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Abstract—Simultaneous localization and mapping (SLAM) con-
sists in the concurrent construction of a model of the environment
(the map), and the estimation of the state of the robot moving
within it. The SLAM community has made astonishing progress
over the last 30 years, enabling large-scale real-world applications
and witnessing a steady transition of this technology to industry.
We survey the current state of SLAM and consider future direc-
tions. We start by presenting what is now the de-facto standard
formulation for SLAM. We then review related work, covering a
broad set of topics including robustness and scalability in long-term
mapping, metric and semantic representations for mapping, the-
oretical performance guarantees, active SLAM and exploration,
and other new frontiers. This paper simultaneously serves as a
position paper and tutorial to those who are users of SLAM. By
looking at the published research with a critical eye, we delineate
open challenges and new research issues, that still deserve careful
scientific investigation. The paper also contains the authors’ take
on two questions that often animate discussions during robotics
conferences: Do robots need SLAM? and Is SLAM solved?

Index Terms—Factor graphs, localization, mapping, maximum
a posteriori estimation, perception, robots, sensing, simultaneous
localization and mapping (SLAM).
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I. INTRODUCTION

S LAM comprises the simultaneous estimation of the state of
a robot equipped with on-board sensors and the construc-

tion of a model (the map) of the environment that the sensors
are perceiving. In simple instances, the robot state is described
by its pose (position and orientation), although other quantities
may be included in the state, such as robot velocity, sensor bi-
ases, and calibration parameters. The map, on the other hand,
is a representation of aspects of interest (e.g., position of land-
marks, obstacles) describing the environment in which the robot
operates.

The need to use a map of the environment is twofold. First, the
map is often required to support other tasks; for instance, a map
can inform path planning or provide an intuitive visualization
for a human operator. Second, the map allows limiting the error
committed in estimating the state of the robot. In the absence of a
map, dead-reckoning would quickly drift over time; on the other
hand, using a map, e.g., a set of distinguishable landmarks, the
robot can “reset” its localization error by revisiting known areas
(so-called loop closure). Therefore, SLAM finds applications in
all scenarios in which a prior map is not available and needs to
be built.

In some robotics applications, the location of a set of land-
marks is known a priori. For instance, a robot operating on
a factory floor can be provided with a manually built map of
artificial beacons in the environment. Another example is the
case in which the robot has access to GPS (the GPS satellites
can be considered as moving beacons at known locations). In
such scenarios, SLAM may not be required if localization can
be done reliably with respect to the known landmarks.

The popularity of the SLAM problem is connected with the
emergence of indoor applications of mobile robotics. Indoor
operation rules out the use of GPS to bound the localization
error; furthermore, SLAM provides an appealing alternative to
user-built maps, showing that robot operation is possible in the
absence of an ad hoc localization infrastructure.

A thorough historical review of the first 20 years of the SLAM
problem is given by Durrant–Whyte and Bailey in two sur-
veys [8], [70]. These mainly cover what we call the classical age
(1986–2004); the classical age saw the introduction of the main
probabilistic formulations for SLAM, including approaches
based on extended Kalman filters (EKF), Rao–Blackwellized
particle filters, and maximum likelihood estimation; moreover,
it delineated the basic challenges connected to efficiency and
robust data association. Two other excellent references describ-
ing the three main SLAM formulations of the classical age are
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TABLE I
SURVEYING THE SURVEYS AND TUTORIALS

Year Topic Reference

2006 Probabilistic approaches and data
association

Durrant–Whyte and Bailey [8], [70]

2008 Filtering approaches Aulinas et al. [7]
2011 SLAM back end Grisetti et al. [98]
2011 Observability, consistency and

convergence
Dissanayake et al. [65]

2012 Visual odometry Scaramuzza and Fraundofer [86],
[218]

2016 Multi robot SLAM Saeedi et al. [216]
2016 Visual place recognition Lowry et al. [160]
2016 SLAM in the Handbook of Robotics Stachniss et al. [234, Ch. 46]
2016 Theoretical aspects Huang and Dissanayake [110]

the book of Thrun, Burgard, and Fox [240] and the chapter of
Stachniss et al. [234, Ch. 46]. The subsequent period is what we
call the algorithmic-analysis age (2004–2015), and is partially
covered by Dissanayake et al. in [65]. The algorithmic analy-
sis period saw the study of fundamental properties of SLAM,
including observability, convergence, and consistency. In this
period, the key role of sparsity toward efficient SLAM solvers
was also understood, and the main open-source SLAM libraries
were developed.

We review the main SLAM surveys to date in Table I, ob-
serving that most recent surveys only cover specific aspects or
subfields of SLAM. The popularity of SLAM in the last 30
years is not surprising if one thinks about the manifold aspects
that SLAM involves. At the lower level (called the front end
in Section II), SLAM naturally intersects other research fields
such as computer vision and signal processing; at the higher
level (that we later call the back end), SLAM is an appealing
mix of geometry, graph theory, optimization, and probabilistic
estimation. Finally, a SLAM expert has to deal with practical
aspects ranging from sensor calibration to system integration.

This paper gives a broad overview of the current state of
SLAM, and offers the perspective of part of the community on
the open problems and future directions for the SLAM research.
Our main focus is on metric and semantic SLAM, and we refer
the reader to the recent survey by Lowry et al. [160], which pro-
vides a comprehensive review of vision-based place recognition
and topological SLAM.

Before delving into this paper, we first discuss two questions
that often animate discussions during robotics conferences: do
autonomous robots need SLAM? and is SLAM solved as an
academic research endeavor? We will revisit these questions at
the end of the manuscript.

Answering the question “Do autonomous robots really need
SLAM?” requires understanding what makes SLAM unique.
SLAM aims at building a globally consistent representation of
the environment, leveraging both ego-motion measurements and
loop closures. The keyword here is “loop closure”: if we sacri-
fice loop closures, SLAM reduces to odometry. In early appli-
cations, odometry was obtained by integrating wheel encoders.
The pose estimate obtained from wheel odometry quickly drifts,
making the estimate unusable after few meters [128, Ch. 6]; this
was one of the main thrusts behind the development of SLAM:
the observation of external landmarks is useful to reduce the
trajectory drift and possibly correct it [185]. However, more

Fig. 1. Left: map built from odometry. The map is homotopic to a long corridor
that goes from the starting position A to the final position B. Points that are close
in reality (e.g., B and C) may be arbitrarily far in the odometric map. Right: map
build from SLAM. By leveraging loop closures, SLAM estimates the actual
topology of the environment, and “discovers” shortcuts in the map.

recent odometry algorithms are based on visual and inertial in-
formation, and have very small drift (<0.5% of the trajectory
length [83]). Hence the question becomes legitimate: do we
really need SLAM? Our answer is three-fold.

First of all, we observe that the SLAM research done over the
last decade has itself produced the visual-inertial odometry al-
gorithms that currently represent the state-of-the-art, e.g., [163],
[175]; in this sense, visual-inertial navigation (VIN) is SLAM:
VIN can be considered a reduced SLAM system, in which the
loop closure (or place recognition) module is disabled. More
generally, SLAM has directly led to the study of sensor fusion
under more challenging setups (i.e., no GPS, low quality sen-
sors) than previously considered in other literature (e.g., inertial
navigation in aerospace engineering).

The second answer regards the true topology of the envi-
ronment. A robot performing odometry and neglecting loop
closures interprets the world as an “infinite corridor” (see
Fig. 1-left) in which the robot keeps exploring new areas in-
definitely. A loop closure event informs the robot that this “cor-
ridor” keeps intersecting itself (see Fig. 1-right). The advantage
of loop closure now becomes clear: by finding loop closures,
the robot understands the real topology of the environment, and
is able to find shortcuts between locations (e.g., point B and C
in the map). Therefore, if getting the right topology of the envi-
ronment is one of the merits of SLAM, why not simply drop the
metric information and just do place recognition? The answer
is simple: the metric information makes place recognition much
simpler and more robust; the metric reconstruction informs the
robot about loop closure opportunities and allows discarding
spurious loop closures [150]. Therefore, while SLAM might
be redundant in principle (an oracle place recognition module
would suffice for topological mapping), SLAM offers a natural
defense against wrong data association and perceptual aliasing,
where similarly looking scenes, corresponding to distinct loca-
tions in the environment, would deceive place recognition. In
this sense, the SLAM map provides a way to predict and validate
future measurements: we believe that this mechanism is key to
robust operation.

The third answer is that SLAM is needed for many applica-
tions that, either implicitly or explicitly, do require a globally
consistent map. For instance, in many military and civilian ap-
plications, the goal of the robot is to explore an environment
and report a map to the human operator, ensuring that full cov-
erage of the environment has been obtained. Another example is
the case in which the robot has to perform structural inspection
(of a building, bridge, etc.); also in this case, a globally consis-
tent three-dimensional (3-D) reconstruction is a requirement for
successful operation.



CADENA et al.: PAST, PRESENT, AND FUTURE OF SLAM: TOWARD THE ROBUST-PERCEPTION AGE 1311

This question of “is SLAM solved?” is often asked within
the robotics community, c.f., [88]. This question is diffi-
cult to answer because SLAM has become such a broad
topic that the question is well posed only for a given
robot/environment/performance combination. In particular, one
can evaluate the maturity of the SLAM problem once the fol-
lowing aspects are specified as follows:

1) Robot: type of motion (e.g., dynamics, maximum speed),
available sensors (e.g., resolution, sampling rate), avail-
able computational resources.

2) Environment: planar or 3-D, presence of natural or arti-
ficial landmarks, amount of dynamic elements, amount
of symmetry, and risk of perceptual aliasing. Note that
many of these aspects actually depend on the sensor-
environment pair: for instance, two rooms may look iden-
tical for a 2-D laser scanner (perceptual aliasing), while a
camera may discern them from appearance cues.

3) Performance Requirements: desired accuracy in the es-
timation of the state of the robot, accuracy, and type of
representation of the environment (e.g., landmark-based
or dense), success rate (percentage of tests in which the
accuracy bounds are met), estimation latency, maximum
operation time, maximum size of the mapped area.

For instance, mapping a 2-D indoor environment with a robot
equipped with wheel encoders and a laser scanner, with suf-
ficient accuracy (<10cm) and sufficient robustness (say, low
failure rate), can be considered largely solved (an example of
industrial system performing SLAM is the Kuka Navigation
Solution [145]). Similarly, vision-based SLAM with slowly-
moving robots (e.g., Mars rovers [166], domestic robots [2]),
and visual-inertial odometry [95] can be considered mature re-
search fields.

On the other hand, other robot/environment/performance
combinations still deserve a large amount of fundamental re-
search. Current SLAM algorithms can be easily induced to fail
when either the motion of the robot or the environment are too
challenging (e.g., fast robot dynamics, highly dynamic environ-
ments); similarly, SLAM algorithms are often unable to face
strict performance requirements, e.g., high rate estimation for
fast closed-loop control. This survey will provide a comprehen-
sive overview of these open problems, among others.

In this paper, we argue that we are entering in a third era for
SLAM, the robust-perception age, which is characterized by the
following key requirements:

1) Robust Performance: the SLAM system operates with low
failure rate for an extended period of time in a broad set of
environments; the system includes fail-safe mechanisms
and has self-tuning capabilities1 in that it can adapt the
selection of the system parameters to the scenario.

2) High-Level Understanding: the SLAM system goes be-
yond basic geometry reconstruction to obtain a high-level
understanding of the environment (e.g., high-level geom-
etry, semantics, physics, affordances).

