
PAST: Scalable Ethernet for Data Centers

Brent Stephens Alan Cox
Rice University
Houston, TX

brents,alc@rice.edu

Wes Felter Colin Dixon John Carter
IBM Research

Austin, TX
wmf,ckd,retrac@us.ibm.com

ABSTRACT

We present PAST, a novel network architecture for data center Eth-
ernet networks that implements a Per-Address Spanning Tree rout-
ing algorithm. PAST preserves Ethernet’s self-configuration and
mobility support while increasing its scalability and usable band-
width. PAST is explicitly designed to accommodate unmodified
commodity hosts and Ethernet switch chips. Surprisingly, we find
that PAST can achieve performance comparable to or greater than
Equal-Cost Multipath (ECMP) forwarding, which is currently lim-
ited to layer-3 IP networks, without any multipath hardware sup-
port. In other words, the hardware and firmware changes pro-
posed by emerging standards like TRILL are not required for high-
performance, scalable Ethernet networks. We evaluate PAST on
Fat Tree, HyperX, and Jellyfish topologies, and show that it is able
to capitalize on the advantages each offers. We also describe an
OpenFlow-based implementation of PAST in detail.

Categories and Subject Descriptors

C.2 [Internetworking]: Network Architecture and Design

General Terms

Algorithms, Design, Management, Performance

Keywords

Software Defined Networking, OpenFlow, Data Center

1. INTRODUCTION
The network requirements of modern data centers differ signifi-

cantly from traditional networks, so traditional network designs of-
ten struggle to meet them. For example, layer-2 Ethernet networks
provide the flexibility and ease of configuration that network oper-
ators want, but they scale poorly and make poor use of available
bandwidth. Layer-3 IP networks can provide better scalability and
bandwidth, but are less flexible and are more difficult to configure
and manage. Network operators want the benefits of both designs,
while at the same time preferring commodity hardware over ex-
pensive custom solutions to reduce costs. Thus, our challenge is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’12, December 10–13, 2012, Nice, France.
Copyright 2012 ACM 978-1-4503-1775-7/12/12 ...$15.00.

to provide the ease of use and flexibility of Ethernet and the scal-
ability and performance of IP using only inexpensive commodity
hardware.

More precisely, a modern data center network should meet the
following four functional requirements [12, 23, 33, 37].

1. Host mobility: Hosts—especially virtual hosts—must be
movable without interrupting existing connections or requir-
ing address changes. Live migration is needed to tolerate

faults and achieve high host utilization.

2. Effective use of available bandwidth: A workload should
not be limited by network bandwidth while usable bandwidth
exists along alternate paths. Path selection that prevents us-

ing available bandwidth reduces cost-effectiveness.

3. Self-configuration: Network elements, e.g., routers or
(v-)switches, must be able to forward traffic without manual
configuration of forwarding tables. At scale, manual config-

uration makes management untenable.

4. Scalability: The network should scale to accommodate the
needs of modern data centers without violating the preced-
ing requirements. Scaling by hierarchically grouping smaller

networks, e.g., grouping Ethernet LANs via IP, may not sat-

isfy our requirements.

In addition to these functional requirements, we limit our design
space to architectures that can be implemented and managed ef-
ficiently with commodity hardware and software, which leads to
three additional design requirements:

1. No hardware changes: The architecture must work with
commodity networking hardware. Architectures that require

proprietary hardware are harder to deploy and lose the ad-

vantages offered by economies of scale.

2. Respects layering: The architecture must work with unmod-
ified software stacks, e.g., operating systems and hypervi-
sors, and higher layers must not need to understand details
of the architecture’s implementation. Customers have made

large investments in their current software stacks and will

resist adopting a network architecture that breaks them.

3. Topology independent: The architecture must work with
arbitrary topologies, e.g., Fat Tree, HyperX, or Jellyfish.
Restricting the network to a particular topology, e.g., Fat

Tree, prevents network operators from considering alternate

topologies that may offer better performance, lower cost, or

both.

Table 1 compares existing data center network architectures and
recent academic work against the above requirements. We can see
that no existing architecture meets all of them. One reason is that
the requirements often conflict with one another.

49

Functional Requirements Design Requirements
Architecture Mobility High BW Self Config Scales No H/W Changes Respect Layers Topo Ind

Ethernet with STP � X � X � � �

IP (e.g. OSPF) X � X � � � �

MLAG [29] � � � X � � �

SPAIN [30] � � � X � X �

PortLand [33] � � � � � � X

VL2 [14] X � X � � X X

SEATTLE [23] � X � � � � �

TRILL [36] � � � X X � �

EthAir [37], VIRO [21] � X � � � � �

PAST � � � � � � �

Table 1: Comparison of data center network architectures.

For example, Ethernet’s distributed control protocol provides
host mobility with little or no configuration. However, it does
not scale well beyond roughly one-thousand hosts due to its use of
broadcast for name resolution. Further, it makes poor use of avail-
able bandwidth because it uses a single spanning tree for packet
forwarding—a limitation imposed to avoid forwarding loops.

To address these problems, current large data center networks
connect multiple Ethernet LANs using IP routers [13] and run scal-
able routing algorithms over a smaller number of IP routers. These
layer-3 routing algorithms allow for shortest path and Equal-Cost
Multipath (ECMP) routing, which provide much more usable band-
width than Ethernet’s spanning tree. However, the mixed layer-
2/layer-3 solution requires significant manual configuration and
(typically) limits host mobility to be within a single LAN.

The trend in recent work to address these problems is to in-
troduce special hardware and topologies. For example, Port-
Land [33] is only implementable on Fat Tree topologies and re-
quires ECMP hardware, which is not available on every Ethernet
switch. TRILL [36] introduces a new packet header format and
thus requires new hardware and/or firmware features.

We pose the following question: Are special hardware or topolo-
gies necessary to implement a data center network that meets our
requirements, or can we build such a data center network with only
commodity Ethernet hardware?

Surprisingly, we find that we can build a data center network that
meets all of the requirements using only the most basic Ethernet
switch functionality. Contrary to the suggestions of recent work,
special hardware and restricted topologies are not necessary.

To prove this point, we present PAST, a flat layer-2 data center
network architecture that supports full host mobility, high end-to-
end bandwidth, autonomous route construction, and tens of thou-
sands of hosts on top of common commodity Ethernet switches.
PAST satisfies our functional and design requirements as follows.
When a host joins the network or migrates, a new spanning tree is
installed to carry traffic destined for that host. This spanning tree is
implemented using only entries in the large Ethernet (exact match)
forwarding table present in commodity switch chips, which allows
PAST to support as many hosts as there are entries in that table. In
aggregate, the trees spread traffic across all links in the network, so
PAST provides aggregate bandwidth equal to or greater than layer-
3 ECMP routing. PAST provides Ethernet semantics and runs on
unmodified switches and hosts without appropriating the VLAN
ID or other header fields. Finally, PAST works on arbitrary net-
work topologies, including HyperX [2] and Jellyfish [38], which
can perform as well as or better than Fat Tree [33] topologies at a
fraction of the cost.

PAST can be implemented in either a centralized or distributed
fashion. We prefer a centralized software-defined network (SDN)
architecture that computes the trees on a high-end server proces-
sor rather than using the underpowered control plane processors
present in commodity Ethernet switches. Our OpenFlow-based
PAST implementation was crafted carefully to utilize the kinds
of match-action rules present in commodity switch hardware, the
number of rules per table, and the speed with which rules can be in-
stalled. By restricting PAST to route solely using destination MAC
addresses and VLAN tags, we can use the large layer-2 forwarding
table, rather than relying on the more general, but much smaller,
TCAM forwarding table, as is done in previous OpenFlow archi-
tectures.

The main contributions of this paper are as follows:

1. We present PAST, a novel network architecture that meets
all of the requirements described above using a per-address
spanning tree routing algorithm.

2. We present an implementation that makes efficient use of the
capabilities of commodity switch hardware.

3. We evaluate PAST on Fat Tree, HyperX and Jellyfish topolo-
gies and show that it can make full use of the advantages that
each offers. We also offer the first comparison of the HyperX
and Jellyfish topologies.

