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Abstract 

Breast cancer screening has evolved substantially over the past few decades because of advance-
ments in new image acquisition systems and novel artificial intelligence (AI) algorithms. This review 
provides a brief overview of the history, current state, and future of AI in breast cancer screening 
and diagnosis along with challenges involved in the development of AI systems. Although AI has 
been developing for interpretation tasks associated with breast cancer screening for decades, its 
potential to combat the subjective nature and improve the efficiency of human image interpre-
tation is always expanding. The rapid advancement of computational power and deep learning 
has increased greatly in AI research, with promising performance in detection and classification 
tasks across imaging modalities. Most AI systems, based on human-engineered or deep learning 
methods, serve as concurrent or secondary readers, that is, as aids to radiologists for a specific, 
well-defined task. In the future, AI may be able to perform multiple integrated tasks, making deci-
sions at the level of or surpassing the ability of humans. Artificial intelligence may also serve as 
a partial primary reader to streamline ancillary tasks, triaging cases or ruling out obvious normal 
cases. However, before AI is used as an independent, autonomous reader, various challenges need 
to be addressed, including explainability and interpretability, in addition to repeatability and gen-
eralizability, to ensure that AI will provide a significant clinical benefit to breast cancer screening 
across all populations.
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Introduction
Breast cancer screening has evolved substantially over the 
past few decades because of advancements in both image ac-
quisition systems and novel artificial intelligence (AI) algo-
rithms. Although AI has been developing for interpretation 
tasks associated with breast cancer screening for decades, 
its potential is greater now since newer acquisition systems 
yield 3D and 4D images, with the need for AI to enhance 
the efficiency of the interpretation. Key use cases for AI in 
breast imaging include risk assessment, detection, diagnosis, 

prognosis, and therapeutic response. This review focuses on 
the general topics of human engineering and deep learning, 
including transfer learning, as they pertain to the detection 
and diagnosis of breast cancer.

Globally, female breast cancer is the most commonly 
diagnosed cancer, and it is the greatest contributor to cancer 
death in women (1). Since the peak of breast cancer mor-
tality in 1989, there has been a 42% decrease in mortality in 
the United States (2). In the late 1990s, the annual decline in 
mortality rate was more than 3%, although in recent years 
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Key Messages
• Artificial intelligence (AI) of medical images for use in 

breast cancer screening has advanced greatly over the 
past four decades.

• Computer outputs from AI in breast imaging are being 
developed for clinical use as secondary, concurrent, or 
primary readers.

• Prior to implementation of AI, it is important to under-
stand the intended task, expected claim, target popula-
tion, repeatability, and performance of the algorithm as 
well as that of the end user (ie, the radiologist).

the decline has slowed to 1% annually, possibly due to plat-
eauing mammography rates and a slight increase in incidence 
rates (2). Screening mammography has played an important 
role in reducing breast cancer–related mortality by increasing 
cancer detection rates at earlier stages. As a result, cancer 
screening can enable less invasive and more effective treat-
ment (3,4). However, limited contrast and overlapping tissue 
in the 2D projection images from mammograms is not ideal 
for those with dense breasts, contributing to overdiagnosis 
and overtreatment (4–6). To address the need for more ef-
fective screening, additional imaging modalities have been 
developed to augment mammography (7–9).

