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Patch Alignment for Dimensionality Reduction 
Tianhao Zhang, Dacheng Tao, Member, IEEE, Xuelong Li, Senior Member, IEEE, and Jie Yang 

Abstract—Spectral analysis based dimensionality reduction algorithms are important and have been popularly applied in data 
mining and computer vision applications. To date many algorithms have been developed, e.g., principal component analysis, 
locally linear embedding, Laplacian eigenmaps, and local tangent space alignment. All of these algorithms have been designed 
intuitively and pragmatically, i.e., on the base of the experience and knowledge of experts for their own purposes. Therefore, it 
will be more informative to provide a systematic framework for understanding the common properties and intrinsic difference in 
different algorithms. In this paper, we propose such a framework, named “patch alignment”, which consists of two stages: part 
optimization and whole alignment. The framework reveals that: i) algorithms are intrinsically different in the patch optimization 
stage; and ii) all algorithms share an almost-identical whole alignment stage. As an application of this framework, we develop a 
new dimensionality reduction algorithm, termed Discriminative Locality Alignment (DLA), by imposing discriminative information 
in the part optimization stage. DLA can: i) attack the distribution nonlinearity of measurements; ii) preserve the discriminative 
ability; and iii) avoid the small sample size problem. Thorough empirical studies demonstrate the effectiveness of DLA compared 
with representative dimensionality reduction algorithms. 

Index Terms—Dimensionality reduction, spectral analysis, patch alignment, discriminative locality alignment. 

——————————      —————————— 

1 INTRODUCTION

IMENSIONALITY reduction based on spectral 
analysis is the process of transform measurements 
from a high-dimensional space to a low-dimensional 

subspace through the spectral analysis on specially con-
structed matrices [28]. It aims to reveal the intrinsic struc-
ture of the distribution of measurements in the original 
high-dimensional space and plays an important role in 
data mining, computer vision, and machine learning to 
deal with “curse of dimensionality” [4] for various appli-
cations, e.g., biometrics [29], [31], [35], [36], multimedia 
information retrieval [1], [16], [17], [30], document cluster-
ing [8], [14], and data visualization [23]. Representative 
spectral analysis based dimensionality reduction algo-
rithms can be classified into two groups: i) conventional 
linear dimensionality reduction algorithms and ii) mani-
fold learning based algorithms. 

Representative conventional linear dimensionality re-
duction algorithms include principal component analysis 
(PCA) [20] and linear discriminant analysis (LDA) [13]. 
PCA maximizes the mutual information between original 
high-dimensional Gaussian distributed measurements 
and projected low-dimensional measurements. PCA, 
which is unsupervised, does not utilize the class label 
information. While, LDA finds a projection matrix that 
maximizes the trace of the between-class scatter matrix 

and minimizes the trace of the within-class scatter matrix 
in the projected subspace simultaneously. LDA is super-
vised since it utilizes class label information. The global 
linearity of PCA and LDA prohibit their effectiveness for 
non-linear distributed measurements. 

Representative manifold learning based dimensional-
ity reduction algorithms include locally linear embedding 
(LLE) [26], ISOMAP [32], Laplacian eigenmaps (LE) [3], 
Hessian eigenmaps (HLLE) [11], and local tangent space 
alignment (LTSA) [39]. LLE uses linear coefficients, which 
reconstruct a given measurement by its neighbours, to 
represent the local geometry, and then seeks a low-
dimensional embedding, in which these coefficients are 
still suitable for reconstruction. ISOMAP, a variant of 
MDS [12], preserves global geodesic distances of all pairs 
of measurements. LE preserves proximity relationships 
by manipulations on an undirected weighted graph, 
which indicates neighbour relations of pairwise meas-
urements. LTSA exploits the local tangent information as 
a representation of the local geometry and this local tan-
gent information is then aligned to provide a global coor-
dinate. HLLE obtains the final low-dimensional represen-
tations by applying eigen-analysis to a matrix which is 
built by estimating the Hessian over neighbourhood. All 
of these algorithms suffer from the out of sample problem 
[5]. One common response to this problem is to apply a 
linearization procedure to construct explicit maps over 
new measurements. Examples of this approach include 
locality preserving projections (LPP) [19], a linearization 
of LE; neighbourhood preserving embedding (NPE) [18], 
a linearization of LLE; orthogonal neighbourhood pre-
serving projections (ONPP) [22], a linearization of LLE 
with the orthogonal constraint over the projection matrix; 
and linear local tangent space alignment (LLTSA) [38], a 
linearization of LTSA. 
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TABLE 1
IMPORTANT NOTATIONS USED IN THE PAPER 

Notation Description Notation Description 

X  given dataset in a high-dimensional space iL  representation of part optimization 

Y  dimension-reduced dataset iS  selection matrix 
N  size of the dataset X  iF  indices for the ith patch 
m  dimension of original measurements dI  d d×  identity matrix 

d  reduced dimension le  [ ]1, ,1 T l∈  
m  m -dimensional Euclidean space ic  reconstruction coefficients in LLE 

C  number of classes iw  weighting vector in LE 

iX  ith patch NR  centralization  matrix 

ix  given measurement in X  iH  Hessian matrix 

iN  number of measurements in ith class k  number of neighbours 
  TS total scatter matrix β  scaling factor 

WS  within-class scatter matrix iω  coefficients vector in DLA 

BS  between-class scatter matrix U  projection matrix 

The above analysis shows that all the aforementioned 
algorithms are designed according to specific intuitions 
and solutions are given by optimizing intuitive and 
pragmatic objectives. That is, these algorithms have been 
developed based on the experience and knowledge of 
field experts for their own purposes. As a result, common 
properties and intrinsic differences of these algorithms 
are not completely clear. Therefore, it is essential and 
more informative to provide some a systematic frame-
work for better understanding the common properties 
and intrinsic differences in algorithms. 

In this paper, we propose such a framework termed 
“patch alignment” to unify spectral analysis based di-
mensionality reduction algorithms. This framework con-
sists of two stages: part optimization and whole align-
ment. For part optimization, different algorithms have 
different optimization criteria over patches, each of which 
is built by one measurement associated with its related 
ones. For whole alignment, all part optimizations are in-
tegrated to form the final global coordinate for all inde-
pendent patches based on the alignment trick, originally 
used by Zhang and Zha [39]. This framework discovers 
that: i) algorithms are intrinsically different in the patch 
optimization stage; and ii) all algorithms share an almost 
identical whole alignment stage. As an application of this 
framework, we also develop a new dimensionality reduc-
tion algorithm, termed Discriminative Locality Alignment 
(DLA), by imposing discriminative information in the 
part optimization stage. Benefits of DLA are threefold: i) 
because it takes into account the locality of measurements, 
it can deal with the nonlinearity of the measurement dis-
tribution; ii) because the neighbour measurements of dif-
ferent classes are considered, it well preserves discrimin-
ability of classes; and iii) because it obviates the need to 
compute the inverse of a matrix, it avoids the small sam-
ple size problem.  

