinary, transient departures in paleoclimate from the background state such as the Paleocene-
Eocene Thermal Maximum provide critical context for the current, anthropogenic aberration, its impact
on the Earth system, and the timescale of recovery.

A number of advances have eroded the “language barrier” between climate model and proxy data,
facilitating more direct use of paleoclimate information to constrain model performance. It is increasingly
common to incorporate geochemical tracers – such as water isotopes – directly into model simulations
and this practice has vastly improved model – proxy comparisons. The development of new statistical
approaches rooted in Bayesian inference has led to a more thorough quantification of paleoclimate data
uncertainties. Finally, techniques like data assimilation allow for a formal combination of proxy and
model data into hybrid products. Such syntheses provide a full-field view of past climates and can put
constraints on climate variables that we have no direct proxies for, such as cloud cover or wind speed.
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Figure 1: Past climates (denoted on top) provide context for future climate scenarios (at bottom). Both
past and future climates are colored by their estimated change in global mean annual surface temperature
relative to preindustrial conditions. “Sustainability”, “Middle road”, and “High emissions” represent
the estimated global temperature anomalies at 2300 from the Shared Socioeconomic Pathways (SSPs)
SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively. In both the past and future cases, warmer climates are
associated with increases in CO2.

Outlook: A common concern with using paleoclimate information as model targets is that non-CO2

forcings, such as aerosols and trace greenhouse gases, are not well known, especially in the distant past.
While evidence thus far suggests that such forcings are secondary to CO2, future improvements in both
geochemical proxies and modeling are on track to tackle this issue. New and rapidly evolving geochemi-
cal techniques have potential to provide improved constraints on the terrestrial biosphere, aerosols, and
trace gases; likewise, biogeochemical cycles can now be incorporated into paleoclimate model simulations.
Beyond constraining forcings, it is critical that proxy information is transformed into quantitative esti-
mates that account for uncertainties in the proxy system. Statistical tools have already been developed
to achieve this, which should make it easier to create robust targets for model evaluation. With this in-
crease in quantification of paleoclimate information, we suggest that modeling centers include simulation
of past climates in their evaluation and statement of their model performance. This practice is likely to
narrow uncertainties surrounding climate sensitivity, ice sheets, and the water cycle and thus improve
future climate projections.
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As the world warms, there is a profound need to improve projections1

of climate change. While the latest Earth system models offer an un-2

precedented number of features, fundamental uncertainties continue to3

cloud our view of the future. Past climates provide the only opportu-4

nity to observe how the Earth system responds to high CO2, underlining5

a fundamental role for paleoclimatology in constraining future climate6

change. Here, we review the relevancy of paleoclimate information for7

climate prediction and discuss the prospects for emerging methodologies8

to further insights gained from past climates. Advances in proxy methods9
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and interpretations pave the way for the use of past climates for model10

evaluation – a practice we argue should be widely adopted.11

1 Introduction12

The discipline of paleoclimatology is rooted in the peculiarities of the geological record, which has13

long hinted that Earth’s climate can change in profound ways. In possibly the first paleoclimate14

study, the 17th century English physicist Robert Hooke concluded, based on observations of15

large turtles and ammonites in Jurassic rocks, that conditions in England had once been much16

warmer than now (1). Since then, paleoclimate studies have revolutionized our view of the17

climate system (2), documenting both warm and cold worlds much different than the one we18

inhabit, and establishing the link between atmospheric CO2 and global temperature (Fig. 1).19

While paleoclimatology continues to narrate the history of Earth’s climate, it also plays an20

increasingly central role in understanding future climate change. The study of past climate has21

never been more relevant than now, as anthropogenic activities increase atmospheric greenhouse22

gas concentrations and modify the land surface and ocean chemistry at a rate and scale that23

exceed natural geologic processes. Atmospheric CO2 levels are higher now than at any point in24

at least the last three million years and, at the current rate of emissions, will attain levels not25

seen in at least 30 million years by 2300 (Fig. 1). In this context, past climates are windows26

into our future (3) – the geological record is the only observational source of information for27

how the climate system operates in a state much warmer than the present.28

The challenge for paleoclimatology is that there are few direct quantitative records of past29

climate (e.g. temperature, precipitation). Instead, we make use of “proxies,” surrogates for30

climate variables that cannot be measured directly. In some cases, the physical occurrence31

