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Abstract: The application of computational approaches in drug discovery has been consolidated in the
last decades. These families of techniques are usually grouped under the common name of “computer-
aided drug design” (CADD), and they now constitute one of the pillars in the pharmaceutical
discovery pipelines in many academic and industrial environments. Their implementation has been
demonstrated to tremendously improve the speed of the early discovery steps, allowing for the
proficient and rational choice of proper compounds for a desired therapeutic need among the extreme
vastness of the drug-like chemical space. Moreover, the application of CADD approaches allows the
rationalization of biochemical and interactive processes of pharmaceutical interest at the molecular
level. Because of this, computational tools are now extensively used also in the field of rational 3D
design and optimization of chemical entities starting from the structural information of the targets,
which can be experimentally resolved or can also be obtained with other computer-based techniques.
In this work, we revised the state-of-the-art computer-aided drug design methods, focusing on their
application in different scenarios of pharmaceutical and biological interest, not only highlighting their
great potential and their benefits, but also discussing their actual limitations and eventual weaknesses.
This work can be considered a brief overview of computational methods for drug discovery.

Keywords: CADD; computational; chemistry; drug; design; AI; molecular docking; molecular
dynamics; learning

1. Introduction: The Benefits of Computational Methods for Drug Discovery
1.1. The Drug Discovery Pipeline and the Problem of Candidate Selection

The drug discovery process is an extremely money- and time-consuming procedure,
which is necessary to guarantee the safety and the quality of novel therapeutical entities
entering the market. It has been reported that a single novel small molecule can require up
to 14 years and more than one billion dollars in the several steps from target assessment
to regulatory approval [1,2]. Moreover, the failure risk in the pharmaceutical scenario is
known to be one of the highest in the industry. Indeed, it has been estimated that just one
or two out of 10,000 screened molecules can effectively become drugs [3].

Another major challenge in the medicinal field is the tremendously extended chemical
space forming the “drug-like” environment. It has been calculated that the number of small
molecules included in such a concept would be roughly 1060 [4], which is a number higher
than the seconds of life in the entire Universe. Such a vast chemical space is unfeasible
to explore, and this is even more true from an experimental perspective. Indeed, even if
the most technological high-throughput screening (HTS) methods today can evaluate the
on-target activity of hundreds of thousands of compounds/week [5], their capacity would
never reach the order of magnitude of the potential candidates for that specific biological
entity. This limitation can be overcome by medicinal chemists by bringing the candidate
selection problem from a laboratory setup to a “virtual environment”. Specifically, one of
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the first ideas that came up was to exploit computers to perform molecular “virtual” screen-
ings before the experimental ones. This approach, which was called “high-throughput
virtual screening” (HTVS), still represents one of the main applications of computational
methodologies in drug discovery [6]. Indeed, the capacity of the virtual screening depends
essentially on the computer power of the infrastructure exploited for the purpose, and
it is much faster and cheaper than the preparation and execution of experimental assays.
As a demonstration of this, with the actual combinations of software and hardware, the
evaluation of several millions of compounds/day is achievable [7–9] (even billions, as
stated by the researchers at the Oak Ridge National Laboratory working on the SUMMIT
supercomputer [10], which was recently exploited for an ultralarge GPU-accelerated virtual
screening against SARS-CoV-2 main protease [11]). In recent decades, many academic and
industrial groups have extensively put efforts into the improvement of these methods,
making them among of the pillars in the current drug discovery pipeline, especially in the
early discovery phases.

1.2. The Application of Computational Methods in Drug Discovery

To go a little bit more into detail, the drug discovery process can be divided into
five main steps [12], according to the United States Food and Drug Administration (US
FDA). The first is the “discovery and development” phase, which includes hit identification,
hit-to-lead (H2L), and lead optimization. The first of these consists of not only highlighting
some molecular candidates with a good activity profile against the desired target, but
also presenting pharmacokinetic (PK) or pharmacodynamics (PD) limitations. Talking in
terms of on-target potency, the hit compounds are usually in the micromolar (µM) range
of activity, and they are tendentially not so selective. Even with all these pharmaceutical
problems, the hit compounds are very important to give some hints to the drug design
teams, being very useful starting points for further modification [13,14].

The second passage consists of the hit-to-lead optimization phase. In this step, the hit
compounds are modified with different methodologies to improve their on-target activity
and selectivity, always keeping their PK/PD profile under strict evaluation [15]. After this
process, the optimized molecular candidates take the name of “lead” compounds and are
usually very active (in the nanomolar range for what concerns potency) and reasonably
selective. These compounds then enter the second main step, which is the preclinical
experimental phase, where they are tested in animal and organoid models to assess their
safety and efficacy. The third phase, which is also the longest, consists of human clinical
trials. These are divided into three main sections (I, II, and III), each with a different
endpoint and with increasing patients enrolled in the tests. Just after a positive outcome of
the therapy with the new candidate in the clinical phase III, the commercialization of the
drug can be asked the regulatory agencies (e.g., EMEA for Europe and FDA for the USA),
determining the opening of the fourth phase of drug development. After this, the fifth and
last step consists of post-market drug safety monitoring.