The rest of the paper is organized as follows: Section 2 

introduces the proposed framework. In Section 3 we use 
this framework to explain existing spectral analysis based 
dimensionality reduction algorithms. In Section 4, DLA, 
the new algorithm, is described. In Section 5 we evaluate 
DLA in comparison with popular dimensionality reduc-
tion algorithms and Section 6 concludes. 

For convenience, Table 1 lists important notations used 
in the rest of the paper. 

2 PATCH ALIGNMENT FRAMEWORK 
Consider a dataset X , which consists of N  measure-
ments ix  (1 i N≤ ≤ ) in a high-dimensional space . That 
is 

m

[ ]1 N, , x m NX x ×= ∈ . The objective of a dimensionality 
reduction algorithm is to compute the corresponding low-
dimensional representations [ ]1, , y= d N×

NY y , where ∈
d m< , of . For the linear dimensionality reduction, it is 
necessary to find a projection matrix U , such that 

. For the non-linear dimensionality reduction, it 
is usually difficult to provide a explicit mapping to trans-
form measurements from a high-dimensional space to a 
low-dimensional subspace. 

X
m d×∈

T XY U=

In this framework, we first build N  patches for each 
measurement in the dataset. Each patch consists of a 
measurement and its related ones, which depend on both 
characteristics of the dataset and the objective of an algo-
rithm. Two cases are given in Fig. 1. As shown in Fig. 1a, 
global patches should be built based on each measure-
ment and all the others, because measurements in this 
case are Gaussian distributed. In Fig. 1b, measurements 
are sampled at random from the S-curve manifold em-
bedded in a 3-dimensional space. In this case, local 
patches should be built based on a given measurement 
and its nearest neighbours to capture the local geometry 
(locality). Global patches are usually built for conven-
tional linear algorithms, e.g., PCA and LDA, while local 
patches are usually formed in manifold learning based 
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Fig. 1. Framework Illustration 

ones, e.g., LLE and LE. Section 3 gives details of building 
patches for various algorithms. It is worth reminding that 
each measurement is associated with a patch. For better 
representation, we show only one patch for both Figs. 1a 
and 1b. With these built patches, optimization can be im-
posed on them based on an objective function, and then 
alignment trick [39] can be utilized to form a global coor-
dinate. 

2.1 Part optimization 
Considering an arbitrary measurement ix  and its K  re-
lated ones (e.g., nearest neighbours) 

1
, ,

Ki ix x

:

, the matrix 
1 K

 is formed to denote the patch. 
For we have a part mapping i i i

( )1[ , , , ] m K
i i i iX x x x × += ∈

iX , f X Y  and 
. The part optimization is de-

fined as 
( )

1

1[ , , , ]
K

d K
i i i iY y y y × += ∈

( )arg min tr
i

T
i i iY

Y LY , (1) 

where  is the trace operator;  encodes 
the objective function for the ith patch; and 

( )tr ⋅ ( ) ( )1 1K K
iL + × +∈

iL  varies with 
the different algorithms. 

2.2 Whole alignment 
For each patch i , there is a low-dimensional representa-
tion i . All iY s can be unified together as a whole one by 
assuming that the coordinate for the ith patch 

K
 is selected from the global coordinate 

X

]iy

Y

[ ,i iY y
[

1
,iy= ,

]1Y y , ,= Ny , such that 

i iSY Y= , (2) 
where  is the selection matrix and an entry is 
defined as: 

( )1N K
iS × +∈

( ) { }1 if
0 else ,           

i
i pq

p F q
S

⎧ =
= ⎨
⎩

 (3) 

where { }1, , ,iF i i i= K  denotes the set of indices for ith 
patch which is built by the measurement ix  (or iy ) and 
its K  related ones. Then, (1) can be rewritten as: 

( )arg min tr T T
i i iY

YS L S Y . (4) 

( )

( )

1

1

arg min tr

arg min tr

arg min tr ,

N
T T

i i iY i

N
T T

i i iY i

T

Y

YS L S Y

Y S L S Y

YLY

=

=

⎛ ⎛ ⎞= ⎜ ⎜ ⎟
⎝ ⎠⎝ ⎠

=

∑

∑ ⎞
⎟  (5) 

where 
1

N
T N

i i i
i

L S L S N×

=

= ∈∑  is the alignment matrix [39]. It 

is obtained based on an iterative procedure: 
( ) ( ), ,i i i i iL F F L F F L← + , (6) 

for 1, ,i N=  with the initialization . Note that 0L =
( ),i iL F F  is a submatrix constructed by selecting certain 

rows and columns from L  according to the index set .  iF
ITo uniquely determine Y , the constraint T

dYY =  is 
imposed on (5), where dI  is a  identity matrix. The 
objective function is then defined as: 

d d×

( )argmin tr          s.t.T T
dY

YLY YY I= . (7) 
For linearization [19], we can consider  and (7) 

is deformed as: 
TY U X=

( )arg min tr          s.t. T T T T
dU

U XLX U U XX U I= . (8) 
In addition, we can impose dU U  as another way to 

uniquely determine the projection matrix U  such that 
. So, the objective function can be written as: 

T I=

TY U X=

( )arg min tr          s.t. T T T
dU

U XLX U U U I= . (9) 
Equations (7), (8), and (9) are basic optimization prob-

lems which can be solved by using Lagrangian multiplier 
method [21] and their solutions can be obtained by con-
ducting the generalized or standard eigenvalue decompo-
sition on , i.e., LTXLX α λα= , TXLX XX Tα λ= α , and 

TXLX α λα= , respectively. The optimal solution for (7), 
(8), or (9) is the d  eigenvectors associated with  small-
est eigenvalues. 

d

3 UNIFYING VARIOUS ALGORITHMS OF 
DIMENSIONALITY REDUCTION By summing over all the part optimizations described 

as (4), we can obtain the whole alignment as: Based on the proposed framework, in this section, we 
unify various spectral analysis based dimensionality re-
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duction algorithms, e.g., LLE/NPE/ONPP, ISOMAP, 
LE/LPP, LTSA/LLTSA, HLLE, PCA and LDA.  