3) Resource Awareness: the SLAM system is tailored to the
available sensing and computational resources, and pro-

1The SLAM community has been largely affected by the “curse of manual
tuning”, in that satisfactory operation is enabled by expert tuning of the system
parameters (e.g., stopping conditions, thresholds for outlier rejection).

Fig. 2. Front end and back end in a typical SLAM system. The back end can
provide feedback to the front end for loop closure detection and verification.

vides means to adjust the computation load depending on
the available resources.

4) Task-Driven Perception: the SLAM system is able to se-
lect relevant perceptual information and filter out irrele-
vant sensor data, in order to support the task, the robot has
to perform; moreover, the SLAM system produces adap-
tive map representations, whose complexity may vary de-
pending on the task at hand.

A. Paper organization

This paper starts by presenting a standard formulation and
architecture for SLAM (see Section II). Section III tackles ro-
bustness in life-long SLAM. Section IV deals with scalabil-
ity. Section V discusses how to represent the geometry of the
environment. Section VI extends the question of the environ-
ment representation to the modeling of semantic information.
Section VII provides an overview of the current accomplish-
ments on the theoretical aspects of SLAM. Section VIII broad-
ens the discussion and reviews the active SLAM problem in
which decision making is used to improve the quality of the
SLAM results. Section IX provides an overview of recent trends
in SLAM, including the use of unconventional sensors and
deep learning. Section X provides final remarks. Throughout
the paper, we provide many pointers to related work outside the
robotics community. Despite its unique traits, SLAM is related
to problems addressed in computer vision, computer graphics,
and control theory, and cross-fertilization among these fields is
a necessary condition to enable fast progress.

For the nonexpert reader, we recommend to read Durrant–
Whyte and Bailey’s SLAM tutorials [8], [70] before delving in
this position paper. The more experienced researchers can jump
directly to the section of interest, where they will find a self-
contained overview of the state-of-the-art and open problems.

II. ANATOMY OF A MODERN SLAM SYSTEM

The architecture of a SLAM system includes two main com-
ponents: the front end and the back end. The front end abstracts
sensor data into models that are amenable for estimation, while
the back end performs inference on the abstracted data produced
by the front end. This architecture is summarized in Fig. 2. We
review both components, starting from the back end.

A. Maximum a Posteriori (MAP) Estimation and the SLAM
Back End

The current de-facto standard formulation of SLAM has its
origins in the seminal paper of Lu and Milios [161], followed by
the work of Gutmann and Konolige [102]. Since then, numer-
ous approaches have improved the efficiency and robustness
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of the optimization underlying the problem [64], [82], [101],
[125], [192], [241]. All these approaches formulate SLAM as
a maximum a posteriori estimation problem, and often use the
formalism of factor graphs [143] to reason about the interde-
pendence among variables.

Assume that we want to estimate an unknown variable X ;
as mentioned before, in SLAM the variable X typically in-
cludes the trajectory of the robot (as a discrete set of poses)
and the position of landmarks in the environment. We are
given a set of measurements Z = {zk : k = 1, . . . ,m} such
that each measurement can be expressed as a function of X , i.e.,
zk = hk (Xk ) + εk , where Xk ⊆ X is a subset of the variables,
hk (·) is a known function (the measurement or observation
model), and εk is random measurement noise.

In MAP estimation, we estimate X by computing the assign-
ment of variables X � that attains the maximum of the posterior
p(X|Z) (the belief over X given the measurements)

X � .= argmax
X

p(X|Z) = argmax
X

p(Z|X )p(X ) (1)

where the equality follows from the Bayes theorem. In (1),
p(Z|X ) is the likelihood of the measurements Z given the as-
signment X , and p(X ) is a prior probability over X . The prior
probability includes any prior knowledge about X ; in case no
prior knowledge is available, p(X ) becomes a constant (uniform
distribution) which is inconsequential and can be dropped from
the optimization. In that case, MAP estimation reduces to max-
imum likelihood estimation. Note that, unlike Kalman filtering,
MAP estimation does not require an explicit distinction between
motion and observation model: both models are treated as fac-
tors and are seamlessly incorporated in the estimation process.
Moreover, it is worth noting that Kalman filtering and MAP
estimation return the same estimate in the linear Gaussian case,
while this is not the case in general.

Assuming that the measurements Z are independent (i.e., the
corresponding noises are uncorrelated), problem (1) factorizes
into

X � = argmax
X

p(X )
m∏

k=1

p(zk |X )

= argmax
X

p(X )
m∏

k=1

p(zk |Xk ) (2)

where, on the right-hand side, we noticed that zk only depends
on the subset of variables in Xk .

Problem (2) can be interpreted in terms of inference over a
factors graph [143]. The variables correspond to nodes in the
factor graph. The terms p(zk |Xk ) and the prior p(X ) are called
factors, and they encode probabilistic constraints over a subset
of nodes. A factor graph is a graphical model that encodes the
dependence between the kth factor (and its measurement zk )
and the corresponding variables Xk . A first advantage of the
factor graph interpretation is that it enables an insightful visu-
alization of the problem. Fig. 3 shows an example of a factor
graph underlying a simple SLAM problem. The figure shows
the variables, namely, the robot poses, the landmark positions,
and the camera calibration parameters, and the factors imposing
constraints among these variables. A second advantage is gen-
erality: a factor graph can model complex inference problems

Fig. 3. SLAM as a factor graph: Blue circles denote robot poses at consecutive
time steps (x1 , x2 , . . .), green circles denote landmark positions (l1 , l2 , . . .), red
circle denotes the variable associated with the intrinsic calibration parameters
(K ). Factors are shown as black squares: the label “u” marks factors corre-
sponding to odometry constraints, “v” marks factors corresponding to camera
observations, “c” denotes loop closures, and “p” denotes prior factors.

with heterogeneous variables and factors, and arbitrary inter-
connections. Furthermore, the connectivity of the factor graph
in turn influences the sparsity of the resulting SLAM problem
as discussed below.

In order to write (2) in a more explicit form, assume that
the measurement noise εk is a zero-mean Gaussian noise with
information matrix Ωk (inverse of the covariance matrix). Then,
the measurement likelihood in (2) becomes

p(zk |Xk ) ∝ exp

(
−1

2
||hk (Xk ) − zk ||2Ωk

)
(3)

where we use the notation ||e||2Ω = eTΩe. Similarly, assume that
the prior can be written as: p(X ) ∝ exp(− 1

2 ||h0(X ) − z0 ||2Ω0
),

for some given function h0(·), prior mean z0 , and information
matrix Ω0 . Since maximizing the posterior is the same as min-
imizing the negative log-posterior, the MAP estimate in (2)
becomes

X � = argmin
X

−log

(
p(X )

m∏

k=1

p(zk |Xk )

)

= argmin
X

m∑

k=0

||hk (Xk ) − zk ||2Ωk
(4)

which is a nonlinear least squares problem, as in most problems
of interest in robotics, hk (·) is a nonlinear function. Note that
the formulation (4) follows from the assumption of Normally
distributed noise. Other assumptions for the noise distribution
lead to different cost functions; for instance, if the noise follows
a Laplace distribution, the squared �2-norm in (4) is replaced
by the �1-norm. To increase resilience to outliers, it is also
common to substitute the squared �2-norm in (4) with robust
loss functions (e.g., Huber or Tukey loss) [113].

The computer vision expert may notice a resemblance be-
tween problem (4) and bundle adjustment (BA) in Structure
from Motion [244]; both (4) and BA indeed stem from a maxi-
mum a posteriori formulation. However, two key features make
SLAM unique. First, the factors in (4) are not constrained to
model projective geometry as in BA, but include a broad va-
riety of sensor models, e.g., inertial sensors, wheel encoders,
GPS, to mention a few. For instance, in laser-based mapping,
the factors usually constrain relative poses corresponding to dif-
ferent viewpoints, while in direct methods for visual SLAM, the
factors penalize differences in pixel intensities across different
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views of the same portion of the scene. The second difference
with respect to BA is that, in a SLAM scenario, problem (4)
typically needs to be solved incrementally: new measurements
are made available at each time step as the robot moves.

The minimization problem (4) is commonly solved via
successive linearizations, e.g., the Gauss–Newton or the
Levenberg–Marquardt methods (alternative approaches, based
on convex relaxations and Lagrangian duality are reviewed in
Section VII). Successive linearization methods proceed itera-
tively, starting from a given initial guess X̂ , and approximate
the cost function at X̂ with a quadratic cost, which can be opti-
mized in closed form by solving a set of linear equations (the so
called normal equations). These approaches can be seamlessly
generalized to variables belonging to smooth manifolds (e.g.,
rotations), which are of interest in robotics [1], [83].

The key insight behind modern SLAM solvers is that the ma-
trix appearing in the normal equations is sparse and its sparsity
structure is dictated by the topology of the underlying factor
graph. This enables the use of fast linear solvers [125], [126],
[146], [204]. Moreover, it allows designing incremental (or on-
line) solvers, which update the estimate of X as new observa-
tions are acquired [125], [126], [204]. Current SLAM libraries
(e.g., GTSAM [62], g2o [146], Ceres [214], iSAM [126], and
SLAM++ [204]) are able to solve problems with tens of thou-
sands of variables in few seconds. The hands-on tutorials [62],
[98] provide excellent introductions to two of the most popular
SLAM libraries; each library also includes a set of examples
showcasing real SLAM problems.

The SLAM formulation described so far is commonly referred
to as maximum a posteriori estimation, factor graph optimiza-
tion, graph-SLAM, full smoothing, or smoothing and mapping
(SAM). A popular variation of this framework is pose graph
optimization, in which the variables to be estimated are poses
sampled along the trajectory of the robot, and each factor im-
poses a constraint on a pair of poses.

MAP estimation has been proven to be more accurate and
efficient than original approaches for SLAM based on nonlin-
ear filtering. We refer the reader to the surveys [8], [70] for an
overview on filtering approaches, and to [236] for a comparison
between filtering and smoothing. We remark that some SLAM
systems based on EKF have also been demonstrated to attain
state-of-the-art performance. Excellent examples of EKF-based
SLAM systems include the Multistate Constraint Kalman Fil-
ter of Mourikis and Roumeliotis [175], and the VIN systems
of Kottas et al. [139] and Hesch et al. [106]. Not surprisingly,
the performance mismatch between filtering and MAP estima-
tion gets smaller when the linearization point for the EKF is
accurate (as it happens in visual-inertial navigation problems),
when using sliding-window filters, and when potential sources
of inconsistency in the EKF are taken care of [106], [109], [139].

As discussed in the next section, MAP estimation is usually
performed on a preprocessed version of the sensor data. In this
regard, it is often referred to as the SLAM back end.

B. Sensor-Dependent SLAM Front End

In practical robotics applications, it might be hard to write
directly the sensor measurements as an analytic function of

the state, as required in MAP estimation. For instance, if the
raw sensor data is an image, it might be hard to express the
intensity of each pixel as a function of the SLAM state; the
same difficulty arises with simpler sensors (e.g., a laser with a
single beam). In both cases, the issue is connected with the fact
that we are not able to design a sufficiently general, yet tractable
representation of the environment; even in the presence of such
a general representation, it would be hard to write an analytic
function that connects the measurements to the parameters of
such a representation.

For this reason, before the SLAM back end, it is common to
have a module, the front end, that extracts relevant features from
the sensor data. For instance, in vision-based SLAM, the front
end extracts the pixel location of few distinguishable points in
the environment; pixel observations of these points are now easy
to model within the back end. The front end is also in charge of
associating each measurement to a specific landmark (say, 3-D
point) in the environment: this is the so called data association.
More abstractly, the data association module associates each
measurement zk with a subset of unknown variablesXk such that
zk = hk (Xk ) + εk . Finally, the front end might also provide an
initial guess for the variables in the nonlinear optimization (4).
For instance, in feature-based monocular SLAM the front end
usually takes care of the landmark initialization, by triangulating
the position of the landmark from multiple views.