(or absence) of a proxy (like glacial deposits) reveals information about past environmental32

conditions. More often, geochemical data (such as elemental and stable isotope ratios) stored33

in fossils, minerals, or organic compounds, are used to infer past conditions. The discovery of34

new proxies, improvements in modeling and analytical techniques, and the increasing number of35

proxy records are actively expanding the utility of paleoclimate information. These innovations36

are refining our understanding of how the climate system responds to atmospheric CO2, and37

provide insights into aspects of past climates (such as seasonality and interannual variability)38

that were heretofore unknowable.39

Among the most important contributions that paleoclimatology can make is the evaluation40

of Earth system models that we rely on for projecting future climate change. The physical41

parameterizations in these sophisticated models are often tuned to best fit the preindustrial42

or historical record (4). However, the latter is short in duration and samples a single climate43

state with a narrow CO2 range. The performance of climate models under extreme forcing very44

different than present (such as dramatic changes in CO2 levels) is not commonly assessed, despite45

the fact that the models are used to project changes under high-emissions scenarios. When these46

models are used to simulate past warm climates, they often predict surface temperatures that47

are too cold and pole-to-equator temperature gradients that are too large (5). However, a new48

generation of models, alongside developments in proxy techniques and analysis, now provide49

opportunities to more fully exploit past climates for model evaluation and assessment of key50

metrics of the climate system.51
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2 Past climates inform key processes52

Earth’s paleoclimate record contains tremendous variability. Over the last 100 million years, the53

climate gradually transitioned from an ice-free world of exceptional warmth (the mid-Cretaceous,54

92 Ma, Fig. 1) to the cold ice ages of the past few million years, glacial worlds with kilometers-55

thick ice caps covering one-fourth of the land surface (such as the Last Glacial Maximum (LGM),56

21 ka, Fig. 1). Between Cretaceous and LGM extremes lie intermediate warm climates such as57

the early Eocene (53–49 Ma) and Pliocene (5.3–2.6 Ma) (Fig. 1). This long-term climate transi-58

tion was far from steady – short-lived hyperthermal events (6) and cold stadials (7) punctuated59

the slower trends.60

Atmospheric CO2 concentrations generally mirror these swings in global temperature (Fig.61

1). Geochemical modeling demonstrates that the balance of geological sources (degassing through62

volcanism) and sinks (weathering and sedimentation) explains the general features of CO2’s tra-63

jectory (8) and establishes causality – high CO2 leads to high temperatures. The apparent64

exceptions to this rule, including the end-Cretaceous and early Paleocene (70–60 Ma) and the65

Miocene (23–5.3 Ma), are areas of active research. One explanation for the decoupling of CO266

and temperature is that uncertainties associated with the proxies blur the relationship. Past67

estimation of CO2 is challenging. Beyond the ice core record (9), CO2 information comes from68

geochemical data, such isotope ratios of boron and carbon, or paleobotanical indicators such69

as density of leaf stomata. All of these proxies require assumptions about the physical, chemi-70

cal, and biological state of the past that are not completely understood, sometimes leading to71

misinterpretations of the signal. Proxy methodologies and assumptions continue to be refined,72

and there is some indication that CO2 at the end of the Cretaceous may have been higher than73

shown in Fig. 1 (10). It is also possible that these discrepancies have another explanation, such74

as a greater-than-expected role for non-CO2 forcings and feedbacks. If the paleoclimate record75

has taught us anything, it is that the more we probe, the more we learn.76

Past climate states were profoundly different from today. Their global mean temperatures,77

latitudinal temperature gradients, polar ice extents, regions of deep-water formation, vegetation78

types, patterns of precipitation and evaporation, and variability were all different. These dif-79

ferences are invaluable as they provide rich evidence of how climate processes operated across80

states that span the range of CO2 concentrations (400–2000 ppm) associated with future emis-81

sions scenarios (the Shared Socioeconomic Pathways (SSPs), Fig. 1). Under the sustainable82

SSP1-2.6 scenario, in which emissions are curtailed and become net-negative by the end of the83

21st century, CO2 concentrations would be stabilized near Pliocene levels (Fig. 1). In contrast,84

under the fossil-fuel intensive SSP5-8.5 scenario, CO2 concentrations would approach or even85

exceed Eocene or mid-Cretaceous levels (Fig. 1). These past warm climates can serve as targets86

against which to measure the increasingly complex generation of climate models that are used87

for future climate prediction.88

Past climates are not perfect analogs for future states – continental configurations are increas-89

ingly different with age, and they often represent equilibrium climates as opposed to transient90

changes associated with rapid greenhouse gas emissions. But as benchmarks for climate models,91

ancient climates need not be perfect analogs. In fact, the differences are advantageous; they92

provide true out-of-sample validation for the strength and stability of key feedbacks; large-scale93

responses of the hydrological cycle; and the most ubiquitous metric of all, climate sensitivity.94
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3 Paleoclimate constraints on climate sensitivity95