The proposed framework identifies that these algo-
rithms intrinsically differ in how to build patches and the 
corresponding optimizations on patches. All algorithms 
use an almost identical whole alignment procedure. 
Therefore, for each algorithm, we mainly provide how to 
build the patch  and the part optimization iX iL .  

3.1 LLE/NPE/ONPP 
LLE represents the local geometry by using the linear 
coefficients which reconstruct a given measurement ix  by 
its  nearest neighbours 

1 ki ik , ,x x
i

. Therefore, the patch is 
ki i⎣ ⎦  and 

1
, , ,i iX x x x⎡ ⎤= x  can be linearly reconstructed 

from 
1
, ,

ki ix x
(x c

 as: 
) ( )

1 21 2 ki i i i i i ik
c x( )c x ix ε+ + += + , (10) 

where i  is a -dimensional vector to encode reconstruc-
tion coefficients and i

c k
ε  is the reconstruction error. Mini-

mizing the error yields: 

( )
2

2

1
arg min argmin

j
i i

k

i i i jc c j
ix c xε

=

= −∑ . (11) 

With the sum-to-one constraint: ,  can be 
computed in a closed form as: 

( )
1

1
k

i j
j

c
=

=∑ ic

( )
1

1

1

1 1

k

jt
t

i k kj

pq
p q

G
c

G

−

=

−

= =

=
∑

∑∑
, (12) 

where  is called the local Gram ma-
trix [27]. 

( ) (
j

T
jt i i i iG x x x x= − − )

t

LLE assumes that ic  reconstructs both ix  from 
1
, ,

ki ix x
, ,y y

 in the high-dimensional space and i  from 
1 ki i  in the low-dimensional subspace. Based on this 

point, the cost function can be reformulated as: 

y

( )

( )

2
2

1

argmin argmin

1
argmin tr 1

argmin tr ,

j
i i

i

i

k

i i i jY Y j

T T
i i iY

i

T
i i iY

y c y

Y c Y
c

Y LY

σ
=

= −

⎛ −⎡ ⎤
⎡ ⎤= −⎜ ⎢ ⎥ ⎣ ⎦⎜ ⎟⎣ ⎦⎝ ⎠

=

∑ i

⎞
⎟  (13) 

where, 
1 1

1
T

T i
i i T

i i i i

c
L c

c c c c
− ⎡ ⎤−⎡ ⎤

⎡ ⎤= − = ⎢ ⎥⎢ ⎥ ⎣ ⎦ −⎣ ⎦ ⎣ ⎦
. With iL , (6), and 

(7), we can obtain the low-dimensional representations 
under the proposed framework. 

In our framework, NPE [18] is the case that LLE 
changes its objective function to (8) and it is the lineariza-
tion of LLE. ONPP [22] can be seen as the orthogonal lin-
earization of LLE and its objective function is given by (9). 

3.2 ISOMAP 
ISOMAP preserves the pairwise geodesic distances [32] 
and its objective function is defined as 

( ) ( )( )2

,

arg min , ,G
m n

d m n d m n′−∑ , (14) 

where G  is an approximated geodesic distance 
between the mth measurement and the nth measurement 

in the high-dimensional space and  is the corre-
sponding Euclidean distance in the low-dimensional sub-
space. According to [32], these distances can be converted 
to inner products [12]. Denoting ⎦  as the 
matrix whose entries are approximated geodesic dis-
tances between the mth measurement and the nth meas-
urement in the high-dimensional space, the inner product 
matrix 

( ,d m n)

)

⎤

( ,d m n′

G GD d= ⎡⎣ ( ),m n

( )GDτ  is obtained by G N , where ( ) / 2S RG ND R= −τ
( ) ( ) 2

G GS D= ijij
; T

N N N NR I e e= − N  is the centralization 
matrix; [ ]1,e ,1 T N= ∈N ; and NI  is an N N×

)

 identity 
matrix. Therefore, the objective function of ISOMAP de-
scribed in (14) can be converted to: 

( ) ( 2
arg min

Y G YD Dτ τ− . (15) 

Equation (15) can be further transformed to 

( )

( ) ( ) ( )

2

2

T

T
G G

D Y Y

D D Y Dτ τ τ

−

= −( ).TYY Y

arg min

arg min tr

GY

Y

τ

T T
G Y Y+

 (16) 

Assuming that Y Y  is a constant matrix, (16) can be re-
formulated to 

T

( )( )

( )

( ) ,

T

i T
i G i

D Y

Y

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠1

argmax tr

1arg max tr

1arg max tr
i

T
GY

GY

N

Y i

Y D Y

N Y
N

Y D
N

τ

τ

τ
=
∑

=

=

 (17) 

where { } { }( ), { } { }( )F n

y

,d F m

, , ]y

i
G G i i⎡D d F m F n ⎤⎦ , = ⎣ G i i  is the 

approximated geodesic distance between the  
measurement and the i  measurement both of which 
are on the ith patch, and 

1 1Ni i i iY y
−

 denotes the ith 
patch which is built by the given measurement i  and all 
the rest ones 

1 1Ni iy

{ }th
iF m

{ }thF n
[ ,=

, , y

y

−
. The patch is global because it 

contains all measurements. 
Equation (17) stands for the whole alignment for all 

measurements. For each measurement, we have the part 
optimization: ( )arg max tr T

i i iY LY
iY

, where ( ) ( )ii GL N Dτ= ⋅1 . 
With iL  and (6), we can form the alignment matrix L  
which is equivalent to ( )GDτ .  

Note that ISOMAP is different from other non-linear 
algorithms which have the constraint dYY  in (7). In 
ISOMAP [32], the imposed constraint is 

T = I

([ ]), ,1
TYY diag= λ dλ , where iλ  is the corresponding 

eigenvalue of  L  and ( )diag ⋅  is the diagonalisation opera-
tion. 

3.3 LE/LPP 
LE preserves the local geometry based on manipulations 
on an undirected weighted graph, which indicates 
neighbour relations of pairwise measurements. The objec-
tive function of LE is: 

( ),W i j
2

1 1
arg min

N N

i jY i j
y y

= =

−∑∑ , (18) 

where N N×W ∈  is the relation matrix weighted by the 
heat kernels [25]: ( ) (, expj x x t= − − )2

/i jW i  if ix  is one of 
the  nearest neighbours of jk x  or jx  is one of the k  
nearest neighbours of ix , otherwise 0, and t  is a tuning 
parameter. 

