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Abstract. Ice cores provide unique archives of past cli-

mate and environmental changes based only on physical pro-

cesses. Quantitative temperature reconstructions are essen-

tial for the comparison between ice core records and climate

models. We give an overview of the methods that have been

developed to reconstruct past local temperatures from deep

ice cores and highlight several points that are relevant for fu-

ture climate change.

We first analyse the long term fluctuations of tempera-

ture as depicted in the long Antarctic record from EPICA

Dome C. The long term imprint of obliquity changes in the

EPICA Dome C record is highlighted and compared to simu-

lations conducted with the ECBILT-CLIO intermediate com-

plexity climate model. We discuss the comparison between

the current interglacial period and the long interglacial corre-

sponding to marine isotopic stage 11, ∼400 kyr BP. Previous

studies had focused on the role of precession and the thresh-

olds required to induce glacial inceptions. We suggest that,

due to the low eccentricity configuration of MIS 11 and the

Holocene, the effect of precession on the incoming solar ra-

diation is damped and that changes in obliquity must be taken

into account. The EPICA Dome C alignment of terminations

I and VI published in 2004 corresponds to a phasing of the

obliquity signals. A conjunction of low obliquity and min-

imum northern hemisphere summer insolation is not found

in the next tens of thousand years, supporting the idea of an

unusually long interglacial ahead.

Correspondence to: V. Masson-Delmotte

(valerie.masson@cea.fr)

As a second point relevant for future climate change,

we discuss the magnitude and rate of change of past tem-

peratures reconstructed from Greenland (NorthGRIP) and

Antarctic (Dome C) ice cores. Past episodes of tempera-

tures above the present-day values by up to 5◦C are recorded

at both locations during the penultimate interglacial period.

The rate of polar warming simulated by coupled climate

models forced by a CO2 increase of 1% per year is compared

to ice-core-based temperature reconstructions. In Antarc-

tica, the CO2-induced warming lies clearly beyond the nat-

ural rhythm of temperature fluctuations. In Greenland, the

CO2-induced warming is as fast or faster than the most rapid

temperature shifts of the last ice age. The magnitude of po-

lar temperature change in response to a quadrupling of at-

mospheric CO2 is comparable to the magnitude of the po-

lar temperature change from the Last Glacial Maximum to

present-day. When forced by prescribed changes in ice sheet

reconstructions and CO2 changes, climate models systemati-

cally underestimate the glacial-interglacial polar temperature

change.

1 Introduction

The polar regions play a key role in the global climate sys-

tem. They represent the “cold points” where the local net

radiative loss is partly compensated by the ocean and atmo-

sphere heat (and moisture) transports. The polar oceans are

involved in the global oceanic circulation through the forma-

tion of surface cold and dense waters. Changes in sea-ice
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146 V. Masson-Delmotte et al.: Past temperature from ice cores

Fig. 1. Maps of Greenland and Antarctica showing first and most recent deep ice core sites. For each drilling site are indicated the name of

the deep drilling, the year of drilling completion, the final depth and an estimate of the length of the recovered climate and environmental

records.

have been showed to have impacts on the formation of these

deep and salty waters, but also to influence the hemispheric

atmospheric circulation (Dethloff et al., 2006; Yuan and Mar-

tinson 2000; Chiang and Bitz, 2005). Atmospheric circula-

tion has been shown to link polar locations with other lati-

tudes (Liu et al., 2004; Marshall et al., 2001) and southern

latitudes (Guo et al., 2004; Yuan, 2004; Turner, 2004). Sev-

eral processes at play in polar regions are involved in climate

feedbacks: dynamical transport effects; atmospheric content

of water vapour (Solomon, 2006); polar cloud cover; surface

snow and ice albedo; sea-ice extent (Holland and Bitz, 2003).

Polar regions north and south are also involved in the car-

bon cycle via the role of the southern ocean and deep ocean

circulation (Kohler et al., 2005) and the soil carbon storage

in permafrost areas (Davidson and Janssens, 2006). Today,

some areas of the polar regions experience the largest ob-

served warming over the instrumental records (IPCC, 2001).

There is therefore a strong interest to obtain past temperature

reconstructions from these polar regions.

The Greenland and Antarctic polar ice sheets represent

∼70% of the freshwater on Earth. Because of their volume

and time constants, these ice sheets are the slow components

of the climate system. It is for instance suggested that the av-

erage age of ice inside the Greenland ice sheet is 41±2 kyrs

(respectively, 125±5 kyrs and 44±3 kyrs for the East and

West Antarctic ice sheets) (Lhomme et al., 2005). Huge
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uncertainties remain on their vulnerability to future climate

changes, and therefore on their contribution to the ocean wa-

ter budget and to the global sea-level changes on time scales

of centuries to millennia (Alley et al., 2005). On the cen-

tral parts of the Greenland and Antarctic ice sheets, the slow

burial of successive snowfall preserved under cold conditions

(typically annual mean temperatures at −30◦C at the summit

of the Greenland ice cap, below −50◦C on the East Antarc-

tic plateau above 3000 m elevation) provides archives of past

climate and environment. Ice cores are usually described as

unique paleoclimate archives because they provide informa-

tion not only on past local changes (temperature, accumula-

tion) but also relevant for other areas (e.g. aerosol content of

the atmosphere) (Wolff, 2006) and even at the global scale

(greenhouse gases preserved in the air trapped in the ice)

(Siengenthaler et al., 2005; Spahni et al., 2005, and refer-

ences herein). Ice cores are also unique in so far as they

provide past temperature reconstructions based on physical

processes, differing from many other paleoclimatic archives

that involve biological processes.

Today, three different methods are available to assess past

polar temperature changes. (i) The stable isotopic composi-

tion of water molecules is classically used to estimate contin-

uously past temperature changes, because the degree of dis-

tillation of an air mass, and therefore the final loss of heavy

water molecules, is at first order controlled by its cooling

(Dansgaard, 1964). (ii) Owing to the diffusion of heat from

the surface to the depth of the ice sheets, partial imprints

of past temperature changes can be found in the tempera-

ture profiles of boreholes (Dahl-Jensen and Johnsen, 1986;

Dahl-Jensen et al., 1998). The dating of the ice cores pro-

vides an independent assessment of these temperature re-

constructions, through the relationship linking polar atmo-

spheric temperatures and the atmospheric moisture holding

capacity (Parrenin et al., 2001). (iii) When abrupt temper-

ature changes occur, a molecular diffusion of gas inside the

firn occurs until temperature diffusion restores a stable depth

temperature gradient in the upper part of the ice sheets (Sev-

eringhaus et al., 1998; Landais et al., 2004). This thermal

gas diffusion process allows an estimation of rapid temper-

ature changes based on the past fluctuations of the isotopic

composition of gases which are considered as constant in the

atmosphere (δ15 N, δ40 Ar). Because our methods are based

on relatively well understood physical processes, models of

atmospheric circulation and isotopic or firn physics can be

used to assess the uncertainties of the temperature estimates

(Jouzel et al., 1997, 2003; Werner et al., 2001; Landais et al.,

2004). Quantitative temperature reconstructions from deep

ice cores offer the possibility to analyse the relationships be-

tween polar temperature changes and climate forcings, and

discuss past climate sensitivity (Genthon et al., 1987). They

also offer the possibility to test the local response of climate

models to prescribed forcings and to compare the magnitude

and pacing of past climate changes, with those that would

result from increased atmospheric CO2 levels.

In this paper, we focus on past temperature changes from

the longest ice core temperature records recently made avail-

able: the EPICA Dome C ice core, drilled at 75◦ S in

central East Antarctica (EPICA-community-members, 2004)

and the NorthGRIP ice core drilled at 75◦ N in Green-

land (NorthGRIP-community-members, 2004), which re-

spectively extend the unperturbed ice core climate records

back to 740 and 123 kyrs (Figs. 1 to 3). In Sect. 2, we present

the methods used to extract temperature signals from deep

ice cores and the climate simulations used in the next sec-

tions. Section 3 is dedicated to the long term EPICA record

and its relationship with the orbital parameters of the Earth.

We discuss the specific imprint of obliquity variations on

Antarctic temperature changes, as well as the comparison be-

tween the current interglacial period and an older long inter-

glacial period (marine isotopic stage MIS11, ∼400 ka BP),

which was suggested to be an “orbital analogue (Berger and

Loutre, 2002). In Sect. 4, we review the orders of magni-

tude and pacing of surface air temperature changes recon-

structed from Antarctic and Greenland ice core estimates.

We finally compare the magnitude and rate of change of polar

temperature change simulated by coupled ocean-atmosphere

models in response to increased CO2 levels (simulations con-

ducted for the Fourth Assessment Report of the Intergovern-

mental Panel for Climate Change) with those simulated un-

der Last Glacial Maximum boundary conditions (simulations

conducted for the Paleoclimate Modelling Intercomparison

Project) and with the reconstructions.