Equilibrium climate sensitivity (ECS) has been widely adopted as a simple metric of how re-96

sponsive the Earth’s climate system is to radiative forcing. It is defined as the change in global97

near-surface air temperature resulting from a sustained doubling in atmospheric CO2 after the98

fast-acting (timescales of years to decades) feedback processes (water vapor, clouds, snow) in99

the Earth system reach equilibrium. The 5th assessment report of the IPCC determined that100

ECS was likely between 1.5 and 4.5�C, a large range that has remained essentially unchanged for101

40 years (11). Because the environmental impacts, socio-economic implications, and mitigation102

timescales are very different for a low versus a high ECS (12), narrowing its range has always103

been a high priority.104

The fact that models with either a low or high present-day ECS can match historical ob-105

servations (13) suggests that preindustrial and industrial climatic changes are insufficient con-106

straints. Furthermore, the emerging view is that ECS is dependent on, and changes with, the107

background climate state – specifically, it increases in warmer climates (14–17). Past warm108

climates therefore provide key constraints on the range of plausible ECS values as well as the109

strength of feedbacks involved. Simulations of the early Eocene provide an example. Figure110

2 shows a comparison between the ECS of CMIP5 models (used in the last IPCC assessment)111

and the ECS of both preindustrial and Eocene simulations conducted with the newer-generation112

CESM1.2-CAM5.3 (17). Doubling CO2 in an Eocene experiment with preindustrial CO2 (285113

ppm; 1X) yields an ECS similar to the preindustrial experiment and overlaps with the CMIP5114

range (Fig. 2). This indicates that non-CO2 Eocene boundary conditions, including the position115

of the continents and the absence of continental ice sheets, do not have a large effect on ECS116

in CESM1.2. In contrast, raising CO2 levels elevates ECS in the Eocene simulations to values117

above 6�C (Fig. 2). This relatively high ECS results in accurate simulation of Eocene global118

temperature (and the meridional surface temperature gradient (17)) at CO2 concentrations that119

agree with proxy estimates (Fig. 2, inset). The elevated ECS in CESM1.2 can be attributed120

to improved representation of clouds in the CAM5 atmospheric model, which drives a strong121

low-cloud positive feedback under elevated CO2 (17) – a finding in agreement with the emerging122

recognition that cloud feedbacks are a key component of warm climates (18,19). The fact that123

CESM1.2 closely simulates Eocene proxy temperatures within the bounds of proxy CO2 esti-124

mates provides support for the new cloud physics and increases our confidence that the model’s125

state-dependent ECS is reasonable. CESM1.2 is not alone; in the latest Deep-time Model Inter-126

comparison Project, the GFDL CM2.1 model was also shown to closely simulate the large-scale127

features of Eocene proxy temperatures (20). It could be argued that, because of their match to128

proxies in a high-CO2 world, CESM1.2 and GFDL CM2.1 predictions of future climate under129

higher CO2 are more reliable than those of other models that are not able to simulate Eocene130

warmth.131

The early Eocene provides an important constraint on model ECS but samples a single132

high-CO2 climate state. Given the dependence of ECS on the background climate state, other133

past climates are critical to constraining ECS and relevant physics under both lower (e.g. LGM,134

Pliocene) and higher (e.g. PETM, Cretaceous) background CO2 levels. One concern about using135

past climates as model targets is that the forcings, especially aerosol and non-CO2 greenhouse136

gas concentrations, are uncertain and increasingly so in the distant past. While important, it is137
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worth noting that these forcings are secondary to CO2 (e.g. (21)) and, for extreme climates like138

the Eocene and Cretaceous, may largely fall within the climate proxy uncertainties. Moreover,139

this concern can be mitigated by examining model responses to the potential range of under-140

constrained forcings and, as is increasingly done, by incorporating biogeochemical cycles and141

the simulation of aerosol production and transport into the models.142

4 Paleoclimate perspectives on the stability of the cryosphere143

Future projections of sea level rise have large uncertainties, mainly due to unknowns surrounding144

the stability and threshold behavior of ice sheets (22). The paleoclimate record furnishes true145

“out-of-sample” tests for understanding the sensitivity of the cryosphere to warming that can146

lower these uncertainties. The past few years have seen a number of advances on both data147

and climate modeling fronts to understand past changes in ice sheets and connect these to the148

future. Advances in the generation and interpretation of proxy indicators of ice sheet size, shape,149

and extent (23–25) are helping to refine our understanding of cryosphere dynamics in warmer150

climates. Improvements in modeling the effects of dynamic topography and glacial isostatic151

adjustment are continually reducing uncertainties associated with estimates of past global sea152

level (26,27), providing more accurate benchmarks for model simulations (28).153

Paleoclimates also provide critical insights into processes that drive destabilization of ice154

sheets. Of particular relevance for future projections is assessing the likelihood of marine ice-155

cliff instability (MICI), a rapid collapse of coastal ice cliffs following the disintegration of an156

ice shelf, which has the potential to contribute to substantial sea level rise by the end of the157