A pictorial representation of a typical SLAM system is given
in Fig. 2. The data association module in the front end in-
cludes a short-term data association block and a long-term one.
Short-term data association is responsible for associating cor-
responding features in consecutive sensor measurements; for
instance, short-term data association would track the fact that
2 pixel measurements in consecutive frames are picturing the
same 3-D point. On the other hand, long-term data association
(or loop closure) is in charge of associating new measurements
to older landmarks. We remark that the back end usually feeds
back information to the front end, e.g., to support loop closure
detection and validation.

The preprocessing that happens in the front end is sensor
dependent, since the notion of feature changes depending on
the input data stream we consider.

III. LONG-TERM AUTONOMY I: ROBUSTNESS

A SLAM system might be fragile in many aspects: failure can
be algorithmic2 or hardware-related. The former class includes
failure modes induced by limitation of the existing SLAM al-
gorithms (e.g., difficulty to handle extremely dynamic or harsh
environments). The latter includes failures due to sensor or ac-
tuator degradation. Explicitly addressing these failure modes is
crucial for long-term operation, where one can no longer make
simplifying assumptions about the structure of the environment
(e.g., mostly static) or fully rely on on-board sensors. In this sec-
tion, we review the main challenges to algorithmic robustness.
We then discuss open problems, including robustness against
hardware-related failures.

2We omit the (large) class of software-related failures. The nonexpert reader
must be aware that integration and testing are key aspects of SLAM and robotics
in general.
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One of the main sources of algorithmic failures is data associ-
ation. As mentioned in Section II, data association matches each
measurement to the portion of the state the measurement refers
to. For instance, in feature-based visual SLAM, it associates
each visual feature to a specific landmark. Perceptual aliasing,
the phenomenon in which different sensory inputs lead to the
same sensor signature, makes this problem particularly hard. In
the presence of perceptual aliasing, data association establishes
erroneous measurement-state matches (outliers, or false posi-
tives), which in turn result in wrong estimates from the back
end. On the other hand, when data association decides to incor-
rectly reject a sensor measurement as spurious (false negatives),
fewer measurements are used for estimation, at the expense of
estimation accuracy.

The situation is made worse by the presence of unmodeled
dynamics in the environment including both short-term and
seasonal changes, which might deceive short-term and long-
term data association. A fairly common assumption in current
SLAM approach is that the world remains unchanged as the
robot moves through it (in other words, landmarks are static).
This static world assumption holds true in a single mapping
run in small scale scenarios, as long as there are no short-term
dynamics (e.g., people and objects moving around). When map-
ping over longer time scales and in large environments, change
is inevitable.

Another aspect of robustness is that of doing SLAM in harsh
environments such as underwater [74], [131]. The challenges
in this case are the limited visibility, the constantly changing
conditions, and the impossibility of using conventional sensors
(e.g., laser range finder).

A. Brief Survey

Robustness issues connected to incorrect data association can
be addressed in the front end and/or in the back end of a SLAM
system. Traditionally, the front end has been entrusted with es-
tablishing correct data association. Short-term data association
is the easier one to tackle: if the sampling rate of the sen-
sor is relatively fast, compared to the dynamics of the robot,
tracking features that correspond to the same 3-D landmark
is easy. For instance, if we want to track a 3-D point across
consecutive images and assuming that the framerate is suffi-
ciently high, standard approaches based on descriptor matching
or optical flow [218] ensure reliable tracking. Intuitively, at high
framerate, the viewpoint of the sensor (camera, laser) does not
change significantly, hence the features at time t + 1 (and its
appearance) remain close to the ones observed at time t.3 Long-
term data association in the front end is more challenging and
involves loop closure detection and validation. For loop closure
detection at the front end, a brute-force approach which de-
tects features in the current measurement (e.g., image) and tries
to match them against all previously detected features quickly
becomes impractical. Bag-of-words models [226] avoid this in-
tractability by quantizing the feature space and allowing more
efficient search. Bag-of-words can be arranged into hierarchi-
cal vocabulary trees [189] that enable efficient lookup in large-

3In hindsight, the fact that short-term data association is much easier and
more reliable than the long-term one is what makes (visual, inertial) odometry
simpler than SLAM.

scale datasets. Bag-of-words-based techniques such as [54] have
shown reliable performance on the task of single session loop
closure detection. However, these approaches are not capable of
handling severe illumination variations as visual words can no
longer be matched. This has led to develop new methods that
explicitly account for such variations by matching sequences
[173], gathering different visual appearances into a unified rep-
resentation [49], or using spatial as well as appearance informa-
tion [107]. A detailed survey on visual place recognition can be
found in Lowry et al. [160]. Feature-based methods have also
been used to detect loop closures in laser-based SLAM front
ends; for instance, Tipaldi et al. [242] propose FLIRT features
for 2-D laser scans.

Loop closure validation, instead, consists of additional ge-
ometric verification steps to ascertain the quality of the loop
closure. In vision-based applications, RANSAC is commonly
used for geometric verification and outlier rejection, see [218]
and the references therein. In laser-based approaches, one can
validate a loop closure by checking how well the current laser
scan matches the existing map (i.e., how small is the residual
error resulting from scan matching).

Despite the progress made to robustify loop closure detec-
tion at the front end, in presence of perceptual aliasing, it is
unavoidable that wrong loop closures are fed to the back end.
Wrong loop closures can severely corrupt the quality of the
MAP estimate [238]. In order to deal with this issue, a recent
line of research [34], [150], [191], [238] proposes techniques to
make the SLAM back end resilient against spurious measure-
ments. These methods reason on the validity of loop closure
constraints by looking at the residual error induced by the con-
straints during optimization. Other methods, instead, attempt to
detect outliers a priori, that is, before any optimization takes
place, by identifying incorrect loop closures that are not sup-
ported by the odometry [215].

In dynamic environments, the challenge is twofold. First, the
SLAM system has to detect, discard, or track changes. While
mainstream approaches attempt to discard the dynamic portion
of the scene [180], some works include dynamic elements as
part of the model [12], [253]. The second challenge regards the
fact that the SLAM system has to model permanent or semiper-
manent changes, and understand how and when to update the
map accordingly. Current SLAM systems that deal with dynam-
ics either maintain multiple (time-dependent) maps of the same
location [61], or have a single representation parameterized by
some time-varying parameter [140].

B. Open Problems

In this section, we review open problems and novel research
questions arising in long-term SLAM.

1) Failsafe SLAM and Recovery: Despite the progress made
on the SLAM back end, current SLAM solvers are still vulnera-
ble in the presence of outliers. This is mainly due to the fact that
virtually all robust SLAM techniques are based on iterative op-
timization of nonconvex costs. This has two consequences: first,
the outlier rejection outcome depends on the quality of the initial
guess fed to the optimization; second, the system is inherently
fragile: the inclusion of a single outlier degrades the quality of
the estimate, which in turn degrades the capability of discerning
outliers later on. These types of failures lead to an incorrect
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linearization point from which recovery is not trivial, especially
in an incremental setup. An ideal SLAM solution should be
fail-safe and failure-aware, i.e., the system needs to be aware
of imminent failure (e.g., due to outliers or degeneracies) and
provide recovery mechanisms that can reestablish proper oper-
ation. None of the existing SLAM approaches provides these
capabilities. A possible way to achieve this is a tighter integra-
tion between the front end and the back end, but how to achieve
that is still an open question.

2) Robustness to HW Failure: While addressing hardware
failures might appear outside the scope of SLAM, these fail-
ures impact the SLAM system, and the latter can play a key
role in detecting and mitigating sensor and locomotion failures.
If the accuracy of a sensor degrades due to malfunctioning,
off-nominal conditions, or aging, the quality of the sensor mea-
surements (e.g., noise, bias) does not match the noise model
used in the back end [see c.f., (3)], leading to poor estimates.
This naturally poses different research questions: how can we
detect degraded sensor operation? how can we adjust sensor
noise statistics (covariances, biases) accordingly? more gener-
ally, how do we resolve conflicting information from different
sensors? This seems crucial in safety-critical applications (e.g.,
self-driving cars) in which misinterpretation of sensor data may
put human life at risk.

3) Metric Relocalization: While appearance-based, as op-
posed to feature-based, methods are able to close loops between
day and night sequences or between different seasons, the re-
sulting loop closure is topological in nature. For metric relocal-
ization (i.e., estimating the relative pose with respect to the pre-
viously built map), feature-based approaches are still the norm;
however, current feature descriptors lack sufficient invariance to
work reliably under such circumstances. Spatial information, in-
herent to the SLAM problem, such as trajectory matching, might
be exploited to overcome these limitations. Additionally, map-
ping with one sensor modality (e.g., 3-D lidar) and localizing
in the same map with a different sensor modality (e.g., camera)
can be a useful addition. The work of Wolcott et al. [260] is an
initial step in this direction.

4) Time Varying and Deformable Maps: Mainstream SLAM
methods have been developed with the rigid and static world
assumption in mind; however, the real world is nonrigid both due
to dynamics as well as the inherent deformability of objects. An
ideal SLAM solution should be able to reason about dynamics
in the environment including nonrigidity, work over long time
periods generating “all terrain” maps, and be able to do so in real
time. In the computer vision community, there have been several
attempts since the 80s to recover shape from nonrigid objects
but with restrictive applicability. Recent results in nonrigid SfM
such as [92], [97] are less restrictive but only work in small
scenarios. In the SLAM community, Newcombe et al. [182]
have address the nonrigid case for small-scale reconstruction.
However, addressing the problem of nonrigid maps at a large
scale is still largely unexplored.

5) Automatic Parameter Tuning: SLAM systems (in partic-
ular, the data association modules) require extensive parameter
tuning in order to work correctly for a given scenario. These
parameters include thresholds that control feature matching,
RANSAC parameters, and criteria to decide when to add new
factors to the graph or when to trigger a loop closing algorithm to

search for matches. If SLAM has to work “out of the box” in ar-
bitrary scenarios, methods for automatic tuning of the involved
parameters need to be considered.

IV. LONG-TERM AUTONOMY II: SCALABILITY

While modern SLAM algorithms have been successfully
demonstrated mostly in indoor building-scale environments, in
many application endeavors, robots must operate for an ex-
tended period of time over larger areas. These applications in-
clude ocean exploration for environmental monitoring, nonstop
cleaning robots in our ever changing cities, or large-scale pre-
cision agriculture. For such applications, the size of the fac-
tor graph underlying SLAM can grow unbounded, due to the
continuous exploration of new places and the increasing time
of operation. In practice, the computational time and memory
footprint are bounded by the resources of the robot. Therefore,
it is important to design SLAM methods whose computational
and memory complexity remains bounded.

In the worst case, successive linearization methods based on
direct linear solvers imply a memory consumption which grows
quadratically in the number of variables. When using iterative
linear solvers (e.g., the conjugate gradient [63]) the memory
consumption grows linearly in the number of variables. The
situation is further complicated by the fact that, when revisiting
a place multiple times, factor graph optimization becomes less
efficient as nodes and edges are continuously added to the same
spatial region, compromising the sparsity structure of the graph.

In this section, we review some of the current approaches to
control, or at least reduce, the growth of the size of the problem,
and discuss open challenges.

