
PastryStrings: A Comprehensive Content-Based
Publish/Subscribe DHT Network

Ioannis Aekaterinidis and Peter Triantafillou
RA Computer Technology Institute and

Dept. of Computer Engineering and Informatics,
University of Patras, Greece

{aikater,peter}@ceid.upatras.gr

Abstract

In this work we propose and develop a comprehensive
infrastructure, coined PastryStrings, for supporting rich
queries on both numerical (with range, and comparison
predicates) and string attributes, (accommodating equality,
prefix, suffix, and containment predicates) over DHT net-
works utilising prefix-based routing. As event-based, pub-
lish/subscribe information systems are a champion applica-
tion class, we formulate our solution in terms of this envi-
ronment.

1 Introduction

Peer-to-peer (p2p) data networks are appropriate for
building large-scale distributed systems and applications
since they are completely decentralised, scalable, and self
organising. All participating nodes have equal opportunities
and are providing services where information is exchanged
directly between them. There are two families of p2p net-
works: structured, where the data placement and the net-
work topology are tightly controlled, and the unstructured
ones. The most prominent structured p2p networks are built
using a Distributed Hash Table (DHT [1, 19–22, 31]). A
special class of DHTs employ prefix-based routing based
on Plaxton’s et al. Mesh [17] (Tapestry [31], Pastry [21],
Bamboo [20]). DHT architectures provide scalable resource
look-up and routing with O(log(N)) complexity in a N -
node network.

A large body of research is currently targeting the ex-
tension and employment of p2p data network architectures
over either unstructured or DHT-based p2p networks ([7,
11–13, 15, 18, 30]). Related work has provided solutions for
a large number of problems, from architectures and algo-
rithms for searching relevant data, to range query process-
ing and data integration, and has started to examine how to

support join and aggregate queries. This fact testifies to the
importance the distributed systems community at large is
giving to being able to support data-intensive applications
over large-scale network infrastructures.

Supporting a ‘rich’ set of queries (queries involving pre-
fix, suffix, containment, and equality predicates on strings,
and range and comparison predicates on numerical-typed
attributes) in p2p data networks may be very useful to a
number of applications. A representative class of such
distributed applications is systems built using the pub-
lish/subscribe (pub/sub) paradigm. With our work in this
paper we contribute a comprehensive infrastructure, coined
PastryStrings, supporting efficiently and scalably a rich set
of operators on string and numerical-typed attributes. Given
the popularity of the pub/sub paradigm, we focus on it and
formulate our solution in terms of this environment.

2 Background and contributions

2.1 Plaxton’s mesh and Pastry

Pastry [21], as well as Tapestry [31] and Bamboo [20],
are all based on location and routing mechanisms intro-
duced in [17].

Plaxton et. al. present in [17] a distributed data structure
(a.k.a. Plaxton Mesh) optimised for routing and locating
objects in a very large network with constant size routing
tables. Assuming a static network, routing tables consist of
multiple levels, where in each level i there are pointers to
nodes whose identifiers (or node ids) have the same i-digit
long suffix with the current node’s id. The routing of mes-
sages is achieved by resolving one digit of the destination id
in each step i and looking at the i+1 level of the local rout-
ing table for the next node. This mechanism ensures that a
node will be reached in at most m = logβ(N) logical hops,
where N is the namespace size, β is the base of ids, and m
the number of digits in an id. The size of the routing table

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

is constant and equal to β × logβ(N).
Pastry [21] offers a robust, scalable, and self-organising

extension to Plaxton’s Mesh under a dynamic environ-
ment. The routing scheme in Pastry, is similar to the one
proposed by Plaxton et. al. with routing tables of size
β × logβ(N) (with logβ(N) levels/rows and β columns per
level), resulting in logβ(N) logical hops to locate a node.
However, prefix (instead of suffix) matching is performed
in each routing step towards the destination node, while
routing table entries point to the closest node with the ap-
propriate id prefix in terms of a proximity metric (such as
round-trip time, RTT). Moreover, in order to achieve reli-
able routing, there is the notion of a leaf set for each node
consisting of L pointers to nodes with id numerically close
to the current node’s id. In Pastry there is also the notion of
neighbouring nodes, which is a set of M pointers to nearby
nodes according to a proximity metric and used for main-
taining locality properties. Tapestry [31] and Bamboo [20]
are DHTs with similar routing functionality.

2.2 The publish/subscribe paradigm

In the pub/sub paradigm, subscribing users are interested
in particular events, comprising a small subset of the set of
all events that publishing users may generate. Pub/sub sys-
tems [9] are separated in two major categories, according to
the way subscribers express their interests; the topic-based
and the content-based pub/sub systems. Content-based
pub/sub systems are preferable as they give users the abil-
ity to express their interest by issuing continuous queries,
termed subscriptions, specifying predicates over the values
of a number of well defined attributes. The matching of
publications (a.k.a. events) to subscriptions (a.k.a. inter-
ests) is done based on the content (values of attributes).

The main challenge in a distributed pub/sub environment
is the development of an efficient distributed matching algo-
rithm and related efficient algorithms to store subscriptions
in the network. Distributed solutions have been provided
for topic-based pub/sub systems [6]. More recently, some
attempts on distributed content-based pub/sub systems use
routing trees to disseminate the events to interested users
based on multicast techniques [4, 5, 8, 13, 23, 24, 26]. Typ-
ically, processing subscriptions and/or events in these ap-
proaches requires O(N) messages in N-node networks.
Additionally, there exist techniques for subscription sum-
marization that significantly reduce the complexity [26, 27].