21st century (29, 30). The record of sea level change from past warm climates offers a way to158

test this hypothesis. Recent work has focused on the Pliocene, given that CO2 concentrations159

during this time were similar to current anthropogenic levels (Fig. 1). A new reconstruction of160

global mean sea-level during the mid-Pliocene warm period indicates a rise of ∼ 17 m, implying161

near-to-complete loss of Greenland and the West Antarctic Ice Sheet with some additional162

contribution from East Antarctica (31). While this represents an outstanding loss of ice, MICI163

is not necessarily needed to explain it (30,31). However, simulated changes in sea level are highly164

dependent on each model’s treatment of ice sheet stability (32), and paleoclimate investigations165

of warmer climates, such as the early Pliocene and the Miocene, indicate larger magnitudes of166

ice loss, thermal expansion, and consequent sea level rise (31,33). Moving forward, refining our167

understanding of threshold behavior in ice sheets, and thus improving projections of future sea168

level rise, will require a synergistic approach that leverages paleoclimate estimates from multiple169

warm climates alongside solid Earth, ice sheet, and climate modeling (28).170

5 Regional and seasonal information from past climates171

Future warming will shift regional and seasonal patterns of rainfall and temperature, with dra-172

matic consequences for human society (34, 35). Regional changes in the land surface (reduced173

snow cover, melting permafrost, greening, desertification) can further trigger biogeochemical174

feedbacks that could dampen or amplify initial radiative forcing, with implications for climate175

sensitivity (36). Unfortunately, climate models disagree about the direction and magnitude of176

future regional rainfall change (37). Improving future predictions of regional climate requires177
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separating internal variability in the climate system (i.e., interannual–centennial oscillations)178

from externally-forced changes (i.e., from greenhouse gases or aerosols). Regional and seasonal179

paleoclimate data are critical in this respect, as they provide long, continuous estimates of the180

natural range of variation, augmenting the relatively short observational record (38,39).181

Subannually-resolved paleobiological and sedimentary archives, made more accessible by182

recent advances in geochemical techniques, allow for the study of seasonal-scale variations in183

both temperature and hydroclimate. For example, δ18O measurements of fossil bivalves can184

be used to gain insights into the drivers of seasonal variability during the Eocene greenhouse185

climate (40,41) (Fig. 3a). Since individual planktic foraminifera live for about a month, analyses186

of single shells yields subannual sea-surface temperature (SST) data from ancient climates (42).187

This can be leveraged to reveal past changes in key seasonal phenomena such as the El Niño–188

Southern Oscillation (ENSO) (43) (Fig. 3). Proxy data can even provide records of changes in189

the frequency or intensity of extreme events like hurricanes (44).190

Reconstructions of hydroclimate are considerably more challenging than temperature, as191

proxy signals tend to be more complex; however, even basic directional information (wetter vs.192

drier) can be used to test spatial patterns in models (e.g., (45)). Past warm climates allow us to193

test the extent to which the thermodynamic “wet-gets-wetter, dry-gets-drier” response broadly194

holds with warming (46) or if dynamical changes, such as shifts in the Hadley or Walker cells,195

play more of a key role in the regional water cycle response to changes in surface temperature196

gradients (45,47).197

Comparisons of proxies and models can also be used to identify the processes that are critical198

for accurate simulation of regional shifts in the water cycle, where local moisture and energy199

budgets exert an important control (48). The processes that drive these budgets – i.e., land200

surface properties and clouds – must be parameterized in global climate models and are often201

poorly understood, yet have huge consequences for predicted patterns in humidity and rainfall202

(49–52). Past changes in Earth’s boundary conditions offer a much broader set of scenarios203

where observations can be used to evaluate the performance of parameterization schemes. In204

particular, paleoclimates spanning the last glacial cycle have helped us better understand the role205

of land-atmosphere feedbacks in determining hydroclimatic response. Analyses of LGM proxies206

for SST and water balance in Southeast Asia suggest a direct relationship between convective207

parameterization and model skill at capturing regional hydroclimate (45, 53). Studies of the208

mid-Holocene ‘Green Sahara’ highlight the importance of vegetation and dust feedbacks in209

accurately simulating the response of the west African monsoon to radiative forcing (54, 55).210