To unify LE into the proposed framework, we rewrite 
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(18) as: 

( )
2

1 1
arg min

j
i

N l

i i i jy i j
y y w

= =

−∑∑ , (19) 

where, 
ji

, y 1, ,j l=

al column

, are l connected measurements of 
the given measurement iy  in the graph and iw  is the l -
dimension  vector weighted by 
( ) ( 2 )

⎞

⎟⎟

expiw /
jix x= − − ij

. Therefore, (19) can be reformu-
lated to 

t

( )

( )
( )

( )[ ]

( )

1

1
1

1

1

argmin tr , , diag

argmin tr diag

argmin tr ,

l
i

l

i

i

T

i i
N

i i i i iy i T

i i

TN
Tl

i i l l iY i l

N
T

i i iY i

y y

y y y y w

y y

e
Y w e I Y

I

Y LY

=

=

=

⎛ ⎡ ⎤−⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥ ⎡ ⎤− −⎣ ⎦⎜ ⎟⎢ ⎥
⎜ ⎢ ⎥⎜ −⎣ ⎦⎝
⎛ ⎞⎡ ⎤−

= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

=

∑

∑

∑

⎠

(20) 

 
where 

( )[ ]
( )

( )
1diag

diag

l
TT

i ijl
ji i l l

l
i i

w we
L w e I

I
w w

=

⎡ ⎤
−⎡ ⎤− ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎢ ⎥−⎣ ⎦

∑

1
, , ,

li i i iY y y y⎡ ⎤= ⎣ ⎦ [

;

; ]1, ,1 T l
le = ∈ lI; and  is an l l×  

identity matrix. 
Equation (20) serves as the whole alignment for all 

measurements. For each measurement, we have the part 
optimization: ( )arg min tr T

i i iY LY
iY

. Therefore, the patch i  is 
built by the given measurement i

X
x  and its connected 

measurements 
1 li i, ,x x , which consist i) the k  nearest 

neighbours of the given measurement and ii) measure-
ments which see the given measurement as one of the k  
nearest neighbours. With iL  and (6), we can construct the 
alignment matrix L  which is equal to the Laplacian ma-
trix [3] used in LE. Finally, we can obtain the low-
dimensional representations by using (7). Note that in LE 
[3], the imposed constraint is , where T = dYDY I D  is the 
diagonal weighting matrix and . In our 
framework, . 

(1
,

= )W iN

j∑iiD = j
( ) 1l

ii iD w= +∑ 1 jj=
In the proposed framework, LPP [19] is the lineariza-

tion of LE by using (8) as the objective function. 

3.4 LTSA/LLTSA 
LTSA uses tangent coordinates to represent the local ge-
ometry. The patch iX  is defined the same as that in LLE. 
To obtain the optimal tangent coordinates, LTSA has the 
objective function on each patch: 

2
1,

arg min
i i

i k i iQ
X R Q+Θ

− Θ , (21) 

1
T

i i i kQ X R +Θ = . (22) 
Assume that there is an affine projection matrix, which 

projects tangent coordinates  to the low-dimensional 
coordinates . Then, we have: 

iΘ
iY

1i k i i iY R T E+ = Θ + , (23) 

where iT  is the projection matrix and iE  is the error term. 
To preserve the local geometry in the low-dimensional 
space, LTSA finds  and  by minimizing the error iY iT iE : 

2 2
1, ,

arg min arg min
i i i i

i i kY T Y T
E Y R + i iT= − Θ . (24) 

Therefore, the optimal affine projection matrix 
1i i k iT Y R +
+= Θ , where i

+Θ  is the Moore-Penrose generalized 
inverse of iΘ . Equation (24) can be written as: 

( ) 2

1 1arg min
i

i k k i iY
Y R I +

+ + −Θ Θ . (25) 

Let iV  denote the matrix of d  right singular vectors of 
1i kX R +  corresponding to its  largest singular values, (25) 

can be converted to: 
d

( )
( )( )( )

( )

2

1 1

1 1 1 1

argmin

arg min tr

arg min tr ,

i

i

i

T
i k k i iY

TT T
i k k i i k i i k iY

T
i i iY

Y R I VV

Y R I VV I VV R Y

Y LY

+ +

+ + + +

−

= − −

=

T  (26) 

where, ( )( )1 1 1 1 1

TT T
i k k i i k i i k k i i

TL R I VV I VV R R VV+ + + + += − − = − . 
With iL , (6), and (7), we can obtain the low-dimensional 
representations under the proposed framework. 

LLTSA [38] is the linearization of LTSA and its objec-
tive function is defined by (8). 

3.5 HLLE 
HLLE assumes the low-dimensional representations can 
be obtained from a ( )1d + -dimensional null-space of H  
which indicates the curviness of the manifold dM , if the 
manifold is locally isometric to an open connected subset 
of .  d

H  can be measured by averaging the Frobenius Norm 
of the Hessians on the manifold as 

( ) ( )
2

fM F
H f H m d= ∫ m , (27) 

where :f X Y  describes the smooth functions and fH  
denotes the Hessian of f . 

where, ( )1 1 1 1 1T
k k k kR I e e k+ + + += − +  denotes the centraliza-

tion matrix; [ ] 1
1 1, ,1 T k

ke +
+ = ∈ ; 1k  is a I + ( ) ( )1k k+ × +1  

identity matrix;  is an orthonormal basis matrix 
of the tangent space; and 

m d
iQ ×∈

i
( )1d k× +Θ ∈  is the tangent coor-

dinates corresponding to iQ . The optimal i  is the matrix 
of  left singular vectors of 1i kX R

Q
d +  corresponding to its 

 largest singular values and the optimal tangent coor-
dinates  are defined as 
d

iΘ

To define the Hessian, HLLE uses orthogonal coordi-
nates on the tangent planes of dM . Suppose that tangent 
coordinates of i  are given by iΘ , where iX  is the patch 
built by the given measurement and its nearest 
neighbours. Let 

X

( )( ) ( )ji ij
g f xΘ =  define a function on 

, where iU  is the neighbourhood formed by 
the components of tangent coordinates of iX . The Hes-
sian of 

: ig U

f  at ix  in tangent coordinates can be defined as a 
matrix, whose each entry is defined by: 

( )( ) ( ) ( ) ( )( )
( )

tan

, 0i j
p q

f i i jp q
i ij j

H x g
Θ =

∂ ∂
= Θ
∂ Θ ∂ Θ

, 

, 1, ,p q d= . 
(28) 

HLLE uses Gram-Schmidt orthonormalization to esti-
mate each tangent Hessian, and one can refer to [11] for 
the details. Using these tangent Hessians, H  can be con-
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structed based under our framework as follows. For each 
patch i , we have X T

i i iL H H= , where iH  is the Hessian 
matrix. With iL  and (6), we can obtain the alignment ma-
trix L  which is equivalent to H  and on which the final 
solutions can be found through the eigenvalue decompo-
sition as described in (7). 