2 Methods

2.1 Temperature reconstructions from deep ice core sites

2.1.1 Methods based on stable water isotopes

Past temperature changes have originally been quantified

from the stable isotope composition of water in ice cores

(δD or δ18O) which is measured continuously on deep ice

cores with high precision using mass spectrometers (respec-

tively 0.5 and 0.05). Empirically, it has long been observed

that the isotopic content of surface snow is linearly related to

the surface temperature (Dansgaard, 1964; Lorius and Mer-

livat, 1977). Isotopic models following the distillation of

air masses along an idealised trajectory are used to disentan-

gle the processes involved in the spatial isotope-temperature

slope. Evaporation fractionation depending on surface condi-

tions (sea surface temperature, relative humidity, wind speed)

controls the isotopic composition of the atmospheric water

vapour (Ciais and Jouzel, 1994). Along the air mass trajec-

tory, an isolated air parcel undergoes a progressive cooling.

The fractionation taking place during condensation induces a

progressive loss of heavy isotopes in the water vapour from

the source areas to the coldest places. As a result of this at-

mospheric distillation, the main control of the polar regions

www.clim-past.net/2/145/2006/ Clim. Past, 2, 145–165, 2006
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isotopic composition is the difference between the source and

site temperatures.

Past changes in evaporation conditions or atmospheric

transport may induce biases on the temperature reconstruc-

tions based on δD or δ18O. In principle, the main control

on the isotopic composition of snowfall is not the surface

temperature but the temperature at the height of condensa-

tion. It is often assumed that, in central Antarctica, the con-

densation temperature is similar to the temperature in the

inversion layer, and is linearly related to the surface tem-

perature. In principle, such a hypothesis should not apply

for coastal Antarctica or Greenland where convective activ-

ity occurs at least episodically. Therefore, changes in the

the vertical temperature profiles may also alter past temper-

ature reconstructions. Obviously, the isotopic composition

of ice only records past temperatures when snowfall occurs;

changes in the seasonality of precipitation may also induce

biases on temperature reconstructions (Krinner et al., 1997).

Finally, it has been suggested that post deposition effects may

alter the isotopic composition of snowfall in very dry places

(Neumann et al., 2005).

Some artefact sources can be quantified based on simula-

tions conducted with atmospheric general circulation mod-

els equipped to explicitly calculate the different stable iso-

topes of water (Joussaume et al., 1984). Simulations of the

Last Glacial Maximum, 21 000 years ago, were performed

by such iso-AGCMs (Werner et al., 2001).

2.1.2 Continuous temperature reconstruction for Antarc-

tica

It has been showed that, in central east Antarctica, the re-

lationship between surface snow and temperature observed

today remains valid for the LGM (Jouzel et al., 2003). The

validity of this method is also verified from the dating of

the deep ice cores, which uses a modelling of the relation-

ship between stable isotopes, temperature and accumulation

together with flow models to provide the age scale of the

ice cores. Inverse dating methods applied for several cen-

tral east Antarctic deep ice cores have confirmed the valid-

ity of the isotope-based reconstructions within 20 to 30%

(EPICA-community-members, 2004; Parrenin et al., 2001,

2004; Watanabe et al., 2003).

In the rest of this paper, the Antarctic temperature re-

constructions will be discussed based on the continuous δD

profile measured on EPICA Dome C ice core (Fig. 3), cor-

rected for the global seawater isotopic composition (Bintanja

et al., 2005; Liesicki and Raymo, 2005) and transferred to

past temperatures using the observed spatial slope of 6.04

per ◦C (Delmotte, 1997; Lorius and Merlivat, 1977). More

sophisticated methods have been applied for east Antarctic

sites taking advantage of the combined measurements of δD

and δ18O of the same samples, using the deuterium excess

parameter (d=δD–8δ18O) in order to correct past tempera-

ture reconstructions from changes in evaporation conditions

(Cuffey and Vimeux, 2001; Stenni et al., 2003, 2001). How-

ever, because the full deuterium excess profile is not avail-

able yet for EPICA Dome C ice core, we use the classical

temperature reconstruction method and a maximum 30% un-

certainty on the reconstructed temperature.

The next sections rely on the temperature changes recon-

structed at Dome C, which are extremely similar to those de-

rived from other inland East Antarctica drilling sites such as

Vostok or Dome Fuji (Watanabe et al., 2003). Figure 3 dis-

plays this profile on its published EDC2 age scale (EPICA-

community-members, 2004) as well as on a preliminary

age scale where the precession signature on the EPICA air

δ18Oatm, a marker of global ice volume and productivity,

(Bender et al., 1985) has been used to improve the dating

of MIS13 to MIS15 (Dreyfus et al., 20061). For this time

period, this revised age scale is in better agreement with the

dating of marine records (Liesicki and Raymo, 2005) and

preserves over the oldest section the CO2-deuterium phase

lags observed over the past climatic cycles (Siengenthaler et

al., 2005). We estimate a 20% uncertainty associated with

the glaciological age scale (Parrenin, 20062) on the duration

of selected climatic changes (back to MIS11) discussed in

Sect. 3 in terms of pacing of temperature changes.

2.1.3 Continuous temperature reconstruction for Green-

land

The situation is more contrasted for central Greenland, where

atmospheric general circulation models simulate a much

larger glacial precipitation decrease in winter than in sum-

mer, resulting in a change of the precipitation-weighted tem-

perature and annual mean snowfall isotopic composition

(Krinner et al., 1997; Krinner and Werner, 2003). This sea-

sonality effect leads to a dramatic underestimation of glacial-

interglacial temperature magnitude when using only the sta-

ble isotopic composition of snow as proxy (Jouzel et al.,

1997).

In central Greenland, the inversion of the borehole temper-

ature profile allows an assessment of the magnitude of Green-

land temperature changes during the past decades, centuries,

maximum warmth in the Holocene, and LGM cooling (Dahl-

Jensen et al., 1998; Cuffey et al., 1992). This method shows

that the glacial to Holocene isotope-temperature slope is

twice as small (0.33 δ18O per ◦C) as today’s spatial isotope-

temperature slope (0.67 δ18O per ◦C).

Another paleotemperature method has been developed

specifically for quantifying abrupt temperature changes in

Greenland. In the case of an abrupt temperature change,

the firn undergoes a transient temperature gradient until the

diffusion of temperature into snow and ice erases the tran-

sient imbalance. Under a vertical temperature gradient, the

1Dreyfus, G., Parrenin, F., Lemieux, B., et al: An optimal

chronology for the EPICA Dome C ice core over MIS 11–15 us-

ing the isotopic composition of trapped air, in preparation, 2006.
2 Parrenin, F.: in preparation, 2006.
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gases present inside the firn (which can be seen as a porous

medium) undergo a thermal fractionation, with the heaviest

species being concentrated at the coldest end. The analysis of

species whose isotopic ratios are constant in the atmosphere

over hundreds of thousands of years, such as δ40 Ar or δ15 N,

can be combined with firn modelling to provide estimates of

past abrupt temperature changes. This method, initially de-

veloped by (Severinghaus et al., 1998), has been applied to

several rapid events in various Greenland ice cores (GISP2,

GRIP and NorthGRIP) such as abrupt temperature changes

during the last deglaciation, (Severinghaus and Brook, 1999)

and series of Dansgaard-Oeschger events (Huber et al., 2006;

Landais et al., 2004, 2005; Lang et al., 1999) and one event

in Antarctica3. The method has revealed that the temporal

temperature-isotope slope was again about twice as small as

the spatial isotope-temperature slope during abrupt events,

characterised by amplitudes ranging between 8 to 16±3◦C

(see Fig. 2).

In order to assess the magnitude of Greenland temperature

changes continuously, together with the pacing of their fluc-

tuations, we have used the GRIP ice core temperature recon-

struction published in Masson-Delmotte et al. (2005). This

method uses the borehole and gas fractionation constraints to

model changes in seasonality and reconstruct continuously

past temperature changes from water stable isotope profiles,

without however explicit correction for ice sheet elevation

changes (Cuffey and Clow, 1997). Using the NorthGRIP

ice core record, we have therefore complemented the GRIP

temperature reconstruction back to 123 000 years using this

simple change of slopes, after correction for seawater iso-

topic composition (Liesicki and Raymo, 2005; Bintanja et

al., 2005). Pieces of ice identified in the bottom sections of

GRIP and GIPS2 to be from MIS5e by comparison of their

air composition with that preserved in Antarctic ice showed

similar ranges of δ18O as recorded in NorthGRIP (Landais et

al., 2003). We estimate that these reconstructions are valid

within 30% (this is due to the ±2.5 to 3◦C uncertainty on

the gas fractionation based reconstructions with amplitudes

of 8 to 16◦C). To summarize, we use the Greenland ice core

δ18O profile, which provides the shape and duration of cli-

mate events, and reconstruct past temperature changes which

correspond to different slopes for cold and warm periods

3In Antarctica, the magnitude of the isotope anomaly is too weak

to accurately deduce a change of temperature. However, the depth

difference between the anomaly detected in the gas versus the ice

phase is an indicator of the close-off depth, itself dependent on sur-

face temperature.