These examples demonstrate the value of hydroclimate proxy-model comparison even if the past211

climate state is not a direct analog for future warming.212

Studies of past warm climates have the potential to provide even more insights into the213

behavior of regional climate in a warming world. Future model projections broadly simulate a214

pattern of subtropical drying, while the deep tropics and high latitudes get wetter (37). Recently,215

however, researchers have argued that subtropical drying is transient and might not persist in216

equilibrium with higher radiative forcing (56,57). Indeed, several paleoclimatic intervals (58,59)217

suggest that a warmer world could feature a different pattern, with wetter conditions in both the218

subtropics and high latitudes (47). This pattern is especially evident in western North America,219

where widespread Pliocene lake deposits suggest much wetter conditions (60). This evidence220

stands in stark contrast to future projections for this region, which overwhelmingly predict drier221
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conditions and more intense droughts (61), and suggests that paleoclimates may help us better222

understand the response of arid lands to higher CO2 concentrations.223

6 Climatic aberrations224

Among the most important discoveries in paleoclimatology is the occurrence of climatic “aber-225

rations” – extraordinary transient departures from a background climate state. Such events are226

distinguished by radical changes in temperature, precipitation patterns, and ocean circulation227

that often leave distinctive marks in the geological record, like the pervasive black shales of228

the mid-Cretaceous Ocean Anoxic Events (62). An aberration typically occurs in response to229

a short-lived perturbation to the climate system, such as a sudden release of greenhouse gases230

(e.g., from volcanoes, methane clathrates, or terrestrial organic deposits). Aberrations need not231

be “abrupt” in the sense that the rate of climate change must exceed the rate of forcing, and232

they can potentially last for a long time (for example, the Sturtian Snowball Earth lasted 55233

million years (63)). They are instructive because they provide information on extreme climate234

states, and the ability of the Earth system to rebound from such states.235

One of the most striking aberrations in the paleoclimate record, the Paleocene-Eocene Ther-236

mal Maximum (PETM), may foreshadow future changes that Earth will experience due to237

anthropogenic emissions. The PETM, which occurred 56 million years ago, was triggered by238

rapid emission of greenhouse gases; proxy and model estimates suggest that CO2 doubled or239

even tripled from a background state of ∼900 ppm (64–66) in less than 5,000 years (67,68). In240

response, global temperatures spiked by 5–9�C (69). The surface ocean rapidly acidified (65,70),241

and seafloor carbonates dissolved (71), resulting in dramatic biogeographic range shifts in plank-242

ton and the largest extinction in deep-sea calcifying benthic foraminifera ever observed (72). Pre-243

cipitation patterns changed dramatically, with much more rain falling at the high latitudes (73).244

It took the Earth ∼ 100,000 years to recover from this perturbation (65,74).245

Although the PETM stands out starkly in the geologic record, the rate of CO2 release was still246

4–10 times slower than current anthropogenic emissions (68, 75). Indeed, the geological record247

leaves no doubt that our current rate of global warming, driven by anomalous (anthropogenic)248

forcing, is an exceptional aberration – the rate and magnitude of change far exceeds the typical249

multi-thousand year variability that preceded it (Fig. 4). In the last 100 million years, CO2250

has ranged from maximum values in the mid-Cretaceous to minimum levels at the Last Glacial251

Maximum (Fig. 1). Going forward, we are on pace to experience an equivalent magnitude252

of change in atmospheric CO2 concentrations, in reverse, over a period of time that is over253

10,000 times shorter (Fig. 4). In just over 150 years, we have already raised CO2 concentrations254

(currently at 410 ppm) to Pliocene levels (Fig. 4). Under a middle-of-the-road emissions scenario255

such as SSP2-4.5 (or the CMIP5 equivalent, RCP4.5), CO2 will approach 600 ppm by Year 2100,256

and if we follow the high-emissions SSP5-8.5 (or RCP8.5), CO2 will rise beyond mid-Cretaceous257

concentrations (ca. 1000 ppm) by Year 2100 (Fig. 4). In comparison, the past 350,000 years of258

geologic history saw only ca. 100 ppm of CO2 variations (9) (Fig. 4).259

How long will it take for Earth to neutralize anthropogenic CO2 and return to pre-industrial260

levels? Earth has the ability to recover from a rapid increase in atmospheric CO2 concentration –261

the PETM is a textbook example of this process. In fact, in every case of past CO2 perturbations,262

the Earth system has compensated in order to avoid a runaway greenhouse or a permanent263
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icehouse. Yet the natural timescale of recovery from aberrations is geologic, not anthropogenic264