The remainder of the paper is organized as follows. In Section 2
we present background information on switch hardware and rout-
ing. We describe the design of the PAST routing algorithm in Sec-
tion 3 and its implementation in Section 4. In Section 5 we present
the experimental methodology that we use to evaluate PAST, de-
scribe the topologies and workloads that we use in our evaluation,
and present the results of our evaluation. We describe the previous
work that most influenced PAST in Section 6. Finally, in Section 7
we draw conclusions and present ideas for future work.

2. BACKGROUND
This section describes how current commodity Ethernet forward-

ing hardware works and discusses the state-of-the-art in data center
network routing.

2.1 Switch Hardware Overview
While many vendors produce Ethernet forwarding hardware, the

hardware tends to exhibit many similarities due in part to the trend
of using “commodity” switch chips from vendors such as Broad-
com and Intel at the core of each switch. In the following discus-
sion, we focus on one such switch chip, the Broadcom StrataXGS

50

Ethernet

Parse/Lookup

L2 Table

Packet

In

ECMP Hash

ECMP Group Table

Configurable

Parse/Lookup

Fwd. TCAM

Configurable

Rewrite

Rewrite TCAM

Packet

Out

Figure 1: Partial Broadcom Switch Pipeline

Broadcom HP Intel Mellanox
Table Trident ProVision FM6000 SwitchX

TCAM ∼2K + 2K 1,500 24K 0?

L2/Eth ∼100K ∼64K 64K 48K

ECMP ∼1K unknown 0 unknown

Table 2: 10 Gbps Ethernet Switch Table Sizes (number of en-

tries)

BCM56846 [6] (“Trident”), and the IBM RackSwitch G8264 top-
of-rack switch [17] that uses the Trident chip at its core. We believe
this design is representative of 10 Gigabit Ethernet switches with
the best price/performance currently available on the market. While
our discussion focuses on a particular switch and switch chip, our
work exploits chip features and design tradeoffs that are common
in modern switches. Our choice of Trident and G8264 was driven
by what we have available and the fact that the G8264 firmware
exposes the ability for OpenFlow to install rules in the L2 table.

The rise of commodity switch chips is well-known in the net-
working community [25], but chip vendors typically provide only
short data sheets with few details to the public; the specific details
of the switch firmware are proprietary. This lack of information
about switch internals makes it difficult for networking researchers
to consider the constraints of real hardware. If a new switch ca-
pability is needed to enable a research idea, it is difficult to esti-
mate whether it is available in current firmware, can be added with
just firmware changes, or requires hardware changes. Similarly,
designing forwarding mechanisms without understanding the size,
cost, and functionality of the switch forwarding tables can lead to
inefficient or non-scalable designs.

2.1.1 The Trident Switch Chip

Figure 1 presents a high-level overview of the relevant portion of
the Trident packet processing pipeline. Each box represents a table
that maps packets with certain header fields to an action. Each table
differs in which header fields can be matched, how many entries it
holds, and what kinds of actions it allows, but all tables are capable
of forwarding packets at line-rate. Typical actions include sending
a packet out a specific port or forwarding it to an entry in another
table. The order in which tables can be traversed is constrained;
the allowed interactions are shown with directed arrows. Table 2
presents the approximate size of each of these tables for several
commodity Ethernet switch chips. The Trident pipeline contains
dozens of other configurable tables to support features such as IP
routing, DCB, MPLS, and multicast, but we do not discuss those
tables further.

The L2 (or Ethernet) table performs an exact match lookup on
two fields: VLAN ID and destination MAC address. It is by far
the largest table, having tens of thousands of entries, because it can

be implemented with SRAM. The output of the L2 table is either
an output port or a group, which can be thought of as a virtual
port used to support multipathing or multicast. If the action for a
packet is to output it to an ECMP group, the switch hashes config-
urable header fields (usually source and destination IP address and
port number) to select a port through which the packet should be
forwarded. ECMP allows traffic to be load balanced across multi-
ple paths between hosts. Traditionally, ECMP uses minimum hop
count paths, but the hardware does not enforce this. Trident can be
configured to support one thousand ECMP groups, each with four
ports.

The rewrite and forwarding TCAMs (Ternary Content Address-
able Memories) are tables that can wildcard match on most packet
header fields, including per-bit wildcards. The rewrite TCAM sup-
ports output actions that modify packet headers, while the forward-
ing TCAM is used to more flexibly choose an output port or group.
The greater flexibility of TCAMs comes at a cost. They consume
much higher area and power per entry than SRAM. Therefore on-
chip TCAM sizes are typically limited to a few thousand entries.

2.1.2 Switch Control Plane

The switch chip is not a general purpose processor, so switches
typically also contain a control plane processor that is responsible
for programming the switch chip, providing the switch manage-
ment interface, and participating in control plane protocols such
as spanning tree or OSPF. In a software-defined network, the con-
trol processor also translates controller commands into switch chip
state.

Unique among current switches, the G8264’s OpenFlow 1.0 im-
plementation allows OpenFlow rules to be installed in the L2 table.
Specifically, if it receives a rule that exact matches on (only) the
Destination MAC address and VLAN ID, it installs the rule in the
L2 table. Otherwise it installs the rule in the appropriate TCAM, as
is typical of OpenFlow implementations.

In traditional Ethernet, much of the forwarding state is learned
automatically by the switch chip based on observed packets. A
software defined approach shifts some of this burden to the control
plane processor and controller, adding latency and potential bottle-
necks.

To provide an OpenFlow control plane performance baseline, we
characterize the G8264’s performance with custom microbench-
marks using the OFlops [34] framework. The G8264 can install
700-1600 new rules per second, and each rule installation takes 2-
12ms, depending on how many rules are batched in each request.
Also, each time the switch receives a packet for which no forward-
ing rule exists, the switch must generate a message to the controller.
If the switch receives more than 200 packets per second for which
no route exists, the control plane becomes saturated, which can re-
sult in message latency on the order of seconds and message losses.
This is problematic, since data centers often operate under tight
SLAs on the order of 10-100ms [5], and violating these SLAs can
have serious consequences, such as decreasing the quality of re-
sults in the case of Google [5] and reducing sales in the case of
Amazon [15].

These measurements convince us that reactive forwarding rule
installation will not provide acceptable performance, at least with
the G8264’s current control plane processor. Thus, we adopt the
approach of DevoFlow [7] whereby routes are eagerly computed
and installed before their first use. It is worth nothing that eager
routing does not prevent hosts, switches, or links from dynamically
being added and removed from the network. Rather, eager rout-
ing means that corresponding routes are updated eagerly when any
such network events occur.

51

Algorithm 1 – Per-Address Spanning Tree (PAST)

Input: network topology G = (V,E) and sets H, S ⊆ V , where H is the
set of hosts and S is the set of switches

Output: a forwarding table Ts for each switch s ∈ S
begin
Initialize: ∀s ∈ S, Ts = {}
Define: BFS_ST (h,G) returns a shortest path spanning tree of G,
rooted at h
Define: v.parent_edge(Tree) returns the edge in the tree Tree that
connects v to its parent
for all h ∈ H do

Gst = BFS_ST (h,G)
for all s ∈ S do

Ts[h] = s.parent_edge(Gst)
end for

end for

2.2 Routing Design Space
Generally speaking, there are two approaches to scalable rout-

ing. The first entails making addresses topologically significant so
routes can be aggregated in routing tables. The second is simply
to have enough space in routing tables to allow for all routable ad-
dresses to have at least one entry.

As described above, the two forwarding tables (Ethernet and
TCAM) differ in size by roughly two orders of magnitude. Given
its small size, any routing mechanism that requires the flexibility
of a TCAM for matching must aggregate routes, otherwise the few
thousand TCAM entries per switch will be quickly exhausted. The
larger size of the Ethernet forwarding table means that any forward-
ing mechanism that matches only on Destination MAC and VLAN
ID can fit one entry per routable address per switch, even for large
networks. Note that aggregation cannot be used with the Ethernet
forwarding table as it allows for exact matching only.