Caillon, N., Severinghaus, J. P., Barnola, J.-M., Chappellaz, J.,

Jouzel, J., and Parrenin, F.: Estimation of temperature change and

of gas age – ice age difference, 108 kyr BP, at Vostok, Antarctica: J.

Geophys. Res., 106, 31 893–31 901, 2001. checked that the close-

off depth obtained by this method for a single climate event is com-

patible with modelled based estimates, supporting a reliable use of

stable isotopes of water to reconstruct past changes in Antarctic

temperature within 20 to 30%.

Fig. 2. NorthGRIP δ18O profile together with gas fractionation es-

timates of rapid temperature changes during rapid events. After

Masson-Delmotte et al. (2005) with original data from NorthGRIP-

community-members (2004); Huber et al. (2006); Landais et

al. (2004); Severinghaus et al. (1998, 2003); Severinghaus and

Brook (1999); Grachev and Severinghaus (2003). JJA 75◦ N in-

solation (orange line) is calculated after Berger and Loutre (1991).

The global sea-level reconstruction (blue line) is from Waelbroeck

et al. (2002).

(Masson-Delmotte et al., 2005). This method leads to tem-

perature changes consistent with borehole and gas fraction-

ation paleothermometry. We have used the ss09sea Green-

land age scale (Johnsen et al., 2001), again associated with

a ∼20% uncertainty in the duration of climatic events dis-

cussed in Sect. 3 (Rasmussen et al., 2006).

2.1.4 Uncertainties on “warm” temperature reconstructions

Neither for Greenland nor for Antarctica do we have any al-

ternative paleothermometry method that has been applied for

periods “isotopically” warmer than today such as the previ-

ous interglacial period (Marine Isotopic Stage MIS 5e). In

the mid-Holocene, Greenland ice core stable isotopic data

point to a 1.5◦C multi-centennial warming above present-day

(Masson-Delmotte et al., 2005), compared to 2 to 2.5◦C in-

ferred from the borehole temperature profiles (Dahl-Jensen

et al., 1998; Cuffey and Clow, 1997). This fact suggests

that past temperature reconstructions based on stable iso-

topes may be underestimated also during periods warmer

than today. No simulation of MIS5e has been made avail-

able with an atmospheric general circulation model includ-

ing the representation of water isotopic composition. We

have therefore no objective means to assess the uncertainty

of isotope-based temperature reconstructions during periods

warmer than now. Changes in ice sheet elevation may also

have occurred in Greenland (Cuffey and Marshall, 2000).

www.clim-past.net/2/145/2006/ Clim. Past, 2, 145–165, 2006
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Fig. 3. Comparison of glacial-interglacial cycles recorded in a stack

marine benthic δ18O records (Liesicki and Raymo, 2005) (blue) and

in the deuterium ratio of EPICA Dome C ice core. The EPICA

Dome C deuterium record is displayed on its initial EDC2 age scale

(EPICA-community-members, 2004) (black line) as well as on a

preliminary age scale based on the precession signal recorded in the

air δ18Oatm composition (Dreyfus et al., 20061), in better agree-

ment with the marine records (dashed and solid red lines). The

range of corresponding temperature changes is displayed (left axis).

The obliquity component of the deuterium records extracted using

a Multi-Taper Method is displayed as a green line. Fluctuations of

75◦ S annual mean insolation, resulting from changes in obliquity,

are also displayed (bottom panel) (Berger and Loutre, 1991).

In this paper, we apply for all past periods an uncertainty

of 30% on past temperature reconstructions derived from

stable isotope profiles. At the isotopic “maximum” of the

NorthGRIP δ18O record, about 123 kyrs ago, Greenland tem-

peratures are derived to have been ∼5◦C warmer than to-

day (NorthGRIP-community-members, 2004) (Fig. 2). At

the isotopic “maximum” of the EPICA δD record, about

125 to 130 kyrs ago, east Antarctic temperatures are also de-

rived to have been up to ∼5◦C warmer than today (EPICA-

community-members, 2004) (Fig. 3). Based on stable iso-

tope profiles, the largest centennial warming recorded above

present-day values is therefore estimated to reach ∼5◦C at

both poles.

2.2 Climate modelling

The EPICA reconstructions are analysed in Sect. 3 with a

focus on the imprint of obliquity fluctuations on Antarctic

temperatures. Simulations conducted with a model of in-

termediate complexity, ECBILT-CLIO, are used to describe

the impact of idealised orbital configurations (extreme obliq-

uity levels) (Tuenter et al., 2005) on surface temperatures,

all other boundary conditions being kept to their present-day

levels (vegetation, atmospheric composition, ice sheet topog-

raphy. . . ).

Greenland and Antarctic estimates of temperature changes

from the Last Glacial Maximum to the present-day are

compared in Sect. 4 to the result of simulations con-

ducted with general circulation ocean-atmosphere-sea-ice

models (including ECBILT-CLIO) within the Paleoclimate

Modelling Intercomparison Project (PMIPII) (Harrison et

al., 2002) (http://www-lsce.cea.fr/pmip2/, database version:

April 2006) for the Last Glacial Maximum climate (LGM),

21 000 years ago. In this case, the boundary conditions have

been standardised and include changes in the atmospheric

greenhouse gas composition, changes in the orbital parame-

ters (with minor effects for the LGM), changes in land-sea

and ice sheet topography (both with prescribed ice sheets

and sea-level changes) (Peltier, 2004). Changes in dust load

in the atmosphere and in vegetation are not included. In

September 2005, five coupled model simulations were avail-

able on PMIP2 database and have been compared to ice core

data in terms of polar amplification (Masson-Delmotte et al.,

2006). These simulations are conducted as equilibrium sim-

ulations and cannot be used to derive the pacing of simulated

changes.

In Sect. 4, we finally compare the magnitude and pacing of

past temperature changes reconstructed from deep ice cores

to the changes simulated by coupled ocean-atmosphere-sea-

ice models in response to prescribed increases in atmospheric

greenhouse gas levels. Standardised simulations with the

same models as for PMIP2 and other models have been con-

ducted for the Fourth Assessment Report of the Intergovern-

mental Panel for Climate Change within the Coupled Model

Intercomparison Project CMIP (http://www-pcmdi.llnl.gov/

projects/cmip/index.php). Here, we have analysed the final

results of simulations where CO2 concentrations increase by

1% per year, until they reach a doubling of pre-industrial

CO2levels (over 70 years, 2×CO2 experiments) or a quadru-

pling of pre-industrial CO2 levels (over 140 years, 4×CO2

experiments). In both cases, CO2 levels where then stabilised

over 150 years and model outputs were analysed during this

stabilisation period (pseudo “equilibrium” response). Alto-

gether, these simulations correspond to climate changes oc-

curring over ∼120 to 170 years and ∼190 to 240 years af-

ter the start of CO2 increase respectively for 2×CO2 and

4×CO2 experiments, and have been used to compare the

magnitude and pacing of anthropogenic CO2-induced cli-

mate change with the magnitude and pacing of past natural

climate fluctuations (Sect. 3).
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Fig. 4. Calculations of past (−800 to 0 ka) and future (0 to 200 ka) changes in the latitudinal distribution of December–January–February (a),

annual mean (b) and June–July–August (c) deviations (left) from the present-day (right) incoming solar radiation at the top of the atmosphere,

in W/m2.

3 Imprint of obliquity on polar temperature records

and relevance for the “analogy” between MIS11 and

the current interglacial

Because they strongly modulate the distribution of incom-

ing solar radiation at the top of the atmosphere, the orbital

parameters of the Earth are seen as the driving force for cli-

mate changes occurring on time scales longer than 10 000

years (also called orbital time scales) (Milankovitch, 1941).

A hierarchy of climate models has been used to analyse the

relationships between orbital forcing and climate dynamics.

Conceptual models have been used to analyse the non linear

climate response (Claussen et al., 2002) and general circu-

lation climate models (Braconnot, 2004) have been used to

highlight the importance of climate feedbacks in the relation-

ships between observed climate changes and orbital forcing.

These climate feedbacks are related to changes in the water

and carbon cycle and atmospheric greenhouse gas concentra-

tion (including water vapour), changes in the surface albedo

associated with changes in snow and ice cover or changes

in the vegetation cover, and changes in vegetation cover or

ocean surface properties that can transfer a seasonal forc-

ing into an annual mean response (Braconnot, 2004). Anal-

yses of the relationships between the orbital parameters of

the Earth and the climate response rely on spectral proper-

ties of the climate signals (Hays et al., 1976) versus spectral

properties of incoming solar radiation (Berger, 1978), on the

determination of phases between different climatic parame-

ters and insolation in particular during transitions (Hender-

son and Slowey, 2000; Pépin et al., 2001; Shackleton, 2000);

and modelling of the climate system response to selected or-

bital configurations (Gallée et al., 1992; Khodri et al., 2001).