(Fig. 4). Some of the processes that remove CO2 from the atmosphere occur on relatively short265

(100–1000 yr) timescales (e.g. ocean uptake), but others take tens to hundreds of thousands266

of years (e.g. weathering of silicate rocks) (76). Using the intermediate complexity Earth267

system model cGENIE, we can estimate how long the recovery process takes under different268

future forcing scenarios. Under an aggressive mitigation scenario (RCP 2.6), CO2 concentrations269

remain at Pliocene-like concentrations (>350 ppm) through Year 2350, but it still takes hundreds270

of thousands of years for concentrations to return to preindustrial levels (Fig. 4). Under a271

middle-of-the-road scenario (RCP 4.5), CO2 peaks around 550 ppm and remains above Pliocene272

levels for 30,000 years. Under a worst-case scenario (RCP 8.5) atmospheric CO2 will remain at273

mid-Cretaceous (>1000 ppm) concentrations for 5,000 years, at Eocene concentrations (∼850274

ppm) for 10,000 years, and at Pliocene concentrations (>350 ppm) for 300,000 years (Fig. 4).275

It will be at least 500,000 years, a duration equivalent to 40,000 human generations, before276

atmospheric CO2 fully returns to preindustrial levels. Our planet will recover, but for humans,277

and the organisms with which we share this planet, the changes in climate will appear to be a278

permanent state shift.279

7 Bridging the gap between paleoclimate data and models280

Climate models provide direct estimates of quantities like temperatures, wind speed, and precip-281

itation. In contrast, paleoclimate information is indirect, filtered through a proxy – a physical,282

chemical, and/or biological entity that responds to climate – such as foraminifera, algae, or283

the chemical composition of sediments. Proxies are imperfect recorders of climate; they have284

inherent uncertainties associated with, for example, biological processes and preservation. Thus,285

while proxy data can be transformed into climate variables for direct comparison with models286

using regression, transfer functions, and assumptions, if these structural uncertainties are not287

accounted for they can lead to unclear or erroneous interpretations. This creates a “language288

barrier” between model output and proxy data that has limited the use of paleoclimate informa-289

tion to evaluate climate models, as well as infer past climate states. Three key innovations are290

now breaking down this barrier, allowing paleoclimate information to directly constrain model291

performance: 1) the inclusion of chemical tracers relevant to proxy systems directly in Earth292

system models; 2) the creation of robust proxy system models that explicitly encode processes,293

uncertainties, and multivariate sensitivities; and 3) the development of statistical methods to294

formally combine proxy and model data.295

As far as chemical tracers are concerned, the single most important advance has been the296

increasingly routine incorporation of water isotopes in model simulations. The stable isotopes297

of water – δ
18O and δD – and their incorporation into natural archives are the foundation of298

modern paleoclimatology (77). A large number of paleoclimate proxies record water isotopes –299

e.g., foraminifera, stalagmites, leaf waxes, soil carbonates, and ice cores. Water isotope compo-300

sition, however, reflects multiple processes including changes in temperature, moisture source,301

evaporation, precipitation, and convection. Including water isotopes in models generates simu-302

lated isotope fields that are consistent with the model’s treatment of these processes, eliminating303

the need to independently conjecture how these various factors may have influenced the proxy304

data. This creates an “apples to apples” comparison between proxy information and model out-305
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put that can be used to evaluate model performance and diagnose climatic processes (e.g. (78).306

For example, using the water-isotope-enabled CESM1.2 (iCESM) (79), it is possible to directly307

compare carbonate δ18O data from Eocene fossil bivalves to model-simulated δ
18O (40,41) (Fig.308

3a). The model predicts a roughly 3h annual range in carbonate δ18O, in good agreement with309

observed proxy data (Fig. 3a). The match with the δ
18O data builds confidence that the model310

can correctly simulate climatology in this location, and allows us to deconvolve the contribution311

of SSTs and δ
18O of seawater. The site-specific seasonality in SSTs is 8–10�C and δ

18O-seawater312

of 0.6–0.8h, indicating that temperature is primarily responsible for the large seasonal range in313

carbonate δ
18O during this greenhouse climate state.314

One aspect of paleoclimate information that has traditionally limited its use in model eval-315

uation is an inability to precisely quantify uncertainties surrounding the proxies. However, in316

the last decade, increasingly detailed proxy system models (80) have been developed to address317

this issue (e.g.,) (81–83). Many of these use Bayesian inference to quantify uncertainties in the318

sensitivity of proxies to environmental parameters, which can then be used for probabilistic as-319

sessments of past climate states, model-proxy agreement, and model evaluation (84). These have320

helped to transform proxy-model comparisons from qualitative statements (“they look similar”)321

to quantitative statements (“there is a 90% probability that the data and the model agree”).322