A. Brief Survey

We focus on two ways to reduce the complexity of factor
graph optimization: 1) sparsification methods, which tradeoff
information loss for memory and computational efficiency, and
1) out-of-core and multirobot methods, which split the compu-
tation among many robots/processors.

1) Node and Edge Sparsification: This family of methods
addresses scalability by reducing the number of nodes added to
the graph, or by pruning less “informative” nodes and factors.
Ila et al. [115] use an information-theoretic approach to add only
nonredundant nodes and highly informative measurements to
the graph. Johannsson et al. [120], when possible, avoid adding
new nodes to the graph by inducing new constraints between ex-
isting nodes, such that the number of variables grows only with
size of the explored space and not with the mapping duration.
Kretzschmar et al. [141] propose an information-based crite-
rion for determining which nodes to marginalize in pose graph
optimization. Carlevaris–Bianco and Eustice [29], and Mazu-
ran et al. [170] introduce the generic linear constraint (GLC)
factors and the nonlinear graph sparsification (NGS) method,
respectively. These methods operate on the Markov blanket of a
marginalized node and compute a sparse approximation of the
blanket. Huang et al. [108] sparsify the Hessian matrix (arising
in the normal equations) by solving an �1-regularized minimiza-
tion problem.

Another line of work that allows reducing the number of
parameters to be estimated over time is the continuous-time
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trajectory estimation. The first SLAM approach of this class was
proposed by Bibby and Reid using cubic-splines to represent
the continuous trajectory of the robot [13]. In their approach,
the nodes in the factor graph represented the control-points
(knots) of the spline which were optimized in a sliding window
fashion. Later, Furgale et al. [89] proposed the use of basis func-
tions, particularly B-splines, to approximate the robot trajec-
tory, within a batch-optimization formulation. Sliding-window
B-spline formulations were also used in SLAM with rolling
shutter cameras, with a landmark-based representation by
Patron-Perez et al. [196] and with a semidense direct represen-
tation by Kim et al. [133]. More recently, Mueggler et al. [177]
applied the continuous-time SLAM formulation to event-based
cameras. Bosse et al. [22] extended the continuous 3-D scan-
matching formulation from [20] to a large-scale SLAM appli-
cation. Later, Anderson et al. [5] and Dubé et al. [68] pro-
posed more efficient implementations by using wavelets or
sampling nonuniform knots over the trajectory, respectively.
Tong et al. [243] changed the parametrization of the trajectory
from basis curves to a Gaussian process representation, where
nodes in the factor graph are actual robot poses and any other
pose can be interpolated by computing the posterior mean at
the given time. An expensive batch Gauss–Newton optimiza-
tion is needed to solve for the states in this first proposal. Bar-
foot et al. [4] then proposed a Gaussian process with an exactly
sparse inverse kernel that drastically reduces the computational
time of the batch solution.

2) Out-of-Core (Parallel) SLAM: Parallel out-of-core algo-
rithms for SLAM split the computation (and memory) load of
factor graph optimization among multiple processors. The key
idea is to divide the factor graph into different subgraphs and
optimize the overall graph by alternating local optimization of
each subgraph, with a global refinement. The corresponding ap-
proaches are often referred to as submapping algorithms, an idea
that dates back to the initial attempts to tackle large-scale maps
[19]. Ni et al. [187] and Zhao et al. [267] present submapping ap-
proaches for factor graph optimization, organizing the submaps
in a binary tree structure. Grisetti et al. [99] propose a hierarchy
of submaps: whenever an observation is acquired, the highest
level of the hierarchy is modified and only the areas which are
substantially affected are changed at lower levels. Some meth-
ods approximately decouple localization and mapping in two
threads that run in parallel like Klein and Murray [135]. Other
methods resort to solving different stages in parallel: inspired
by [223], Strasdat et al. [235] take a two-stage approach and
optimize first a local pose-features graph and then a pose-pose
graph; Williams et al. [259] split factor graph optimization in
a high-frequency filter and low-frequency smoother, which are
periodically synchronized.

3) Distributed Multirobot SLAM: One way of mapping a
large-scale environment is to deploy multiple robots doing
SLAM, and divide the scenario in smaller areas, each one
mapped by a different robot. This approach has two main vari-
ants: the centralized one, where robots build submaps and trans-
fer the local information to a central station that performs infer-
ence [67], [210], and the decentralized one, where there is no
central data fusion and the agents leverage local communication
to reach consensus on a common map. Nerurkar et al. [181]
propose an algorithm for cooperative localization based on

distributed conjugate gradient. Araguez et al. [6] investi-
gate consensus-based approaches for map merging. Knuth
and Barooah [137] estimate 3-D poses using distributed gra-
dient descent. In Lazaro et al. [151], robots exchange por-
tions of their factor graphs, which are approximated in the
form of condensed measurements to minimize communication.
Cunnigham et al. [55] use Gaussian elimination, and develop an
approach, called DDF-SAM, in which each robot exchanges a
Gaussian marginal over the separators (i.e., the variables shared
by multiple robots). A recent survey on multirobot SLAM ap-
proaches can be found in [216].

While Gaussian elimination has become a popular approach
it has two major shortcomings. First, the marginals to be ex-
changed among the robots are dense, and the communication
cost is quadratic in the number of separators. This motivated
the use of sparsification techniques to reduce the communica-
tion cost [197]. The second reason is that Gaussian elimination
is performed on a linearized version of the problem, hence
approaches such as DDF-SAM [55] require good lineariza-
tion points and complex bookkeeping to ensure consistency
of the linearization points across the robots. An alternative ap-
proach to Gaussian elimination is the Gauss–Seidel approach of
Choudhary et al. [48], which implies a communication burden
which is linear in the number of separators.

B. Open Problems

Despite the amount of work to reduce complexity of factor
graph optimization, the literature has large gaps on other aspects
related to long-term operation.

1) Map Representation: A fairly unexplored question is how
to store the map during long-term operation. Even when mem-
ory is not a tight constraint, e.g., data is stored on the cloud, raw
representations as point clouds or volumetric maps (see also
Section V) are wasteful in terms of memory; similarly, storing
feature descriptors for vision-based SLAM quickly becomes
cumbersome. Some initial solutions have been recently pro-
posed for localization against a compressed known map [163],
and for memory-efficient dense reconstruction [136].

2) Learning, Forgetting, and Remembering: A related open
question for long-term mapping is how often to update the in-
formation contained in the map and how to decide when this
information becomes outdated and can be discarded. When is
it fine, if ever, to forget? In which case, what can be forgot-
ten and what is essential to maintain? Can parts of the map
be “off-loaded” and recalled when needed? While this is clearly
task-dependent, no grounded answer to these questions has been
proposed in the literature.

3) Robust Distributed Mapping: While approaches for out-
lier rejection have been proposed in the single robot case, the
literature on multirobot SLAM barely deals with the problem
of outliers. Dealing with spurious measurements is particularly
challenging for two reasons. First, the robots might not share a
common reference frame, making it harder to detect and reject
wrong loop closures. Second, in the distributed setup, the robots
have to detect outliers from very partial and local information.
An early attempt to tackle this issue is [85], in which robots
actively verify location hypotheses using a rendezvous strat-
egy before fusing information. Indelman et al. [117] propose a
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probabilistic approach to establish a common reference frame
in the face of spurious measurements.

4) Resource-Constrained Platforms: Another relatively un-
explored issue is how to adapt existing SLAM algorithms to the
case in which the robotic platforms have severe computational
constraints. This problem is of great importance when the size
of the platform is scaled down, e.g., mobile phones, microaerial
vehicles, or robotic insects [261]. Many SLAM algorithms are
too expensive to run on these platforms, and it would be de-
sirable to have algorithms in which one can tune a “knob” that
allows to gently trade off accuracy for computational cost. Sim-
ilar issues arise in the multirobot setting: how can we guarantee
reliable operation for multirobot teams when facing tight band-
width constraints and communication dropout? The “version
control” approach of Cieslewski et al. [50] is a first study in this
direction.

V. REPRESENTATION I: METRIC MAP MODELS

This section discusses how to model geometry in SLAM.
More formally, a metric representation (or metric map) is a sym-
bolic structure that encodes the geometry of the environment.
We claim that understanding how to choose a suitable metric
representation for SLAM (and extending the set or represen-
tations currently used in robotics) will impact many research
areas, including long-term navigation, physical interaction with
the environment, and human-robot interaction.

Geometric modeling appears much simpler in the 2-D case,
with only two predominant paradigms: landmark-based maps
and occupancy grid maps. The former models the environment
as a sparse set of landmarks, the latter discretizes the environ-
ment in cells and assigns a probability of occupation to each
cell. The problem of standardization of these representations
in the 2-D case has been tackled by the IEEE RAS Map Data
Representation Working Group, which recently released a stan-
dard for 2-D maps in robotics [114]; the standard defines the
two main metric representations for planar environments (plus
topological maps) in order to facilitate data exchange, bench-
marking, and technology transfer.

The question of 3-D geometry modeling is more delicate,
and the understanding of how to efficiently model 3-D geom-
etry during mapping is in its infancy. In this section, we re-
view metric representations, taking a broad perspective across
robotics, computer vision, computer aided design (CAD), and
computer graphics. Our taxonomy draws inspiration from [81],
[209], [221], and includes pointers to more recent work.

A. Landmark-Based Sparse Representations

Most SLAM methods represent the scene as a set of sparse
3-D landmarks corresponding to discriminative features in the
environment (e.g., lines, corners) [179]; one example is shown in
Fig. 4(left). These are commonly referred to as landmark-based
or feature-based representations, and have been widespread in
mobile robotics since early work on localization and mapping,
and in computer vision in the context of Structure from Mo-
tion [3], [244]. A common assumption underlying these repre-
sentations is that the landmarks are distinguishable, i.e., sensor
data measure some geometric aspect of the landmark, but also
provide a descriptor which establishes a (possibly uncertain)

Fig. 4. Left: feature-based map of a room produced by ORB-SLAM [179].
Right: dense map of a desktop produced by DTAM [184].

data association between each measurement and the correspond-
ing landmark. Previous work also investigates different 3-D
landmark parameterizations, including global and local Carte-
sian models, and inverse depth parametrization [174]. While a
large body of work focuses on the estimation of point features,
the robotics literature includes extensions to more complex ge-
ometric landmarks, including lines, segments, or arcs [162].

B. Low-Level Raw Dense Representations

Contrary to landmark-based representations, dense represen-
tations attempt to provide high-resolution models of the 3-D ge-
ometry; these models are more suitable for obstacle avoidance,
or for visualization and rendering, see Fig. 4(right). Among
dense models, raw representations describe the 3-D geometry
by means of a large unstructured set of points (i.e., point clouds)
or polygons (i.e., polygon soup [222]). Point clouds have been
widely used in robotics, in conjunction with stereo and RGB-D
cameras, as well as 3-D laser scanners [190]. These representa-
tions have recently gained popularity in monocular SLAM, in
conjunction with the use of direct methods [118], [184], [203],
which estimate the trajectory of the robot and a 3-D model di-
rectly from the intensity values of all the image pixels. Slightly
more complex representations are surfel maps, which encode
the geometry as a set of disks [105], [257]. While these repre-
sentations are visually pleasant, they are usually cumbersome as
they require storing a large amount of data. Moreover, they give
a low-level description of the geometry, neglecting, for instance,
the topology of the obstacles.