Even if the preclinical and clinical trials constitute the longest and most expensive
part of the drug discovery pipeline, not so much can be implemented to reduce them,
mainly because of the extremely delicate outcomes in terms of safety and efficacy that they
provide. On the other hand, the steps that lead from the hits up to the lead compoundscan
be extensively optimized, and that is the space in which computational design approaches
have found their main application. Indeed, other than exponentially improving the number
of virtual compounds that can be evaluated daily, these methodologies offer also the possi-
bility to deeply analyze the patterns in the chemical data under evaluation; furthermore,
they make the rational design of such entities much more than achievable [16]. Indeed,
the advances in spectroscopic techniques, together with the tremendous improvement in
computer graphics, allowed the visual inspection of proteins, ligands, and biologically
relevant complexes in the routines of drug design groups [17]. With such computational
approaches, it is possible to effectively design new molecular candidates; for this reason, the
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techniques of this family have been gathered under the common name of “computer-aided
drug design” (CADD).

1.3. The Main Methodology Branches in CADD

How a computational chemist approaches a pharmacological problem can be multi-
faceted, but the main underlying factor discriminating the procedure is the quantity of data
available on the topic examined (Figure 1). Indeed, one of the most important determinants
is the presence of experimental structural information on the target of interest [16], which
can currently be obtained using various techniques, among which the most relevant are
certainly nuclear magnetic resonance (NMR), X-ray crystallography (XR), and cryogenic
electron microscopy (cryo-EM) [18]. If such data are available, then the approach chosen
by the scientist usually addresses the application of an ensemble of computational meth-
ods, which take advantage of this, such as molecular docking and molecular dynamics.
Because of this, those techniques fall under the family of the “structure-based drug design”
(SBDD) approaches. On the other hand, when no experimental information about the target
three-dimensional structure is available, then two main possibilities are open to CADD
scientists. The first consists of searching for close homologs of the target of interest to create
a computational model of it (also known as the homology model), which would then be
tested for structural reliability and used with SBDD techniques [19]. In the latest years, a
huge revolution in the field of protein structure prediction was represented by the creation
of AlphaFold [20], which is now also available in version 2.0. This algorithm, developed
by the company DeepMind, exploits artificial intelligence (AI) approaches to predict the
three-dimensional structure of a biological entity on the basis of its sequence, which is also
associated with a confidence score in its different functional regions. Another limitation of
this method, which still necessitates the homology models created ad hoc by the scientists,
is represented by the fact that it predicts only one conformational state (usually the inactive
one) of the targets of interest (this was partially resolved with the recent implementation
of AphaFill [21]), and that not all the proteins are still included in the AlphaFold database
(e.g., many viral proteins are still lacking) [22].

Another main option for the CADD scientist lacking the structural information of the
biological entity of interest is to exploit just the information coming from the ligands which
have been tested on it, extrapolating from them enough information to build reliable quan-
titative structure-activity relationship (QSAR) models [23]. These approaches were among
the first used in rational drug design and now fall into the category of the “ligand-based
drug design” (LBDD) techniques. This family comprises methods such as pharmacophore
search [24] and matched molecular pair analysis [25]; even if their application over the
years has lowered, giving more and more space to the SBDD techniques, they are still
widely used in several scenarios. Lastly, the latest advances in computer science, together
with the exponential increase in the application of machine learning (ML) and artificial
intelligence approaches, provided another powerful instrument to CADD scientists [26].
Indeed, when huge amounts of data are available for a defined context (regarding both
the target and the ligands), these approaches can be proficiently used for the proper pre-
diction of molecular properties of pharmaceutical relevance. Moreover, the creation and
maintenance of an “intelligent” algorithm in the most recent years have allowed such
“computational brains” to create novel chemical structures, through an approach known as
de novo drug design [27].
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Figure 1. Scheme representing the main computational approaches available to the CADD scientist
in drug discovery. As can be seen, a key factor is represented by the availability of structural
information about the target. Abbreviations: QM/MM = quantum mechanics/molecular mechanics;
AI = artificial intelligence; QSAR = quantitative structure–activity relationship; QSPR = quantitative
structure–property relationship.