3.6 PCA 
PCA maximizes the trace of total scatter matrix in the pro-
jected subspace, that is: 

( ) ( ) )tr arg
Tm m

iy y⎛ ⎞
⎜ ⎟
⎝ ⎠

(iy −
1

max tr
i

N

T y i
S

=

= ∑arg max y− , (29) 

where  is the centroid of all measurements. To unify 
PCA into the proposed framework, we rewrite (29) as: 

my

( )
1 1

N N

i i
i j

y y
= =

⎛ ⎞
⎜ ⎜ ⎟⎜ ⎝ ⎠⎝

∑ ∑ (
1

i iy y
=

− − )
1 1

2

1
j j

T
N

j

− −⎛ ⎞⎛ ⎞
⎜ ⎟
⎝ ⎠
∑argmax

iy
tr

N
⎟
⎟
⎠

, (30) 

where, 
ji
, , are the rest measurements for 

. Equation (30) reduces to  
y 1,j ,= 1N −

iy

( ),T
i

Y Y

Y

⎛ ⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

2
1 1 1

1 11

ax

N

i N N

i i
i

e e

Y L

= − −

⎞⎛ ⎞− −
⎜ ⎟⎜ ⎟
⎝ ⎠

=

∑

1

tr

tr
N

N

=
∑

arg max

arg m

i

i

Y

Y

T
⎡ ⎤⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

i i

N N
− −

 (31) 

where, 

( )
( )

2

1
N
N e

( ) 1

1 1 1 1

1 1 11
T

N
T

N N N N

N e
e e

−

− − − −
12 2

1 1T
i Ne

N N−

N
e

L N
⎡ ⎤−⎡ ⎤ − − −⎡ ⎤−= − = ⎢ ⎥⎢ ⎥ − −⎣ ⎦

⎣ ⎦− ⎢ ⎥⎣ ⎦

1
[i i

; 

; and 
1

,
N

y
−

, ,i iY y y⎡ ⎤= ⎣ ⎦ ] 1,1 T −= ∈1Ne − 1, N .  

Equation (31) can be seen as the whole alignment for all 
measurements, each of which has the part optimization: 

( )arg m Y Lax tr
iY

. It is clear that the patch iX  is built by 
the given measurement i

T
i i iY

x  and all the rest ones 
1
, ,

Ni i 1
x x

−
. 

It is global since it contains all measurements. 
Under our framework, we can build the alignment ma-

trix L , with iL  and (6). Because PCA is an orthogonal 
linear algorithm, we can form its objective function based 
on (9).  

3.7 LDA 
LDA tries to find the subspace that discriminates different 
classes by minimizing the trace of the within-class scatter 
matrix W , while maximizing the trace of the between-
class scatter matrix 

S
BS

( )( )j
i iy y

⎛
= −⎜

.  
For , it has:  WS

min

rg m
i

jy

( )W

C

S

( )
1 1

arg r

a in tr
iN

jm m
i

i j
y y

= =
∑∑ ( )( )Ti
⎝ ⎠

t

⎞
− ⎟

, (32) 

where, C  is the number of classes; iN  is the number of 
measurements in the ith class; ( )j

iy  is the jth measurement 
in the ith class; and  is the centroid of the ith class. To 
unify LDA into the proposed framework, we rewrite (32) 
as: 

m
iy

( )
1 1

i i
i j

y y
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑ ( )
1 1

2

1arg tr
i i

j j

T

i
ji

− −

=

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑

1
iy y− −min

iy

N NN

N
, (33) 

 rest measurements in 

the same class of iy . Equation (33) reduces to  

( )

2

1

i

i iY L

1 11

1

1 1
arg min tr

arg min tr ,

i
i i

i

T
N

i i
i iY N Ni

N
W T

iY i

N N
Y Y

e eN

Y

− −=

=

⎛ ⎞⎛ ⎞⎛ ⎞− −⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟− −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠

=

∑

∑
 (34) 

where,

( ) ( )
( )

2
1

12 2
1 1 1 1

1 1 11 1

where, , , are 
ji

y 1,j , 1iN= − N 1i −

1= −
1

i

i
i i i i

T
i i i NW T

i i N T
Ni i i N N N

N N N e
L N e

eN N N e e e
−

−
− − − −

⎡ ⎤− − − −⎡ ⎤
⎡ ⎤ ⎢ ⎥− =⎢ ⎥⎣ ⎦− − −⎢ ⎥⎣ ⎦ ⎣ ⎦

; 

1
, , ,

Nii i iY y y y
−1i

⎡ ⎤= ⎣ ⎦ ; and [ ] 1
1 1, ,1 i

i

T N
Ne −

− = ∈ .  

Equation (34) can be seen as the whole alignment for all 
measurements, each of which has the part optimization: 

( )argmin tr W T
i i iY L Y

iY
. Clearly, the patch iX  is built by a 

given measurement ix  and the rest ones in the same class 
1 1Nii i, ,x x

−
. It is global since it contains all measurements 

in one class. 
With W

iL  and (6), we obtain the whole alignment under 
the proposed framework: 

( )arg r W TYL Y , (35) min t
Y

which is equivalent to (32). 
For BS , it has:  

( )

( )(
1

arg tr

arg max tr
m

i

B

C Tm m m m
i i i

y i

S

y y y
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑

max

)−
. (36) 

N y

It is shown that we can only exploit the centroids of dif-
ferent classes to represent the between-class scatter. Equa-
tion (36) can be rewritten as: 

( ) ( )
1 1

2

1C C

i jC∑ ∑
1 1 1

arg max tr
j jm

i

T
C

m m m m
i i i i i

y j

N y y y y
− −

= = =

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟− −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

∑ , (37) 

where, 
j

m
iy , 1, ,j 1C= −

m
iy

, are centroids of the different 
classes from . Equation (37) reduces to  

( )( )
2
i

i i

N

Y L

1 1 1

1

1 1
arg max tr

arg max tr ,

m
i

m
i

T
C

m m
i i

Y i C C

C Tm B m
i

Y i

C C
Y Y

e eC

Y

= − −

=

⎛ ⎞⎛ ⎞⎛ ⎞− −⎡ ⎤ ⎡ ⎤⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟− −⎣ ⎦ ⎣ ⎦⎝ ⎠⎝ ⎠⎝ ⎠

=

∑

∑
 (38) 

where, 

( ) ( )
( )

2
1

12 2
1 1 1 1

1 1 11= −
1

T
B T Ci i

i C T
C C C C

C C C eN NL C e
eC C C e e e

−
−

− − − −

⎡ ⎤−⎡ ⎤ − − −⎡ ⎤− = ⎢ ⎥⎢ ⎥⎣ ⎦− − −⎣ ⎦ ⎢ ⎥⎣ ⎦

1

; 

1
, , ,m m m

i i iY y y
C

m
iy
−

⎡ ⎤= ⎣ ⎦ ; and [ ] 1
1 1, ,1 T C

Ce −
− = ∈ .  