C. Boundary and Spatial-Partitioning Dense Representations

These representations go beyond unstructured sets of
low-level primitives (e.g., points) and attempt to explicitly
represent surfaces (or boundaries) and volumes. These rep-
resentations lend themselves better to tasks such as motion
or footstep planning, obstacle avoidance, manipulation, and
other physics-based reasoning, such as contact reasoning.
Boundary representations (b-reps) define 3-D objects in
terms of their surface boundary. Particularly, simple boundary
representations are plane-based models, which have been used
for mapping in [45], [124], and [162]. More general b-reps
include curve-based representations (e.g., tensor product of
NURBS or B-splines), surface mesh models (connected sets
of polygons), and implicit surface representations. The latter
specify the surface of a solid as the zero crossing of a function
defined on R3 [17]; examples of functions include radial-basis
functions [39], signed-distance function [56], and truncated
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signed-distance function (TSDF) [264]. TSDF are currently
a popular representation for vision-based SLAM in robotics,
attracting increasing attention after the seminal work [183].
Mesh models have been also used in [258] and [257].

Spatial-partitioning representations define 3-D objects as a
collection of contiguous nonintersecting primitives. The most
popular spatial-partitioning representation is the so called
spatial-occupancy enumeration, which decomposes the 3-D
space into identical cubes (voxels), arranged in a regular 3-D
grid. More efficient partitioning schemes include octree, Polyg-
onal Map octree, and Binary Space-Partitioning tree [81, sec.
12.6]. In robotics, octree representations have been used for 3-D
mapping [76], while commonly used occupancy grid maps [72]
can be considered as probabilistic variants of spatial-partitioning
representations. In 3-D environments without hanging obstacles,
2.5-D elevation maps have been also used [24]. Before mov-
ing to higher-level representations, let us better understand how
sparse (feature-based) representations (and algorithms) compare
to dense ones in visual SLAM.

Which one is best: Feature-based or direct methods? Feature-
based approaches are quite mature, with a long history of suc-
cess [60]. They allow to build accurate and robust SLAM sys-
tems with automatic relocation and loop closing [179]. However,
such systems depend on the availability of features in the en-
vironment, the reliance on detection and matching thresholds,
and on the fact that most feature detectors are optimized for
speed rather than precision. On the other hand, direct methods
work with the raw pixel information and dense-direct meth-
ods exploit all the information in the image, even from areas
where gradients are small; thus, they can outperform feature-
based methods in scenes with poor texture, defocus, and motion
blur [184], [203]. However, they require high computing power
(GPUs) for real-time performance. Furthermore, how to jointly
estimate dense structure and motion is still an open problem
(currently they can be only be estimated subsequently to one
another). To avoid the caveats of feature-based methods, there
are two alternatives. Semidense methods overcome the high-
computation requirement of dense method by exploiting only
pixels with strong gradients (i.e., edges) [73], [84]; semidirect
methods instead leverage both sparse features (such as corners
or edges) and direct methods [84] and are proven to be the most
efficient [84]; additionally, because they rely on sparse features,
they allow joint estimation of structure and motion.

D. High-Level Object-Based Representations

While point clouds and boundary representations are cur-
rently dominating the landscape of dense mapping, we envision
that higher-level representations, including objects and solid
shapes, will play a key role in the future of SLAM. Early
techniques to include object-based reasoning in SLAM are
“SLAM++” from Salas–Moreno et al. [217], the work from
Civera et al. [51], and Dame et al. [57]. Solid representations
explicitly encode the fact that real objects are 3-D rather than
1-D (i.e., points), or 2-D (surfaces). Modeling objects as solid
shapes allows associating physical notions, such as volume and
mass, to each object, which is definitely important for robots
which have to interact the world. Luckily, existing literature
from CAD and computer graphics paved the way toward these

developments. In the following, we list few examples of solid
representations that have not yet been used in a SLAM context:

1) Parameterized Primitive Instancing: Relies on the defi-
nition of families of objects (e.g., cylinder, sphere). For
each family, one defines a set of parameters (e.g., radius,
height), that uniquely identifies a member (or instance)
of the family. This representation may be of interest for
SLAM since it enables the use of extremely compact
models, while still capturing many elements in man-made
environments.

2) Sweep Representations: Define a solid as the sweep of
a 2-D or 3-D object along a trajectory through space.
Typical sweeps representations include translation sweep
(or extrusion) and rotation sweep. For instance, a cylin-
der can be represented as a translation sweep of a circle
along an axis that is orthogonal to the plane of the circle.
Sweeps of 2-D cross section are known as generalized
cylinders in computer vision [14], and they have been
used in robotic grasping [200]. This representation seems
particularly suitable to reason on the occluded portions of
the scene, by leveraging symmetries.

3) Constructive Solid Geometry: Defines complex solids by
means of boolean operations between primitives [209].
An object is stored as a tree in which the leaves are
the primitives and the edges represent operations. This
representation can model fairly complicated geometry and
is extensively used in computer graphics.

We conclude this review by mentioning that other types
of representations exist, including feature-based models in
CAD [220], dictionary-based representations [266], affordance-
based models [134], generative and procedural models [172],
and scene graphs [121]. In particular, dictionary-based repre-
sentations, which define a solid as a combination of atoms in
a dictionary, have been considered in robotics and computer
vision, with dictionary learned from data [266] or based on
existing repositories of object models [149], [157].

E. Open Problems

The following problems regarding metric representation for
SLAM deserve a large amount of fundamental research, and are
still vastly unexplored.

1) High-Level Expressive Representations in SLAM: While
most of the robotics community is currently focusing on point
clouds or TSDF to model 3-D geometry, these representations
have two main drawbacks. First, they are wasteful of memory.
For instance, both representations use many parameters (i.e.,
points, voxels) to encode even a simple environment, such as
an empty room (this issue can be partially mitigated by the so-
called voxel hashing [188]). Second, these representations do
not provide any high-level understanding of the 3-D geometry.
For instance, consider the case in which the robot has to figure
out if it is moving in a room or in a corridor. A point cloud does
not provide readily usable information about the type of envi-
ronment (i.e., room versus corridor). On the other hand, more
sophisticated models (e.g., parameterized primitive instancing)
would provide easy ways to discern the two scenes (e.g., by
looking at the parameters defining the primitive). Therefore,
the use of higher-level representations in SLAM carries three
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promises. First, using more compact representations would pro-
vide a natural tool for map compression in large-scale mapping.
Second, high-level representations would provide a higher-level
description of objects geometry which is a desirable feature to
facilitate data association, place recognition, semantic under-
standing, and human-robot interaction; these representations
would also provide a powerful support for SLAM, enabling
to reason about occlusions, leverage shape priors, and inform
the inference/mapping process of the physical properties of the
objects (e.g., weight, dynamics). Finally, using rich 3-D repre-
sentations would enable interactions with existing standards for
construction and management of modern buildings, including
CityGML [193] and IndoorGML [194]. No SLAM techniques
can currently build higher-level representations, beyond point
clouds, mesh models, surfels models, and TSDFs. Recent ef-
forts in this direction include [18], [52], [231].

2) Optimal Representations: While there is a relatively large
body of literature on different representations for 3-D geome-
try, few works have focused on understanding which criteria
should guide the choice of a specific representation. Intuitively,
in simple indoor environments, one should prefer parametrized
primitives since few parameters can sufficiently describe
the 3-D geometry; on the other hand, in complex outdoor
environments, one might prefer mesh models. Therefore, how
should we compare different representations and how should we
choose the “optimal” representation? Requicha [209] identifies
few basic properties of solid representations that allow compar-
ing different representation. Among these properties we find:
domain (the set of real objects that can be represented), concise-
ness (the “size” of a representation for storage and transmission),
ease of creation (in robotics this is the “inference” time required
for the construction of the representation), and efficacy in the
context of the application (this depends on the tasks for which
the representation is used). Therefore, the “optimal” represen-
tation is the one that enables preforming a given task, while
being concise and easy to create. Soatto and Chiuso [229] de-
fine the optimal representation as a minimal sufficient statistics
to perform a given task, and its maximal invariance to nuisance
factors. Finding a general yet tractable framework to choose the
best representation for a task remains an open problem.

3) Automatic Adaptive Representations: Traditionally, the
choice of a representation has been entrusted to the roboticist
designing the system, but this has two main drawbacks. First, the
design of a suitable representation is a time-consuming task that
requires an expert. Second, it does not allow any flexibility: once
the system is designed, the representation of choice cannot be
changed; ideally, we would like a robot to use more or less com-
plex representations depending on the task and the complexity
of the environment. The automatic design of optimal represen-
tations will have a large impact on long-term navigation.

VI. REPRESENTATION II: SEMANTIC MAP MODELS

Semantic mapping consists in associating semantic concepts
to geometric entities in a robot’s surroundings. Recently, the lim-
itations of purely geometric maps have been recognized and this
has spawned a significant and ongoing body of work in semantic
mapping of environments, in order to enhance robot’s autonomy

and robustness, facilitate more complex tasks (e.g., avoid
muddy-road while driving), move from path-planning to task-
planning, and enable advanced human-robot interaction [10],
[27], [217]. These observations have led to different approaches
for semantic mapping which vary in the numbers and types of
semantic concepts, and means of associating them with different
parts of the environments. As an example, Pronobis and Jens-
felt [206] label different rooms, while Pillai and Leonard [201]
segment several known objects in the map. With the exception of
few approaches, semantic parsing at the basic level was formu-
lated as a classification problem, where simple mapping between
the sensory data and semantic concepts has been considered.

A. Semantic Versus topological SLAM

As mentioned in Section I, topological mapping drops the
metric information and only leverages place recognition to
build a graph in which the nodes represent distinguishable
“places,’ while edges denote reachability among places. We note
that topological mapping is radically different from semantic
mapping. While the former requires recognizing a previously
seen place (disregarding whether that place is a kitchen, a corri-
dor, etc.), the latter is interested in classifying the place accord-
ing to semantic labels. A comprehensive survey on vision-based
topological SLAM is presented in Lowry et al. [160], and some
of its challenges are discussed in Section III. In the rest of this
section, we focus on semantic mapping.

B. Semantic SLAM: Structure and Detail of Concepts

The unlimited number of, and relationships among, concepts
for humans opens a more philosophical and task-driven decision
about the level and organization of the semantic concepts. The
detail and organization depend on the context of what, and
where, the robot is supposed to perform a task, and they impact
the complexity of the problem at different stages. A semantic
representation is built by defining the following aspects:

1) Level/Detail of Semantic Concepts: For a given robotic
task, e.g., “going from room A to room B,” coarse cat-
egories (rooms, corridor, doors) would suffice for a suc-
cessful performance, while for other tasks, e.g., “pick up a
tea cup,” finer categories (table, tea cup, glass) are needed.

2) Organization of Semantic Concepts: The semantic con-
cepts are not exclusive. Even more, a single entity can
have an unlimited number of properties or concepts. A
chair can be “movable” and “sittable”; a dinner table can
be “movable” and “unsittable.” While the chair and the ta-
ble are pieces of furniture, they share the movable property
but with different usability. Flat or hierarchical organiza-
tions, sharing or not some properties, have to be designed
to handle this multiplicity of concepts.

C. Brief Survey

There are three main ways to attack semantic mapping, and
assign semantic concepts to data.

1) SLAM Helps Semantics: The first robotic researchers
working on semantic mapping started by the straightforward
approach of segmenting the metric map built by a classical
SLAM system into semantic concepts. An early work was that
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of Mozos et al. [176], which builds a geometric map using a
2-D laser scan and then fuses the classified semantic places
from each robot pose through an associative Markov network
in an offline manner. Similarly, Lai et al. [148] build a 3-D map
from RGB-D sequences to carry out an offline object classifi-
cation. An online semantic mapping system was later proposed
by Pronobis et al. [206], who combine three layers of reason-
ing (sensory, categorical, and place) to build a semantic map of
the environment using laser and camera sensors. More recently,
Cadena et al. [27] use motion estimation, and interconnect a
coarse semantic segmentation with different object detectors to
outperform the individual systems. Pillai and Leonard [201] use
a monocular SLAM system to boost the performance in the task
of object recognition in videos.