In this section, we will focus on one aspect that is not usu-

ally described as essential in the driving of ice ages, which

is the impact of changes in the obliquity of the Earth on the

distribution of insolation, its imprint on the EPICA Dome C

δD record and finally its relevance when comparing different

past, present and future orbital configurations and therefore

climate evolutions.

3.1 Latitudinal changes in incoming solar radiation

We have displayed on Fig. 4 three components of today’s

incoming solar radiation: seasonal mean irradiance (total

amount of solar energy received during an astronomical sea-

son, divided by the length of this season) for June–July–

August, annual mean and December-January-February, as a

function of latitude. We have also displayed the deviations

from this present-day latitudinal distribution of insolation,

from the past 800 ka to the next 200 ka, after calculations by

Berger and Loutre (1991, 2002).
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When considering the seasonal redistribution of insola-

tion, the clearest signal is associated with the precession of

the equinoxes with periodicities of 19 to 23 kyears. The po-

sition of the seasons with respect to perihelion and aphe-

lion induces seasonal redistributions of insolation with JJA

or DJF magnitudes up to 60 W/m2. The hemisphere where

summer occurs at perihelion and winter at aphelion under-

goes larger seasonal insolation contrasts than the other hemi-

sphere. Therefore, precession has opposite effects on both

hemispheres in terms of amplitude of insolation seasonal

contrasts. Moreover, changes in the eccentricity of the orbit

(up to ∼6%) which take place with periodicities of 413 kyrs

and from 95 to 136 kyrs, modulate the impact of precession

(Rial, 1999). Indeed, the impact of the position of the sea-

sons on the Earth orbit is significantly smaller when the orbit

is almost circular, as is the case today (current eccentricity of

0.017). This effect can be clearly seen in Fig. 4, with a mod-

ulation of amplitudes of the precession signals at 100 kyr and

400 kyr periodicities. In particular, the current situation, with

a low eccentricity during the past 50 ka and the future 100 ka

can be compared to the low eccentricity situation which took

place from roughly 450 to 350 ka.

Finally, changes in the obliquity of the Earth also interact

with changes in precession and eccentricity to modulate the

seasonal contrasts (Loutre et al., 2004), with similar effects in

both hemispheres. Obliquity varies between ∼22 to 25◦, and

is today at the intermediate value of 23◦27′. However, in con-

trast with eccentricity and precession, obliquity variations

leave their signature in the annual mean insolation with oppo-

site effects at low and high latitudes, the boundary being lo-

cated at about 43◦ north and south (Fig. 4). The magnitude of

annual mean insolation variations remain limited compared

to the seasonal variations, typically up to 10 W/m2 (about 1%

of annual mean insolation in the tropics and 5% of annual

mean insolation in the high latitudes). Variations of obliq-

uity result from nearby pseudo-periodicities at about 40 kyrs,

therefore resulting in an apparent 41 kyr periodicity and an

amplitude modulation over 1.2 million years (Mélice et al.,

2001; Liu, 1999; Pälike and Shackleton, 2001). This long

term effect on the maximum and minimum obliquity levels

can be distinguished in Fig. 3 (lower panel, annual mean in-

solation at 75◦ S) and Fig. 4. During the past 200 ka, the max-

imum difference between obliquity maxima and minima is

about 50% larger than during the period from 800 to 600 ka.

When considering annual mean insolation at 75◦ S, with an

average value of 185.6 W/m2, it can be shown that the am-

plitude between minima and maxima (occurring at a 41 kyr

pacing) ranges between 5 W/m2 (at 680 ka) and 14 W/m2 (at

230 ka). Therefore, the effect of the modulation of amplitude

of obliquity induces relative variations of 2.7% to 7.5% of

high latitude insolation maxima and minima.

It is often considered that summer insolation at 65◦ N is

the key aspect of insolation changes for glacial-interglacial

climate changes, due to the specific configuration of land

masses and their role for the building of continental ice caps.

Here we stress the fact that insolation changes vary with the

season and latitude, with out of phase effects in the two hemi-

spheres if considering precession only, but symmetric bipo-

lar forcings when considering obliquity effects (Loutre et al.,

2004). Recently, Huybers (2006) also highlighted the role of

obliquity in driving integrated summer insolation.

3.2 Imprint of obliquity on ice core isotopic records

3.2.1 Obliquity signal in ice core deuterium excess records

Our thoughts on the role of obliquity on polar climate change

were initially triggered by observed variations of deuterium

excess in the Antarctic Vostok ice core. Deuterium excess,

d=δD−8δ18O, is a second-order isotopic parameter (Dans-

gaard, 1964) that corrects the deuterium fluctuations from the

first order equilibrium fractionation effects and therefore re-

flects changes in the kinetic fractionation, occurring either at

the evaporation stage (therefore conditioned by surface char-

acteristics such as sea surface temperature, relative humid-

ity and wind speed) (Merlivat and Jouzel, 1979) or during

snowflake formation (Jouzel and Merlivat, 1984).

Past fluctuations of deuterium excess measured on the

Vostok ice core appeared to be strongly modulated by fluc-

tuations of obliquity (Vimeux et al., 1999; Vimeux, 2001).

It was proposed that relative humidity co-varied with sur-

face temperature at the ocean surface (Kavanaugh and Cuf-

fey, 2003; Vimeux et al., 2001). The interpretation was then

the following: a small obliquity induces a decrease in an-

nual mean insolation at high latitudes, and an increase of

annual mean insolation at low latitudes. Cooler high lati-

tudes, warmer tropics, and a more efficient moisture trans-

port should have been combined to generate less evapora-

tion at high latitudes (with a smaller deuterium excess), more

evaporation in the tropics (with a larger deuterium excess),

and a larger contribution of high-excess low-latitude mois-

ture to polar precipitation. High deuterium excess values

are systematically observed during glacial inceptions over

the past climatic cycles, suggesting that the high obliquity

levels of these periods were inducing an active hydrological

cycle and provided the moisture required to build ice sheets

in the northern hemisphere at the same time as the poles are

getting colder. Such a mechanism is also supported by atmo-

spheric transport changes simulated by coupled climate mod-

els (Khodri et al., 2001, 2003, 2005; Vettoretti and Peltier,

2004). The first Greenland record of deuterium excess mea-

sured on GRIP ice core suggested that the obliquity signature

can be detected symmetrically on the atmospheric water cy-

cle in both hemispheres (Masson-Delmotte et al., 2005).

Recent papers have also highlighted the potential effect

of obliquity to control seasonal and annual mean latitudi-

nal insolation gradients between low and high latitudes, at-

mospheric water cycle and therefore climate and ice sheet

mass balance (Loutre et al., 2004). This suggestion also had
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echoes in the paleoceanographic community (Raymo and Ni-

sancioglu, 2003).

3.2.2 Obliquity and ice ages

It was argued that eccentricity periodicity at 400 kyr induced

a frequency modulation of its 100 kyr component and is re-

sponsible for the variable duration of ice ages, with in par-

ticular shorter ice ages around 400 kyrs (Rial, 1999). In the

EPICA Dome C deuterium record, a similar feature is ob-

served, with the shortest duration of ice ages of about 80 kyrs

before and after MIS11 (Fig. 3), corresponding to a minimum

eccentricity configuration. It can be also argued that, in pe-

riods of low eccentricity, seasonal contrasts induced by pre-

cession are weaker (Fig. 4, Fig. 6) and therefore changes in

obliquity at ∼40 kyr periodicities have larger impacts. This

effect was also suggested by Rial and Anaclerio (2000) based

on spectral analyses of Vostok climate records. Finally, re-

cent papers have also highlighted the role of obliquity vari-

ations in non linear phase locking the average frequency of

glacial cycles (Ashknenazy and Tziperman, 2004) or con-

trolling deglaciation thresholds (Parrenin and Paillard, 2004;

Huybers and Wunsch, 2005) and integrated summer insola-

tion (Huybers, 2006) have demonstrated that the late Pleis-

tocene terminations are not independent of obliquity, and that

terminations occurred at every second or third period of high

obliquity.

3.2.3 Obliquity signal in EPICA Dome C deuterium record

The power spectrum of EPICA Dome C deuterium record

shows a marked obliquity component over the past 400 kyrs,

as earlier seen in Vostok (Yiou et al., 2001), which van-

ishes over the earlier period (prior to 400 kyr BP). The long

term obliquity imprint on EPICA Dome C deuterium profile

can be analysed either based on the ∼40 kyr component of

a Multi Taper Method spectral analysis (Fig. 3), or by per-

forming evolutionary spectral analyses (not shown; Jouzel et

al., 20064). In both cases, it is clear that the ∼40 kyr pe-

riodicity has an increasing weight on central East Antarc-

tic temperature from past to present, with a marked transi-

tion at ∼400 ka. This result is further discussed in Jouzel et

al. (2006)4 in terms of intensity of warm periods.