2. Discussion
2.1. Ligand-Based Drug Design (LBDD)

By far the most used approaches in the dawn of rational drug design, these techniques
rely only on the structural information of the molecular structures tested on the desired
target. The main goal of such methods is to identify patterns in the data that can be
extrapolated to guide the further steps to take in terms of drug discovery. Those patterns
are usually identified as “quantitative structure–activity relationship” (QSAR) models and
should allow scientists to obtain a discrete and quantitative correlation between chemical
moieties and pharmacological outcomes. Some of the techniques that are mostly used
for ligand-based determination of these interconnections are cheminformatics [28] (e.g.,
matched molecular pair analysis), ligand-based pharmacophore search, and Free–Wilson
analysis [29]. Some very famous equations, which are fundamental for the birth and the
rise of QSAR modeling, were advanced by Hansch, Hammet, and Taft [30]. Even if some
of the cited methods are still widely used, their main disadvantage remains related to the
low level of generalization that they can provide. Indeed, they tend to work only on highly
congeneric series of ligands; in other cases, they require great amounts of experimental
data to provide reliable results. Moreover, these approaches do not take into consideration
the conformational freedom of the ligands, focusing only on the 2D representation of the
molecules considered. Together with the rising importance of structure-based approaches,
and of “three-dimensionality” in general, the conformational properties of the ligands have
also been taken into strong consideration by LBDD methods. One main example is the
generation of “3D pharmacophores”, which take into account both the atomic and the
conformational features of the molecules to build proper “3D-QSAR” models [31].

Quantitative Structure–Activity Relationship (QSAR) Modeling and Cheminformatics

As already mentioned, one of the earliest historical needs for medicinal chemists was to
be able to correlate molecular modification with biological activity data. In this perspective,
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the first design efforts were focused only on ligand small molecules, trying to properly tune
their properties simply by following the results of experiments in a target-agnostic way.
This specific field of research was the so-called “quantitative structure–activity relationship”
modeling, much more commonly called by its acronym “QSAR” [32]. In the second half
of the last century, this strategy was known for great methodological advances, which led
to its increasing application in the drug design scenario [33–35]. When the exploitation of
computational approaches and the tools related to them started to spread, these methods
were coupled with a series of other techniques in the already known and greater concept
of “cheminformatics”. Indeed, this term was defined by Gasteiger and Engel as “the
application of informatics methods to solve chemical problems” [36]. This field has greatly
expanded over the years [37], passing from the earliest simple data analysis methodologies
applicable to chemical data to the most actual implementation of cheminformatics suites
and packages in widely used programming languages. In this respect, very relevant is
the creation of RDKit [38], a famous and versatile cheminformatics package for Python,
which is in continuous development and whose application is well documented in the
scientific literature [39–41]. Some of the many tasks that are executable with RDKit are
molecular clustering, substructure search, compound fragmentation, chemical reaction
handling, shape and structural similarity analysis [42], etc.

With the development of molecular modeling, more and more relevance has been
given to the three-dimensional representation of chemical entities, which is now routinely
analyzed together with the more classical two-dimensional depiction [43,44]. Indeed, the
modern cheminformatics tools (RDKit included) have implemented different approaches
for conformer generation and prioritization, given the great importance this aspect has
both in chemical research and, even more so, in drug design [45].

SBDD methods have spread exponentially in the pharmaceutical scenario; neverthe-
less, cheminformatics and 3D-QSAR are still widely used, as many recent papers have
assessed [46,47]. Moreover, these tools and methods have been coupled with actual ma-
chine learning approaches, resulting in algorithms able to autonomously detect structural
patterns in chemical data, as well as automatically create novel QSAR models [48].

2.2. Structure-Based Drug Design (SBDD)

With the exponential increase in the availability of three-dimensional structures of
proteins and nucleic acids, which started roughly in the 2000s, the trend in the method-
ologies in computational drug design moved toward other techniques, which could also
take into account the three-dimensional interactive features of the molecules with respect
to the target. Indeed, the prior knowledge of the biological entity of interest conferred
a huge advantage to the scientists, which could develop novel chemical species on the
basis of its binding site characteristics. All methods based on this kind of data fall into
the family of “structure-based drug design” (SBDD) [49], which are by far the most used
approaches in computational drug discovery. Moreover, while some complex membrane
protein structures were not considered feasible to determine experimentally 20 years ago,
the modern technology of cryo-EM allowed the reliable resolution of some of those complex
systems [18,50], further extending the applicability domain of SBDD. An overview of the
main SBDD methods available today is reported in Figure 2.