Some other attempts use the notion of rendezvous nodes
which ensure that events and subscriptions meet in the sys-
tem [16]. Some approaches have also considered the cou-
pling of topic-based and content-based systems [32] where
events/subscriptions are automatically classified in topics.
However, none of these works supports string attributes
with prefix, suffix, and containment predicates.

Finally, some techniques found in the literature for string
indexing may also be relevant to our goals. The most
promising is the technique relying on n-grams [12] which
can be applied for substring matching. However, deciding
on the right value of n of n− grams is difficult. Thus, typ-
ically, several values of n are used, which has a multiplica-
tive effect on the overheads associated with n − grams. A
relevant to PastryStrings work is presented in [28] where
pub/sub functionality is offered on top of the Chord DHT
using an attribute-value model, called AWPS. In [14] a bal-
anced tree structure on top of a p2p network is presented,
which can handle equality and range queries.

Prior research aiming to address relevant issues of pro-
cessing ‘rich’ queries as typified by those in a pub/sub envi-
ronment and which is closest to this work includes our pre-
vious work to support numerical-attributes in a DHT-based
pub/sub environment [25]. In this work we showed how
to exploit DHTs and order-preserving hashing to process
range subscriptions (with range R of size |R|), with worst-
case message complexity O(|R| + log(N)) and events in
O(log(N)), in an N-node network. Our more recent work
in [2] presented an approach able to support string-attribute
predicates with message complexity O(l × log(N)) (where
l is the average length of string values) for events and
O(log(N)) for subscriptions. Both of these works were
DHT-independent, relying on the underlying DHT’s lookup
functionality for routing events and subscriptions. In the
same spirit, the work in [18] proposed a distributed trie
structure called Prefix Hash Tree (PHT) which is built on
top of a DHT p2p network and can support range queries
and prefix string queries. PHT, like [2] and [25] enjoy uni-
versal applicability (as they are based solely on the DHT’s
lookup function). However, it too suffers from a number of
drawbacks regarding its performance and particularly the
message complexity of processing range and string queries.
Adapting PHT to the pub/sub paradigm we would observe
that range query (subscription) processing would require
O(log(N) + |R| × log(N)) messages. This is similar to
the performance of [25], only because of the use of order-
preserving hashing the latter work has O(|R| + log(N))
complexity (since peer nodes storing neighbouring values
are network neighbours due to the order-preserving data
placement). With respect to processing events matching
prefix-string subscriptions (in general) PHT would exhibit a
message complexity of O(l× log(N)), similar to [2], since
one DHT lookup is needed per character of the string. The
reader should note that the value of |R| can be large and that
l is typically in the order of log(N).

2.3 Contribution

What is very much lacking in the literature is a sin-
gle unified, comprehensive DHT-based, pub/sub architec-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

ture that can support with the same structures both string
and numerical-attribute events and subscriptions effectively.
This implies that it is highly desirable to offer logarith-
mic event and subscription processing performance for both
string and numerical attributes.

3 PastryStrings architecture and rationale

The two primary design choices that best describe Pas-
tryStrings are (i) a tuned Pastry (or any other Plaxton-like
DHT) network with an alphabet base1 β appropriately de-
fined so as to map string values (every possible spoken
word) to nodes and (ii) a tree structure (known as string
trees) on top of Pastry dedicated for storing subscriptions
and matching events to subscriptions using prefix-based
routing a la Pastry.

Each tree in the string tree forest is dedicated to one of
the β characters of our alphabet. For string queries starting
with a specific character we will first locate the appropri-
ate tree dedicated to that character and follow a path to-
wards the “rendezvous node” inside that tree where events
and subscriptions will meet. Each node in a string tree uses
the Pastry nodes’ local routing tables as a hint for the tree
construction.

The architecture of PastryStrings consists of clients that
are producers/consumers, issuing events/subscriptions, re-
spectively. Each client is “attached” to a Pastry network
node using any appropriate mechanism. Each Pastry node
hosts one or more string tree nodes responsible for holding
and processing events and subscriptions.

Consumers publish their interests with subscriptions that
are stored in specific string tree nodes, the “rendezvous
nodes”. Producers generate events that are delivered only
to interested consumers by collecting and ‘activating’ the
already stored subscriptions in the “rendezvous nodes”. For
simplicity of presentation, we will concentrate in this sec-
tion on a single-attribute event/subscription schema.

3.1 String trees

There are two types of nodes in PastryStrings. Net-
work (Pastry) nodes (referred to as simply “nodes”) and
string tree nodes (referred to as Tnodes). A node in
general hosts several Tnodes. Nodes have ids (assigned
by Pastry) while Tnodes have labels for identifying
them. A Tnode’s label is in general a prefix-string that
is meant to identify a specific Tnode that is responsible
for storing subscriptions matching the string label. In this
case, the Tnode with label ‘lbl’ is denoted as Tnodelbl.
Each string tree is denoted by Ti where i ∈ S =

1The digit base is equal to 64 as a result of the 2 × 26 = 52 charac-
ters of the English alphabet (uppercase and lower case), the 10 numerical
characters and two special symbols: space and period.

{a | a is one of the β characters of the alphabet} is
the character for which Ti is responsible for. This means
that every label in the Ti tree starts with the same charac-
ter i. Each Ti has a maximum depth (root’s depth is zero)
equal to the maximum allowable string-length.

A first attempt regarding the string tree construction is
to take advantage of the routing table of each node in the
Pastry network (e.g. with id digit base β = 64)2 and use
those routing tables for (prefix-based) routing the queries
to rendezvous Tnodes. However, this turns out not to be a
good idea due to the complications introduced by the main-
tenance functionality in the presence of churn. Consider,
for example, the case where a Pastry node A changes the
entry in its routing table which was pointing to B, to point
now to C because of B′s departure. Then, the entire sub-
tree rooted at B would become unreachable. In this case,
either this subtree should be moved to hang from C, (which
implies that every Tnode in the subtree would have to be
replaced and be hosted by a Pastry node reachable from C)
or C′s routing table should be updated, which implies that
we would interfere with the way the Pastry network is con-
structed.