2) Semantics Helps SLAM: Soon after the first semantic
maps came out, another trend started by taking advantage of
known semantic classes or objects. The idea is that if we can
recognize objects or other elements in a map then we can use
our prior knowledge about their geometry to improve the es-
timation of that map. First attempts were done in small scale
by Castle et al. [45] and by Civera et al. [51] with a monocu-
lar SLAM with sparse features, and by Dame et al. [57] with a
dense map representation. Taking advantage of RGB-D sensors,
Salas-Moreno et al. [217] propose a SLAM system based on the
detection of known objects in the environment.

3) Joint SLAM and Semantics Inference: Researchers with
expertise in both computer vision and robotics realized that they
could perform monocular SLAM and map segmentation within
a joint formulation. The online system of Flint et al. [80] presents
a model that leverages the Manhattan world assumption to seg-
ment the map in the main planes in indoor scenes. Bao et al. [10]
propose one of the first approaches to jointly estimate camera
parameters, scene points, and object labels using both geometric
and semantic attributes in the scene. In their work, the authors
demonstrate the improved object recognition performance and
robustness, at the cost of a run-time of 20 minutes per image-
pair, and the limited number of object categories makes the
approach impractical for online robot operation. In the same
line, Häne et al. [103] solve a more specialized class-dependent
optimization problem in outdoors scenarios. Although still of-
fline, Kundu et al. [147] reduce the complexity of the problem by
a late fusion of the semantic segmentation and the metric map,
a similar idea was proposed earlier by Sengupta et al. [219]
using stereo cameras. It should be noted that [147] and [219]
focus only on the mapping part and they do not refine the early
computed poses in this late stage. Recently, a promising online
system was proposed by Vineet et al. [251] using stereo cameras
and a dense map representation.

D. Open Problems

The problem of including semantic information in SLAM
is in its infancy and contrary to metric SLAM, it still lacks
a cohesive formulation. Fig. 5 shows a construction site as a
simple example where we can find the challenges discussed
below.

1) Consistent Semantic-Metric Fusion: Although some
progress has been done in terms of temporal fusion of, for
instance, per frame semantic evidence [219], [251], the problem
of consistently fusing several sources of semantic information

Fig. 5. Semantic understanding allows humans to predict changes in the envi-
ronment at different time scales. For instance, in the construction site shown in
the figure, humans account for the motion of the crane and expect the crane-truck
not to move in the immediate future, while at the same time we can predict the
semblance of the site which will allow us to localize even after the construction
finishes. This is possible because we reason on the functional properties and
interrelationships of the entities in the environment. Enhancing our robots with
similar capabilities is an open problem for semantic SLAM.

with metric information coming at different points in time is
still open. Incorporating the confidence or uncertainty of the
semantic categorization in the already well known factor graph
formulation for the metric representation is a possible way to go
for a joint semantic-metric inference framework.

2) Semantic Mapping is Much More Than a Categorization
Problem: The semantic concepts are evolving to more special-
ized information such as affordances and actionability4 of the
entities in the map and the possible interactions among differ-
ent active agents in the environment. How to represent these
properties, and interrelationships, are questions to answer for
high level human-robot interaction.

3) Ignorance, Awareness, and Adaptation: Given some prior
knowledge, the robot should be able to reason about new con-
cepts and their semantic representations, that is, it should be able
to discover new objects or classes in the environment, learning
new properties as result of active interaction with other robots
and humans, and adapting the representations to slow and abrupt
changes in the environment over time. For example, suppose that
a wheeled-robot needs to classify whether a terrain is drivable or
not, to inform its navigation system. If the robot finds some mud
on a road, that was previously classified as drivable, the robot
should learn a new class depending on the grade of difficulty
of crossing the muddy region, or adjust its classifier if another
vehicle stuck in the mud is perceived.

4) Semantic-Based Reasoning5: As humans, the semantic
representations allow us to compress and speed-up reasoning
about the environment, while assessing accurate metric rep-
resentations takes some effort. Currently, this is not the case
for robots. Robots can handle (colored) metric representation

4The term affordances refers to the set of possible actions on a given ob-
ject/environment by a given agent [93], while the term actionability includes
the expected utility of these actions.

5Reasoning in the sense of localization and mapping. This is only a subarea
of the vast area of Knowledge Representation and Reasoning in the field of
Artificial Intelligence that deals with solving complex problems, like having a
dialogue in natural language or inferring a person’s mood.
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but they do not truly exploit the semantic concepts. Our robots
are currently unable to effectively and efficiently localize and
continuously map using the semantic concepts (categories, re-
lationships and properties) in the environment. For instance,
when detecting a car, a robot should infer the presence of a
planar ground under the car (even if occluded) and when the
car moves, the map update should only refine the hallucinated
ground with the new sensor readings. Even more, the same up-
date should change the global pose of the car as a whole in a
single and efficient operation as opposed to update, for instance,
every single voxel.

VII. NEW THEORETICAL TOOLS FOR SLAM

This section discusses recent progress toward establishing
performance guarantees for SLAM algorithms, and elucidates
open problems. The theoretical analysis is important for three
main reasons. First, SLAM algorithms and implementations are
often tested in few problem instances and it is hard to under-
stand how the corresponding results generalize to new instances.
Second, theoretical results shed light on the intrinsic properties
of the problem, revealing aspects that may be counter-intuitive
during empirical evaluation. Third, a true understanding of the
structure of the problem allows pushing the algorithmic bound-
aries, enabling to extend the set of real-world SLAM instances
that can be solved.

Early theoretical analysis of SLAM algorithms were based
on the use of EKF; we refer the reader to [65], [255] for
a comprehensive discussion, on consistency and observability
of EKF SLAM.6 Here we focus on factor graph optimization
approaches. Besides the practical advantages (accuracy, effi-
ciency), factor graph optimization provides an elegant frame-
work which is more amenable to analysis.

In the absence of priors, MAP estimation reduces to max-
imum likelihood estimation. Consequently, without priors,
SLAM inherits all the properties of maximum likelihood estima-
tors: the estimator in (4) is consistent, asymptotically Gaussian,
asymptotically efficient, and invariant to transformations in the
Euclidean space [171, Th. 11-1,2]. Some of these properties
are lost in presence of priors (e.g., the estimator is no longer
invariant [171, page 193]).

In this context, we are more interested in algorithmic prop-
erties: Does a given algorithm converge to the MAP estimate?
How can we improve or check convergence? What is the break-
down point in presence of spurious measurements?

A. Brief Survey

Most SLAM algorithms are based on iterative nonlinear op-
timization [64], [100], [125], [126], [192], [204]. SLAM is a
nonconvex problem and iterative optimization can only guaran-
tee local convergence. When an algorithm converges to a local
minimum,7 it usually returns an estimate that is completely

6Interestingly, the lack of observability manifests itself very clearly in factor
graph optimization, since the linear system to be solved in iterative methods
becomes rank-deficient; this enables the design of techniques that can explicitly
deal with problems that are not fully observable [265].

7We use the term “local minimum” to denote a minimum of the cost which
does not attain the globally optimal objective.

Fig. 6. Backbone of most SLAM algorithms is the MAP estimation of the
robot trajectory, which is computed via nonconvex optimization. The figure
shows trajectory estimates for two simulated benchmarking problems, namely
sphere-a and torus, in which the robot travels on the surface of a sphere
and a torus. The top row reports the correct trajectory estimate, corresponding
to the global optimum of the optimization problem. The bottom row shows in-
correct trajectory estimates resulting from convergence to local minima. Recent
theoretical tools are enabling detection of wrong convergence episodes, and are
opening avenues for failure detection and recovery techniques.

wrong and unsuitable for navigation (see Fig. 6). State-of-the-
art iterative solvers fail to converge to a global minimum of the
cost for relatively small noise levels [33], [38].

Failure to converge in iterative methods has triggered efforts
toward a deeper understanding of the SLAM problem. Huang
et al. [111] pioneered this effort, with initial works discussing
the nature of the nonconvexity in SLAM. Huang et al. [112]
discuss the number of minima in small pose graph optimization
problems. Knuth and Barooah [138] investigate the growth of
the error in the absence of loop closures. Carlone [30] provides
estimates of the basin of convergence for the Gauss–Newton
method. Carlone and Censi [33] show that rotation estimation
can be solved in closed form in 2-D and show that the corre-
sponding estimate is unique. The recent use of alternative max-
imum likelihood formulations (e.g., assuming Von Mises noise
on rotations [35], [211]) has enabled even stronger results. Car-
lone and Dellaert [32], [37] show that under certain conditions
(strong duality) that are often encountered in practice, the maxi-
mum likelihood estimate is unique and pose graph optimization
can be solved globally, via (convex) semidefinite programming
(SDP). A very recent overview on theoretical aspects of SLAM
is given in [110].

As mentioned earlier, the theoretical analysis is sometimes the
first step toward the design of better algorithms. Besides the dual
SDP approach of [32], [37], other authors proposed convex re-
laxation to avoid convergence to local minima. These contribu-
tions include the work of Liu et al. [159] and Rosen et al. [211].
Another successful strategy to improve convergence consists in
computing a suitable initialization for iterative nonlinear opti-
mization. In this regard, the idea of solving for the rotations first
and to use the resulting estimate to bootstrap nonlinear itera-
tion has been demonstrated to be very effective in practice [21],
[31], [33], [38]. Khosoussi et al. [130] leverage the (approxi-
mate) separability between translation and rotation to speed up
optimization.
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Recent theoretical results on the use of Lagrangian duality
in SLAM also enabled the design of verification techniques:
Given a SLAM estimate these techniques are able to judge
whether such estimate is optimal or not. Being able to ascer-
tain the quality of a given SLAM solution is crucial to design
failure detection and recovery strategies for safety-critical ap-
plications. The literature on verification techniques for SLAM
is very recent: current approaches [32], [37] are able to perform
verification by solving a sparse linear system and are guaranteed
to provide a correct answer as long as strong duality holds (more
on this point later).

We note that these results, proposed in a robotics context, pro-
vide a useful complement to related work in other communities,
including localization in multiagent systems [47], [199], [202],
[245], [254], structure from motion in computer vision [87],
[96], [104], [168], and cryo-electron microscopy [224], [225].

B. Open Problems

Despite the unprecedented progress of the last years, several
theoretical questions remain open.

1) Generality, Guarantees, and Verification: The first ques-
tion regards the generality of the available results. Most results
on guaranteed global solutions and verification techniques have
been proposed in the context of pose graph optimization. Can
these results be generalized to arbitrary factor graphs? More-
over, most theoretical results assume the measurement noise
to be isotropic or at least to be structured. Can we generalize
existing results to arbitrary noise models?

Weak or Strong duality? The works [32], [37] show that when
strong duality holds SLAM can be solved globally; moreover,
they provide empirical evidence that strong duality holds in
most problem instances encountered in practical applications.
The outstanding problem consists in establishing a priori con-
ditions under which strong duality holds. We would like to
answer the question “given a set of sensors (and the correspond-
ing measurement noise statistics) and a factor graph structure,
does strong duality hold?” The capability to answer this ques-
tion would define the domain of applications in which we can
compute (or verify) global solutions to SLAM. This theoretical
investigation would also provide fundamental insights in sensor
design and active SLAM (see Section VIII).