Equation (38) can be seen as the whole alignment for all 
centroids, each of which has the part optimization: 

( )( )arg max tr m B
i iY L
m

i

m
iY

. The patch  is built by a given 
centroid 

Tm
iY m

iX
x  and the rest centroids of different classes 

1 1C
, ,m m

i ix x
−

. It is also global since it does not take the local 
geometry into account. 

With B
iL  and (6), we can obtain the whole alignment: 

( )( )arg tr
Tm B mY L Y , (39) max

Y

1 2, ,mywhere ,m m m
CY y y⎡ ⎤= ⎣ ⎦ . The above equation is equiva-

lent to (36).     
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TABLE 2
SUMMARY OF THE MANIFOLD LEARNING ALGORITHMS 

Algorithms Patch:  iX Representation of part optimization : iL  Objective function 
LLE/ 
NPE/ 
ONPP 

Given measurement and its neighbours 
1 T

i
T

i i i

c
c c c

⎡ ⎤−
⎢ ⎥−⎣ ⎦

 
Non-linear/ 
linear/ 
orthogonal linear 

ISOMAP Given measurement and the rest ones ( ) ( )1 i
GN Dτ⋅  Non-linear 

LE/ 
LPP 

Given measurement and its connected 
ones in the undirected graph 

( )

( )
1

diag

l
T

i ij
j

i i

w w

w w
=

⎡ ⎤
−⎢ ⎥

⎢ ⎥
⎢ ⎥−⎣ ⎦

∑  Non-linear/ 
linear 

LTSA/ 
LLTSA Given measurement and its neighbours 1

T
k i iR VV+ − , where  denotes  largest 

right singular vectors of 
iV d

1i kX R +  
Non-linear/ 
linear 

HLLE Given measurement and its neighbours T
i iH H  Non-linear 

Note that one can refer to Table 1 for the explanations of the notations in this table. 

TABLE 3
SUMMARY OF THE CONVENTIONAL LINEAR ALGORITHMS 

Algorithms Patch: iX  Representation of part optimization : iL  Objective function 

PCA Given measurement and the rest ones 
( ) ( )
( )

2
1

2
1 1 1

1 11
1

T
N
T

N N N

N N e
N N e e e

−

− − −

⎡ ⎤− − −
⎢ ⎥
− −⎢ ⎥⎣ ⎦

 Orthogonal linear 

Within-class 
Given measurement 
and the rest ones of a 
same class 

( ) ( )
( )

2
1

2
1 1 1

1 11
1

i

i i i

T
i iW

i T
i i N N N

N N e
L

N N e e e
−

− − −

N
⎡ ⎤− − −
⎢ ⎥=
− −⎢ ⎥⎣ ⎦

 LDA 

Between-
class 

Given centroid of one 
class and the rest ones 
of different classes 

( ) ( )
( )

2
1

2
1 1 1

1 1
1

T
B Ci

i T
C C C

C C eNL
C C e e e

−

− − −

⎡ ⎤− − −
= ⎢ ⎥

− −⎢ ⎥⎣ ⎦
 

Dual-objective 
optimization 

Note that one can refer to Table 1 for the explanations of the notations in this table. 

Considering (35) and (39) together, we get the special 
dual-objective optimization model which is different from 
the other algorithms in our framework: 

( )
( )( )

arg min tr
         s.t.

arg max tr

T W T

U T
dTT m B m

U

U XL X U
UU I

U X L X U

⎧
⎪ =⎨
⎪
⎩

, (40) 

where, 1 2 C ⎦  corresponds to . According 
to the fashion of the original LDA, we have the following 
criterion: 

, , ,X x x x⎡= ⎣
m m m m m⎤ Y

( )( )
( )

tr
arg max          s.t.

tr

TT m B m

T
dT W TU

U X L X U
UU I

U XL X U
= . (41) 

The above optimization can be converted to solving the 
generalized eigenvalue problem as follows:  

( )Tm B m W TX L X XL Xα λ α= , (42) 

and the optimal solutions are the d  eigenvectors associ-
ated with  largest eigenvalues. d

3.7 Discussions 
Discovered by the proposed unifying framework, all al-
gorithms have an almost identical whole alignment stage 

and intrinsic differences of them are how to build patches 
and the associated optimization, as shown both in the 
above sub-sections 3.1–3.6 in detail and in Tables 2 and 3 
briefly. Based on this point of view, we have the follow-
ing observations, which are helpful: i) to understand ex-
isting dimensionality reduction algorithms; and ii) to 
guide us to design new algorithms with specific proper-
ties for dimensionality reduction.  

Observation 1: patches in manifold learning algorithms 
consider local geometry of measurements, while conven-
tional linear algorithms do not. In detail, LLE, LTSA, and 
HLLE build each patch by a measurement and its nearest 
neighbours. Each patch of LE consists of two parts: i) a 
measurement ix  and its nearest neighbours and ii) meas-
urements which deem ix  as their nearest neighbours. 
Each patch in PCA is built by all measurements in a data-
set. For LDA, there are two types of patches: i) each first 
type patch is built by all measurements in a class and ii) 
each second type patch is built by all centroids of differ-
ent classes. PCA and LDA build patches globally without 
considering the local geometry so they cannot discover 
the non-linear structure hidden in high-dimensional data. 
ISOMAP builds global patches each of which contains all 
the measurements like PCA. However, local geometry is 
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still considered by ISOMAP since geodesic distances used 
in the algorithm contain the neighbourhood information. 

Observation 2: different types of geometry are pre-
served in patches. LLE preserves reconstruction coeffi-
cients, which are obtained in the original high-
dimensional space for patch representation, in the low-
dimensional subspace. LE preserves the nearby relations 
of a patch. Both LTSA and HLLE preserve local geometry 
represented by tangent coordinates of a patch. LTSA uses 
the linear transformation on tangent coordinates, while 
HLLE employs the quadratic form. ISOMAP preserves 
pairwise geodesic distances of measurements on patches. 
Among the manifold learning algorithms, LE has less 
computational cost than others because it only minimizes 
the sum of distances on local patches. PCA and LDA pre-
serve the global geometry by minimizing or maximizing 
scatters of each patch.  