Obliquity has a strong imprint on EPICA Dome C tem-

perature record (as shown clearly by its 40 kyr component),

especially during the past 450 kyrs (Fig. 3). We suggest that

the increasing imprint of obliquity on the record is related to

the long term amplitude modulation of obliquity variations.

The mechanism relating Antarctic temperature and obliquity

is expected to be linked to high latitude annual mean insola-

tion and local feedbacks (sea-ice, water vapour), changes in

latitudinal insolation gradients and dynamical transport feed-

4Jouzel, J., Masson-Delmotte, V., Cattani, O., et al.: Orbital and

millenial Antarctic climate variability over the last 800 000 years,

Nature, in review, 2006.

backs (advection of heat and moisture to Antarctica). It must

be noted that the strong relationship between Antarctic tem-

perature and atmospheric CO2 concentrations (Petit et al.,

1999; Siengenthaler et al., 2005) remains preserved during

the early ice ages recorded at EPICA Dome C. It has been hy-

pothesised that changes in the atmospheric greenhouse com-

position through variations of the carbon cycle controlled

by processes in the high southern latitudes may also act as

an amplifier for the imprint of obliquity on global climate,

including the tropical Pacific where the local direct effect

of obliquity is weak (Lea, 2004; Medina-Elizalde and Lea,

2005; Lawrence et al., 2006).

This strong increase of the obliquity component in Antarc-

tic temperature over the past 800 000 years is in sharp con-

trast with the longer term perspective offered by marine sedi-

ments. Indeed, paleoceanographic data (Liesicki and Raymo,

2005) show that the variance of the global ice volume is dom-

inated by a 40 kyr periodicity prior to 1 million years, and

that a 100 kyr periodicity appears on top of this 40 kyr pe-

riodicity during the past 1 million years. During ice ages,

continental ice caps are expected to be built at latitudes that

are located between 50 and 65◦ N, where the local impact of

obliquity on annual mean insolation and temperature is ex-

pected to be less strong than at polar locations (see Sect. 3.3).

Therefore, it is possible that effects of obliquity on high lat-

itude temperatures would be more clearly marked in records

of polar temperatures than in records of global sea-level. This

analysis of the role of obliquity on Antarctic temperature

builds on an understanding of a key role of precession and

northern hemisphere summer insolation in controlling the

timing of transitions and identified from their precise dating

(e.g. Hays et al., 1976).

3.3 Simulation of obliquity imprint on Antarctic tempera-

tures

In order to assess the relative impact of extreme orbital con-

figurations, in the spirit of the pioneer work of (Gallimore

and Kutzbach, 1995), an intermediate complexity climate

model, ECBilt-CLIO (Goosse and Fichefet, 1999; Opsteegh

et al., 1998) was used to perform a set of simulations under

contrasted orbital configurations (Tuenter et al., 2005). The

atmospheric component ECBilt2 is a global spectral quasi-

geostrophic model truncated at T21. There are 3 layers in

the vertical. ECBilt has simple parameterisations for the di-

abatic heating due to radiative fluxes, the release of latent

heat and the exchange of sensible heat with the surface. The

model contains a full hydrological cycle which is closed over

land by a bucket model for soil moisture. The ocean/sea-ice

model is CLIO, a primitive equation, free-surface ocean gen-

eral circulation model with a thermodynamic-dynamic sea-

ice model. The horizontal resolution is 3◦
×3◦ and it has

20 unevenly spaced vertical levels. The ocean model has a

relatively sophisticated parameterization of vertical mixing.

The three-layer sea-ice model takes into account sensible and
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Fig. 5. Latitudinal temperature change simulated by the ECBILT-

CLIO model of intermediate complexity between maximum and

minimum obliquity forcing.

latent heat storage in the snow-ice system. It simulates the

changes of snow and ice thickness in response to surface

and bottom heat fluxes; sea-ice is considered to behave as

a viscous-plastic continuum. There is no local flux correc-

tion in ECBilt-CLIO. However, the model overestimates the

precipitation over the Atlantic and Arctic oceans and under-

estimates the precipitation over the North Pacific (Opsteegh

et al., 1998). Therefore the precipitation is artificially re-

duced by 10% over the Atlantic basin and 50% over the Arc-

tic basin. The corresponding water is redistributed homoge-

neously over the North Pacific.

Two experiments simulations have been run with extreme

values of obliquity (22.08◦ and 24.45◦), with a small non-

zero eccentricity (0.001) because a zero eccentricity caused

numerical instabilities in the model. The initial state for all

simulations is the present day state. The only forcing is the

insolation change due to the orbital parameters, which were

kept constant during the simulations. All other boundary

conditions like ice sheets, vegetation and concentration of

trace gases were kept to present day values. All experiments

were run for 500 yrs. The mean response is defined as the

average over the last 100 yrs.

Figure 5 shows the latitudinal temperature change induced

by obliquity only maxima. As expected from the obliquity

effect on insolation, tropical areas respond by a small cool-

ing (within 0.3◦C), whereas high latitudes are simulated to

react strongly to obliquity forcing, with warming amplitudes

up to 2◦C in Antarctica (and the austral ocean) and 4◦C in the

Arctic. Another model of intermediate complexity run un-

der idealised orbital configurations (Kageyama et al., 20065)

shows a similar latitudinal response to obliquity forcing (not

5Kageyama, M.: in preparation, 2006.

shown). These magnitudes correspond to about one forth of

the full glacial-interglacial temperature amplitude.

This sensitivity study confirms that extreme configurations

of obliquity alone, without including associated feedbacks

such as land surface and carbon cycle changes, have the capa-

bility to significantly change polar temperatures. The poten-

tial of the sea-ice extent to act as a key climate amplifier has

been highlighted from conceptual considerations (Gildor and

Tziperman, 2000). The simulations conducted with ECBILT-

CLIO provide a quantitative confirmation on our arguments

that changes in obliquity significantly impact high latitude

temperatures.

3.4 Comparison between MIS11 and the current inter-

glacial

Several authors have attempted to forecast what should be

the natural orbitally-driven climate evolution over the next

tens of thousand years. Such long-term forecasts cannot be

made with three dimensional climate models coupled to ice

sheet models yet, and rely on more conceptual models (Im-

brie and Imbrie, 1980). These conceptual models take into

account specific aspects of the insolation forcing, such as

65◦ N mid-June insolation, and include a crude representa-

tion of feedbacks within the climate system (albedo effect,

time constant of ice sheet growth and decay and sometimes

carbon cycle and atmospheric greenhouse gas content) in or-

der to represent the non linear response of the climate system

to the orbital forcing. As a result, such models allow the de-

termination of thresholds in the incoming solar radiation that

may induce the shift from different states of the climate sys-

tem (typically from glacial to interglacial conditions, with the

main climate parameter being the global ice volume) (Pail-

lard, 1998). Such an approach seems supported by recent

simulations conducted with a climate model of intermedi-

ate complexity (Calov and Ganopolski, 2005). Of course, a

basic understanding of the orbital controls of past ice ages

warrants a minimum realism in forecasts on future orbitally-

driven future climate change. Considerations on the fate of

anthropogenic CO2 in the atmosphere have shown that its

long term decay and remaining radiative forcing may play

a major role on the climate response to orbital forcing over

the next tens of thousands of years (Archer and Ganopolski,

2005).

Several authors have worked on the comparison between

the present and future orbital configuration and the orbital

configurations that ended earlier interglacial periods. Due to

the low eccentricity context occurring now and which will

persist over the next tens of thousands of years, the preces-

sion fluctuations induce only limited changes in the northern

hemisphere summer insolation (Fig. 2, Fig. 6). The horizon-

tal dashed lines on Fig. 2 show for instance that the min-

imum of incoming northern hemisphere summer insolation

that occurred at ∼115 ka (JJA at 75◦ N) and corresponded

to the last glacial inception was 30 W/m2 (or ∼7%) below
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Fig. 6. Comparison of EPICA Dome C deuterium profile and orbital forcing for the past and future 30 kyrs (red) and for a 60 kyr time

period encompassing stage 11 (black). Two components of the orbital forcing are displayed: the anomalies from present-day of annual

mean insolation at 75◦ S (basically corresponding to the obliquity signal) and the anomalies of mid-June insolation at 65◦ N. Different

approaches have been developed to compare the transition from MIS 12 to MIS 11 and from MIS 2 to MIS 1. If the terminations are

supposed to start simultaneously, this corresponds to a synchronisation of the obliquity fluctuations (left). This approach was followed by

EPICA-community-members (2004). If the precession effect on 65◦ N mid-June insolation is synchronised, this places the terminations

and the obliquity variations out of phase (right). This approach was initially suggested by Berger and Loutre (2002) and further followed

by Ruddiman (2003). It has been suggested that thresholds on summer insolation are involved in the onset of ice ages. During the warm

Antarctic episode corresponding to MIS 11, a first minimum of summer insolation is observed at ∼420 ka. This minimum does not produce

a glacial inception (horizontal dashed line labelled 1). The end of MIS 11 at Dome C corresponds to a second deeper minimum of summer

insolation, at about 395 ka (horizontal dashed line labelled 2). It must be noted that the current minimum of mid-June insolation at 65◦ N lies

between the first level (which did not cause the glacial inception in the beginning of MIS 11) and the second level (which corresponded to

the end of MIS 11).

today’s minimum. It is therefore difficult to extrapolate the

thresholds that induced glaciations at the end of the previous

interglacial to the current and future situation.