Previous SDN proposals employ TCAM rules, so they have been
forced to use aggregate routes [3, 33]. Aggregating routable ad-
dresses means that either the topology must be constrained or a
virtual topology must be created on top of the physical one, which
introduces inefficiencies. For example, PortLand [33] constrains
the topology to a Fat Tree and assigns addresses based on each
node’s position in the tree, allowing for aggregation at each level.
Virtual ID Routing [26] and Ethernet on Air [37] both build a tree
and hierarchically assign addresses within the tree. While this ap-
proach works on arbitrary topologies, it does so by disabling some
links and introducing paths that are up to a factor of two longer than
necessary.

In contrast, the traditional Ethernet spanning tree protocol (STP),
its would-be successor TRILL [36], and PAST place rules in the
Ethernet forwarding table and exploit its larger size to have one en-
try per routable address in each switch. As a result, these routing
algorithms work on arbitrary topologies, including ones that offer
better price-performance than Fat Tree, like Jellyfish and HyperX.
However, STP does not exploit the potential advantages of such
topologies because, to avoid routing loops, it forwards all traffic
along a single tree. Extensions to STP that allow one spanning tree
per VLAN (as in SPAIN [30]) and vendor-specific techniques like
multi-chassis link aggregation (MLAG) [29], which creates a logi-
cal tree on top of a physical mesh, can mitigate some, but not all, of
STP’s routing inefficiency. In an enterprise or cloud environment,
VLAN IDs are needed to support security and traffic isolation, and
thus should not be used for normal routing. TRILL generalizes
these approaches by running IS-IS to build shortest path routes be-
tween switches. All of these approaches, except PAST, use broad-
cast for address resolution, limiting their scalability.

Two orthogonal extensions to routing are commonly used to fully
exploit available bandwidth: multipath routing and Valiant load

balancing. ECMP allows traffic between two hosts to use any min-
imal path, increasing path diversity and decreasing the likelihood
of artificial ‘hot spots’ in the network where two flows collide even
though non-colliding paths exist. Because ECMP requires there to
be multiple paths, it has only been possible on architectures that can
find all shortest paths, such as IP routing and TRILL. Valiant load
balancing increases path diversity by using non-minimal paths. In
Valiant routing, traffic is first forwarded minimally to a random
switch and then follows the minimal path to its destination. This
design also helps avoid artificial hot spots.

3. PAST DESIGN
As Table 1 shows, no existing architecture meets the require-

ments laid out in Section 1. PAST fills this gap by providing tra-
ditional Ethernet benefits of self-configuration and host mobility
while using all available bandwidth in arbitrary topologies, scaling
to tens of thousands of hosts, and running on current commodity
hardware. PAST does so by installing routes in the Ethernet table
without the constraints of STP. PAST is a previously unexplored
point in the design space.

3.1 PAST Routing
PAST’s design is guided by the structure of commodity switches’

Ethernet forwarding tables. Any routing algorithm that can express
its forwarding rules as a mapping from a <Destination MAC addr,
VLAN ID> pair to an output port can be implemented using the
large Ethernet forwarding table. By design, it is possible to repre-
sent an arbitrary spanning tree using rules of this form. The Eth-
ernet table was designed to support the traditional spanning tree
protocol (STP), but we observe that it can also implement a sepa-
rate spanning tree per destination host, which results in PAST. It is
possible to construct a spanning tree for any connected topology,
so PAST is topology-independent.

The topologies we consider have high path diversity, so many
possible spanning trees can be built for an address. Each individual
tree uses only a fraction of the links in the network, so it is bene-
ficial to make the different trees as disjoint as possible to improve
aggregate network utilization. The literature is rife with spanning
tree algorithms—in this paper we explore several alternatives and
we plan to explore more in the future.

3.1.1 Baseline PAST

For our baseline PAST design, we build destination-rooted
shortest-path spanning trees. The intuition behind this design is
that shortest-path trees reduce latency and minimize load on the
network. We employ a breadth-first search (BFS) algorithm to con-
struct the shortest-path spanning trees, as shown in Algorithm 1. A
BFS spanning tree is built for every address in the network. This
spanning tree, rooted at the destination, provides a minimum-hop-
count path from any point in the network to that destination. Any
given switch only uses a single path for forwarding traffic to the
host, and the paths are guaranteed to be loop-free because they form
a tree. No links are ever disabled. Because a different spanning tree
is used for each destination, the forward and reverse paths between
two hosts in a PAST network are not necessarily symmetric.

When building each spanning tree, we often have multiple op-
tions for the next-hop link. The way that the next-hop link is se-
lected may impact path diversity, load balance, and performance.
We evaluated two options, one that simply picks a uniformly
random next-hop and one that employs weighted randomization.
We refer to these two baseline designs as PAST-R (random) and

52

PAST-W (weighted), respectively. PAST-R performs breadth-first
search with random tie-breaking. Intuitively, this causes the span-
ning trees to be uniformly distributed across the available links.
However, not all links in a spanning tree are the same—links closer
to the root are likely to carry more traffic than links lower in the
tree. Thus PAST-W weights its random selection by considering
how many hosts (leaves) each next-hop switch has as children,
summed across all spanning trees built so far.

PAST does not care whether an address (MAC address-VLAN
pair) represents a VM, a physical host, or a switch. This is the
choice of the network operator. Since PAST can support tens of
thousands of addresses on commodity hardware, there is no need
to share, rewrite, or virtualize addresses in a network. Likewise, a
host may use any number of addresses if it wishes to increase path
diversity at the cost of forwarding state.

PAST has similarities to ECMP. ECMP enables load-balancing
across minimum-hop paths at per-flow granularity. PAST enables
load-balancing across minimum-hop paths at per-destination gran-
ularity. As the number of destinations per switch increases relative
to the number of minimum-cost paths, we expect the performance
of PAST to approach that of ECMP. We show this is the case in
practice in Section 5.

3.1.2 Non-minimal PAST

As noted in Section 2.2, some topologies, e.g., HyperX, require
non-minimal routing algorithms like Valiant routing to achieve high
performance under adversarial workloads. To support these topolo-
gies, we implemented a variant of the baseline PAST algorithm that
selects a random intermediate switch i as the root for the BFS span-
ning tree for each host h. The switches along the path in the tree
from i to h are then updated to route towards h, not i, so that h is
the sink of the tree. We refer to this approach as NM-PAST (non-
minimal PAST). As with the baseline algorithm, we implemented
both random (NM-PAST-R) and weighted random (NM-PAST-W)
variants.

NM-PAST is inspired by Valiant load balancing. In Valiant load
balancing, all traffic is first sent through randomly chosen interme-
diate switches. Similarly, most traffic in NM-PAST sent to h will
first be sent through the randomly chosen switch i. Only the hosts
along and below the path in the tree from i to h do not forward
traffic through i.

3.2 Discussion
Broadcast/Multicast: PAST is currently intended only for uni-

cast traffic. We treat unicast and multicast routing as orthogonal
features; it is possible to simultaneously use PAST for unicast and
some other system such as STP for multicast. Both traditional solu-
tions, such as STP, and novel solutions, such as building multicast
and broadcast groups with SDN, are compatible with PAST. We
believe it is possible to optimize multicast traffic by building a sep-
arate multicast distribution tree for each multicast address, but we
do not explore this possibility. Additionally, if performance isola-
tion of unicast from broadcast and multicast traffic is desired, the
network can ensure that the unicast spanning trees do not use any
of the links used for broadcast and multicast.

Security: PAST does not reuse or rewrite the Ethernet VLAN
header, so VLANs can be employed for security and traffic isola-
tion, as in traditional Ethernet.

Flow Splitting: In order to benefit from flow splitting, such as
MPTCP [39], the network is required to offer multiple paths to
a destination. This is possible with PAST because the Ethernet
forwarding table matches on the <Destination MAC addr, VLAN
ID> pair. If hosts are configured as members of multiple VLANs,

then MPTCP can perform flow splitting across VLANs. In fact,
the probability of benefiting from flow splitting is greater in PAST
than in ECMP because it is possible to actively try to build edge
disjoint spanning trees for each VLAN of an address, whereas hash
collisions are possible in ECMP.