Digital breast tomosynthesis (DBT) has been shown to 
have greater cancer detection rates compared to mam-
mography, as it can reduce false positives resulting from 
overlapping normal tissues (3). In addition, the nonionizing 
radiation imaging modalities, whole breast US and 3D MRI, 
have demonstrated sensitivity benefits over mammography, 
especially in detecting mammographically occult disease 
(6,10). Whole breast US has demonstrated benefits in pa-
tients with dense breasts, although it has an increased risk 
of false positives and limited ability for screening in the 
general population (3,6). MRI also offers the benefits of 3D 
resolution along with temporal information from dynamic 
contrast-enhanced MRI (DCE-MRI), and it is beneficial for 
use in women with dense breasts and above-average risk 
(6,11). Features extracted from MRI, including lesion size, 
shape, and texture, can serve as strong indicators for use in 
diagnosis (12). Therefore, DCE-MRI is being used as a sup-
plemental screening modality in patients with high risk for 
cancer, determined by their family history, breast density, 
and/or BRCA mutation status. To maintain the efficiency 
and throughput and to increase the performance of screening 
MRI, abbreviated and ultrafast protocols have been devel-
oped (9,11,13). While specific guidelines vary around the 
world, the World Health Organization recommends mam-
mography screening every two years for average-risk women 
aged 50 to 69 years old (4). The American Cancer Society re-
commends annual screening mammography or DBT starting 
at 40 years old for average-risk women and recommends an-
nual MRI as an adjunct to screening mammography or DBT 
starting at 30 years old for high-risk women (3,10).

These imaging modalities provide radiologists with an 
abundance of data for each patient; however, it is important 
to note that the benefit of a medical imaging exam depends 
on both the quality and interpretation of the image. Inherent 
limits to labor-intensive human interpretation include errors 
due to structural noise, incomplete visual search patterns, 
suboptimal image quality, or fatigue (9,14–16). To effec-
tively interpret DBT, US, or MRI data, additional expertise 
may be required for detection, diagnoses, and patient man-
agement. To combat the subjective nature and improve effi-
ciency of human image interpretation, AI methods are being 
developed to support radiologists in their interpretation de-
cision-making process.

Artificial intelligence refers broadly to the use of com-
puters to learn and perform tasks typically conducted by 
humans. Artificial intelligence can be subcategorized by the 
extent of its scope or the learning ability of the system. Most 
AI systems available currently are limited learning or narrow 
AI. These systems perform a single, well-defined task such as 
detection, diagnosis, or segmentation, learned from a labeled 
set of information directly related to the task. On a broader 
scale, future implementations could potentially encompass 
AI to perform many integrated tasks at an organization or 
society level and to make decisions at the level of or sur-
passing the ability of humans.

Machine learning is a subset of AI that uses specific 
programs to identify patterns from an input and learns to 
make inferences without direct intervention from humans. 
Machine learning can be further categorized as supervised 
or unsupervised learning. In supervised learning, the data 
on which an algorithm is trained are labeled, and in unsu-
pervised learning, the data are unlabeled (17). Most medical 
imaging tasks use supervised learning to perform classifi-
cation, whereas unsupervised learning is commonly used 
for clustering or dimensionality reduction. Conventional 
methods of machine learning in medical imaging, as op-
posed to deep learning methods, use human-engineered 
radiomic features to characterize, for example, the breast 
lesion, extracted from images as inputs to simple classifiers 
(eg, random forest or support vector machines) to classify 
cases (18,19). Image features can be extracted from deep 
learning networks, a subset of machine learning that di-
rectly learns image features from pixel- or voxel-level data. 
However, these networks contain many learned param-
eters and components, necessitating large data sets for the 
training of the network, which are frequently difficult to 
obtain in medical imaging applications because of a lack of 
annotations and labels (18–20).

Most computer-aided diagnosis (CAD) systems/AI for 
breast screening fall into the categories of human-engineered 
or deep-learning-based AI, using radiomic and/or deep 
network extracted features to perform a task (Figure 1). 
Artificial intelligence used in assisting the end user (ie, the 
radiologist) has been termed CAD, which can be further 
divided into categories based on the specific clinical task, 
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primarily computer-aided detection (CADe), computer-aided 
diagnosis (CADx), triage (CADt), or rule-out.