Berger and Loutre (2002) suggested that an orbital analogy

could be made between the future orbital configuration and

the one that was observed to take place during MIS11, ∼405

to 340 ka. This analogy results from a similar modulation of

precession effect by a low eccentricity (the distance between

this period and today corresponds to the 413 kyr periodicity

in eccentricity). The comparison was further strengthened by

simulations conducted with a two dimensional climate model

(Loutre and Berger, 2003; Berger et al., 2003). Such simula-

tions suggested that the orbital forcing would not be trigger-

ing a glacial inception until 50 ka after present. However, by

comparing the evolution of Vostok atmospheric CH4 concen-

trations during the early Holocene and the 3 previous inter-

glacial periods, assumed to be related to the precession forc-

ing (Ruddiman and Raymo, 2003), Ruddiman (2003) sug-

gested that we have passed the northern hemisphere summer

insolation threshold required to start a glaciation several mil-

lennia ago. The use of the atmospheric CH4 fluctuations to

detect glacial inception remains difficult, partly because (i)

the magnitude of the precession-driven fluctuations remains

limited during interglacial periods (Schmidt et al., 2004) and

that (ii) CH4 fluctuations during MIS11 exhibits a minimum

such as the one encountered during the Holocene, without

being associated with a glacial inception(Spahni et al., 2005).

Interestingly, the EPICA Dome C record can be used

to compare the Antarctic temperature evolution during the

current interglacial period and this MIS11 interglacial pe-

riod, which was also archived in Vostok ice (Raynaud et al.,

2005). In the EPICA community paper (EPICA-community-

members, 2004), the records of MIS11 and MIS1 were syn-

chronised by aligning the terminations, so that the present-

day corresponds to a warming trend prior to MIS11 peak

warmth (∼407 ka) (Fig. 6a). It was then argued that the cur-

rent interglacial period could last as long as the remaining

16 kyr duration of MIS11, assumed to end at ∼395 ka, and

citing the orbital analogy proposed initially by Berger and

Loutre (2002).
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This synchronisation was heavily questioned by Ruddi-

man (2005), who pointed out that the (EPICA-community-

members, 2004) synchronisation was incorrect in terms of

orbital analogy. Indeed, if one was to align the pure pre-

cession signal, then the best orbital analogy is found by

aligning the present-day situation with the end of MIS11, at

∼397 ka (Fig. 6b), following the initial orbital analogy given

by Berger and Loutre (2002). The level of the current mini-

mum of NH 65◦ N mid-June insolation lies exactly between

(i) a small minimum occurring at 420 ka, in the first warming

phase of MIS11 at EPICA Dome C, which was clearly not as-

sociated with the onset of an ice age, and (ii) a more marked

minimum occurring at 399 ka, which corresponds to the rapid

cooling marking at EPICA Dome C the end of MIS11.

To our opinion, the pure alignment of the precession signal

between MIS11 and MIS1 does not support the argument that

the current insolation minimum at 65◦ N in summer is the

threshold to induce a glacial inception. The long duration of

MIS11 results probably from a “skipped” precession cycle,

in the context of a low eccentricity, and a similar situation

may as well occur in the next tens of thousand years because

no 65◦ N summer insolation minima as low as those that in-

duced the previous ice ages is expected to occur, nor the oc-

currence of a small minimum of this parameter together with

a minimum of obliquity (Fig. 6).

The temperature trend recorded in EPICA Dome C ice

core during the Holocene can also be compared with earlier

interglacial periods (Fig. 3, Fig. 6). There is no clear decreas-

ing δD trend at Dome C over the past millennia (Masson-

Delmotte et al., 2004); this is in contrast with small cooling

trends observed at other Antarctic deep ice core sites (Mas-

son et al., 2000). The late Holocene climate trends (or lack

of trends) recorded at various Antarctic places may be sig-

nificantly influenced by a few tens of meter changes in the

relative local elevation because of the ice sheet volume and

dynamics (Masson et al., 2000). Ice sheet modelling re-

sults suggest that the elevation has been slightly increasing

at deep ice core sites such as Dome C over the past millenia

(Lhomme, 2004). The lack of cooling trend cannot be ac-

counted for by elevation changes. It is therefore difficult to

argue, based on EPICA Dome C deuterium record for the

Holocene, that the current interglacial is reaching its end,

because central Antarctic temperatures do not appear to be

cooling. The Holocene trend, in this respect, is extremely

different from the deuterium fluctuations over MIS 5, 7 and

9 (marked by an early interglacial peak warmth immediately

followed by a cooling trend without a stable “plateau”). It

shows more similarity with the stable or slowly rising deu-

terium levels during the beginning of MIS11, 13, 15 or 17.

Finally, we argue that the alignment of MIS11 and MIS1

performed in (EPICA-community-members, 2004) is not

only an alignment of the terminations, but also an align-

ment of the obliquity fluctuations during the two periods

(Fig. 6a). In the previous subsection, we have reviewed both

the EPICA deuterium spectral evidence, some modelling re-

sults and the literature which suggest that obliquity fluctua-

tions have a marked signature on both the termination and

glacial inceptions. We propose that, when the eccentricity is

small and therefore the precession minima and maxima are

weak, the role of obliquity cannot be neglected in triggering

deglaciations and glaciations. In this respect, it is important

to see that there is no perfect orbital analog for the present-

day and future orbital context (Berger et al., 1998). Today,

the obliquity is at an intermediate value, whereas the end of

MIS11 occurred when both the summer insolation and the

obliquity were minimal. If obliquity is playing a larger than

invoked role on ice ages, then it cannot be expected that an

ice age would be to occur over the next 50 ka, until minima

of obliquity and NH summer insolation coincide.

4 Magnitude and pacing of past and future temperature

changes

Ice core based climate records are not only relevant for fu-

ture climate changes at the orbital time scales. The polar

temperature reconstructions can be used to test the capabili-

ties of climate models, used to assess climate risks over the

next centuries, to capture the full magnitude of past climate

changes.

The increase of atmospheric CO2 concentration caused by

human activities is already considered to be a significant

climate forcing factor (IPCC, 2001), and expected to per-

sist over the next thousands to tens of thousands of years

(Archer and Ganopolski, 2005). In this section, we compare

the magnitude and pacing of CO2 induced climate change

simulated at polar locations by coupled climate models run

under a forcing of increasing atmospheric CO2 concentra-

tions at a rate of 1% per year (see Sect. 1.2), to the past

reconstructed polar temperature changes based on ice core

data (see Sect. 1.3) and to simulations forced by Last Glacial

Maximum boundary conditions.

These comparisons allow an assessment of the capability

of climate models to capture glacial-interglacial polar tem-

perature changes, of the global relevance of deep ice core

temperature reconstructions, and a comparison of the anthro-

pogenic climate risk with the past natural climate evolution

at deep ice core sites: can the CO2-induced polar warming

be considered as an “abrupt” climate change?

4.1 Model intercomparison: LGM, 2×CO2 and 4×CO2 at

polar locations

With standardized simulations, it is possible to analyse the

mean model response together with the uncertainty from

model to model. The upper panels of Fig. 9 display the de-

viations between Last Glacial Maximum and pre-industrial,

and pre-industrial to 2× and 4×CO2 simulations (Masson-

Delmotte et al., 2006) and the bottom panels the standard

deviation between the various climate models. The global
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 Warming during a rapid event 

 

 Cooling during a rapid event 

 

 Cooling during a glacial inception 

 

 Simulated impact of 2XCO2 and 4XCO2 

(a)

(b)

Fig. 7. Overview of the magnitude and rapidity of temperature changes in Greenland (a) and Antarctica (b) from ice core estimates and

sensitivity studies conducted with coupled climate models (2×CO2 and 4×CO2). See text for details. EH(±) stands for warming/cooling

before and after the Early Holocene temperature optimum (Masson-Delmotte et al., 2004); A1(±) for the warming/cooling before and after

the A1 temperature maximum (Blunier and Brook, 2001); A7(±) for the warming/cooling before and after the A7 temperature maximum