Thus, a better idea is to maintain an additional routing ta-
ble for each Tnode of our Ti trees of constant length equal
to β with entries pointing to the Tnode’s children. The con-
struction of this routing table for a Tnode is done based on
the routing table of the Pastry node hosting the Tnode. The
routing table at each Pastry node holds β × logβ(N), en-
tries. Each Tnode uses as a hint one of the logβ(N) levels
in the routing table of the Pastry node, where the Tnode is
hosted, in order to build its own routing table. More pre-
cisely, if a Tnode lays in depth d then it is going to use the
(d+1) mod logβ(N) level of the host’s routing table. Since
the alphabet for Pastry node ids and Tnode’s labels is the
same, the aim is to do prefix-based routing over Tnode’s la-
bels utilising the Pastry infrastructure for doing prefix-based
routing over node ids, so as (i) to leverage the Pastry self-
organisation logic and (ii) achieve short RTT where possi-
ble.

String trees are created dynamically as new requests for
storing subscriptions with string-valued predicates, arrive.
Since there are many string trees we locate the root of
a specific Ti by hashing the first character of the given
string with a uniformly-distributed hash function like SHA-
1. Then, the node with that id will host (or already hosts)
the root of Ti . The following example illustrates how string
trees are created.

Example 1 Simple subscription storing. In Figure 1 a

2If, for instance β = 64 and strLength, the maximum string length,
is 20, then the namespace size is 6420 ∼= 2120 . If β = 64 and
strLength = 30 then the namespace size is 6430 ∼= 2180 . Please note,
that typical DHTs are reported to have a namespace size in the range of
2128... 2164 .

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

simplified snapshot of the PastryStrings infrastructure is
presented. In this example, we use 3-character long ids
with alphabet of base β = 2. Suppose now that a user
expresses her interests with two subscriptions (with identi-
fiers SubID1 and SubID2) on the same attribute, setting
the attribute’s value to ‘010’ and ‘00’ respectively.

In general, the string tree forest consists of two trees:
the T0 and T1 . Both subscriptions in this example con-
cern T0 . To process the storage request for value ‘010’ we
should first locate the Pastry node responsible for hosting
the root of the T0 tree (say node with id ‘000) by hash-
ing the character ‘0’ and locating the Pastry node with id
equal (or close) to the hashing result. We construct there
the root, Tnode0 and since its routing table is empty we
use the host’s routing table at level 1 as a hint (recall that
the root lays in depth d = 0 and thus we look at level
(d + 1) mod 3 = 1). The routing table of the host of
Tnode0 at level 1 has two entries (since we have a binary
alphabet) which are copied to Tnode0’s routing table. The
first one is pointing to node ‘001’ which will host Tnode00,
while the second entry points to ‘011’ which is going to host
Tnode01. Now that we have filled Tnode0’s routing table
we further process the request by checking the second char-
acter of the string, ‘1’. We look at the root’s routing table,
at column ‘1’, and select the record that matches the next
digit, sending the request to the node ‘011’. Since initially
node ‘011’ does not host any Tnode, we construct there
Tnode01 and fill its routing table with the level 2 of its
host’s routing table. Then we process the storage request,
by examining the final character of the string, ‘0’. We again
ask Tnode01 for its pointer in column ‘0’ of its routing ta-
ble and we forward the request to node ‘100’. We construct
there Tnode010 and store SubID1 . The second storage
request is handled similarly, as you can see in Figure 1. ♦

3.2 Event and subscription rendezvous

When an event arrives defining a value in our simple
single-attribute event/subscription schema, we locate the
root of the appropriate Ti and forward the event towards
the Tnode that has the same label as the string value in the
event, by resolving one character at a time. All subscrip-
tions found there, are considered to match the event since
they have declared the same value as the event.

Example 2 Simple event-subscription rendezvous. Fig-
ure 2 shows a snapshot of PastryStrings with two subscrip-
tions already stored from the previous example. Suppose
that an event defining the value ‘010’ arrives at the sys-
tem. We first locate the root node, Tnode0, of the string
tree responsible for the character ‘0’ and send there the
event. Tnode0 will look-up its routing table in column
‘1’ for the pointer to the nearby Tnode01 and will send

there the event. Tnode01 will look-up its own routing ta-
ble in column ‘0’, for the Tnode010 where the subscription
SubID1 is stored. ♦

Having introduced the notion of string trees, Ti , and
how event routing is performed, we see that two different
routing schemes coexist in PastryStrings. Specifically:

• Pastry Routing: is done based on Pastry’s routing ta-
bles and offers the common API functions described
in [21]. Pastry Routing is necessary for locating the
Ti trees, and for creating string tree paths.

• String Tree Routing: is performed within a Ti tree
and exploits the Tnodes’ routing tables in order to
forward the requests towards the leaves. A typical
API function is Tc forward(msg, key), performed
locally at each Tnode, forwarding a message (msg)
to the Tnode that is responsible for the value key.

We stress that Pastry routing is unaffected by PastryS-
trings. String tree routing uses the Tnodes’s routing tables.
A Tnode’s routing table in essence constitutes another rout-
ing level, having one entry for each possible string character
value.

3.3 Supporting complex string and nu-
merical predicates

In this section we will show how to support prefix (e.g.
‘abc*’) and suffix (e.g. ‘*abc’) predicates on string at-
tributes as well as range (and comparison ≤,≥, �=) queries
on numerical attributes over the PastryStrings infrastruc-
ture.