Virtualization: As stated earlier, PAST provides standard Ether-
net semantics with no need for hosts to understand any of PAST’s
implementation details. As a consequence, any higher layer, in-
cluding network virtualization overlays like NetLord [32], Second-
Net [16], MOOSE [28], and VXLAN [27], can operate seamlessly
atop PAST.

Live VM migration is an expected feature in virtualized clusters,
and PAST must be able to update the tree for the migrating host
quickly to avoid delaying the migration. Both Xen and VMware
send a gratuitous ARP from the VM’s new location during migra-
tion, effectively notifying the controller that the it should reroute
traffic for that VM. As we discuss in Section 4, updating a single
tree in PAST is expected to take less than 20ms, which is compara-
ble to the existing pause time involved in VM migration.

4. PAST IMPLEMENTATION (SDN)
A network architecture requires more than a routing algorithm to

meet the requirements laid out earlier. In this section we describe
other aspects of PAST, including address detection, address reso-
lution, broadcast/multicast, topology discovery, route computation,
route installation, and failure recovery.

We implemented the PAST architecture as an extension to the
Floodlight [11] OpenFlow controller and a collection of IBM Rack-
Switch G8264 switches. While PAST should work with any Open-
Flow 1.0 compliant switch, to the best of our knowledge the G8264
is the only switch that currently supports installing OpenFlow rules
in the Ethernet forwarding table. Our implementation falls back to
putting entries into the (much smaller) TCAM table if there is no
way to access the larger Ethernet forwarding table, but this limits
the scalability of the implementation. By using only the Ethernet
forwarding table, the TCAM table(s) can be used for other purposes
such as ACLs and traffic engineering.

Address detection: Our controller configures each switch to
snoop all ARP traffic and forward it to the controller. The gra-
tuitous ARPs that are generated on host boot and migration pro-
vide timely notification of new or changed locations and trigger
(re)computation of the spanning tree for the given address. The
controller also tracks the IP addresses associated with each address
so that it can respond to ARP requests.

Address resolution: Our implementation eliminates the scaling
problems of flooding for address resolution by using the controller
for address resolution, specifically ARP. Broadcast ARP packets
are encapsulated in packet_in messages and sent to the con-
troller, which responds to the request. Additional protocols that
require broadcast to operate, such as DHCP, IPv6 Neighbor Dis-
covery, and Router Solicitation, can also be intercepted and han-
dled by the network controller, although we did not need these pro-
tocols in our current implementation. This kind of interposition is
technically a layering violation since Ethernet is normally oblivious
to higher-layer protocols, but it increases scalability for large net-
works. However, we note that this interception is an optimization
that is not required for correctness and a network operator could
forgo it at the cost of scalability.

Broadcast/Multicast Our current prototype focuses on unicast
and thus we have not implemented optimized versions of broadcast
and multicast. We currently fall back to the Floodlight implemen-
tation of multicast and broadcast which treats both as broadcast and
forwards them using a single spanning tree for the entire network.

53

In the future we intend to support multiple spanning trees to handle
broadcast and multicast traffic extending PAST’s benefits to them
as well.

Topology discovery: We use Floodlight’s built-in topology dis-
covery mechanism, which sends and receives Link Layer Discov-
ery Protocol (LLDP) messages on each port in the network us-
ing OpenFlow packet_out and packet_in messages. LLDP
messages discover whether a link connects to another switch and,
if it is a switch, the other switch’s ID.

Route computation: Upon discovering a new (or migrated)
address, PAST (re)computes the relevant tree. The time for the
controller to compute the tree does not bottleneck the system. In
our implementation, computing a single tree with a cold cache on
topologies with 8,000 and 100,000 hosts takes less than 1ms and
5ms, respectively. If multiple trees are computed and the cache is
warm, the time decreases to less than 40µs and 500µs, respectively,
and multiple cores can be used to increase throughput because com-
putation of each tree is independent and thus trivially parallel. For
example, on a single core we are able to compute trees for all hosts
in the network in approximately 300ms for an 8,000 host network
and 40 seconds for a 100,000 host network. Loosely speaking, our
computation scales linearly with the number of switch-to-switch
links in the network and in the limit can create a tree in one µs per
300 links in the network on a single core of a 2.2 GHz Intel Core i7
processor.

Route installation: Whenever a tree is (re)computed, PAST
pipelines the installation of the relevant rules on the switches. Once
a switch has received an installation request, installing the rule
takes less than 12ms. To ensure a rule is placed in the Ethernet
forwarding table, our switches require that the rules specify an ex-
act match on destination MAC address and VLAN (only) and have
priority 1000. While in theory it is possible that installing a recom-
puted tree could create a temporary routing loop, we have yet to
observe this in practice. This problem could be prevented at a cost
in latency by first removing rules associated with trees being re-
placed and issuing an OpenFlow barrier to ensure they are purged,
before installing new trees.

Failure Recovery Failures are common events in large net-
works [14] and should be handled efficiently. While it has been
sufficient for our current implementation to naively recompute all
affected trees when switches and links leave and join the network,
more scalable incremental approaches are possible. For example,
when a new switch is added to the network, it can be initially added
as a leaf node to all existing trees so that only the new switch needs
to be updated with the existing hosts. Similarly, only portions of
trees will be affected by switch and link failures, and it is possi-
ble to patch the trees to restore connectively to the affected hosts
without disturbing the unaffected traffic. It is worth noting that
new links appearing do not affect any existing trees, but they are
of no benefit until they are incorporated into a tree. We rebuild
random trees at regular intervals to gradually exploit new links and
re-optimize our trees.

The bottleneck in failure recovery is installing flow entries; up-
dating 100K trees would take over a minute. Optimizing flow in-
stallation is thus a critical concern in OpenFlow switches.

Other details: Our current PAST implementation consists of
approximately 4,000 lines of Java. Most code belongs to a few
modules that implement tree computation and address resolution,
but we also made modifications to the Floodlight core to install
trees instead of simple paths and to place rules in the Ethernet table
rather than the TCAM. Our controller connects to all switches using
a separate (out-of-band) control network that is isolated from the
data network. This isolation allows PAST to bootstrap the network

quickly and recover from failures that could partition the data net-
work.

5. EVALUATION
In this section, we describe a set of simulation experiments that

we use to compare PAST’s performance and scalability against sev-
eral existing network architectures. We find that it performs equal
to or better than existing architectures, including ECMP on Fat Tree
(e.g., PortLand) and ECMP on arbitrary topologies (e.g., TRILL).
We have a working implementation of PAST, but our testbed only
includes 20 servers with a total of 80 NICs, necessitating simula-
tion to evaluate at scale.

We first describe our experimental methodology, including brief
descriptions of our simulator, workload data, and topologies. We
then provide a short comparison of the three topologies that we
evaluated (Fat Tree, HyperX, and Jellyfish), which confirms prior
findings that HyperX and Jellyfish topologies can offer better per-
formance than Fat Trees at lower cost. This work also represents
the first comparison of the HyperX and Jellyfish topologies. Fi-
nally, we evaluate the topology-independent PAST algorithm and
its variants. While we do not find a significant difference be-
tween the uniform and weighted random PAST variants, our re-
sults show that PAST performs as well as ECMP on all topologies
under uniform random workloads and NM-PAST performs better
than ECMP routing and Valiant load-balancing under adversarial
workloads.

5.1 Methodology
We built a working implementation of PAST running on four

IBM RackSwitch G8264 10GbE switches to validate the feasibility
of our design. Since our testbed only includes 20 servers with a
total of 80 NICs, we use simulation to generate the results presented
below.

5.1.1 Simulator

To evaluate issues that arise at scale and to explore the scaling
limits of various designs, we wrote a custom discrete event net-
work simulator. Our network simulator can replay flow traces in
open-loop mode or programmatically generate flows in closed-loop
mode. For performance, the simulator models flows instead of in-
dividual packets, omitting the details of TCP dynamics and switch
buffering. The bandwidth consumption of each flow is simulated
by assuming that each TCP flow immediately receives its max-min
fair share bandwidth of the most congested link that it traverses.
We simulate three data center network topologies on four differ-
ent workloads to compare the performance of different forwarding
algorithms that can be implemented with current Ethernet switch
chips.