2.2.1. Molecular Docking

Maybe the most exploited technique in modern computer-aided drug design, molecu-
lar docking, consists of the determination of the best conformation with which a molecule
binds to another to form a stable complex. The name of the technique comes from the
very first program which exploited it, which was called “DOCK”, proposed by Kuntz et al.
in 1982 [51]. In a pharmaceutical context, these methods are extensively used to screen
millions or billions of small molecules against a biological target of interest (e.g., a protein or
a nucleic acid). It is important to mention that molecular docking requires prior knowledge
of the binding site location on the target. A molecular docking algorithm consists of two
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main parts: the conformational search algorithm and the scoring function [52]. The first
has the purpose to search the conformational space of the ligand considered to find a state
that fits within the binding site, while the second ranks the different conformations to
prioritize the most reliable [53]. Scoring functions operate on the basis of equations that
take into account the conformational strain, the electrostatics, and the steric hindrance of
the ligand in its bound state. Three main types of scoring functions are available today, force
field-based scoring functions, empirical scoring functions, and knowledge-based scoring
functions. In the first, the energy of the system is evaluated using a force field [54]. On the
other hand, empirical scoring functions consist of different terms representing different
intermolecular interactions, where each term is modeled using experimental values for
the interaction related to it. Specifically, empirical scoring functions are based on three
main pillars: descriptors for the binding event, a database of ligand–target complexes with
associated experimental activity data, and an algorithm establishing a relationship between
the binding descriptors and the experimental affinity [55]. The top-ranked poses by these
functions are those closest to the experimental values of reference. Lastly, knowledge-based
scoring functions rely on statistical analyses of the most observed interactions between
a specific ligand’s atom type and a particular protein’s atom type. These functions are
developed by extracting structural information from high-quality X-Ray databases (usu-
ally the Protein Data Bank and Cambridge Structural Database), and then transforming
atom pair preferences into distance-dependent pairwise potentials using the Boltzmann
law [56]. The top-ranked poses are those more similar to what is statistically retrievable in
the experimental databases [57].
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If the main goal is to screen small molecules against a desired biological target, another important
factor to consider is the computational power available, which allows roughly discriminating the
techniques on the basis of the number of molecules/day screened with the same computational
infrastructure, which of course plays a huge role in this perspective. Abbreviations: TTMD = thermal
titration molecular dynamics; AI = artificial intelligence; QM/MM = quantum mechanics/molecular
mechanics; FEP = free-energy perturbation.

Hundreds of different molecular docking algorithms exist today, each coupling differ-
ent search algorithms and scoring functions. Even if they are different, they can be grouped
into different families on the basis of how they operate to find the “bound” state of the



Molecules 2023, 28, 3906 7 of 20

ligand. Some famous families are represented by genetic algorithms (among which the
program GOLD is one of the most known and used [58]), systematic algorithms (such as
the program Glide, developed and distributed by the company Schrödinger [59]), and ant
colony optimization algorithms (such as the program PLANTS [60–62]. Some docking
programs have also gained popularity due to both the robustness of their algorithms and
the choice of their creators to freely distribute the software without restrictions. This is
the case of AutoDock [63] (latest version 4.2.6, updated 14 April 2023) and AutoDock
VINA [64] (latest version 1.2.0, updated 14 April 2023), which were both developed by the
Scripps Research Institute. Both these programs have been successfully applied in small
molecule research, as assessed in the literature [65].

Another classification for molecular docking is related to the degrees of freedom
considered in the calculation. Indeed, in “rigid docking”, both the ligand and the protein
are kept rigid. The “flexible ligand docking” approach, on the other hand, allows the
ligand to explore different conformational states, keeping the target rigid [66]. Then, the
“semi-flexible” or “induced fit” approach consists of taking into account the conformational
spaces of both the ligand and the binding site residues [67], avoiding the scenario that small
clashes with a rigid side chain could impair the selection of reasonable docking poses. In
the last method, which is “ensemble” docking, molecular docking is executed against an
ensemble of protein conformations, usually coming from molecular dynamics simulations.
In this way, the full flexibility of the protein can be indirectly taken into account [68]. A
less computationally demanding strategy to obtain conformational ensembles relies on
the exploitation of multiple experimentally resolved structures of the target of interest,
captured in different conformational states.

As already mentioned, molecular docking is extensively used in the early phases of
drug discovery, from hit identification up to lead optimization [69]. It is applied both to
identify novel chemical candidates for pharmacological testing and to help rationalize
experimental data to a molecular level. Nevertheless, molecular docking is essentially a
“static” approach, which considers only the final state of the ligand–target system and
is performed mainly in a vacuum [70]. Indeed, even if water molecules are included in
the docking calculations, this information has to be given explicitly [71], and this requires
structural information coupled with molecular dynamics data. As a result of all of this,
the main problem of molecular docking is the high false-positive ratio of the compounds
selected by the scoring functions [72], which has induced CADD scientists to investigate
ways to filter the poses produced by molecular docking algorithms using other approaches.
Today, many of these methods are available. One of the simplest is called “consensus
docking”, which relies on the principle that, by exploiting different docking programs based
on different algorithms, the molecules prioritized by them will have a lower probability
of being false positives [73,74]. The success of such an approach has been extensively
demonstrated in the literature [75]. Other methods, called “post-docking” techniques,
further filter the poses produced by molecular docking on the basis of certain molecular
features [76]. One example of the first case is the implementation of a three-dimensional
pharmacophore, in which the most relevant 3D features for the interaction with the target
are embedded. In this case, only the docking poses which can respect these boundaries
are kept, discarding the others [77]. Regarding the second kind of technique, one example
is the implementation of molecular dynamics as a “post-docking” approach [78]. The
poses in which the molecules can keep the interaction pattern with the protein for a
longer simulation time are referred to as more “kinetically stable”, while the others are
deprioritized. A novel, simple, and effective technique exploiting this approach, as well as
implementing a temperature increase with simulation time, was recently developed, known
as “thermal titration molecular dynamics” (TTMD) [79,80], which is further discussed in
the next section.
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2.2.2. Molecular Dynamics