A final component of the “language barrier” is the fact that proxy data are sparse in both323

space and time, because they are fundamentally dependent on the presence and preservation324

of their archives. Yet proxy data are real-world estimates of the “true” climate state. In325

contrast, climate model information is spatially and temporally continuous and physically self-326

consistent – but is only a best “guess” at what did or what will happen. One solution to327

bridge these fundamentally different pieces of information is to formally combine them in a328

statistical framework and thus leverage their respective strengths. Reduced space methods –329

commonly used to produce historical reconstructions of climate – can be used to infill missing330

data and produce maps of paleoclimate states (84,85). Recently, weather-based data assimilation331

techniques have been adapted for paleoclimate applications (86). The resulting products are332

spatially-complete reconstructions of multiple climate variables that represent a balance between333

the proxy information and the physics and covariance structure of the climate model. This allows334

local paleoclimate proxy information to be used to infer global metrics of climate – such as global335

mean air temperature – without the need for a scaling assumption (87). It also allows for the336

recovery of climatic variables that are consistent with the proxy information but for which we337

have no direct proxies, such as cloud cover, wind patterns, or precipitation (Fig. 5).338

In sum, the disintegration of the model-proxy language barrier has narrowed uncertainties339

in proxy interpretation. Recent studies have been able to use proxy data to infer key cli-340

matic processes and evaluate models across multiple time periods, including the LGM (88), the341

Pliocene (84), and the Eocene (17,20). This opens the door for explicit use of paleoclimates to342

assess and improve model physics.343

8 Moving Forward344

Past climates will continue to provide insights into the range, rate, and dynamics of climate345

change. Over the past decade, we have witnessed breakthroughs in proxy development and346

refinement as well as the generation of many new high-resolution marine and terrestrial pale-347
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oclimate records. In addition to continued advances, the collection of additional temperature348

and CO2 proxy records at higher resolution will be paramount for developing better estimates349

of climate sensitivity. Future proxy collection efforts should also focus on hydroclimate proxies,350

given the large spread in model projections (37). These reconstructions will help us refine our351

understanding of the response of atmospheric circulation and rainfall to climate change.352

On the modeling side, the inclusion of chemical tracers, such as water and carbon isotopes,353

within many of newly developed CMIP6 (89) models offers more robust means of data-model354

comparison. With these new model tools, we anticipate the rapid development and improvement355

of data-model synthesis products (86) and more focused proxy collection efforts to help reduce356

model uncertainties. In addition, evaluating CMIP6 models using both the historical and pale-357

oclimate record will result in a more comprehensive and robust approach to understanding the358

climate system (90). We recommend widespread adoption of this practice, so that model ECS359

and other emergent properties are constrained by paleoclimate data as well as observations. We360

suggest that weighting or ranking models that perform well over multiple past climate states361

is a crucial way to constrain the response of the model to changing background conditions and362

the validity of simulated climate changes under various emissions scenarios. In general, climate363

models should be able to accurately simulate multiple extreme paleoclimate states – warm and364

cold – before being trusted for future climate projection.365

Despite promising CMIP6 model advances, maintaining a variety of models with different366

levels of complexity is important. Not all climate questions require high levels of model com-367

plexity, and sometimes complexity is so great that interpretation becomes limited (91). In368

paleoclimatology, complexity can also lead to prohibitive computational expense. Maintained369

support for lower resolution, reduced complexity, and variable resolution configurations is vital370

for better interpreting model results and performing long, transient simulations that can address371

fundamental questions in paleoclimatology such as glacial cycles and carbon cycle changes.372

Looking ahead, there are many outstanding process-based uncertainties associated with fu-373

ture climate change that paleoclimatology can help constrain. For example, paleobotanical374

records can inform plant physiological responses to changes in CO2 (92), which remain highly375

uncertain (93) but important for quantifying evapotranspirative and surface runoff fluxes. Sim-376

ilarly, past vegetation reconstructions can assess dynamic vegetation models and simulated377

changes in the hydrologic cycle through time (94). Moreover, additional quantitative reconstruc-378

tions of hydroclimate, in combination with better constraints on plant physiological functioning379

in the past, will help refine our understanding of the regional water cycle and its dependence on380

local energy fluxes and large-scale circulation.381

New geochemical techniques will also refine our understanding of the Earth system. Devel-382

opment of radiation (95), biogenic aerosol (96), and dust (97) records have the potential to help383

constrain past aerosol and cloud radiative effects, which are arguably the most significant and384

uncertain component of Earth system models (98). In addition, new geochemical tracers for385