The simulator uses Algorithm 2 to compute the rate of the TCP
flows in the network. This algorithm was first used by Curtis et

al. in the DevoFlow [7] network simulator. The end result of this
algorithm is that each flow receives its fair share of bandwidth of
the most congested port it traverses.

5.1.2 Workloads

We use four different workloads in our evaluation.
The first two workloads represent adversarial (Stride) and benign

(URand) communication patterns. On a network with N hosts, the
Stride-s workload involves each host with index i sending data to
the host with index (i + s)mod(N). In the URand-u workload,
each host sends data to u other hosts that are selected with uniform
probability.

54

Algorithm 2 – Flow rate computation – Adapted from
DevoFlow [7]

Input: a set of flows F , a set of ports P , and a rate p.rate() for each
p ∈ P . Each p ∈ P is a set of flows such that f ∈ p iff flow f traverses
through port p.

Output: a rate r(f) of each flow f ∈ F
begin

Initialize: Fa = ∅; ∀f, r(f) = 0
Define: p.used() =

∑
f∈Fa∩p r(f)

Define: p.unassigned_flows() = p − (p ∩ Fa)
Define: p.flow_rate() =
(p.rate() − p.used())/|p.unassigned_flows()|

while P 6= ∅ do
p = argminp∈P p.flow_rate()
P = P − p
rate = p.flow_rate()
for all f ∈ p.unassigned_flows() do

r(f) = rate
Fa = Fa ∪ f

end for
end while

The next two workloads are representative of data center com-
munication patterns. The first data center workload is a closed-
loop data shuffle based on MapReduce/Hadoop communication
patterns. Inspired by Hedera [4] and DevoFlow [7], we exam-
ine a synthetic workload designed to model the shuffle phase of a
map-reduce analytics workload. In this Shuffle workload, each host
transfers 128 MB to every other host, maintaining k simultaneous
connections. In this workload, every host is constantly adding load
to the network. For our simulations, we set k = 10.

The second data center workload is generated synthetically from
statistics published about traffic in a data center at Microsoft Re-
search (MSR) by Kandula et al. [22], who instrumented a 1500-
server production cluster at MSR for two months and characterized
its network traffic. We generated synthetic traces based on these
characteristics to create the MSR workload. Specifically, we sample
from the number of correspondents, flow size, and flow inter-arrival
time distributions for intra-rack and entire cluster traffic. Because
of the inter-arrival time distribution, it is possible for hosts to be
idle during parts of the simulation.

5.1.3 Topologies

We evaluate three different data center topologies: EGFT (ex-
tended generalized fat trees[35]), HyperX, and Jellyfish. We also
evaluate the Optimal topology, an unrealistic topology consisting
of a single, large, non-blocking switch. We build all three data cen-
ter topologies using 64-port switches.

While much of the research literature focuses on full-bisection-
bandwidth networks, most large-scale data center networks em-
ploy some degree of oversubscription. Thus, we consider a range
of oversubscribed networks for each topology, ranging from 1 : 1,
which represents a full-bisection network, to 1 : 5, which represents
a network with bisection bandwidth one-fifth that of a full-bisection
network.

When comparing topologies, we simulate instances with equal
bisection bandwidth ratio (often referred to as the oversubscription

ratio). Informally, the bisection bandwidth ratio of a graph is the
ratio of the bandwidth of the links that cross a cut of the network
to the bandwidth of the hosts on one side of the cut, for the worst
case cut of the network that splits the network in half. Formally, the
bisection bandwidth ratio of a network G = (V,E), adapted from
the definition given by Dally and Towles [8], is:

bisec(G) = min
S⊆V

∑
e∈δ(S) w(e)

min{
∑

v∈S r(v),
∑

v∈S̄ r(v)}

where δ(S) is the set of edges with one endpoint in S and another
in S̄, r(v) is the total bandwidth that vertex v can initiate or receive,
w(e) is the bandwidth of edge e, and |S̄| ≤ |S| ≤ |S̄|+1. The bi-
section bandwidth ratio is a useful metric for comparing topologies
because it bounds performance if routing is optimal [8]. Differ-
ent topologies typically require different numbers of switches and
inter-switch links to achieve a particular bisection bandwidth, but
the bisection bandwidth for all of the topologies we evaluate can
be calculated directly from the properties of the topology. We re-
fer the reader to the references for the specific equations for each
topology.

EGFT: Simple fat tree and extended generalized fat tree
(EGFT[35]) topologies have long been used in supercomputer in-
terconnects. In recent years they have been proposed for use in
Ethernet-based commercial data center networks [3, 9, 33]. One
compelling property of EGFT topologies is that they have similar
performance on all traffic patterns.

HyperX: The HyperX topology [2] and its less general form, the
Flattened Butterfly topology, have also made the transition from su-
percomputing to Ethernet in recent papers [1]. HyperX topologies
are known to make better use of available bisection bandwidth than
Fat Trees, and thus can support certain traffic patterns at a lower
cost than EGFT. For example, a 1 : 2 oversubscribed HyperX can
forward uniformly distributed traffic from every host at full line-
rate, whereas a 1 : 2 oversubscribed EGFT can only forward traffic
from every host at half line-rate [24].

Jellyfish: The recently-proposed Jellyfish topology [38] con-
nects switches using a regular random graph. The properties of
such graphs have been extensively studied and are well understood.
Like HyperX, it can efficiently exploit available bandwidth.

A unique strength of the Jellyfish topology is its flexibility. A
Jellyfish network can be upgraded by simply adding switches and
performing localized rewiring. On a Jellyfish topology, adding a
switch with k inter-switch links only requires moving k other links
in the network. In contrast, upgrades to EGFT and HyperX net-
works tend to be disruptive and/or only efficient for certain network
sizes. Additionally, switches in a Jellyfish network do not need to
have the same radix, which allows multiple switch generations to
coexist in a single data center. Both upgrades and equipment fail-
ures preserve the Jellyfish’s lack of structure, and the Jellyfish is
very cost-effective since all switch ports are utilized, which maxi-
mizes use of expensive hardware.

Optimal: The optimal topology is a fictitious network modeled
by attaching all hosts to one large, non-blocking switch. In this
topology, the throughput of each host is only limited by the ca-
pacity of the link that connects it to the switch. Building the op-
timal topology is not possible in practice, but it provides a useful
benchmark against which to compare. Because we assume that all
switches are non-blocking, it is not possible to oversubscribe the
optimal topology.

5.2 Topology Comparison
The primary focus of this paper is not to compare data center

topologies, but since one of PAST’s strengths is that can be imple-
mented efficiently on arbitrary topologies, we compared topologies
as a matter of course. This section presents the results of that com-
parison, after which we present a more in-depth evaluation of our

55

0.0

0.2

0.4

0.6

0.8

1.0

Stride

B=1:5

URand

0.0

0.2

0.4

0.6

0.8

1.0

A
g
g
re
g
a
te

T
h
ro
u
g
h
p
u
t
(F
ra
ct
io
n
o
f
M
a
x
L
o
a
d
)

B=1:2

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

0.0

0.2

0.4

0.6

0.8

1.0

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

B=1:1

HyperX Jellyfish EGFT Optimal

Figure 2: Throughput Comparison of Equal Bisection Band-

width HyperX, Jellyfish, and EGFT Topologies for Both the

Stride-64 and URand-8 Workloads

PAST variants and how they compare to existing data center archi-
tectures.

Current best practices for data center networking recommend a
Fat Tree or a variant thereof, e.g., EGFT. PortLand [33] describes a
routing algorithm for EGFT topologies that scales to arbitrary net-
work sizes and achieves near-optimal performance. If the EGFT
topology dominated alternate topologies, there would be little need
for better architectures. However, prior work [2, 31, 38] has shown
that other topologies can offer equivalent or better performance
than EGFTs at lower cost for many workloads. We confirm those
observations here showing that Jellyfish [38] and HyperX [2] do
provide higher performance at the same cost. We also present the
first comparison of the Jellyfish and HyperX topologies, finding
that neither dominates the other.