Molecular dynamics (MD) is a computational technique used to investigate the dy-
namic behavior of a chemical and/or biological entity over time [81]. The method consists
of the iterative resolution of Newton’s equations of motion to continuously predict the
atomic positions of the molecules considered with respect to each other during the simula-
tion time [82]. Molecular dynamics is used for various purposes in drug discovery, from
the simple dynamic evaluation of a system to the mechanistic understanding of a molecular
process [83], or as a well-known post-docking filtration system [84] (Figure 3). The main
advantage of this method is that, in contrast to molecular docking, the system considered
is free to move and, thus, more “realistic” if we consider the environment in which the
real biochemical processes will happen. Moreover, molecular dynamics can be executed
using explicit solvent models (e.g., TIP3P [85]), in which the contribution of each single
water molecule is taken into account. This allows a better understanding of the role of
water molecules in target stabilization, as well as in ligand–target recognition. The first
and main drawback of molecular dynamics is certainly related to the computational power
required for its implementation in the pipeline. Indeed, depending on the simulation time
and on the dimensions of the system to evaluate, MD can require tens to thousands of
time/molecule more than molecular docking; for this reason, its application is usually
limited to a lower number of compounds (e.g., in the post-docking approaches). Further-
more, MD simulations rely on molecular mechanics and force fields in order to extrapolate
atomic velocities with time; if this exponentially increases the speed of the simulations
with respect to the quantum-based methods, it also carries several approximations that
have to be known and taken into account by CADD scientists [86]. First, polarizability is
not conceived in force-field-based MD simulations, whereby every molecule of the system
has fixed bond lengths and partial charges, and no bond can be created or broken (except
for QM/MM methods, which includes a focused region calculated at the QM level [87]).
In recent years, the continuous increase in computational power of modern hardware
architecture is allowing quantum-mechanical calculations to be more and more affordable,
possibly leading to a new era in computational drug discovery [88].
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Figure 3. Example of the evolution of a system (from A–C) using molecular dynamics simulations,
taken from a recent study published by our lab [89]. As can be seen, each of the SARS-CoV-2 Mpro

crystallographic ligands starts from a defined position (the crystallographic one) at the beginning
of the simulation. Then, after the MD is started, the molecules outside the catalytic pocket (colored
in cyan), which are tendentially more exposed to the solvent, are more prone to lose the initial
conformation and, eventually, the binding site itself. In contrast, the compounds which are crystallized
in the catalytic pocket (depicted in magenta) are more prone to keep their initial position during the
simulation, being more strongly bound to the protein.

Enhanced Sampling Methods in Molecular Dynamics

One of the major issues in simulating a molecular event is represented by the differ-
ences in timescales between the biological and the virtual environments. Indeed, episodes
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such as ligand unbinding may require hundreds or even thousands of nanoseconds of
simulation. Ligand binding is usually even more demanding if unbiased, and events such
as major conformational changes of biological entities would rarely take less than several
microseconds of simulations to be sampled [90,91]. These ranges in timescales come mainly
from the fact that the event to be captured is considered to be “rare” and, by definition,
harder to sample [92]. In the years, many different methods have been introduced and
developed to increase this sampling, favored by the introduction of some kinds of biases
in the simulated system [93]. Some remarkable examples are steered MD [94], scaled
MD [95], replica exchange MD [96], metadynamics approaches [97], and Gaussian accel-
erated molecular dynamics [98]. The first of these techniques, which is mainly used for
ligand unbinding sampling, relies on the introduction of a coordinate-defined force that
“guides” the ligand away from its initial placement in the binding site. The reconstruction
of the free-energy profile is then possible from the Jarzynski equality, but tendentially only
if the forces introduced are limited in magnitude. Scaled MD, on the other hand, involves
the introduction of a scaling factor for the regulation of the potential energy of the solutes’
degrees of freedom in the simulation. Replica exchange MD is based on the swap of atomic
positions between parallel simulations carried out at different temperatures, by employing
independent Monte Carlo random walks. This allows a fairly augmented sampling of
the system’s events. Lastly, metadynamics relies on the iterative “filling” of the potential
energy in the simulation with a series of Gaussian curves, to force the system to explore
different minima and, hence, improve the sampling of “rare” events. Lastly, the Gaussian
accelerated molecular dynamics (GaMD) approach consists of enhancing the conforma-
tional sampling of molecules by smoothening the potential energy surface through the
addition of a harmonic boost potential that follows Gaussian distribution. Recently, Yu et al.
applied multiple-replica Gaussian accelerated molecular dynamics (MR-GaMD) for the
analysis of the mutation-induced conformational changes in the GTPase NRAS [99]. A
very similar approach was implemented in a very recent study by Chen et al., in which
GaMD was exploited for the investigation of S-adenosyl-l-methionine (SAM)-responsive
riboswitches [100]. Together with these methods, some other enhanced sampling tech-
niques have been developed in the years, eventually allowing a proficient sampling of the
desired biological event with lower to no bias introduction in the system. This is the case of
supervised molecular dynamics (SuMD) [101] and thermal titration molecular dynamics
(TTMD) [79], which are discussed in the next section.