(Blunier and Brook, 2001); 5d/5c(±) for the warming/cooling before and after the first rapid event in Antarctica (Caillon et al., 2001); LGM

for the Last Glacial Maximum; ACR for the Antarctic Cold Reversal; T1 to T9 for the terminations. These events are also located on the

deuterium profile of EPICA Dome C on Fig. 3.
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Fig. 8. Latitudinal surface air temperature change simulated by cou-

pled climate models for the change between Last Glacial Maximum

and pre-industrial (PMIP2 intercomparison) (blue lines) and for the

change between 2×CO2 (orange lines) and 4×CO2 (red lines) and

pre-industrial (CMIP intercomparison performed for IPCC). The

simulations are described in Masson-Delmotte et al. (2006). Ver-

tical blue rectangles at 75◦ N and 75◦ S correspond to estimates of

temperature ranges based on ice cores. The vertical arrow corre-

sponds to the correction for estimating polar temperature changes

at ice core sites. LGM model simulations were run with the ICE5G

topography (Peltier, 2004) which suggests a 350 to 400 m elevation

increase in central Antarctica and central Greenland. With a vertical

lapse rate of 10◦C per 1000 m, such a higher elevation is expected to

induce a local cooling of 3.5 to 4◦C. The ice core air content signals

do not suggest such large elevation changes (Krinner and Genthon,

1999).

temperature change is simulated to be 4.2±0.9◦C from LGM

to pre-industrial, 2.1±0.4◦C for pre-industrial to 2×CO2 and

4.7±1◦C to 4×CO2. At the global scale, the magnitude of a

quadrupling of CO2 levels is therefore comparable in magni-

tude to the warming since the LGM.

However, these warmings are not homogeneous over the

Earth’s surface. Figure 8 shows that 2× and 4×CO2 simu-

lations are associated with warmer temperatures in the trop-

ics compared to the simulated change from LGM to present-

day. The explanations for this differential latitudinal re-

sponse have not been fully analysed yet. Obviously, the forc-

ings themselves also differ in their spatial properties, with a

strong north/south asymmetry induced by prescribed north-

ern hemisphere ice sheets for the LGM.

We propose that two main features may be involved in

these latitudinal temperature gradients: (i) non linear water

vapour and cloud feedbacks that would depend on the mean

climate state (and therefore would not be symmetric for a

colder period such as the LGM versus warmer states such as

resulting from CO2 increases); (ii) changes in the latitudinal

transport of heat by the ocean and atmosphere simulations.

Indeed, coupled model simulations show a weakening of the

thermohaline ocean circulation in CO2 increase simulations,

possibly associated with a decreased export of heat from the

tropics to the high latitudes and therefore an increase of trop-

ical temperatures (Houghton, 2001).

In all the climate change experiments described here, a

strong polar amplification is also simulated, north or south

of 40◦ for the change since the LGM, and north or south of

60◦ for the CO2 induced changes. Polar amplification pro-

cesses are thought to be associated with changes in the sur-

face albedo feedbacks (including land ice and sea ice effects),

the cloud/water vapour atmospheric feedbacks (Holland and

Bitz, 2003; Masson-Delmotte et al., 2006; Solomon, 2006)

and prescribed changes in ice sheet topography (elevation ef-

fect on temperatures at the surface of the ice caps) (Masson-

Delmotte et al., 2006).

The average temperature change in the central Antarctic

plateau (above 2500 m) is simulated to be 8.5±3.8◦C from

LGM to pre-industrial (on average twice the global change),

and respectively 2.6±0.7◦C and 5.7±1.4◦C in response to a

doubling or quadrupling of atmospheric CO2 concentrations

(see also Figs. 8 and 9). The dispersion from model to model

is much larger for the LGM, possibly due to differences in

models simulations of ocean circulation and sea-ice changes,

and in this case reaches about half of the full amplitude.

When compared to ice core based estimates, it seems that

climate models do capture the right amplitude (about 9±2◦C

at Dome C for the LGM) (blue rectangles on Fig. 8) (Stenni

et al., 2001). However, the prescribed ICE-5G ice sheet to-

pography change (−400 m for central East Antarctica from

the LGM to present-day) accounts for half of the simulated

amplitude (taking into account a vertical lapse rate of 10◦C

per 1000 m) and is in conflict with opposite trends in eleva-

tion derived from ice core air content information (Martinerie

et al., 1994) and from three dimensional ice sheet modelling

(Ritz et al., 2001). Without changes in ice sheet elevation,

climate models would significantly underestimate LGM tem-

perature changes at Antarctic ice core locations, possibly be-

cause forcings such as changes in the dust content of the at-

mosphere and land cover changes are not taken into account.

Recent modelling studies have indeed shown that changes in

vegetation cover at the LGM enhances northern hemisphere

glacial cooling (Crucifix and Hewitt, 2005). Changes in at-

mospheric dust load is considered to have a major effect on

tropical radiative forcing (Claquin et al, 2003); changes in

dust deposition on snow are also suggested to have important

effects on ice sheet growth in the northern hemisphere (Krin-

ner et al., 2006). This comparison suggests a need for further

sensitivity tests conducted with coupled climate models and

the full range of changing LGM boundary conditions includ-

ing dust content of the atmosphere and vegetation cover, with

a detailed comparison to temperature reconstructions at vari-

ous latitudes.
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(a)

(b)

Fig. 9. Greenland (a) and Antarctic (b) surface air temperature change simulated by coupled climate models for the change between Last

Glacial Maximum and pre-industrial (PMIP2 intercomparison) (left) and for the change between 2×CO2 (center) and 4×CO2 (right) and

pre-industrial (CMIP intercomparison performed for IPCC). Top panels: average of model results. Bottom panels: inter-model standard

deviation. The simulations are described in Masson-Delmotte et al. (2006).
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The average temperature change in central Greenland

(above 1300 m) is simulated to be 10.9±3.5◦C from LGM

to pre-industrial (on average twice the global change), and

respectively 2.9±1.5◦C and 6.9±2.0◦C in response to a dou-

bling or quadrupling of atmospheric CO2 concentrations (see

also Fig. 9). Again, climate models systematically underes-

timate the magnitude of LGM to present-day changes, es-

timated to be larger than 20◦C from borehole thermometry

(Dahl-Jensen et al., 1998) (blue rectangle on Fig. 8). The

model underestimation of LGM temperature change may be

caused not including changes in the atmospheric aerosol load

and land surface changes, which could change the northern

hemisphere atmospheric circulation and enhance the glacial

cooling over Greenland.

In all the simulations, the dispersion from model to model

appears to be particularly large in the sea-ice areas, suggest-

ing that the simulated sea-ice response differs strongly from

model to model.

4.2 Comparison of magnitude and pacing at deep ice core

sites

In order to compare both the magnitude and pacing of the

different types of climate changes recorded in GRIP, North-

GRIP and EPICA Dome C ice cores, we have used the fol-

lowing method. For each climate event labelled on Fig. 7, we

have worked on temperature reconstructions (see Sect. 1) re-

sampled at a 100 year time step. We have then estimated the

magnitude of the temperature change during the event (from

minimum to maximum values), the duration of the event, the

mean pacing of temperature change (by dividing the magni-

tude by the duration) and the most rapid pacing during the

event. This maximum pacing was obtained by calculating

the successive temperature-time slope over 1000 years cen-

tred onto each time step of 100 years. In Fig. 7, both cooling

and warming events are displayed as positive values, but with

different symbols. For comparison, the 2× and 4×CO2 sim-

ulations are analysed at the end of a ∼170 and ∼240 year

time period respectively, and we have only displayed their

mean rhythm. Uncertainties on temperature magnitude are

assumed to be of 30%, apart for the glacial-interglacial am-

plitude in Greenland which is more precisely constrainted by

borehole temperature profiles. Uncertainties on the pacing

have been obtained by considering the uncertainty on the

temperature estimate and the difference between the mean

and most rapid duration of the events. We have chosen to

present a pacing calculated on a 1000 year basis because (i)

this gives orders of magnitude more easy to handle than on a

100 year basis; (ii) this enables to make a reasonable use of

the Antarctic temperature reconstruction (on a 100 year time

step). We are aware that it requires an extrapolation of more

rapid (subcentennial) temperature changes as reconstructed

from Greenland data and from climate simulations.

For Greenland, we have selected the following climate

changes: the early Holocene temperature optimum, the

8.2 cooling event (Alley and Agustsdottir, 2005; Masson-

Delmotte et al., 2005), the full termination I and the

subsections corresponding to the warming from LGM to

Bölling/Alleröd, and from the Younger Dryas to the Early

Holocene; the DO events 8, 21 and 24, corresponding to

rapid events at different moments of the last ice age; the

cooling from the maximum MIS5e warmth to the present-

day temperature. The largest magnitude of past temperature

changes in Greenland is up to 20◦C on the glacial interglacial

time scale, much larger than the 4×CO2 induced changes.

However, the most rapid temperature increases are observed

to occur during DO events such as the DO8 or DO24. Such

rapid temperature changes have magnitudes larger than 9◦C

and a pacing that can be as high as 17.5◦C per 1000 years.