5.2.1 Performance

We compare all four topologies assuming ECMP routing because
it is the current best practice to make effective use of all available
bandwidth and it is the only per-flow multipath mechanism imple-
mented in commodity Ethernet switch hardware. We simulated
each of the four topologies for the Stride-64 and URand-8 work-
loads to compute their aggregate network throughput with ECMP
enabled. Figure 2 presents the results of these experiments at three
different bisection bandwidth ratios, 1 : 5, 1 : 2, and 1 : 1. Aggre-
gate throughput is normalized to the maximum network load, i.e.,
when every server transmits and receives at full line-rate. Results
for other Stride and URand workloads are omitted for space due to
their similarity.

For both workloads, the Jellyfish topology performs somewhere
between the HyperX and EGFT topologies. Intuitively, this occurs
because the Jellyfish is not optimized for either adversarial, e.g.,
Stride, or benign, e.g., uniform, traffic, while EGFT is optimized
for arbitrary workloads and HyperX is optimized for uniform traf-
fic. This intuition also explains why HyperX performs worst under
the adversarial Stride workload. Jellyfish performs better because
it is expected to have more minimal paths to nearby hosts than Hy-
perX, and EGFT performs best because minimal routing is optimal
on an EGFT.

Under the URand workload, the Jellyfish throughput matches
that of the HyperX at low network sizes and gradually decreases

Topology

Ratio Hosts EGFT HyperX JFish

1 : 1
1K 48 64 57
2K 96 162 114
4K 320 338 228
8K 640 676 456

1 : 2
1K 36 32 38
2K 70 92 76
4K 205 210 152
8K 410 420 304

1 : 5
1K 24 27 26
2K 50 57 52
4K 125 119 103
8K 243 238 206

Table 3: Number of 64-port switches needed to implement each

topology.

as the network size increases. This performance difference is be-
cause Jellyfish uses fewer switches and links than a similar size
HyperX topology. EGFT underperforms on this workload because
it is the most adversely affected by ECMP hash collisions.

5.2.2 Cost

The previous section compared equal bisection bandwidth
topologies, but the different topologies require different numbers
of switches to achieve the same bisection bandwidth, and thus have
different costs. To account for this, we compare the topologies us-
ing a switch-based cost model. While simply counting the number
of switches required to implement a given topology does not fully
account for cost, it provides a reasonable proxy to compare topolo-
gies.

For a fair cost comparison, we implement each topology with the
fewest number of switches that provides the necessary bisection
bandwidth, subject to host count and switch radix (64-port) con-
straints. We generated the EGFT and HyperX topologies by search-
ing the space of possible topologies to find the smallest switch
count that satisfies the constraints. No search was needed for Jel-
lyfish, because the number of switches in a Jellyfish topology is a
function of the network size, bisection bandwidth, and switch radix.

Table 3 shows the number of switches needed for the different
topologies. As the network size increases, the number of switches
needed for equal bisection bandwidth EGFT and HyperX topolo-
gies approach one another. The number of switches needed for the
Jellyfish topology remains lower than a comparable size EGFT or
HyperX network.

The results in Section 5.2.1 combined with Table 3 show that
the performance-to-cost ratio of EGFT is half that of HyperX and
Jellyfish for uniform random workloads. Comparing HyperX and
Jellyfish is more nuanced. While the performance of the Jellyfish
decreases relative to the performance of the HyperX, so does the
number of switches used. Also, Jellyfish’s flexibility allows a net-
work operator to reverse this trend by adding additional “interior”
switches to increase bisection bandwidth. When the performance-
per-cost ratios are compared, the results are similar.

5.3 PAST Variants Comparison
In Section 3, we presented two basic PAST routing algorithms, a

min-hop destination-rooted variant (PAST) and a non-min-hop one
that first routed to an intermediate switch before being forwarded
to the final destination (NM-PAST). We also described two ways to

56

0.0

0.2

0.4

0.6

0.8

1.0

PAST-R PAST-W NM-PAST-R

B=1:5

NM-PAST-W

0.0

0.2

0.4

0.6

0.8

1.0

A
g
g
re
g
a
te

T
h
ro
u
g
h
p
u
t
(F
ra
ct
io
n
o
f
M
a
x
L
o
a
d
)

B=1:2

2K 4K 6K 8K
Number of hosts

0.0

0.2

0.4

0.6

0.8

1.0

2K 4K 6K 8K
Number of hosts

2K 4K 6K 8K
Number of hosts

HyperX Jellyfish EGFT Optimal

2K 4K 6K 8K
Number of hosts

B=1:1

Figure 3: Throughput Comparison of PAST Variants for the

Stride-64 Workload

0.0

0.2

0.4

0.6

0.8

1.0

PAST-R PAST-W NM-PAST-R

B=1:5

NM-PAST-W

0.0

0.2

0.4

0.6

0.8

1.0

A
g
g
re
g
a
te

T
h
ro
u
g
h
p
u
t
(F
ra
ct
io
n
o
f
M
a
x
L
o
a
d
)

B=1:2

2K 4K 6K 8K
Number of hosts

0.0

0.2

0.4

0.6

0.8

1.0

2K 4K 6K 8K
Number of hosts

2K 4K 6K 8K
Number of hosts

HyperX Jellyfish EGFT Optimal

2K 4K 6K 8K
Number of hosts

B=1:1

Figure 4: Throughput Comparison of PAST Variants for the

URand-8 Workload

build each spanning tree, one that simply chose any random next-
hop link (Random) and one that employed a weighted randomiza-
tion factor to account for non-uniformity in load (Weighted). In
total this results in four PAST forwarding mechanisms: PAST-R,
PAST-W, NM-PAST-R, and NM-PAST-W. We simulated each variant
to determine their aggregate throughput at several levels of over-
subscription (1 : 1, 1 : 2, and1 : 5). The results of these experiments
are presented in Figure 3 and Figure 4 for the Stride and URand
workloads, respectively.

These results show that both the random and weighted span-
ning tree algorithms perform identically. Although we omit the
results, the different spanning tree algorithms also perform identi-
cally on the Shuffle and MSR workloads. One possible explanation
for this result is that the regularity of the topologies that we evalu-
ated leads to there being little difference between the spanning trees
built by each algorithm. This explanation is corroborated by sim-
ulations not presented here on HyperX topologies where different
dimensions have significantly different bisection bandwidths. In
these simulations, the weighted spanning tree algorithm achieved

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

0.0

0.2

0.4

0.6

0.8

1.0

A
g
g
re
g
a
te

T
h
ro
u
g
h
p
u
t

B=1:2

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

B=1:1

PAST

ECMP

NM-PAST

VAL

EthAir

STP

PAST/ECMP/EthAir

Figure 5: Throughput Comparison of Routing Algorithms for

the Stride-64 Workload and HyperX Topology

roughly 10% higher throughput than the uniform random algo-
rithm.

The results for the Stride workload shown in Figure 3 indicate
that the NM-PAST algorithm performs better than the PAST algo-
rithm on HyperX topologies. This result is expected because min-
imally routing the Stride workload on a HyperX causes all flows
for a switch to traverse the same small number of links, while
Valiant routing takes advantage of the high uniform throughput of
a HyperX. In contrast, the PAST algorithm performs better than
the NM-PAST algorithm on an EGFT topology. This result is ex-
pected because minimal routing on an EGFT already implements
Valiant routing, so forwarding to an additional intermediate switch
in Valiant routing simply wastes bandwidth.

Surprisingly, under the stride workload, the PAST and NM-
PAST algorithms perform almost identically on Jellyfish topolo-
gies, even though the routes in NM-PAST are roughly twice the
length of routes in PAST. This result arises because there are two
competing factors that affect throughput: path diversity and path
length. The NM-PAST algorithm increases path diversity at the
cost of increasing path length. Increasing path length causes added
contention in the network interior, which reduces available bisec-
tion bandwidth. These results show that, for the Stride workload,
the performance benefit of the improved path diversity of NM-
PAST is cancelled out by the increased path length that it requires.

The results for the URand workload (Figure 4) show that the
NM-PAST algorithm achieves half of the throughput of the PAST
algorithm. This is because NM-PAST does not increase path diver-
sity on the URand workload, yet effectively doubles the load on the
network by increasing the average path length by a factor of 2.