Overall, AI has the potential to improve both the efficacy and 
efficiency of breast cancer screening through quantitative, repro-
ducible, and objective algorithms. Artificial intelligence techniques 
are capable of recognizing complex patterns that might be diffi-
cult for the human eye to notice, and they should be developed 
to be robust to noise and generalizable to a variety of disease rep-
resentations (8,9,18). Artificial intelligence also has the potential 
to simultaneously interpret data from multiple streams, including 
images, genomics, and patient history (8). Techniques for auto-
matic longitudinal monitoring of breast density or tissue changes 
could lead to personalized care decisions, particularly beneficial 
for high-risk screening populations. The benefits of improved de-
tection rates, saved time, and profitability are currently challenged 
by the risk of increased recall rates, increasing costs, and less than 
favorable perceptions of AI (21). However, further advances in AI 
systems could enhance the role of radiologists by allowing them 
to focus on “value-added tasks,” such as patient interactions and 
integrated care, rather than interpretation tasks (22).

History of AI in Breast Cancer Screening 
and Diagnosis
Despite the recent explosion of AI in medical imaging, facili-
tated by advances in deep learning networks and computing 

power, research in AI methods has been around for decades. 
The first articles on the use of computers for cancer detec-
tion from radiographic images were published in the 1950s 
and 1960s (23). However, computational limitations and in-
adequate image quality levels prevented practical use of the 
methods. In the late 1980s and 1990s, AI tools for detection 
of lung and breast cancer were revisited and developed, with 
the names CADe and CADx (for computer-aided detection 
and computer-aided diagnosis, respectively) to represent their 
role as an aid to the radiologist as opposed to a replacement 
(24,25). The first observer study to compare radiologist perfor-
mance without and with CADe was published by Chan et al in 
1990 (26). The first use of deep learning using a convolutional 
neural network (CNN) was published by Zhang et al in 1994, 
for detecting microcalcification clusters on mammograms, and 
then incorporated into CADe commercial systems (27). The 
first commercial CADe system was the ImageChecker M1000 
(R2 Technology, now Hologic, Inc., Bedford, MA), approved 
by the Food and Drug Administration (FDA) in 1998 to serve 
as a second reader to be used after a radiologist’s initial re-
view of a case (26). By 2008, CADe was being used in 70% of 
mammographic screening studies at outpatient hospitals and 
81% of private office screenings (28).

The late 1990s and early 2000s brought about increased 
research in AI for breast cancer, especially for diagnostic tasks 
(ie, CADx), with a focus on the use of human-engineered 

Figure 1. Commonly used AI development pipelines for image classification and decision support, as explored in Whitney et al (7). The 
publicly available ImageNet database may be used to train convolutional neural networks, such as VGG19 from the Visual Geometry Group 
and ResNet (Residual Network).
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(radiomic) features. In reader studies, including mammog-
raphy, US, or MRI, radiologists would be presented with 
computer-extracted attributes, for example, features, graph-
ical representations comparing to other cases, and machine-
learning-driven lesion signatures indicating likelihoods of 
malignancy, leaving the final decision to the radiologist (29–
31). Convolutional neural networks were also then being in-
vestigated in the task of distinguishing biopsy-proven masses 
from normal tissue on mammograms as well, similar to other 
CADx applications (32).

While the first applications of AI to breast screening fo-
cused on mammography, many of the techniques were fur-
ther customized and translated to other screening modalities. 
As DBT emerged in the field as a promising 3D alternative 
to standard mammography, AI techniques were rapidly ex-
tended to DBT imaging (33–35). Additionally, CADe and 
CADx methods for both 2D and 3D breast US were devel-
oped in the 2000s (36,37). As MRI became an adjunct im-
aging modality for screening women with dense breasts, AI 
systems were developed for DCE-MRI. In 1998, a method 
for automated extraction of human-engineered radiomic 
features based on size, shape, and kinetics of radiologist-
delineated masses was successful in distinguishing benign 
from malignant lesions (38). Soon after, techniques for 3D 
computerized lesion segmentation from DCE-MRI were 
introduced (39). In the early 2000s, texture analysis, mor-
phology, and kinetics were incorporated in the development 
of automatic methods for lesion classification (40–44). Some 

of the early commercial software systems offered inter-
active tools for the assessment of DCE-MRI that could be 
integrated in the clinical workflow, providing decision sup-
port while reducing evaluation time and observer variability 
(42,45). The first commercial CADx system was QuantX 
(Quantitative Insights, now Qlarity Imaging, Chicago, IL), 
approved by the FDA in 2017 as a second reader to be used 
after a radiologist’s initial review of a suspect lesion on DCE-
MRI (12).