methane cycling (99) and upwelling, which is important for N2O production (100), will provide386

unique insights into trace greenhouse gases during past climate states. The combination of these387

new techniques will allow the paleoclimate community to better quantify biogeochemical feed-388

backs and climate sensitivity to greenhouse gas forcings across a range of climate states, and389

ultimately improve climate forecasts for the coming decades to millennia.390

In summary, the paleoclimate record is the basis for how we understand the potential range391
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and rate of climate change. Past climates represent the only target for climate model predic-392

tions at CO2 concentrations outside of the narrow historical range and, for this reason, are vital393

tools for evaluating the newest generation of Earth system models. The study of past climates394

continues to reveal key insights to the Earth’s response to elevated concentrations of greenhouse395

gases. Innovations in Earth system models, geochemical techniques, and statistical methods396

further allow for a more direct connection from the past to the future – worlds for which the397

preindustrial and industrial climate states provide limited guidance. The future of paleoclima-398

tology is to incorporate past climate information formally in model evaluation, so that we can399

better predict and plan for the impacts of anthropogenic climate change.400
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Figure 1: Paleoclimate context for future climate scenarios. Global mean surface tem-
perature for the past 100 million years is estimated from benthic δ18O (2,102) using the method
of (87). CO2 is estimated from the multi-proxy data set compiled by (101) with additional
phytane data from (103) and boron data from (104) and (10). Data with unrealistic values
(<150 ppm) are excluded. The CO2 error envelopes represent 1σ uncertainties. Note logarith-
mic scale for CO2. Gaussian smoothing was applied to both the temperature and CO2 curves
in order to emphasize long-term trends. Temperature colors are scaled relative to preindustrial
conditions. The maps show simplified representations of surface temperature. Projected CO2

concentrations are from the extended SSP scenarios (105). Blue bars indicate when there are
well-developed ice sheets (solid lines) and intermittent ice sheets (dashed lines), according to
previous syntheses (2).
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Figure 2: Constraining equilibrium climate sensitivity (ECS) through simulation of
the early Eocene. a. ECS in CMIP5 models (grey bars; (106)) compared to ECS in the
CESM1.2 preindustrial (PI, orange bar) and Eocene simulations with 1X, 3X and 6X preindus-
trial CO2 levels (red bars). b. CO2 concentrations (times preindustrial level) vs. global mean
temperature according to early Eocene proxies (yellow patch) compared to the results from the
CESM1.2 Eocene simulations. Proxy CO2 estimates are a derived 2σ range from the collection
plotted in Figure 1. Readers are referred to (17) for details of the Eocene climate simulations
and proxy global mean temperature estimation.
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Figure 3: Examples of seasonal and interannual paleoclimate data and comparison to
models. (a) Seasonally-resolved δ

18O carbonate from the shells of a fossil bivalve, Venericar-
dia hatcheplata, from the early Eocene Hatchetigbee Formation (orange star in inset) (40, 41).
Monthly averaged data (orange, with 1σ uncertainty bounds) are compared with predicted
δ
18O-carbonate seasonality at the same grid-point from an isotope-enabled Eocene model simu-
lation (17) (red) (using modeled δ

18O of seawater and SST, and the calibration of ref. (107)). (b)
Mg/Ca measurements of individual planktic foraminifera Trilobatus sacculifer from an eastern
equatorial site (blue star in inset) provide proxy evidence of a reduction in ENSO variability
during the LGM (43) (lighter blue). The magnitude of reduction agrees with simulations using
CESM1.2 (darker blue) (108).
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Figure 4: The anthropogenic climate aberration. Black line shows CO2 measured in ice
cores for the past 350,000 years (9). Solid colored lines show future CO2 concentrations for
the IPCC AR5 Representative Concentration Pathways, run out to 350,000 years in the future
with the cGENIE model. Dotted lines indicate average CO2 for key time periods in the geologic
past. Bars at right indicate CO2 concentrations under which there are well-developed ice sheets
(solid areas) and intermittent ice sheets (hatched areas), based on geologic evidence and ice
sheet modeling (109).
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Figure 5: An example of paleoclimate data assimilation. Marine sea-surface temperature
(SST) proxy data from the Last Glacial Maximum and the Preindustrial (PI) (a) are combined
with an ensemble of model simulations (b) which contain multiple climatic variables. The results
(c-e; LGM - PI differences for sea-surface temperature (SST), surface air temperature (SAT),
and mean annual precipitation (Precip)) include all the variables in the model prior, which are
influenced by the assimilated SST proxy data. Proxy data, model fields, and assimilated results
are from ref. (88).

21