Molecular Dynamics as a Post-Docking Approach

As already mentioned, one of the main applications of molecular dynamics in the drug
discovery pipeline consists of its exploitation in the discrimination of molecules after a
molecular docking run. Indeed, while molecular docking gives only a static representation
of the binding event, focusing on the final state only, MD is able to evaluate the dynamic
stability of such conformation in the binding site. In post-docking MD, the poses resulting
from the docking calculations are then used as the starting point for molecular dynamics,
which samples diverse short simulations (usually very few nanoseconds long) for the
complex considered [102]. The parameters usually tackled from this perspective are of a
geometric kind, such as the root-mean-square deviation (RMSD) and the root-mean-square
fluctuation (RMSF) of atomic positions. While the first describes how much a molecular
entity (e.g., the ligand) displaces from its initial position during the simulation, the second
quantifies the magnitude of the displacement from the most frequent position, indicating
the “fluctuation” of the entity itself. Even if such parameters are easy to calculate and
compare, they often offer a poor description of the binding quality. Indeed, small changes in
RMSD can bring the ligand to completely lose its interaction pattern during the simulation,
while higher deviations in RMSD could be due to some flexible moieties that are exposed
to the solvent and, thus, able to freely fluctuate in it. To overcome these limitations, other
metrics should be considered to evaluate MD-based post-docking replicas. One of the
examples of this is the tackling of protein–ligand interaction fingerprints (PLIFs), which
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can be compared for all the MD frames, allowing for evaluation of the effective quality
of the interactions described by the molecular docking poses [53]. In this perspective,
the molecule with the most proficient interaction patterns keeps the PLIFs during the
MD simulations, while more weakly interacting compounds tendentially lose the contacts
which stabilize their bound conformation.

Free-Energy Perturbation (FEP) and Thermodynamic Integration (TI)

In recent years, the increase in hardware performance (especially looking at the power
of graphics processing units—GPUs), together with the advances in parallel computing,
has allowed the spreading of the application of free-energy perturbation (FEP) method-
ology [103]. Specifically, this technique allows, though the exploitation of the thermody-
namic free energy cycle, to extrapolate of the relative binding free energy of a series of
co-generic ligands (the changes among the tested small molecules should be restricted to
<10 atoms) [104]. This approach is gaining exponentially increasing interest in the world
of drug design, with applications for targets ranging from protein kinases [105] to viral
proteases [106] and GPCRs [107]. Specifically, FEP can be discussed in two main terms,
which are absolute binding free energy (ABFE) and relative binding free energy (RBFE).
The first refers to the calculation of the binding energy of a solvated ligand to a target,
while the second regards the relative free energy of binding between two ligands and a
target [108,109].

The advances in the predictive accuracy of these methods are mainly attributable to
the improved force fields (e.g., the latest releases of the OPLS force field [110], implemented
in the FEP+ application from Schrödinger [111]) and novel advances in sampling algo-
rithms [112]. Nevertheless, it is crucial to remember that much importance has to be given
to the system setup before performing an FEP calculation, to allow it to return reliable ∆∆G
values. Indeed, the positions of the binding site waters should be accurately defined, the
co-generic ligands should be docked in a way that their bound conformation is almost
superimposable (at least for the common scaffold), and some MD simulations should be
executed on the starting ligand, to ensure that its binding mode is stable [113].

With FEP, it is also feasible to understand the importance that each molecular portion
has for binding, weighting it in quantitative terms according to the binding free energy.
In its latest implementation, uncertainties <1 kcal/mol were reached, comparable to the
experimental error associated with the measurement of the actual values [110]. Free-energy
perturbation methods have already been applied successfully to different scenarios in drug
discovery [114,115].

Thermodynamic integration (TI), on the other hand, can be referred to as a method
to compare the difference in free energy between two given states. These states are char-
acterized by different potential energies, and these have different dependences on the
spatial coordinates of the entities involved in the simulated system [116,117]. Unlike FEP,
which relies strongly on MD or Monte Carlo simulations, TI calculates the difference in
free energy between these states by integrating over ensemble-averaged enthalpy along an
alchemical path.