3.3.1 Storing subscriptions and processing incoming
events: string-typed attributes

First note that a suffix operation can be easily transformed
into a prefix operation if we simply proceed to examine the
string from its last to its first character. Thus, without loss
of generality, we shall only present how a prefix operation
on string values can be applied in PastryStrings.

Suppose that we have a subscription with a prefix pred-
icate. In order to appropriately store the subscription we
follow the same methodology as if we had an equality pred-
icate. Now when an event arrives, we locate the appropri-
ate Ti tree which is responsible for the first character of
the event’s string value (e.g. Ta for predicate abc*) , and
we then traverse a specific path of the tree (from the root
Tnode towards the leaves) until we find the Tnode whose
label is that value. During this traversal and since we per-
form prefix-based routing, all Tnodes belonging to this
path may be storing subscriptions matching a prefix of the
event’s value.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Figure 1. String tree con-
struction and subscription
storing.

Figure 2. String-typed event
to subscription matching.

Figure 3. Numerical-typed
event to subscription match-
ing.

In addition to prefix and suffix predicates, our scheme
can also support a “containment” predicate (e.g. ‘a*c’).
This containment operator can be easily decomposed to pre-
fix/suffix operations. The main idea is that, for example,
‘a*c’ can be viewed both as prefix (i.e. ‘a*’) and suffix
(i.e. ‘*c’) predicates and with appropriate post-processing
we can conclude on possible matching. Due to space limi-
tations we omit the detailed methodology for this, which is
straightforward extension given the support for prefix/suffix
predicates.

3.3.2 Storing subscriptions and processing incoming
events: numerical-typed attributes

PastryStrings also supports numerical attributes with range,
≤, ≥, �=, and = predicates. The key idea here is that ev-
ery possible range of integer values may be appropriately
mapped to a number of Tnodes based on their labels and
their location in the Ti tree. There are several ways to do
so. Here we adapt the Range Search Tree (RST) approach
presented in [10], and encapsulate its functionality within
PastryStrings.

The required functionality consists of: (i) assign sub-
ranges of numerical values to Tnodes and (ii) partitioning
a given range into appropriate subranges. Given this func-
tionality, when a subscription arrives declaring a range of
values, we first decompose the range to proper sub-ranges.
Then we locate the appropriate for each subrange Tnode in
Ti and store there the SubID . When an event arrives
declaring a specific value, we transform the value to β-ary
string representation, locate the appropriate Ti tree and fol-
low the path from the root to the leaf with the same label as
the given β-ary string. Each Tnode in this path may have
stored SubIDs declaring ranges including the value of the
event.

Recall that each Ti tree has a depth D (D equals the
maximum string length). d denotes the depth of Tnodelbl.
We also denote with num(lbl) the numerical representation

of the label string lbl. For instance, given β = 2 and lbl =
0010 then num(‘0010′) = 2.

With the proposed scheme, domains of size up to βD

may be easily mapped to Tnodes in the PastryStrings in-
frastructure. Each Tnodelbl (in depth d in a Ti tree) re-
sponsible for the prefix lbl is assigned by RST to hold a
specific range of values belonging to the following set:

[num(lbl)× βD−d−1 , (num(lbl) + 1) × βD−d−1)

In Figure 3 we present a simplified version of the PastryS-
trings infrastructure for explaining the main functionality.
In this example β = 2 and string length equal to 4 (D = 4).
As you can see, Tnode001, is going to store ranges belong-
ing to the interval [2,4). Using the node to interval mapping
above, we get: num(“001”) = 1, β = 2, D = 4 and d = 2
resulting in: [1× 24−2−1, (1+1)× 24−2−1) = [2, 4). Each
leaf Tnode holds the smallest possible sub-range while
any non-leaf Tnode holds the union of its children sub-
ranges. The union of sub-ranges of all root Tnodes of our
schema, covers the maximum possible domain for integer
values (with size βD).

Up to now we set our Ti trees so as to easily discover
the sub-range a Tnode is responsible for, based on the
Tnodelbl label. For storing a subscription with a range
predicate, we should actually break the range into sub-
ranges, find the appropriate Tnodes responsible for each
subrange, and then store there the SubID of the subscrip-
tion with the range predicate. In [10], a specific algorithm
for this purpose is developed with O(logβ(|R|)) complex-
ity for a range R with length |R|. Using this algorithm
(with small modifications) we can decompose for example
the range [2, 5) into [2, 4) and [4, 5) (in our example, Fig-
ure 3). In this case, we store the SubID in Tnode001 and
Tnode0100.

Given the Tnodes labels, we showed above that we
can identify the sub-range for which the node is respon-
sible for. However, the inverse operation (i.e., given the

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

range find the node label, lbl), is done with the follow-
ing method. Based on the way sub-ranges are mapped to
Tnodes, we can notice that for a given decomposed sub-
range r, the Tnode responsible for that subrange lays in
depth d = D − logβ|r| − 1. Since we know the Tnodelbl’s
depth, its label is the d + 1 prefix of the string represen-
tation in the β − base alphabet of the lower bound of the
subrange. That is: lbl = prefix(d + 1, β − ary(Bl)) ,
where β − ary(int x) is the string representation of integer
x and Bl is the lower bound of the subrange. For example,
as you can see in Figure 3, the decomposed subrange [3,4)
is mapped to a Tnode in depth 4−0−1 = 3, and since the
binary representation of the lower bound, 3 in D = 4 char-
acters long string is ‘0011’, Tnode’s label is the 4 (3+1)
character long prefix of string ‘0011’, resulting in ‘0011’.