5.4 Routing Comparison
The previous section compared the PAST variants against one

another. In this section, we compare the best PAST variants
against other scalable routing algorithms. Specifically, we com-
pare weighted PAST and NM-PAST against ECMP, Valiant (Val),
Ethernet on AIR (EthAir), and STP routing algorithms. The Valiant
routing algorithm is considered, despite not being a scalable routing
algorithm, because it provides a useful comparison for NM-PAST.
We assume that ECMP is used in EthAir. The STP algorithm is
used to show the performance of traditional Ethernet.

Figure 5, Figure 6, and Figure 7 present the throughput of each
of the routing algorithms on the Stride, URand, and Shuffle work-
loads, respectively. Results from the MSR workload are omitted
for space reasons because the relatively light load offered from the
MSR workload does not induce significant performance differences
between most of the routing algorithms. The figures only show re-

57

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

0.0

0.2

0.4

0.6

0.8

1.0
A
g
g
re
g
a
te

T
h
ro
u
g
h
p
u
t

B=1:2

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

B=1:1

PAST

ECMP

NM-PAST

VAL

EthAir

STP

PAST/ECMP

Figure 6: Throughput Comparison of Routing Algorithms

Variants for the URand-8 Workload and HyperX Topology

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

0.0

0.2

0.4

0.6

0.8

1.0

A
g
g
re
g
a
te

T
h
ro
u
g
h
p
u
t

B=1:2

1K 2K 3K 4K 5K 6K 7K 8K
Number of hosts

B=1:1

PAST

ECMP

NM-PAST

VAL

EthAir

STP

PAST/ECMP
STP

Figure 7: Throughput Comparison of Routing Algorithms

Variants for the Shuffle Workload and HyperX topology

sults for the HyperX topology and 1 : 2 and 1 : 1 oversubscription
ratio to save space—the other topologies had similar trends.

Our first observation is that the PAST and ECMP routing algo-
rithms perform identically under all workloads. Also, both algo-
rithms perform within 10% of optimal throughput on the 1 : 2 over-
subscription ratio topologies for the URand and Shuffle workloads.

NM-PAST uses some minimal paths and does not choose a new
random intermediate switch for each flow, so we expect the perfor-
mance of VAL to be greater than that of NM-PAST. This is the case
for the URand and shuffle workloads, but as seen in Figure 5, the
NM-PAST and VAL routing algorithms perform similarly on the
Stride workload. They are the best performing algorithms, even
though the throughput of VAL is far from the optimal through-
put, which is equal to the oversubscription ratio [24]. The Stride
workload only has a single flow per host, which can cause hash
collisions. As the number of flows increase, we anticipate that the
throughput of both NM-PAST and VAL will increase.

Overall, the performance of EthAIR is poor. Figure 6 shows
that, under the URand workload, the performance of EthAIR is
17%-48% worse than ECMP and PAST. Similarly, under the more
demanding shuffle workload shown in Figure 7, EthAIR performs
71%-92% worse than ECMP and PAST at the largest topology size.

The STP algorithm is presented as a strawman to show the base-
line performance of traditional Ethernet, even if all broadcasts are
disallowed. STP performs significantly worse than all of the other
routing algorithms on every topology and bisection bandwidth.
This is expected because restricting forwarding to a single tree
forces flows to collide.

Table 4 shows the scalability in terms of the number of physi-
cal hosts for each of the routing algorithms described earlier, if the
routing algorithm were implemented using a network of Trident-

Wildcard ECMP PAST STP TRILL ECMP

∞ ∼100K ∼100K ∼12K-55K

Table 4: Maximum Number of Physical Hosts for Different Ea-

ger Routing Algorithms Implemented with Broadcom Trident

Chip

based switches. The wildcard ECMP algorithm includes both wild-
card ECMP routing on an EGFT topology as well as using EthAir
to perform wildcard ECMP on arbitrary topologies. Although both
algorithms scale to arbitrary network sizes, the EthAir algorithm
restricts the set of usable paths in the network, which reduces per-
formance. Both PAST and STP only require one Ethernet table
entry per routable address, so the scalability of both PAST and STP
is only limited to the size of the Ethernet table. TRILL ECMP does
not scale to networks as large as can be supported by PAST and
STP because TRILL ECMP requires ECMP table state, which is
exhausted. The scalability of TRILL ECMP is a range because the
required number of ECMP table entries varies across topologies
and bisection bandwidths.

6. RELATED WORK
In this section, we discuss the design of PAST in the context of

related network architectures. To save space, we omit architectures
that have already been discussed, including PortLand, SEATTLE,
and Ethernet on AIR. For the sake of discussion, we group related
architectures together by the following properties: spanning tree
algorithms, link-state routing protocols, and SDN architectures.

MSTP [18], SPAIN [30], and GOE [19] are all architectures that
build a spanning tree per VLAN. None of them meet our require-
ments. MSTP does not achieve high performance because all traf-
fic for a given VLAN is still restricted to a single spanning tree.
SPAIN solves this problem by modifying hosts to load balance
across VLANs, but SPAIN violates layering and does not scale be-
cause each host requires an Ethernet table entry per VLAN. GOE
assigns each switch a VLAN and uses MSTP to build a unique
spanning tree for each switch. This design limits the total network
size to roughly 2K switches and decreases available path diversity
and performance compared to PAST. Additionally, all of these ar-
chitectures limit performance and scalability by requiring broadcast
for address learning.

TRILL [20, 36] and Shortest-Path Bridging (SPB) [10] both use
IS-IS link-state routing instead of the traditional spanning tree pro-
tocol. IS-IS may either use single path or multipath routing. Sin-
gle path routing limits TRILL to forwarding on switch addresses
instead of host addresses, and in SPB it restricts the number of for-
warding trees. Using ECMP for multipath routing improves the
performance of both architectures, but limits their scalability to the
size of the ECMP table. As a result, PAST is more scalable. TRILL
and SPB both require specific hardware support that is present in
some but not all commodity switch chips, while PAST is designed
to use the same hardware as classic Ethernet.

Hedera [4] and DevoFlow [7] are SDN architectures that provide
additional functionality compared to PAST. Hedera, DevoFlow, and
PAST all eliminate broadcasts and eagerly install routes, but Hed-
era and DevoFlow both improve performance by explicitly schedul-
ing large flows onto better paths. PAST can complement these traf-
fic engineering mechanisms by efficiently routing flows that are too
small to merit explicit scheduling (non-elephant flows). We plan to
explore traffic engineering in conjunction with PAST, which will
benefit from the fact that PAST does not use the TCAM, so all
TCAM entries can be used for traffic engineering.

58

7. CONCLUSIONS AND FUTURE WORK
Data center network designs are migrating from low-bisection-

bandwidth single-rooted trees with hybrid Ethernet/IP forwarding
to more sophisticated topologies that provide substantial perfor-
mance benefits through multipathing. Unfortunately, existing Eth-
ernet switches cannot efficiently route on multipathed networks,
so many researchers have proposed using programmable switches
(e.g., with OpenFlow) to implement high-performance routing and
forwarding. Unfortunately, most OpenFlow firmware implementa-
tions and other architectures do not exploit the full capabilities of
modern Ethernet switch chips.

In this paper, we presented PAST, a flat layer-2 data center net-
work architecture that supports full host mobility, high end-to-end
bandwidth, self-configuration, and tens of thousands of hosts using
Ethernet switches built from commodity switch chips. We demon-
strate that by designing a network architecture with explicit consid-
eration for switch functionality—in particular the exact-match Eth-
ernet table—it is possible to support heavily multipathed topologies
that allow cost and performance tradeoffs. We show that PAST is
able to provide near-optimal throughput without using a Fat Tree
network. We further show that it is possible to perform efficient
multipath routing without using ECMP or similar hashing hard-
ware, which simplifies route computation and installation and could
reduce hardware complexity because using ECMP is guaranteed to
require more hardware than PAST. Finally, we show that PAST can
be easily extended to provide non-shortest-path routing, which ben-
efits adversarial workloads. In the worst case, PAST performs the
same as ECMP, while in the best case PAST more than doubles the
performance of ECMP.