Current State of AI in Breast Cancer 
Screening and Diagnosis
Within the last 10 years, AI has been a dominant force in 
breast cancer screening research. Artificial intelligence is 
being implemented for a range of uses: as a second reader, 
as a concurrent reader, as a primary reader in rule-out, and 
as a triage system for the prioritization of cases for reader 
order (46–48). Note that AI systems are mainly an aid to the 
reader and are not intended to replace the breast radiologist, 
although future efforts may be directed toward developing 
methods to function autonomously. Figure 2 demonstrates 
the process for developing AI to serve in the different roles 
during the screening workflow.

Methods for the development of human-engineered tech-
niques and deep learning algorithms for screening modal-
ities in the past decade have shown a variety of promising 
advancements (19,48,52,53). In mammography and DBT, 

Figure 2. Schematic illustrating the components in developing an artificial intelligence (AI) algorithm for breast cancer screening (17,49–51). 
Specific algorithms will be trained and tested for unique tasks that are based on the data set and clinical questions. The systems can serve 
different roles for the end user in computer-aided detection (CADe), computer-aided diagnosis (CADx), triage (CADt), or rule-out tasks. The 
impact of AI on the efficacy and efficiency of the clinical interpretation and workflow may be quantified with reader studies before approval 
by the Food and Drug Administration (FDA).

D
ow

nloaded from
 https://academ

ic.oup.com
/jbi/article/4/5/451/6697999 by guest on 29 Septem

ber 2023



455Journal of Breast Imaging, 2022, Vol. 4, Issue 5

human-engineered techniques have been expanded to in-
clude a wider selection of complex image features, and deep 
learning algorithms for detection and classification have 
been developed for faster implementation (53,54). Studies 
have shown that AI-assisted methods can maintain the ac-
curacy of diagnosis while increasing the efficiency of inter-
pretation for automated 3D breast US examinations (55,56). 
A number of AI techniques have also been developed to au-
tomatically detect and classify lesions based on the dynamic 
and morphological information contained in several MRI 
sequences (57–59).

Limitations in performance with deep networks due to 
data set size have been partially alleviated in recent years 
through the use of transfer learning. Transfer learning uses 
networks that are pretrained on other images, for example, 
the millions of natural images (cats, dogs, etc) in ImageNet, 
which can then be used directly to extract generic features 
from medical images or subsequently fine-tuned to produce 
features specific to a medical imaging data set (60–62). Both 
human-engineered and deep learning AI techniques have 
each been shown to perform well in breast lesion classifica-
tion tasks; a number of publications have cited significant 
improvements in algorithm performances when merging 
human-engineered radiomic and deep learning algorithms 
into the machine learning decision across mammography, US, 
and DCE-MRI, even with modestly sized data sets (7,61,63).

In addition, modifying the image format input to deep 
networks in order to more efficiently incorporate volumetric 
and temporal information, such as postcontrast subtraction 
maximum intensity projection images, has been shown to fur-
ther improve performance in breast tumor classification tasks 
(62). Further performance improvements have been reported 
by effectively fusing image data from multiparametric breast 
MRIs (DCE-MRI, T2-weighted, diffusion-weighted imaging), 
through either human-engineered or deep learning methods, 
at the pixel level, the feature level, or the classifier output level 
(51,64). Basically, effective development of an AI algorithm 
requires knowledge of the image acquisition process and the 
various formats of image presentation/reconstruction as well 
as the architecture of the radiomics/deep network itself.