When an event arrives declaring a value, we first com-
pute the smallest possible subrange that includes the value.
If, for example, the value is 3, the smallest possible sub-
range including 3, is [3, 4). Then, we compute the label of
the Tnode responsible for that range, ‘0011’, and route the
event towards Tnode0011. All stored SubIDs from root to
leaf Tnode0011 are considered to match the event.

Given that we know in advance every attribute’s domain
bounds (low and high bounds, BL, BH) we can easily
transform the predicates ≤, ≥, and �= into range predicates.
For example, the predicate ≤ V can be thought as the range
[BL, V], the predicate ≥ V as [V, BH] and the predicate
�= V as [BL, V) and (V, BH].

3.4 Load balancing issues

A possible limitation of the approach already described
is that a very small fraction of the nodes may become bot-
tlenecks as they are expected to absorb the access load of
incoming subscriptions and events. Nodes belonging to this
category are all Tnodes close to the root of each one of
the Ti trees. In PastryStrings we adopt two widely used
and complementary techniques for distributing the load: (i)
replicating the forest structure among the network nodes
and (ii) partitioning the stored subscriptions for a popular
value. Further, we can achieve even more load distribution
by applying domain relocation.

Replicating the Forest
Replicating the forest results in balancing the access load
(for storing subscriptions or locating them when events ar-
rive) across the network. We define the replication factor
(RF), as the number of replicas for each one of the β string
trees. For this to be done we could use a hash function re-
turning randomly RF values for each specific input. Thus,
during the Ti root look-up phase (when an event or sub-
scription is looking for the Ti tree) we could use this spe-
cial function so as to reach one of the RF different replica
roots (and eventually trees) and then follow a path inside

that replica tree.
During the subscription storing phase, we could either

repeat the same SubID storing process RF times (for each
replica tree) or let the node which was chosen to hold the
subscription to inform the corresponding replica nodes for
storing the subscription. Both approaches are easy to im-
plement and details are omitted for space reasons.

Partitioning the Storage Load
In real applications it is likely that some Tnodes may be-
come overloaded because of storing subscription ids defin-
ing a popular value. This kind of storage load hot spots may
be avoided by defining a threshold for the number of stored
SubIDs which when it is exceeded the Tnode chooses
randomly another Tnode for further storing SubIDs .
Each Tnode under this scheme maintains pointers to other
Tnodes holding SubIDs for the same value, so as to be
possible to collect all matched subscriptions for an incom-
ing event.

Numerical Attribute’s Domain Relocation
A typical PastryStrings configuration can support extremely
large domains of integer values, Dm. However, each
numerical-typed attribute, ai , is expected to have a much
smaller domain, Dmi. Given that some ranges are expected
to be very popular, a small set of Tnodes are expected to
absorb a great load of requests for storing and retrieving
SubIDs . With this observation in mind, we propose to
distribute each Dmi in our domain Dm adding an attribute-
specific base value, bi, to each attribute’s i value. This kind
of relocation will result in spreading the attributes’ values
across a large number of string trees and Tnodes and will
then ameliorate load balancing problems.

3.5 Self-organisation

The self organisation of the string tree forest is required
in highly dynamic p2p networks with frequent node ar-
rivals/departures and failure/recoveries. In order to treat
failures successfully we must ensure string tree connectiv-
ity, so we need extra routing state per Tnode. This extra
state, consists of pointers to a descendant node (that is a
child of a Tnode’s child) and two pointers to the left and
right siblings in the Ti tree structure. Due to space limita-
tion we do not address here the proposed algorithms. How-
ever, interested readers may find more details in [3]. To
address information (subscription) persistence issues, the
replication technique outlined earlier can be used.

4 Multi-dimensional events and subscrip-
tions

So far, we have presented PastryStrings under a single-
attribute event/subscription schema. In real world pub/sub
systems events and subscriptions are defined over a schema

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

that supports A attributes. Each attribute ai consists of a
name, type, and a value v(ai) . A k − attribute (k ≤ A)
event is defined to be a set of k values, one for each at-
tribute. Similarly, a subscription is defined through an ap-
propriate set of predicates over a subset of the A attributes
of the schema.

The allowed operators are: (i) prefix (e.g. abc*), (ii) suf-
fix (e.g. *abc), (iii) equality, and (iv) numerical range. An
event matches a subscription if and only if all the attribute
predicates of the subscription are satisfied.

The subscription identifier in our approach, SubID is
the concatenation of three parts: c1, c2, and c3. c1 repre-
sents the id of the node where the subscription arrived from
a connected to that node client and keeps metadata infor-
mation about the subscription, c2 refers to the key of the
subscription for identifying it among the stored ones at c1,
and c3 is the number of declared attributes in the subscrip-
tion.

4.1 Processing incoming subscriptions

We maintain four lists (initially empty) in every
Tnode for every attribute ai of our schema. These are
the Lai−pref and Lai−suff lists, where we store the
SubIDs of the subscriptions that contain prefix or suffix
predicates on attribute ai , respectively, the Lai−eq list ded-
icated to equality predicates, and the Lai−num dedicated to
numerical predicates.

Storing subscriptions is done by appropriately storing
the SubID in at least c3 nodes3 using the methodology
presented earlier. Briefly, we process each attribute ai of
the subscription and (i) when dealing with prefix predicate
we store SubID at Lai−pref of Tnodev(ai) (v(ai) is
the attribute’s value), (ii) when dealing with suffix predi-
cate we invert v(ai) and store SubID at Lai−suff of
Tnodeinv(v(ai)), (iii) when dealing with equality predicate
we store SubID at La−eq of Tnodev(ai), and finally
(iv) when dealing with numerical values we decompose the
range into subranges and following the methodology pre-
sented earlier we store SubID at the Lai−num of all ap-
propriate Tnodes. Details are omitted for space reasons and
can be found in [3].