2) Resilience to Outliers: The third question regards esti-
mation in the presence of spurious measurements. While recent
results provide strong guarantees for pose graph optimization,
no result of this kind applies in the presence of outliers. Despite
the work on robust SLAM (see Section III) and new modeling
tools for the non-Gaussian noise case [212], the design of global
techniques that are resilient to outliers and the design of veri-
fication techniques that can certify the correctness of a given
estimate in presence of outliers remain open.

VIII. ACTIVE SLAM

So far we described SLAM as an estimation problem that
is carried out passively by the robot, i.e., the robot performs
SLAM given the sensor data, but without acting deliberately to
collect it. In this section, we discuss how to leverage a robot’s
motion to improve the mapping and localization results.

The problem of controlling robot’s motion in order to mini-
mize the uncertainty of its map representation and localization
is usually named active SLAM.This definition stems from the
well known Bajcsy’s active perception [9] and Thrun’s robotic
exploration [240, ch. 17] paradigms.

A. Brief Survey

The first proposal and implementation of an active SLAM
algorithm can be traced back to Feder [78] while the name was
coined in [152]. However, active SLAM has its roots in ideas
from artificial intelligence and robotic exploration that can be
traced back to the early eighties (cf., [11]). Thrun in [239] con-
cluded that solving the exploration-exploitation dilemma, i.e.,
finding a balance between visiting new places (exploration) and
reducing the uncertainty by revisiting known areas (exploita-
tion), provides a more efficient alternative with respect to ran-
dom exploration or pure exploitation.

Active SLAM is a decision making problem and there are
several general frameworks for decision making that can be
used as backbone for exploration-exploitation decisions. One of
these frameworks is the Theory of Optimal Experimental De-
sign (TOED) [198] which, applied to active SLAM [42], [44],
allows selecting future robot action based on the predicted map
uncertainty. Information theoretic [164], [208] approaches have
been also applied to active SLAM [41], [232]; in this case de-
cision making is usually guided by the notion of information
gain. Control theoretic approaches for active SLAM include
the use of Model Predictive Control [152], [153]. A different
body of works formulates active SLAM under the formalism of
Partially Observably Markov Decision Process [123], which in
general is known to be computationally intractable; approximate
but tractable solutions for active SLAM include Bayesian Opti-
mization [169] or efficient Gaussian beliefs propagation [195],
among others.

A popular framework for active SLAM consists of selecting
the best future action among a finite set of alternatives. This fam-
ily of active SLAM algorithms proceeds in three main steps [16],
[36] as follows:

1) The robot identifies possible locations to explore or ex-
ploit, i.e., vantage locations, in its current estimate of the
map.

2) The robot computes the utility of visiting each vantage
point and selects the action with the highest utility.

3) The robot carries out the selected action and decides if it
is necessary to continue or to terminate the task.

In the following, we discuss each point in details.
1) Selecting Vantage Points: Ideally, a robot executing an

active SLAM algorithm should evaluate every possible action
in the robot and map space, but the computational complex-
ity of the evaluation grows exponentially with the search space
which proves to be computationally intractable in real appli-
cations [25], [169]. In practice, a small subset of locations in
the map is selected, using techniques such as frontier-based
exploration [127], [262]. Recent works [250] and [116] have
proposed approaches for continuous-space planning under un-
certainty that can be used for active SLAM; currently these
approaches can only guarantee convergence to locally optimal
policies. Another recent continuous-domain avenue for active
SLAM algorithms is the use of potential fields. Some examples
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are [249], which uses convolution techniques to compute en-
tropy and select the robot’s actions, and [122], which resorts to
the solution of a boundary value problem.

2) Computing the Utility of an Action: Ideally, to compute
the utility of a given action, the robot should reason about the
evolution of the posterior over the robot pose and the map, taking
into account future (controllable) actions and future (unknown)
measurements. If such posterior were known, an information-
theoretic function, as the information gain, could be used to
rank the different actions [23], [233]. However, computing this
joint probability analytically is, in general, computationally in-
tractable [36], [77], [233]. In practice, one resorts to approx-
imations. Initial work considered the uncertainty of the map
and the robot to be independent [246] or conditionally inde-
pendent [233]. Most of these approaches define the utility as
a linear combination of metrics that quantify robot and map
uncertainties [23], [36]. One drawback of this approach is that
the scale of the numerical values of the two uncertainties is not
comparable, i.e., the map uncertainty is often orders of mag-
nitude larger than the robot one, so manual tuning is required
to correct it. Approaches to tackle this issue have been pro-
posed for particle-filter-based SLAM [36], and for pose graph
optimization [41].

The TOED [198] can also be used to account for the utility of
performing an action. In the TOED, every action is considered
as a stochastic design, and the comparison among designs is
done using their associated covariance matrices via the so-called
optimality criteria, e.g., A-opt, D-opt, and E-opt. A study about
the usage of optimality criteria in active SLAM can be found
in [44] and [43].

3) Executing Actions or Terminating Exploration: While ex-
ecuting an action is usually an easy task, using well-established
techniques from motion planning, the decision on whether or not
the exploration task is complete, is currently an open challenge
that we discuss in the following paragraph.

B. Open Problems

Several problems still need to be addressed, for active SLAM
to have impact in real applications.

1) Fast and Accurate Predictions of Future States: In active
SLAM, each action of the robot should contribute to reduce the
uncertainty in the map and improve the localization accuracy; for
this purpose, the robot must be able to forecast the effect of future
actions on the map and robots localization. The forecast has
to be fast to meet latency constraints and precise to effectively
support the decision process. In the SLAM community, it is well
known that loop closings are important to reduce uncertainty
and to improve localization and mapping accuracy. Nonetheless,
efficient methods for forecasting the occurrence and the effect
of a loop closing are yet to be devised. Moreover, predicting
the effects of future actions is still a computational expensive
task [116]. Recent approaches to forecasting future robot states
can be found in the machine learning literature, and involve the
use of spectral techniques [230] and deep learning [252].

Enough is Enough: When do you stop doing active SLAM?
Active SLAM is a computationally expensive task: therefore:
a natural question is when we can stop doing active SLAM
and switch to classical (passive) SLAM in order to focus re-
sources on other tasks. Balancing active SLAM decisions and

exogenous tasks is critical, since in most real-world tasks, ac-
tive SLAM is only a means to achieve an intended goal. Ad-
ditionally, having a stopping criteria is a necessity because at
some point, it is provable that more information would lead
not only to a diminishing return effect but also, in case of con-
tradictory information, to an unrecoverable state (e.g., several
wrong loop closures). Uncertainty metrics from TOED, which
are task oriented, seem promising as stopping criteria, compared
to information-theoretic metrics, which are difficult to compare
across systems [40].

2) Performance Guarantees: Another important avenue is
to look for mathematical guarantees for active SLAM and for
near-optimal policies. Since solving the problem exactly is in-
tractable, it is desirable to have approximation algorithms with
clear performance bounds. Examples of this kind of effort is the
use of submodularity [94] in the related field of active sensors
placement.

IX. NEW FRONTIERS: SENSORS AND LEARNING

The development of new sensors and the use of new compu-
tational tools have often been key drivers for SLAM. Section
IX-A reviews unconventional and new sensors, as well as the
challenges and opportunities they pose in the context of SLAM.
Section IX-D discusses the role of (deep) learning as an impor-
tant frontier for SLAM, analyzing the possible ways in which
this tool is going to improve, affect, or even restate, the SLAM
problem.

A. New and Unconventional Sensors for SLAM

Besides the development of new algorithms, progress in
SLAM (and mobile robotics in general) has often been trig-
gered by the availability of novel sensors. For instance, the
introduction of 2-D laser range finders enabled the creation of
very robust SLAM systems, while 3-D lidars have been a main
thrust behind recent applications, such as autonomous cars. In
the last ten years, a large amount of research has been devoted
to vision sensors, with successful applications in augmented
reality and vision-based navigation.

Sensing in robotics has been mostly dominated by lidars and
conventional vision sensors. However, there are many alterna-
tive sensors that can be leveraged for SLAM, such as depth,
light-field, and event-based cameras, which are now becom-
ing a commodity hardware, as well as magnetic, olfaction, and
thermal sensors.

1) Brief Survey: We review the most relevant new sensors
and their applications for SLAM, postponing a discussion on
open problems to the end of this section.

a) Range cameras: Light-emitting depth cameras are not
new sensors, but they became commodity hardware in 2010
with the advent the Microsoft Kinect game console. They op-
erate according to different principles, such as structured light,
time of flight, interferometry, or coded aperture. Structure-light
cameras work by triangulation; thus, their accuracy is limited
by the distance between the cameras and the pattern projector
(structured light). By contrast, the accuracy of Time-of-Flight
(ToF) cameras only depends on the TOF measurement device;
thus, they provide the highest range accuracy (sub millimeter
at several meters). ToF cameras became commercially available
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for civil applications around the year 2000 but only began to be
used in mobile robotics in 2004 [256]. While the first generation
of ToF and structured-light cameras was characterized by low
signal-to-noise ratio and high price, they soon became popular
for video-game applications, which contributed to making them
affordable and improving their accuracy. Since range cameras
carry their own light source, they also work in dark and un-
textured scenes, which enabled the achievement of remarkable
SLAM results [183].

b) Light-field cameras: Contrary to standard cameras,
which only record the light intensity hitting each pixel, a light-
field camera (also known as plenoptic camera), records both
the intensity and the direction of light rays [186]. One popular
type of light-field camera uses an array of microlenses placed
in front of a conventional image sensor to sense intensity, color,
and directional information. Because of the manufacturing cost,
commercially available light-field cameras still have relatively
low resolution (<1MP), which is being overcome by current
technological effort. Light-field cameras offer several advan-
tages over standard cameras, such as depth estimation, noise
reduction [58], video stabilization [227], isolation of distrac-
tors [59], and specularity removal [119]. Their optics also offers
wide aperture and wide depth of field compared with conven-
tional cameras [15].

c) Event-based cameras: Contrarily to standard frame-
based cameras, which send entire images at fixed frame
rates, event-based cameras, such as the dynamic vision sen-
sor (DVS) [156] or the asynchronous time-based image sensor
(ATIS) [205], only send the local pixel-level changes caused by
movement in a scene at the time they occur.

They have five key advantages compared to conventional
frame-based cameras: A temporal latency of 1 ms, an update
rate of up to 1 MHz, a dynamic range of up to 140 dB (versus
60–70 dB of standard cameras), a power consumption of 20 mW
(versus 1.5 W of standard cameras), and very low bandwidth
and storage requirements (because only intensity changes are
transmitted). These properties enable the design of a new class
of SLAM algorithms that can operate in scenes characterized by
high-speed motion [90] and high-dynamic range [132], [207],
where standard cameras fail. However, since the output is com-
posed of a sequence of asynchronous events, traditional frame-
based computer-vision algorithms are not applicable. This re-
quires a paradigm shift from the traditional computer vision
approaches developed over the last 50 years. Event-based real-
time localization and mapping algorithms have recently been
proposed [132], [207]. The design goal of such algorithms is
that each incoming event can asynchronously change the es-
timated state of the system, thus, preserving the event-based
nature of the sensor and allowing the design of microsecond-
latency control algorithms [178].

2) Open Problems: The main bottleneck of active range
cameras is the maximum range and interference with other exter-
nal light sources (such as sun light); however, these weaknesses
can be improved by emitting more light power.