As of the date of publication of this review, 21 AI al-
gorithms for breast imaging have been cleared by the FDA 
(65). Of the 20 cleared algorithms, nine are for the purpose 
of breast density assessment, and 12 are intended to ana-
lyze breast lesion characteristics. Although the majority of 
cleared algorithms are for use on mammography or DBT 
imaging, three are based on breast US and one on breast 
screening MRI.

Challenges in AI in Breast Cancer 
Screening and Diagnosis

Explainability and Interpretability
One critical challenge in AI is the “black-box” nature of al-
gorithms; many physicians are hesitant to accept AI output 

when the decision-making processes are opaque. To reach 
full clinical potential, technology needs to be explainable, 
interpretable, and user-friendly (15,17). Developers should 
also consider the fact that a variety of users, including clin-
icians, researchers, regulators, and insurance carriers, will 
have different interests in the system output, such as disease 
likelihood, pixel-level activation, data collection method, 
workflow efficiency, or cost (66,67). Researchers have found 
some potential solutions for explainability in medical im-
aging through the use of applications (eg, Grad-CAM) that 
highlight pixels within an image that are used by the algo-
rithm in its decision making. Correlating AI outputs with 
human descriptions can also help in the interpretability of 
AI output. These applications can aid users in understanding 
why an AI algorithm may be failing in certain instances or 
populations. Nevertheless, the issue remains of how to trust 
and explain instances when an algorithm makes a prediction 
that does not align with the user’s (ie, radiologist’s) inter-
pretation of an image, such as highlighting areas outside the 
body.

Robustness and Repeatability
Another key challenge focuses on the robustness and re-
peatability of AI algorithms. Because of the challenging 
nature of detection and diagnosis in medical images, the 
performance level of AI systems developed for these tasks 
may be very sensitive to small variations in image data. As 
a result, the output of such algorithms could be perturbed 
by many factors (eg, image acquisition parameters, seg-
mentation selection, or biased training data). Robustness 
and repeatability have been issues widely documented for 
systems that use conventional human-engineered radiomic 
features, as feature definitions and calculation methods can 
vary widely from system to system (49,68). Deep learning 
AI methods are not immune to robustness challenges ei-
ther, as the trained model and classifier performance can 
be impacted by the training data. Further, computers them-
selves can vary in their confidence of their output, par-
ticularly for cases that are difficult for the computer to 
classify. As shown in Amstutz et al (Figure 3), cases that 
were deemed to be clearly benign or clearly malignant by 
the computer demonstrated better repeatability (ie, more 
robust as shown by the smaller 95% confidence interval) 
than confusing cases that had computer outputs yielding 
estimates of malignancy around 50% (69). Such findings 
are similar to radiologists in that obvious malignant cases 
and obvious benign cases are easier to diagnose than con-
fusing cases.

Generalizability, Bias, and Harmonization
Similar to the necessity for robustness and repeatability, AI 
algorithms also need to be generalizable to new populations 
and imaging systems and attempt to be free of bias (70). 
Given patient privacy regulations, large, well-curated data 
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sets are particularly difficult to obtain. As a result, many 
studies are based on small, single-institution data sets. For AI 
methods, which rely on training with available data, perfor-
mance estimates can result that do not readily generalize to 
other populations or imaging systems. A few publicly avail-
able image repositories, including the Medical Imaging and 
Data Resource Center (MIDRC) and The Cancer Imaging 
Archive (TCIA), aim to alleviate this challenge by providing 
equitable access to a diverse population of imaging studies 
for a variety of diseases and clinical tasks (71,72). However, 
these resources require the initiative of researchers and 
clinicians to adopt an imaging sharing culture for society 
to truly benefit from the power of AI in medical imaging. 
Conversely, in order to maintain useful and trusted outputs, 
it may be best to develop algorithms for specific tasks, or 
specific acquisition systems, rather than general systems 
(66). Standardized training and testing protocols can be es-
tablished to determine the generalizability of models, and 
it is important to evaluate performance of the computer al-
gorithm as well as the end users when they are interpreting 
images without and with the AI system (17,66).