4.2 Event processing and matching

Suppose now, that an event arrives at the system with
Na−event attributes defined. The SubID Lists Collection
Phase starts by processing each attribute separately. It first
locates the root Tnode of the appropriate tree and then the

3If all attributes in the subscription involve predicates on strings then
c3 Tnodes must be reached. However, if ranges are defined, then each
range R, may be translated into O(logβ(|R|)) string values and thus the
number increases.

event is forwarded towards the Tnodev(ai). In each Tnode
in the path towards Tnodev(ai), we collect all stored lists
for the given attribute and send them to the next Tnode in
the path. At each step of this process, we merge the previ-
ously collected lists of each kind resulting in four major lists
which are finally returned back to the node where the event
arrived where the matching is performed. Those lists are the
Lai−NUMERICAL , Lai−EQUALITY , Lai−PREFIX , and
Lai−SUFFIX lists4.

The next step, termed Matching Phase, is actually the
event-subscriptions matching process. Suppose, now, that
a subscription SubIDk is found to be in at least one of
the collected lists. Assume that this subscription consists of
Na−sub−k attributes (Na−sub−k is obtained from the field
c3 of the subscription identifier). Then, this subscription
is considered to match the event if it appears in exactly
Na−sub−k lists collected from the network, since an event
matches a subscription if and only if all of the subscription’s
predicates are satisfied. Those SubIDs are then transferred
to the Matching list Lmatching where they are processed
further in order to inform the subscribers that are interested
for the incoming event utilising field c1.

A number of distributed algorithms for event matching
can be used to avoid performance problems stemming from
the use of a per-event coordinator for event matching. These
are orthogonal issues and outside the scope of this paper.
We refer the interested reader to [2].

4.3 Message complexity analysis

The Pastry infrastructure ensures that at most
O(logβ(N)) messages are needed to reach any node
in a system with namespace size N and node identifiers of
base β.

During the subscription storage procedure, the average
number of messages needed to store a SubID is equal
for all allowable operations on strings. Thus, for string-
typed attributes we need O(logβ(N)) messages in order
to reach the root of the appropriate Ti string tree (i.e.
one DHT lookup) and then at most O(logβ(N)) messages
in order to locate the Tnode inside the string tree that
will accommodate the subscription id (i.e. one message
per string character), yielding a total of O(logβ(N)) mes-
sages. For numerical-typed attributes, if the mean size of
ranges is |R|, the range decomposition and string transla-
tions used in RST results in O(logβ |R|) string values. Thus
O(logβ |R| × logβ(N)) messages are required for storing a
numerical range. O(logβ |R|) is expected to be small com-
pared to O(logβ(N)) in real-life pub/sub applications with
range sizes (|R|) very small compared to N . Thus, we could
view O(logβ |R|) as a relatively small constant.

4In fact in order to collect the La −SUF F IX list we should repeat the
same procedure with the inverted string value of the event.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

Regarding the matching process and more precisely the
SubID Lists Collection Phase, for every attribute in the
event, we should first locate the appropriate string tree,
which requires O(logβ(N)) messages (i.e. one DHT
lookup). Then we locate the right Tnode and then col-
lect the SubID lists stored in all Tnodes in the path
from the root to Tnode. This step requires at most
O(logβ(N)) messages. Thus, in general, for each attribute
of the event, O(logβ(N)) messages are required in order to
collect the stored SubID lists.

5 Experimentation and performance evalua-
tion

We performed a number of experiments in a 1000-
broker PastryStrings simulated network with up to 140,000
SubIDs stored and 160,000 generated requests for collect-
ing SubID lists (the exact number depends on the skew-
ness of relevant distributions). We used a Zipfian5 popular-
ity distribution for attributes, which determines the actual
number of attributes in an event or subscription, varying
from 1 to 10. The popularity of values for each attribute
also follows a Zipfian distribution. As the skewness of the
values’ distribution plays a key role here, we varied ϑ from
0.0 to 1.6 (to test for load imbalances). Regarding the dis-
tribution of numerical and string typed attributes in the sub-
scriptions, half of the attributes are numerical (and the rest
strings). Unless stated otherwise, half of the numerical at-
tributes are declaring equalities while the other half ranges
on integer numbers. The domain of each numerical attribute
is [0, 70000] and the size of each range defined in subscrip-
tions, unless stated otherwise, was varied from 1 (equality)
to 20 (following a uniform distribution). The β base of our
alphabet was set to 15 and the maximum string length to 5.

5.1 The effect of ranges on subscription
processing performance

In the first set of experiments (detailed results are omit-
ted for space reasons) we varied the percentage of attributes
defining a numerical value (equality or range) in each sub-
scription from 0% (no ranges at all) to 100%. Our perfor-
mance metric here is the number of messages needed to
store a subscription. We observed that as the percentage
of range predicates per subscription increases, so does the
number of messages for subscription processing. In fact
the message count for the only-ranges case was four times
larger than the no-ranges case. This is as expected from our
analysis since numerical attributes need to be decomposed

5the frequency of occurrence of the nth ranked item is defined to be
1

nϑ . Typical values of the parameter ϑ are: 0.0 ≤ ϑ ≤ 1.6, where large
values of ϑ denote very skewed distributions and ϑ = 0.0 yields a uniform
distribution

into subranges for each of which a different Tnode is re-
sponsible.

5.2 Load balancing

Our main objective with this set of experiments, is to ob-
serve how load balancing is affected by changing the skew-
ness of the attributes’ and values’ popularity distribution.