PAST has implications for the design of future Ethernet switch
chips, since our results indicate that layer-2 ECMP is not as useful
(or necessary) as previously assumed. We believe PAST will scale
well with future networks because the SRAM-based Ethernet table
is area-efficient and can easily be increased in size, while it is costly
to increase TCAM table size.

Although much has been written about network topologies, we
have presented the first three-way comparison between EGFT, Hy-
perX, and Jellyfish. We have also evaluated oversubscribed net-
works, revealing that in some cases they provide very similar per-
formance to full-bisection-bandwidth topologies but at lower cost.
In general, we agree with previous work that Fat Trees are not ideal
for any use case. Our work does not provide insight regarding
whether HyperX or Jellyfish is the better topology; the outcome
is likely to depend on practical considerations, such as ease of ca-
bling, and thus may vary between data centers.

We are excited by the potential of PAST for supporting large
enterprise and cloud data centers. We plan to extend it in a num-
ber of ways. For example, we are working on an online variant of
the per-address spanning tree algorithm that attempts to minimize
the amount of new state that needs to be computed and installed
when the physical topology or set of addressable hosts changes.
We also plan to develop a more detailed cost model for comparing
equal-performance HyperX and Jellyfish topologies. Finally, we
are exploring ways to integrate traffic engineering, traffic steering,
converged storage, high availability, and other advanced network-
ing features into our PAST architecture.

8. ACKNOWLEDGEMENTS
We thank our shepherds, Andrew Moore and Chuanxiong Guo,

and the anonymous reviewers for their comments. We also thank
Joe Tardo and Rochan Sankar from Broadcom for providing de-
tailed information about the Trident architecture and permission to
publish some details here.

References

[1] D. Abts and J. Kim. High Performance Datacenter

Networks: Architectures, Algorithms, and Opportunities.
Morgan and Claypool, 2011.

[2] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber. Hyperx: topology, routing, and packaging of
efficient large-scale networks. SC Conference, 2009.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In SIGCOMM,
2008.

[4] M. Al-fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, 2010.

[5] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center
TCP (DCTCP). In SIGCOMM, 2010.

[6] Broadcom BCM56846 StrataXGS 10/40 GbE Switch.
http://www.broadcom.com/products/

features/BCM56846.php.
[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, and P. Yalagandula.

DevoFlow: Scaling flow management for high-performance
networks. In SIGCOMM, 2011.

[8] W. Dally and B. Towles. Principles and Practices of

Interconnection Networks. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2003.

[9] N. Farrington, E. Rubow, and A. Vahdat. Data center switch
architecture in the age of merchant silicon. In Hot

Interconnects, 2009.
[10] D. Fedyk, P. Ashwood-Smith, D. Allan, A. Bragg, and

P. Unbehagen. IS-IS Extensions Supporting IEEE 802.1aq
Shortest Path Bridging. RFC 6329, Apr 2012.

[11] Floodlight openflow controller. http://floodlight.
openflowhub.org/.

[12] I. Gashinsky. SDN in warehouse scale datacenter v2.0. In
Open Networking Summit, 2012.

[13] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The
cost of a cloud: Research problems in data center networks.
In ACM CCR, January 2009.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
scalable and flexible data center network. In SIGCOMM,
2009.

[15] Greg Linden. Make data useful. http://www.scribd.
com/doc/4970486/

Make-Data-Useful-by-Greg-Linden-Amazoncom,
2006.

[16] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A data center network
virtualization architecture with bandwidth guarantees. In
Co-NEXT, 2010.

[17] IBM BNT RackSwitch G8264. http://www.
redbooks.ibm.com/abstracts/tips0815.html.

[18] IEEE. Std 802.1s Multiple Spanning Trees. 2002.
[19] A. Iwata, Y. Hidaka, M. Umayabashi, N. Enomoto, and

A. Arutaki. Global Open Ethernet (GOE) system and its
performance evaluation. Selected Areas in Communications,

IEEE Journal on, 2004.
[20] J. Touch and R. Perlman. Transparent Interconnection of

Lots of Links (TRILL): Problem and Applicability
Statement. RFC 5556, May 2009.

[21] S. Jain, Y. Chen, Z.-L. Zhang, and S. Jain. Viro: A scalable,
robust and namespace independent virtual id routing for
future networks. In INFOCOMM, 2011.

59

http://www.broadcom.com/products/features/BCM56846.php
http://www.broadcom.com/products/features/BCM56846.php
http://floodlight.openflowhub.org/
http://floodlight.openflowhub.org/
http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazoncom
http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazoncom
http://www.scribd.com/doc/4970486/Make-Data-Useful-by-Greg-Linden-Amazoncom
http://www.redbooks.ibm.com/abstracts/tips0815.html
http://www.redbooks.ibm.com/abstracts/tips0815.html

[22] S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The
nature of datacenter traffic: Measurements and analysis. In
IMC, 2009.

[23] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE:
A scalable Ethernet architecture for large enterprises. In
Proceedings of ACM SIGCOMM, 2008.

[24] J. Kim and W. J. Dally. Flattened butterfly: A cost-efficient
topology for high-radix networks. In ISCA, 2007.

[25] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y. Xiong,
R. Gao, and Y. Zhang. ServerSwitch: A programmable and
high performance platform for data center networks. In
NSDI, 2011.

[26] G.-H. Lu, S. Jain, S. Chen, and Z.-L. Zhang. Virtual id
routing: A scalable routing framework with support for
mobility and routing efficiency. In MobiArch, 2008.

[27] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. VXLAN: A
Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks. Internet-Draft
draft-mahalingam-dutt-dcops-vxlan-00.txt, IETF Secretariat,
Jan. 2012.

[28] A. M. Malcolm Scott and J. Crowcroft. Addressing the
scalability of Ethernet with MOOSE. In DC-CAVES, 2009.

[29] MC-LAG. http://en.wikipedia.org/wiki/MC_
LAG.

[30] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul.
SPAIN: COTS data-center Ethernet for multipathing over
arbitrary topologies. In NSDI, 2010.

[31] J. Mudigonda, P. Yalagandula, and J. C. Mogul. Taming the
flying cable monster: a topology design and optimization
framework for data-center networks. In USENIXATC, 2011.

[32] J. Mudigonda, P. Yalagandula, J. C. Mogul, B. Stiekes, and
Y. Pouffary. NetLord: a scalable multi-tenant network
architecture for virtualized datacenters. In SIGCOMM, pages
62–73, 2011.

[33] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A scalable fault-tolerant layer 2 data center
network fabric. In SIGCOMM, 2009.

[34] OFlops. http://www.openflow.org/wk/index.
php/Oflops.

[35] S. Ohring, M. Ibel, S. Das, and M. Kumar. On generalized
fat trees. Parallel Processing Symposium, International,
0:37, 1995.

[36] R. Perlman. Rbridges: Transparent routing. In INFOCOMM,
2004.

[37] D. Sampath, S. Agarwal, and J. Gacia-Luna-Aceves.
‘ethernet on air’ : Scalable routing in very large
ethernet-based networks. In ICDCS, 2010.

[38] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey. Jellyfish:
Networking data centers randomly. In NSDI, April 2012.

[39] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley.
Design, implementation and evaluation of congestion control
for multipath TCP. In NSDI, 2011.

60

http://en.wikipedia.org/wiki/MC_LAG
http://en.wikipedia.org/wiki/MC_LAG
http://www.openflow.org/wk/index.php/Oflops
http://www.openflow.org/wk/index.php/Oflops

	Introduction
	Background
	Switch Hardware Overview
	The Trident Switch Chip
	Switch Control Plane

	Routing Design Space

	PAST Design
	PAST Routing
	Baseline PAST
	Non-minimal PAST

	Discussion

	PAST Implementation (SDN)
	Evaluation
	Methodology
	Simulator
	Workloads
	Topologies

	Topology Comparison
	Performance
	Cost

	PAST Variants Comparison
	Routing Comparison

	Related Work
	Conclusions and Future Work
	Acknowledgements