Light-field cameras have been rarely used in SLAM because
they are usually thought to increase the amount of data produced
and require more computational power. However, recent studies
have shown that they are particularly suitable for SLAM appli-
cations because they allow formulating the motion estimation

problem as a linear optimization and can provide more accurate
motion estimates if designed properly [66].

Event-based cameras are revolutionary image sensors that
overcome the limitations of standard cameras in scenes char-
acterized by high-dynamic range and high-speed motion. Open
problems concern a full characterization of the sensor noise
and sensor non idealities: event-based cameras have a compli-
cated analog circuitry, with nonlinearities and biases that can
change the sensitivity of the pixels, and other dynamic proper-
ties, which make the events susceptible to noise. Since a single
event does not carry enough information for state estimation and
because an event camera generate on average 100 000 events a
second, it can become intractable to do SLAM at the discrete
times of the single events due to the rapidly growing size of the
state space. Using a continuous-time framework [13], the esti-
mated trajectory can be approximated by a smooth curve in the
space of rigid-body motions using basis functions (e.g., cubic
splines), and optimized according to the observed events [177].
While the temporal resolution is very high, the spatial resolu-
tion of event-based cameras is relatively low (QVGA), which
is being overcome by current technological effort [155]. Newly
developed event sensors overcome some of the original limita-
tions: An ATIS sensor sends the magnitude of the pixel-level
brightness; a DAVIS sensor [155] can output both frames and
events (this is made possible by embedding a standard frame-
based sensor and a DVS into the same pixel array). This will
allow tracking features and motion in the blind time between
frames [144].

We conclude this section with some general observations on
the use of novel sensing modalities for SLAM.

a) Other sensors: Most SLAM research has been devoted
to range and vision sensors. However, humans or animals are
able to improve their sensing capabilities by using tactile, olfac-
tion, sound, magnetic, and thermal stimuli. For instance, tactile
cues are used by blind people or rodents for haptic exploration
of objects, olfaction is used by bees to find their way home,
magnetic fields are used by homing pigeons for navigation,
sound is used by bats for obstacle detection and navigation,
while some snakes can see infrared radiation emitted by hot
objects. Unfortunately, these alternative sensors have not been
considered in the same depth as range and vision sensors to per-
form SLAM. Haptic SLAM can be used for tactile exploration
of an object or of a scene [237], [263]. Olfaction sensors can
be used to localize gas or other odor sources [167]. Although
ultrasound-based localization was predominant in early mobile
robots, their use has rapidly declined with the advent of cheap
optical range sensors. Nevertheless, animals, such as bats, can
navigate at very high speeds using only echo localization. Ther-
mal sensors offer important cues at night and in adverse weather
conditions [165]. Local anomalies of the ambient magnetic field,
present in many indoor environments, offer an excellent cue for
localization [248]. Finally, preexisting wireless networks, such
as WiFi, can be used to improve robot navigation without any
prior knowledge of the location of the antennas [79].

Which sensor is best for SLAM? A question that naturally
arises is: what will be the next sensor technology to drive future
long-term SLAM research? Clearly, the performance of a given
algorithm-sensor pair for SLAM depends on the sensor and al-
gorithm parameters, and on the environment [228]. A complete
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treatment of how to choose algorithms and sensors to achieve
the best performance has not been found yet. A preliminary
study by Censi et al. [46] has shown that the performance for
a given task also depends on the power available for sensing.
It also suggests that the optimal sensing architecture may have
multiple sensors that might be instantaneously switched ON and
OFF according to the required performance level or measure
the same phenomenon through different physical principles for
robustness [69].

B. Deep Learning

It would be remiss of a paper that purports to consider future
directions in SLAM, not to make mention of deep learning. Its
impact in computer vision has been transformational, and at
the time of writing this article, it is already making significant
inroads into traditional robotics, including SLAM.

Researchers have already shown that it is possible to learn a
deep neural network to regress the interframe pose between two
images acquired from a moving robot directly from the original
image pair [53], effectively replacing the standard geometry of
visual odometry. Likewise, it is possible to localize the 6DoF of a
camera with regression forest [247] and with deep convolutional
neural network [129], and to estimate the depth of a scene (in
effect, the map) from a single view solely as a function of the
input image [28], [71], [158].

This does not, in our view, mean that traditional SLAM is
dead, and it is too soon to say whether these methods are simply
curiosities that show what can be done in principle, but which
will not replace traditional, well-understood methods, or if they
will completely take over.

1) Open Problems: We highlight here a set of future direc-
tions for SLAM where we believe machine learning and more
specifically deep learning will be influential, or where the SLAM
application will throw up challenges for deep learning.

a) Perceptual tool: It is clear that some perceptual prob-
lems that have been beyond the reach of off-the-shelf computer
vision algorithms can now be addressed. For example, object
recognition for the imagenet classes [213] can now, to an extent,
be treated as a black box that works well from the perspective
of the roboticist or SLAM researcher. Likewise, semantic label-
ing of pixels in a variety of scene types reaches performance
levels of around 80% accuracy or more [75]. We have already
commented extensively on a move toward more semantically
meaningful maps for SLAM systems, and these black-box tools
will hasten that. But there is more at stake: Deep networks show
more promise for connecting raw sensor data to understanding,
or connecting raw sensor data to actions, than anything that has
preceded them.

b) Practical deployment: Successes in deep learning have
mostly revolved around lengthy training times on supercomput-
ers and inference on special-purpose GPU hardware for a one-
off result. A challenge for SLAM researchers (or indeed anyone
who wants to embed the impressive results in their system) is
how to provide sufficient computing power in an embedded
system. Do we simply wait for the technology to catch up, or
do we investigate smaller, cheaper networks that can produce
“good enough” results, and consider the impact of sensing over
an extended period?

c) Online and life-long learning: An even greater and im-
portant challenge is that of online learning and adaptation, that
will be essential to any future long-term SLAM system. SLAM
systems typically operate in an open-world with continuous ob-
servation, where new objects and scenes can be encountered.
But to date, deep networks are usually trained on closed-world
scenarios with, say, a fixed number of object classes. A sig-
nificant challenge is to harness the power of deep networks in
a one-shot or zero-shot scenario (i.e., one or even zero train-
ing examples of a new class) to enable life-long learning for a
continuously moving, continuously observing SLAM system.

Similarly, existing networks tend to be trained on a vast corpus
of labelled data, yet it cannot always be guaranteed that a suitable
dataset exists or is practical to label for the supervised training.
One area where some progress has recently been made is that
of single-view depth estimation: Garg et al. [91] have recently
shown how a deep network for single-view depth estimation
can be trained simply by observing a large corpus of stereo
pairs, without the need to observe or calculate depth explicitly.
It remains to be seen if similar methods can be developed for
tasks such as semantic scene labelling.

d) Bootstrapping: Prior information about a scene has in-
creasingly been shown to provide a significant boost to SLAM
systems. Examples in the literature to date include known ob-
jects [57], [217] or prior knowledge about the expected structure
in the scene, like smoothness as in DTAM [184], Manhattan con-
straints as in [80], or even the expected relationships between
objects [10]. It is clear that deep learning is capable of distilling
such prior knowledge for specific tasks such as estimating scene
labels or scene depths. How best to extract and use this informa-
tion is a significant open problem. It is more pertinent in SLAM
than in some other fields because in SLAM, we have solid grasp
of the mathematics of the scene geometry—the question then is
how to fuse this well-understood geometry with the outputs of
a deep network. One particular challenge that must be solved is
to characterize the uncertainty of estimates derived from a deep
network.

SLAM offers a challenging context for exploring potential
connections between deep learning architectures and recursive
state estimation in large-scale graphical models. For example,
Krishan et al. [142] have recently proposed Deep Kalman Fil-
ters; perhaps it might one day be possible to create an end-to-end
SLAM system using a deep architecture, without explicit feature
modeling, data association, etc.

X. CONCLUSION

The problem of simultaneous localization and mapping has
seen great progress over the last 30 years. Along the way, several
important questions have been answered, while many new and
interesting questions have been raised, with the development of
new applications, new sensors, and new computational tools.

Revisiting the question “is SLAM necessary?” we believe the
answer depends on the application, but quite often the answer is
a resounding yes. SLAM and related techniques, such as visual-
inertial odometry, are being increasingly deployed in a variety
of real-world settings, from self-driving cars to mobile devices.
SLAM techniques will be increasingly relied upon to provide
reliable metric positioning in situations where infrastructure-
based solutions, such as GPS, are unavailable or do not provide
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sufficient accuracy. One can envision cloud-based location-as-
a-service capabilities coming online, and maps becoming com-
moditized, due to the value of positioning information for mobile
devices and agents.

In some applications, such as self-driving cars, precision lo-
calization is often performed by matching current sensor data to
a high definition map of the environment that is created in ad-
vance [154]. If the a priori map is accurate, then online SLAM
is not required. Operations in highly dynamic environments,
however, will require dynamic online map updates to deal with
construction or major changes to road infrastructure. The dis-
tributed updating and maintenance of visual maps created by
large fleets of autonomous vehicles is a compelling area for
future work.

One can identify tasks for which different flavors of SLAM
formulations are more suitable than others. For instance, a topo-
logical map can be used to analyze reachability of a given place,
but it is not suitable for motion planning and low-level con-
trol; a locally consistent metric map is well-suited for obstacle
avoidance and local interactions with the environment, but it
may sacrifice accuracy; a globally consistent metric map al-
lows the robot to perform global path planning, but it may be
computationally demanding to compute and maintain.

One may even devise examples in which SLAM is unneces-
sary altogether and can be replaced by other techniques, e.g.,
visual servoing for local control and stabilization, or “teach and
repeat” to perform repetitive navigation tasks. A more general
way to choose the most appropriate SLAM system is to think
about SLAM as a mechanism to compute a sufficient statistic
that summarizes all past observations of the robot, and in this
sense, which information to retain in this compressed represen-
tation is deeply task-dependent.

As to the familiar question “is SLAM solved?” in this posi-
tion paper, we argue that, as we enter the robust-perception
age, the question cannot be answered without specifying a
robot/environment/performance combination. For many appli-
cations and environments, numerous major challenges and
important questions remain open. To achieve truly robust
perception and navigation for long-lived autonomous robots,
more research in SLAM is needed. As an academic en-
deavor with important real-world implications, SLAM is
not solved.

The unsolved questions involve four main aspects: robust per-
formance, high-level understanding, resource awareness, and
task-driven inference. From the perspective of robustness, the
design of fail-safe self-tuning SLAM system is a formidable
challenge with many aspects being largely unexplored. For long-
term autonomy, techniques to construct and maintain large-scale
time-varying maps, as well as policies that define when to re-
member, update, or forget information, still need a large amount
of fundamental research; similar problems arise, at a different
scale, in severely resource-constrained robotic systems.

Another fundamental question regards the design of metric
and semantic representations for the environment. Despite the
fact that the interaction with the environment is paramount for
most applications of robotics, modern SLAM systems are not
able to provide a tightly coupled high-level understanding of
the geometry and the semantic of the surrounding world; the
design of such representations must be task-driven and currently

a tractable framework to link task to optimal representations is
lacking. Developing such a framework will bring together the
robotics and computer vision communities.

Besides discussing many accomplishments and future chal-
lenges for the SLAM community, we also examined oppor-
tunities connected to the use of novel sensors, new tools (e.g.,
convex relaxations and duality theory, or deep learning), and the
role of active sensing. SLAM still constitutes an indispensable
backbone for most robotics applications and, despite amazing
progress over the past decades, existing SLAM systems are far
from providing insightful, actionable, and compact models of
the environment, comparable to the ones effortlessly created and
used by humans.
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