5.2.1 The data distribution effect on access and storage
load

Our specific performance metric here is the coefficient of
variation (CV) of access and storage load. CV for storage
load is defined as the ratio of the standard deviation of the
number of stored SubIDs in a network node across Pas-
tryStrings, to the mean value of stored SubIDs in a node.
CV for access load involves both the number of requests
for retrieving SubIDs and routing requests to nodes. As
you can see in Figure 4(a) the coefficient of variation of
storage and access load slightly increases as the attributes’
skewness increases because the number of attributes per
event/subscription decreases (fewer popular attributes are
defined per event/subscription). Having fewer attributes re-
sults in more workload for fewer nodes. However, the dif-
ference between skewed and uniform workloads seems to
be small.

Figure 4(b) shows how access and storage CV increases
as values become more popular. This can be explained by
the fact that as ϑ increases fewer and popular values are
defined in each subscription/event. This results in over-
loading a few Tnodes in the PastryStrings infrastructure
while others remain lightly-loaded. To study how storage
load balancing can be improved by applying the attributes’
domain relocation (recall the discussion in section 3.4) we
made a number of experiments varying the attributes’ values
popularity distribution skewness and observed that the CV
for storage is not affected by more skewed values’ popular-
ity distributions. This comes from the fact that range pro-
cessing dominates string processing during the subscription
storage phase (since ranges involve the contacting of many
more Tnodes) and the domain relocation further distributes
hot values and ranges to different Tnodes. Detailed results
are omitted for space reasons.

5.2.2 Effect of replication on access and storage load

In this set of experiments we tried to measure how the
replication of the string tree forest helps distributing evenly
the storage and the access load during the SubID stor-
age phase and the SubID collection phase, respectively,
by varying the replication factor RF (the number of replica
string tree forests).

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
o
a
d

C
V

Attributes’ Popularity Distribution Theta
 (a)

Access and Storage Load (CV)
Values’ Popularity Theta=0.8

Access Load
Storage Load

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

L
o
a
d

C
V

Values’ Popularity Distribution Theta
 (b)

Access and Storage Load (CV)
 Atributes’ Popularity Theta=0.8

Access Load
Storage Load

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5

L
o
a
d

C
V

Replication Factor (RF)
 (c)

Access and Storage Load (CV)
Values’/Attributes’ Popularity Theta=0.8

Access Load
Storage Load

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

N
u
m
b
e
r

o
f

M
e
s
s
a
g
e
s

Attributes’ Popularity Distribution Theta
 (d)

Mean Number of Messages
 Values’ Popularity Theta=0.8

Event processing
Subscription processing

Figure 4. Access/Storage load balancing and messages needed for event/subscription processing.

As you can see in Figure 4(c) the coefficient of vari-
ation (CV) of the number of SubIDs stored in network
nodes (storage load) as well as the number of retrieval and
routing requests for SubIDs (access load) decreases and
approaches 0 (fully balanced), as the replication factor in-
creases. Another important observation is that the network
is more imbalanced when dealing with access load com-
pared to the storage load. This is due to the fact that sub-
scriptions involving range predicates may generate a greater
number of storage requests (recall that the range decompo-
sition may result in storing the SubID in logβ|R| nodes).
This number of SubIDs stored is greater and have a more
evenly distribution among brokers, compared to the distri-
bution of event requests.

5.3 Event processing and matching

5.3.1 Number of messages

We also conducted a number of experiments in order to
measure the number of messages per event needed to collect
all SubID lists and the number of messages per subscrip-
tion in order to store SubIDs as a function of the attributes’
and values’ popularity distribution skewness.

We observed that as the the skewness of the attributes’
popularity distribution increases, fewer attributes are in-
volved per event/subscription and thus the mean number
of messages per event/subscription decreases (Figure 4(d)).
Again, our main observation here is that subscription pro-
cessing needs more communication overhead, compared to
event processing. This is the right design choice. In real
pub/sub systems events are expected to arrive in the sys-
tem in rates much greater than subscriptions rates. Thus,
it is deemed necessary to perform a fast and efficient event
matching. We also increased the skewness of the values’
popularity distribution and we have noticed that the number
of messages per event/subscriptions is not affected by the
value popularity.

5.3.2 Network traffic

Our specific performance metric here is the total number of
SubIDs sent for the processing of each incoming event.

We varied the skewness of the attribute values’ distribu-
tion while ϑ for the attributes’ popularity equals 0.8. De-
tailed results are omitted for space reasons. Briefly, we ob-
served that as the values’ popularity distribution becomes
more skewed (varying ϑ of Zipfian popularity distribution
from 0.0 to 1.6) the traffic increases by a factor of 5 since
most of the incoming events, contact a small number of
nodes that hold the majority of stored subscription identi-
fiers. We also varied the attributes’ popularity distribution
(varying ϑ from 0.0 to 1.6) and we observed that when the
distribution is skewed (ϑ approaches 1.6) the network traf-
fic is decreased by a factor of 2.5, since fewer and popular
attributes are chosen in every incoming event.

6 Conclusions

In this work we have contributed an architecture for
building scalable, self-organising, well-performing systems
that support queries with a rich set of predicates on string
and numerical typed attributes. We specifically focused
on and presented how our algorithms can be applied in a
pub/sub environment with a broker network implemented
using a DHT network. The distinguishing feature of our
work is that is shows how to leverage specific DHT infras-
tructures to ensure logarithmic message complexity for both
event and subscription processing, and for both rich string
and numerical predicates. PastryStrings is DHT-specific,
but does not interfere with the DHT internals; it simply
leverages its key information.