4 DLA: DISCRIMINATIVE LOCALITY ALIGNMENT 
In this section, a new linear discriminative dimensionality 
reduction algorithm termed Discriminative Locality 
Alignment (DLA) is developed as an application of the 
proposed framework. In DLA, the discriminative infor-
mation, i.e., labels of measurements, is imposed on the 
part optimization stage and then the whole alignment 
stage constructs the global coordinate in the projected 
low-dimensional subspace. 

4.1 Part optimization 
For a given measurement ix , according to the label in-
formation, we can divide the other measurements into 
two groups: measurements in the same class with ix  and 
measurements from different classes with ix . We select  

1  nearest neighbours with respect to ik x  from measure-
ments in the same class with ix  and term them 
Neighbour Measurements of a Same Class: 1 1i i

, , kx x . We 
select 2  nearest neighbours with respect to ik x  from 
measurements in different classes with ix  and term them 
Neighbour Measurements of Different Classes denoted by 

1 2ki i, ,x x . By putting ix , 1 1i i
, , kx x , and 

1 2ki i, ,x x  together, 
we can build the local patch for the measurement ix  as 

. 1 1 1 2
k ki i i ii i⎣ ⎦For each patch, the corresponding output in the low-

dimensional space is denoted by 
1 1 1 2ki i i ii i ⎦ . In the low-dimensional 

space, we expect that distances between the given meas-
urement and the Neighbour Measurements of a Same 
Class are as small as possible, while distances between 
the given measurement and the Neighbour Measure-
ments of Different Classes are as large as possible. Fig. 2 
illustrates this idea. The left part of the figure shows the 
ith patch in the original high-dimensional space and the 
patch consists of i

, , , ,x x x , ,X x x⎡ ⎤=

, , , , , ,kY y y y y y⎡= ⎣
⎤

x , Neighbour Measurements of a Same 
Class (i.e., 1i

x , 2i
x  , and 3i

x ), and Neighbour Measure-
ments of Different Classes (i.e., 

1i
x  and 

2i
x ). The expected 

results on the patch in the low-dimensional space are 
shown as the right part of the figure. Low-dimensional 
measurements 1i

, 2i
, and 3i

 are as close as possible to 
, while low-dimensional measurements  and 

y y
iy

y
1i

y
2i

y  are 

as far as possible away from . i

For each patch in the low-dimensional subspace, we 
expect that distances between iy  and the Neighbour 
Measurements of a Same Class are as small as possible, so 
we have: 

y

ix

1i
x

2i
x

3i
x

1i
x

2i
x

1i
y

2i
y

1i
y

2i
y

iy 3i
y

local patch

Fig. 2. Part optimization of DLA. The measurements with the same 
shape and color come from the same class. 

1

1
arg min

i

k

iy j
y y

=

−∑
2

ji
. (43) 

Meanwhile, we expect that distances between iy  and 
the Neighbour Measurements of Different Classes are as 
large as possible, so we have: 

2 2

1
argmax

p
i

k

i iy p
y y

=

−∑ .  (44) 

Since the patch formed by the local neighbourhood can 
be regarded approximately linear [27], we formulate the 
part discriminator by using the linear manipulation as 
follows: 

1 2 22

1 1
arg min j p

i

k k

i iiy j p
y y y yβ

= =

⎛ ⎞
− − −⎜ ⎟

⎝ ⎠
∑ ∑ i , (45) 

where β  is a scaling factor in [ ]0,1  to unify different 
measures of the within-class distance and the between-
class distance. Define the coefficients vector  

1 2

1, , 1, , ,

Tk k

iω β β
⎡ ⎤
⎢ ⎥= − −
⎢ ⎥
⎣ ⎦

,     (46) 

then, (45) reduces to: 

( )

( )

1 2

1

1 2

1 2

1 2 1 2

1 2

22

1 1

2

(1) ( 1)
1

arg min ( ) ( )

arg min ( )

arg min tr diag

arg min tr

j p
i

i i
i

i

i

k k

i i j i i i p kiy j p

k k

F F j i jy j

T
k k T

i i k k k k iY
k k

T
i i iY

y y y y

y y

e
Y e I

I

Y LY

ω ω

ω

ω

+
= =

+

+
=

+
+ +

+

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
⎛ ⎞⎡ ⎤−
⎜ ⎟⎡ ⎤= −⎢ ⎥ ⎣ ⎦⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

=

∑ ∑

∑

,

Y

     (47) 

where  

( )

( )

1 2

1

diag

k k
T

i ij
ji

i i

L
ω ω

ω ω

+

=

⎡ ⎤
−⎢ ⎥= ⎢ ⎥

⎢ ⎥−⎣ ⎦

∑ ; (48) 

{ }1, , , , , ,F i i i i i=
21i k  is the set of indices for measure-

ments on the patch; 
1 k

[ ] 1 21, ,1 T k k
k k

+
+ = ∈

1 2
e ; and  is a 

1 2k kI +

( ) ( )1 2 1 2k k k k+ × +  identity matrix. 
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4.2 Whole alignment 

 
Fig. 3. Sample images from YALE. 

With the constructed part optimization iL , the matrix L  
can be built to achieve the whole alignment by (6). To 
obtain the linear and orthogonal projection matrix  U  
with  columns, the objective function is designed as (9) 
and then the problem is converted to a standard eigen-
value problem. Different from algorithms, e.g., LDA, LPP, 
and Marginal Fisher Analysis (MFA) [37], which lead to a 
generalized eigenvalue problem, DLA successfully avoids 
the matrix singularity problem since it has no inverse op-
eration over a matrix. However, the PCA step is still rec-
ommended to reduce noise. The procedure of the pro-
posed DLA is listed as follows: 

d

1. Use PCA to project the dataset X  to the subspace by 
eliminating useless information. To keep it simple, 
we still use X  to denote the dataset in the PCA sub-
space in the following steps. We denote by PCAU  the 
PCA projection matrix. Note that this step is optional. 

2. For each measurement ix  in dataset X , 1, ,i N= , 
search 1k  Neighbour Measurements of a Same Class 
and 2k  Neighbour Measurements of Different 
Classes, and then build the patch 

. 1 1 1 2
k ki i i ii i

3. Compute the matrix i

[ , , , , , ,x x x= ]xX x
L , by (48), construct the align-

ment matrix L  by the iterative procedure described 
as (6). 