In Greenland, temperature changes taking place during warm

periods are reconstructed to be much slower than those tak-

ing place during cold periods, with the fastest “interglacial”

change occurring during the glacial inception, with a maxi-

mum pacing of 4◦C per 1000 years. The warming expected

to be induced by a constant 1% CO2 increase until reaching 2

times the pre-industrial CO2 level is at least expected to be as

fast as the fastest past temperature changes. Furthermore, the

simulated warming under CO2 increase does not take possi-

ble amplifying changes in ice sheet elevation into account,

which would result in a faster and larger warming.

The situation is more contrasted in Antarctica. We have

compared the magnitude and speed of all terminations, sepa-

rating termination I into the first and second warming phases

separated by the Antarctic Cold Reversal. We have also rep-

resented the Antarctic counterparts of the same DO events

discussed earlier for Greenland (A1, A7 and 5d/5c events),

as well as the trends before and after the Early Holocene

and MIS11 maxima, and during the last glacial inception

(from 5e to 5d). Based on the EPICA Dome C EDC2 age

scale and deuterium profile, the fastest past change is ob-

served in the transition from the Antarctic Cold Reversal

to the Early Holocene, with a maximum pacing of 4◦C per

1000 years. During the warm periods, past changes are re-

constructed to occur with a smaller pacing, typically 1.5◦C

per 1000 years in the warming phase to MIS11 or less than

1◦C per 1000 years in the Holocene. Although the magni-

tude of CO2 induced projected local warming is comparable

to the magnitude of past natural changes (such as the peak

warmth of MIS5e or MIS11), the pacing corresponding to

the 1% per year CO2 increase is reaching 20◦C per 1000

years in Antarctica, one order of magnitude larger than any

of the changes recorded in EPICA Dome C deuterium-based

temperature reconstruction.

5 Conclusions and perspectives

We have briefly reviewed the methods used to extract quan-

titative information on past temperature changes from deep

ice cores and the magnitude and pacing of past temperature
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changes. These past temperature reconstructions have been

shown to be relevant for future climate change.

First, the understanding of the mechanisms relating or-

bital parameters of the Earth and glacial inceptions is im-

portant for predicting the end of the current interglacial pe-

riod. Most studies have suggested that thresholds in north-

ern hemisphere summer insolation are critical for inducing

such major transitions. We suggest, based on the analysis of

the EPICA Dome C deuterium profile and simulations con-

ducted with a climate model of intermediate complexity, that

changes in obliquity play a significant role on the evolution

of polar temperatures. In periods of low eccentricity such as

during MIS11 and during the current interglacial period, lim-

ited fluctuations of northern hemisphere summer insolation

are observed and obliquity effects should be proportionally

larger. The comparison of polar temperature evolution during

MIS11 and the Holocene published by (EPICA-community-

members, 2004) corresponded to a synchronisation of their

obliquity fluctuations. Finally, it must be noted that no past

analogue can be found for the current and future orbital con-

text, and that there is no conjunction of a minimum of obliq-

uity and a minimum of northern hemisphere summer inso-

lation (the orbital context required to produce a glacial in-

ception in a context of low eccentricity) to occur during the

next tens of thousand years. This analysis should be extended

by taking into account the obliquity imprint on climate feed-

backs such as the atmospheric dust and greenhouse gas con-

tent, which are being measured on the EPICA Dome C ice

core (Siengenthaler et al., 2005; Spahni et al., 2005), and

will benefit from improved ice core dating methods. Finally,

the suggestion that the long term amplitude modulation of

the obliquity could be responsible for lukewarm interglacials

prior to MIS11 could be tested by climate models.

Second, the glacial-interglacial temperature magnitude es-

timated from deep ice core locations can be used to test the

capability of climate models to capture the observed inten-

sity of polar temperature changes. In response to prescribed

LGM ice sheet and sea level changes, and greenhouse com-

position changes, climate models systematically underesti-

mate the magnitude of temperature change when compared

to ice core based estimates. The model-data comparison is

limited due to the fact that (i) climate models do not include

all the climate feedbacks such as changes in atmospheric dust

content, or changes in land surface vegetation, and (ii) there

may be inconsistencies in the ice sheet topography used to

force the models and the ice core indications. For the lat-

ter point, a way forward is the consistent modelling of the

coupled climate/ice sheet transient responses. The effect of

changes in ice sheet topography could also be tested with

climate models. It is interesting to observe that, in the world

of climate models, the magnitude of the simulated change in

Antarctic temperature is related to the magnitude of global

temperature change (both for LGM and future climate sce-

narios).

Although the forcings are different, the magnitudes and

pacing of CO2-induced temperature changes can be com-

pared to the natural fluctuations of polar temperatures de-

rived from ice cores. In Greenland and Antarctica, peak

warmth has been estimated to reach temperatures 5◦C above

present-day levels (at different periods of the 5e interglacial

period). These estimates would benefit from analyses of the

temperature-isotope relationships in MIS5e climate simula-

tions conducted with “isotopic” general circulation models.

We observe that the simulated magnitude of CO2-induced

temperature change is comparable to the largest temperature

changes undergone at polar locations (such as the glacial-

interglacial amplitude or the change from today to the peak

warmth of stage 5e). The pacing of the polar temperature

changes induced by a 1% per year CO2 increase is com-

parable or faster than the most abrupt temperature changes

recorded in Greenland, whereas it is several times faster

than any temperature change detected in central Antarctic ice

cores and must therefore be considered as an abrupt climate

change.
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R., Sachsi, J. P., Selmo, E., Souchez, R., Steffensen, J. P., and

Udisti, R.: A high resolution site and source late glacial temper-

ature record derived from the EPICA Dome C isotope records

(East Antarctica), Earth Planet. Sci. Lett., 217, 183–195, 2003.

Stenni, B., Masson, V., Johnsen, S. J., Jouzel, J., Longinelli, A.,

Monnin, E., Roethlisberger, R., and Selmo, E.: An oceanic cold

reversal during the last deglaciation, Science, 293, 2074–2077,

2001.

Tuenter, E., Weber, S. L., Hilgen, F. J., and Lourens, L.

J.: Sea-ice feedbacks on the climatic response to preces-

sion and obliquity forcing: Geophys. Res. Lett., 32, L24704,

doi:10.1029/2005GL024122, 2005.

Turner, J.: El Nino-southern oscillation and Antarctica, Int. J. Cli-

matology, 24, 1–31, 2004.

Vettoretti, G. and Peltier, W. R.: Sensitivity of glacial inception to

orbital and greenhouse gas climate forcing, Quaternary Sci. Rev.,

23, 499–519, 2004.

Vimeux, F., Masson, V., Jouzel, J., Petit, J. R., Steig, E. J., Stieve-

nard, M., Vaikmae, R., and White, J. W. C.: Holocene hydro-

logical cycle changes in the southern hemisphere documented in

East Antarctic deuterium excess records, Clim. Dyn., 17, 503–

513, 2001.

Vimeux, F., Masson, V., Jouzel, J., Stievenard, M., and Petit, J. R.:

Glacial-interglacial changes in ocean surface conditions in the

Southern Hemisphere, Nature, 398, 410–413, 1999.

Vimeux, F., Masson, V., Delaygue, G., Jouzel, J., Petit, J.-R., and

Stievenard, M.: A 420 000 year deuterium excess record from

East Antarctica: Information on past changes in the origin of

precipitation at Vostok, J. Geophys. Res., 106, 31 863–31 873,

2001.

Waelbroeck, C., Labeyrie, L., Michel, E., Duplessy, J. C., Mc-

Manus, J. F., Lambeck, K., Balbon, E., and Labracherie, M.:

Sea level and deep water temperature changes derived from ben-

tic foraminifera isotopic records, Quat. Sci. Rev., 21, 295–305,

2002.

Watanabe, O., Jouzel., J., Johnsen, S., Parrenin, F., Shoji, H.,

and Yoshida, N.: Homogeneous climate variability across East

Antarctica over the past three glacial cycles, Nature, 422, 509–

512, 2003.

Werner, M., Heimann, M., and Hoffmann, G.: Isotopic composition

and origin of polar precipitation in present and glacial climate

simulations, Tellus, 53B, 53–71, 2001.

Wolff, E. W., Fischer, H., Fundel, F., et al.: Southern Ocean sea-

ice extent, productivity and iron flux over the past eight glacial

cycles, Nature, 440, 491–496, 2006.

Yiou, P., Vimeux, F., and Jouzel, J.: Deuterium and deuterium-

excess variability over the last four climatic cycles, J. Geophys.

Res., 106, 31 875–31 883, 2001.

Yuan, X. J.: ENSO-related impacts on Antarctic sea-ice: a synthesis

of phenomenon and mechanisms, Antarctic Science, 16, 415–

425, 2004.

Yuan, X. J. and Martinson, D. G.: Antarctic sea ice extent variability

and its global connectivity, J. Climate, 13, 1697–1717, 2000.

www.clim-past.net/2/145/2006/ Clim. Past, 2, 145–165, 2006