Our experimentation results show that PastryStrings can
handle subscriptions with rich string and numerical pred-
icates efficiently and scalably, i.e., with small number of
messages, good load distribution to network nodes, and
small network bandwidth requirements.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

7 Acknowledgements

This work has been partially supported by the IST Pro-
gramme of the European Union number IST-2004-001907
(DELIS) and the European Social Fund (ESF), Operational
Program for Educational and Vocational Training II (EPE-
AEK II), and particularly the Program PYTHAGORAS.

References

[1] K. Aberer, P-grid: A self-organizing access structure for p2p
information systems, CoopIS’01, 2001.

[2] I. Aekaterinidis and P. Triantafillou, Internet scale string
attribute publish/subscribe data networks, 14th ACM
Conference on Information and Knowledge Management
(CIKM05), 2005.

[3] I. Aekaterinidis and P. Triantafillou, PastryStrings: Content-
based publish/subscribe over dht networks, Tech. Report
TR2006/04/01, R&A Computer Technology Institute, Pa-
tras, Greece, 2006. (http://netcins.ceid.upatras.gr)

[4] G. Banavar, T. Chandra, B. Mukherjee, and J. Nagarajarao,
An efficient multicast protocol for content-based publish-
subscribe systems, 19th ICDCS, 1999.

[5] A. Carzaniga and A. Wolf, Forwarding in a content-based
network, Proc. SIGCOMM’03, 2003, 2003.

[6] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron,
Scribe: A large-scale and decentralized application-level
multicast infrastructure, Journal on Selected Areas in Com-
munication (2002).

[7] A. Crespo and H. Garcia-Molina, Routing indices for peer-
to-peer systems, ICDCS’02, 2002.

[8] G. Cugola, E. D. Nitto, and A. Fuggetta, The jedi event-based
infrastructure and its application to the development of the
opss wfms, (2001).

[9] P. Th. Eugster, P. Felber, R. Guerraoui, and A. M. Kermar-
rec, The many faces of publish/subscribe, ACM Computing
Surveys, 2003.

[10] Jun Gao and Peter Steenkiste, An adaptive protocol for
efficient support of range queries in dht-based systems,
12th IEEE International Conference on Network Protocols
(ICNP’04), 2004.

[11] A. Gupta, O. D. Sahin, D. Agrawal, and A. El Abbadi, Megh-
doot: Content-based publish subscribe over p2p networks,
Middleware’04, 2004.

[12] M. Harren, J. M. Hellerstein, R. Huebsch, B. Thau Loo,
S. Shenker, and I. Stoica, Complex queries in dht-based peer-
to-peer networks, IPTPS’02, 2002.

[13] R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo,
S. Shenker, and I. Stoica, Querying the internet with pier,
VLDB’03, 2003.

[14] H. V. Jagadish and B. C. Ooi and Q. H. Vu, BATON:
A Balanced Tree Structure for Peer-to-Peer Networks,
VLDB’05,2005.

[15] S. W. Ng, B. C. Ooi, K. L. Tan, and A. Zhou, Peerdb: A p2p-
based system for distributed data sharing, ICDE’03, 2003.

[16] P. R. Pietzuch and J. Bacon, Peer-to-peer overlay broker net-
works in an event-based middleware, DEBS03, 2003.

[17] C. G. Plaxton, R. Rajaraman, and A. W. Richa, Accessing
nearby copies of replicated objects in a distributed environ-
ment, ACM Symposium on Parallel Algorithms and Archi-
tectures, 1997.

[18] S. Ramabadran, S. Ratnasamy, J. M. Hellerstein, and
S. Shenker, Brief announcement: Prefix hash tree, ACM
PODC, 2004.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, A scalable content addressable network, ACM
SIGCOMM’01, 2001.

[20] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Ku-
biatowicz, Handling churn in a dht, Proceedings of the
2004 USENIX Annual Technical Conference (USENIX
’04), 2004.

[21] A. Rowstron and P. Druschel, Pastry: Scalable and dis-
tributed object location and routing for large-scale peer-to-
peer systems, ACM Middleware’01, 2001.

[22] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan, Chord: A scalable peer-to-peer lookup service for
internet applications, SIGCOMM’01, 2001.

[23] C. Tang and Z. Xu, pFilter: Global Information Filtering
and Dissemination, IEEE FTDCS’03,2003.

[24] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann, A peer-to-peer approach to content-based pub-
lish/subscribe, DEBS’03, 2003.

[25] P. Triantafillou and I. Aekaterinidis, Publish-subscribe over
structured p2p networks, DEBS 04, 2004.

[26] P. Triantafillou and A. Economides, Subscription summa-
rization: A new paradigm for efficient publish/subscribe sys-
tems, IEEE ICDCS04, 2004.

[27] P. Triantafillou and A. Economides, Subscription summaries
for scalability and efficiency in publish/subscribe systems,
DEBS’02, 2002.

[28] C. Tryfonopoulos, S. Idreos, and M. Koubarakis, Pub-
lish/subscribe functionality in ir environments using struc-
tured overlay networks, In Proc. of ACM SIGIR, 2005.

[29] A. L. Wolf, A. Carzaniga, and D. S. Rosenblum, Achieving
scalability and expressiveness in an internet-scale event no-
tification service, ACM PODC, 2000.

[30] B. Yang and H. Garcia-Molina, Improving search in peer-to-
peer systems, ICDCS’02, 2002.

[31] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph,
and J. D. Kubiatowicz, Tapestry: A global-scale overlay for
rapid service deployment, IEEE Journal on Selected Areas
in Communications (2003).

[32] D. Tam and R. Azimi and H-A. Jacobsen, Building Content-
Based Publish/Subscribe Systems with Distributed Hash Ta-
bles, Proc. DBISP2P’03, 2003.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems (ICDCS’06)
0-7695-2540-7/06 $20.00 © 2006 IEEE