As in the case of FEP, the integration step is dictated by the coupling parameter λ;
in TI, the potential energy of the first state is associated with λ = 0, while the final state
has λ = 1 [118]. TI has successfully been applied to molecular biology [119] and drug
discovery [120–122] for the prediction of the binding free energy between chemical and
biological entities, and its implementations come often together with other techniques,
resulting in approaches such as independent trajectories thermodynamic integration (IT-TI,
in which the “independent trajectories” term is similar to a replica-exchange method) [123],
density field thermodynamic integration (DFTI) [124], and umbrella integration (UI) [125].

With both FEP and TI, the main limitations are related to the fact that the high relia-
bility of alchemical methods, other than requiring a deep prior structural and functional
knowledge of the simulated system, is unequivocally bound to the molecular similarities
of the compounds considered, which all have to belong to the same chemical series.
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Thermal Titration Molecular Dynamics (TTMD)

One of the limitations of MD-based post-docking methods is related to the fact that, in
many situations, some nanoseconds of simulation are not enough to discriminate potentially
good from potentially weak binders [126]. Indeed, in many scenarios, both kinds of ligands
keep low RMSD and RMSF values through the MD replicas, and their PLIFs are also
equally maintained. To overcome this limitation, our group recently proposed a new
method, named “thermal titration molecular dynamics” (TTMD), which proficiently takes
advantage of the “concept of temperature” in molecular mechanics and molecular dynamics
to classify ligands on the basis of their on-target affinity [79]. Indeed, in classic MD, the
temperature is simply a value used to scale the atomic velocities with time and is not
related to the “real-life” concept of temperature, which heavily influences all biochemical
processes. This allows MD simulations to be performed at temperatures above 350 K or
even 400 K without seeing any unfolding event taking place; in the experimental setup,
these values would totally compromise the experiment. Accordingly, the TTMD method
consists, starting from a protein–ligand complex, of executing MD replicas in which, for
every TTMD step (Ti), the temperature of the system is increased to a certain defined
number of degrees. While this process takes place, the PLIFs are monitored, along with
the RMSD of the protein backbone (which can be used as a metric to effectively assess the
protein integrity during simulations). The TTMD experiment may end in two different
ways: when the PLIFs are lost, or after a user-defined simulation time. Examples of the
results of two TTMD experiments are given in Figure 4.

In its first implementation, this method was applied to four different case studies
(CK1δ, CK2, PDK2, and SARS-CoV-2 Mpro), taking five different crystal structures each.
The potencies of the ligands in such complexes were known experimentally. The TTMD
experiment was set up with a temperature ramp from 300 K to 450 K, with an increase
of 10 K every 10 ns of simulation. In all cases considered, TTMD was effectively able
to clearly distinguish the potent nanomolar ligands from weaker micro- to millimolar
ones (Figure 5). The potential of this simple approach was also more recently confirmed
with its application in MD-based post-docking approaches, given its intrinsic advantage
to overcome the eventual inability of classical MD to discriminate ligands on a reduced
timescale [80].

2.2.3. Supervised Molecular Dynamics

Supervised molecular dynamics (SuMD) consists of an MD approach that is designed
to describe a “rare” molecular binding event on a reduced timescale [101]. In the specific
case of SuMD, the event considered is the target–ligand recognition process, which would
require simulations on the timescales of microseconds to be described by a classical MD
simulation. This is due to the huge amount of time that the ligand would spend simply
fluctuating in the free solvent, without any contact with the target and, even less, with the
binding site. Indeed, classical MD is referred to as a “low-sampling” approach, because
the force fields can only very partially sample the potential energy surface of the system.
Usually, to overcome these limitations, computational approaches include Markov state
models and the enhanced sampling techniques, as discussed previously. In the first case,
the MD simulation is considered an ensemble of microstates, which are independent of
one another. The algorithm then calculates the transition probability matrix, which allows
deriving the probability of the system passing from one microstate to another [129]. On the
other hand, enhanced sampling methods consist of the perturbation of the potential energy
surface of the system, allowing an escape from local minima [130].
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Figure 4. Examples of two TTMD profiles. On the upper side of each panel, is it possible to depict
the IFPCS score change during the simulation, where higher scores represent a loss in the initial
protein–ligand interaction fingerprints and, consequently, a loss of the binding mode. The lower
part of each panel shows the root-mean-square deviations (RMSDs) of the protein backbones (in
green) and the ligand (in orange) against the simulation time. These last plots allow assessing that the
increase in temperature does not affect the protein folding in a relevant fashion. Panel A represents
the results of the TTMD simulation for the ligand PF670462 in the pocket of casein kinase 1δ (CK1δ),
starting from the bound conformation of the crystal 3UZP [127], while panel B depicts the results
of the TTMD experiment for an epiblastin A brominated derivative bound to CK1δ, coming from
the crystal with PDB code 5IH6 [128]. As can be observed, the nanomolar ligand PF670462 keeps
its protein–ligand interaction fingerprint during the simulation, while the micromolar epiblastin A
derivative progressively loses the initial binding mode, assessing the instability of its contact with
the protein.
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Figure 5. The results of the first published application of thermal titration molecular dynamics
(TTMD). As can be seen, in all case studies considered, the method was able to efficiently discriminate
nanomolar ligands (indicated with the green dots and highlighted with the green circles) from micro-
and millimolar ones (depicted with red dots and circled in red). The MS coefficient, which was
used for the classification, depends on the ability of each molecule to preserve its protein–ligand
interaction fingerprints (PLIFs) during the TTMD experiment (a more detailed and mathematical
explanation of its derivation was reported in [79]).