Ethical Implementation and Integration
Other challenges are the ethical use and integration of AI sys-
tems into the clinical setting. Ethical use of AI is a major con-
sideration, as most AI systems are not yet approved by the 
FDA or are approved for a specific application. The user has 
the ethical obligation to implement approved algorithms only 
as they are intended, including using an algorithm only with 

appropriate images and use cases and not for “off-label” ap-
plications. Also, clinical workflows may have to be modified to 
account for changing from manually reading cases to reading 
cases with an AI aid. Clinicians and hospitals may need to 
construct new billing codes for this work, and future investi-
gations should evaluate the clinical and financial impact of AI 
on radiologists and patients across health care systems (21).

Future of AI in Breast Cancer Screening 
and Diagnosis
The next generation of AI in breast cancer screening is ex-
pected to further increase the efficiency and efficacy of med-
ical image interpretation across all modalities. One aspect of 
this goal is to extend AI from a second or concurrent reader 
(CADe, CADx) to an autonomous or partially autonomous 
reader (53). Recent studies have shown software that ap-
proaches or exceeds the performance of radiologists (73,74). 
For example, McKinney et al showed an AI detection system 
for screening mammography capable of outperforming six 
radiologists, with an average absolute margin in the area 
under the receiver operating characteristic curve of 11.5% 
between the AI system and the radiologists (73). However, 
limitations and challenges exist between the current state 
of AI and clinically applicable autonomous reading. For in-
stance, many reports on the diagnostic accuracy of AI exist, 
but there is a lack of evidence on the perception and imple-
mentation of AI in actual clinical practice (21).

While the majority of AI research has focused on single 
interpretation tasks such as detection or diagnosis, a large 
area in which AI may have an impact on future breast cancer 
screening workflow is through the application of AI to 
streamline ancillary tasks. For example, AI may preprocess 
images or assist in the generation of standardized reporting 
documents (18). Image preprocessing may include image re-
construction, artifact correction, noise reduction, and user-
preferred arrangement (hanging) of images.

It is important to note that according to FDA Code of 
Federal Regulations Title 21, computer-aided triage refers to 
software used to prioritize images and not to remove any 
from a given imaging queue (75); CAD rule-out, in con-
trast, would potentially remove a subset of cases from a 
screening queue if deemed to be below a predetermined risk 
threshold at which human reading in addition to computer 
reading is not necessary. The rule-out software would act as 
a truly autonomous reader for the subset of cases removed 
from a screening queue. Both triage and rule-out software 
could streamline clinical workflow, with rule-out having the 
potential to reduce radiologist workload without reducing 
screening sensitivity (76–78).

Conclusion
Over the last few decades, the development of new imaging 
technologies and the advancement of computational power 

Figure 3. Case-based repeatability of radiomic features in 
classification of benign and malignant lesions in mammograms 
over 1000 iterations. The median case-based classifier output 
(CBO) 95% confidence interval (95CI) determined bin height, with 
shorter bins indicating better repeatability, and the median CBO 
was plotted in 10 bins in ascending order [from Amstutz et al (69); 
with permission].
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have contributed to an evolution of breast cancer screening 
practices. With the increasing use of DBT, US, and MRI in ad-
dition to mammography, the burden of image interpretation 
by radiologists is expanding. Fortunately, novel AI methods 
continue to be developed with the aim to improve the effi-
cacy and efficiency of image interpretation. The majority of 
breast cancer AI systems are based on human-engineered or 
deep learning methods, and such AI systems serve as concur-
rent or secondary readers to the radiologist for detection and 
diagnosis. Future advances in AI will include systems that serve 
as primary readers to prioritize cases or streamline ancillary 
tasks, potentially allowing the radiologists’ role to be enhanced 
as they integrate multimodality computer outputs with medical 
findings. Note that before AI may be used as an independent, 
autonomous reader, various challenges need to be addressed, 
including explainability, repeatability, and generalizability. 
Ultimately, the goal will be focused on AI providing a signif-
icant clinical benefit in breast cancer screening and diagnosis.
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