SuMD, on the other hand, is a technique in which no perturbation of the potential
energy surface takes place. It is based on a supervision algorithm that evaluates the distance
between the ligand and its binding site on the target in an iterative fashion. Specifically,
the ligand is placed at a distance from the binding site in which there is no possibility of
interaction at the beginning of the simulation (at least 40 Å away), and then a series of
small MD simulations are sampled. At the end of each one of these, the distance between
the ligand and the binding site is calculated; if the value is lower than the distance at the
beginning of the small MD simulation, only the final coordinates are kept, and another MD
is started from those. Otherwise, the initial coordinates are restored, and the MD simulation
is repeated. When the ligand reaches a defined distance threshold (5 Å, by default), the
supervision is shut down, and the simulation continues as a classical MD, allowing the
ligand to relax into the binding site. In the end, the final “SuMD trajectory” is obtained
by merging all small MD simulations [131]. The great advantage of this method is that
it can describe an event such as the target–ligand recognition process on the nanosecond
timescale rather than microseconds (typical of classical MD), accomplished without the
introduction of energetic biases. This technique has already been extensively used on
different targets, such as G-protein-coupled receptors (GPCRs) [132,133] (see Figure 6),
proteases [134], and kinases [135], considered as ligands, small molecules, peptides [136],
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and aptamers [83]. The SuMD analysis allows getting a visual representation of the most
relevant residues for the interaction with the target at each step of the simulation, providing
very relevant information to how the approaching process influences the binding, as well
as regarding the eventual “meta-binding sites” present on the target.
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Figure 6. Results of the application of supervised molecular dynamics (SuMD) to the elucidation of
the differences in the ligand binding paths between full agonists (adenosine, NECA, and CGS21680)
and a non-ribosidic partial agonist (LUF5833) of the adenosine A2AR receptor. The panels in the
upper part of the figure represent the initial configuration of each SuMD simulation, with the ligand
placed away from the orthosteric binding site. The plots in the lower part depict the outcomes of
the time-based per-residue interaction analysis, in which the summation of electrostatic and van der
Waals contributions for each of the 25 most contacted protein residues is reported for each frame
of the trajectories produced. In this study, SuMD highlighted the main differences between the
ligand–protein recognition paths of full agonists and LUF5833, which can exert a partial agonism to
A2AR, even if important residues such as Thr88 and Ser277 (which are labeled in the plots in red) are
not recruited directly by this specific compound. An explanation of the molecular reasons behind
this behavior was reported in the original publication by Bolcato et al. [133].

3. Conclusions and Future Perspectives

In this review, we summarized the advantages and disadvantages of some of the main
computational methods applied for computer-aided drug design in the past and today,
looking at their origin, rationale, application, and future perspectives. The continuous
advances in both methodological development and informatics infrastructure are now
motivating another push through the boundaries of drug discovery. Indeed, AI-related
approaches are attracting great importance in the fields of molecular property and be-
havior prediction [137] wherever enabled by the amount of data. Several different fields
of computational chemistry have already experienced the benefits given by artificial in-
telligence, with a special focus on the early discovery environment [138,139]. One very
relevant example is represented by on-target and off-target effect predictions in compu-
tational toxicology [140–142], which is configured in the family of AI-based methods for
target prediction based only on ligand chemical data. On the structure-based side, delta-
learning [143], deep learning-based 3D pocket mapping [144], and AI rescoring techniques
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have been developed and documented in the recent years. These latest methods have gone
beyond the prioritization performance offered by the classical scoring approaches [145,146].

On the other hand, quantum mechanics methods are becoming more and more fea-
sible [147]. The application of AI for QM property prediction is already established in
the CADD field [148,149], but it is possible to foresee that, with the advent of quantum
computing, the massive calculation of such attributes will become routine.

This review can be helpful to scientists approaching the world of CADD and compu-
tational chemistry applied to pharmaceutical development, serving as a helpful tool for
gaining an understanding of the possibilities that these strategies have in improving the
success rate of drug discovery pipelines.
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