4. Solve the standard eigenvalue problem: 
TXLX u uλ=
[

to obtain the DLA projection matrix 
]1 2, ,DLA du u , whose vectors are the eigenvec-

tors corresponding to the d  smallest eigenvalues. 
The final projection matrix is as follows: 

U u=

PCA DLAU U U= .  (49) 

5 EXPERIMENTS 
This section evaluates the performance of the proposed 
DLA in comparison with six representative algorithms, 
i.e., PCA [34], Generative Topographic Mapping (GTM) 
[6], [7] Probabilistic Kernel Principal Components Analy-
sis (PKPCA) [33], [40], LDA [2], SLPP (LPP1 in [10]) and 
MFA [37], on three face image databases, i.e., YALE [2], 
UMIST [15], and FERET [24]. Among these algorithms, 
PCA, PKPCA and GTM are unsupervised algorithms 
which do not consider the class label information. A semi-
linear GTM described in [7] is used, since the standard 
GTM [6] grows exponentially with number of latent di-
mensions and lead to a high computational complexity in 
real applications. SLPP and MFA are recently proposed 
manifold learning based algorithms. All face images from 
three databases were cropped with reference to the eyes 
and cropped images were normalized to the 40×40 pixel 
arrays with 256 gray levels per pixel. Each image was 
reshaped to one long vector by arranging its pixel values 
in a fixed order. 

All datasets constructed from each database were ran-
domly divided into three separate sets: training set, valida-
tion set and testing set. Training set was used to learn the 
low-dimensional subspace along with the projection ma-
trix. Validation set was used to determine the optimal 
parameters in algorithms. For the proposed DLA algo-

rithm, the important parameters include 1k  (the number 
of Neighbour Measurements of a Same Class), 2k  (the 
number of Neighbour Measurements of Different Classes), 
and  (the subspace dimension). Testing set was used to 
report the final recognition accuracy. During both valida-
tion and testing phases, the Nearest Neighbour (NN) rule 
was used in classification. 

d

For all algorithms but PCA itself, the first step is the 
PCA projection. Because the number of measurements is 
often much smaller than the dimension of measurements, 
i.e., N m<< , we retain N C−  dimensions in the PCA step 
to ensure (referring to [2]) in LDA and WS

( )p p TXX D W− (referring to  [37]) in MFA nonsingular for 
both LDA and MFA algorithms. Since DLA has no singu-
larity problem, in the algorithm PCA subspace is set 1N −  

nsions and all the energies can be preserved in this 
step. The same is true of KPCA and GTM. In SLPP, we 
only need to ensure XX  full rank, so we can retain 

dime

1

T  is
N −  (referring to [10]) dimensions in PCA subspace.  

5.1 YALE 
The YALE database [2] contains face images collected 
from fifteen individuals, eleven images for each individ-
ual and showing varying facial expressions and configu-
rations. Fig. 3 shows the image set for one individual. For 
training, we randomly selected different numbers (3, 5, 7, 
9) of images per individual, used 1/2 of the rest images 
for validation, and 1/2 of the rest images for testing. Such 
trial was independently performed ten times, and then 
the average recognition results were calculated. Fig. 4 
shows the average recognition rates versus subspace di-
mensions on the validation sets, which help to select the 
best subspace dimension. Table 4 reports the final recog-
nition rates (%) on the testing sets. It can be seen that 
DLA outperforms the other algorithms. Table 4 also pro-
vides the optimal values of the parameters 1k  and 2  for 
DLA, which are crucial because they have the special 
sense for building the local patches. In Section 5.5, we will 
describe how to determine  and  for DLA.  

k

1k 2k

5.2 UMIST 
The UMIST database [15] consists of a total of 564 face 
images of twenty people. The individuals are a mix of 
race, sex and appearance and are photographed in a 
range of poses from profile to frontal views. Fig. 5 shows 
some images of an individual. For each individual, differ-
ent number (3, 5, 7, 9) of images were randomly selected 
for training, 1/2 of the rest were used for validation and 
1/2 of the rest were used for testing. We repeated these 
trials ten times and computed the average results. Fig. 6 
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Fig. 4. Recognition rate vs. subspace dimension on the validation sets of YALE. (a) three measurements for training. (b) five measurements 
for training. (c) seven measurements for training. (d) nine measurements for training. 

TABLE 4
BEST RECOGNITION RATES (%) OF SEVEN ALGORITHMS ON THE TESTING SETS OF YALE 

Number of Training  3 5 7 9 
PCA 50.50 (44) 56.44(21) 64.00 (46) 62.67 (19) 
GTM 52.00 (34) 60.22 (71) 65.33 (74) 66.00 (64) 
PKPCA 53.50 (44) 60.44 (71) 66.67 (58) 67.33 (51) 
LDA 61.33 (12) 73.11 (14) 76.67 (13) 80.00 (14) 
SLPP 64.17 (13) 74.00 (14) 80.67 (14) 80.67(14) 
MFA 61.00 (13) 74.67 (14) 79.67 (21) 82.00 (35) 
DLA 66.83 (15, 2, 2) 78.89 (23, 2, 1) 81.33 (13, 4, 2) 85.33 (30, 4, 4) 

For PCA, PKPCA, GTM, LDA SLPP, and MFA, the numbers in the parentheses are the selected subspace dimensions. For DLA, the 
first numbers in the parentheses are the selected subspace dimensions, the second and the third numbers are the parameters  and 

, respectively. 
1k

2k
 

 
Fig. 5. Sample images from UMIST. 

5.3 FERET 

shows the recognition rates versus subspace dimensions 
on the validation sets and Table 5 lists the final recogni-
tion rates (%) on the testing sets. Again, DLA performs 
better than the other algorithms.  

The FERET database [24] contains a total of 13,539 face 
images of 1,565 subjects. The images vary in size, pose, 
illumination, facial expression and age. We randomly 
selected 100 individuals, having seven images. Fig. 7 
shows images of one individual. We randomly chose dif-
ferent number (3, 5) of images per individual for training, 
1/2 of the rest were used for validation and 1/2 of the 
rest were used for testing. All the trials were repeated ten 
times, and we then calculated the average recognition 
results. The recognition rates versus subspace dimensions 
on the validation sets are given in Fig. 8 and the final rec-
ognition rates (%) on the testing sets are list in Table 6. 
DLA outperforms the other algorithms.  
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Fig. 6. Recognition rate vs. subspace dimension on the validation sets of UMIST. (a) three measurements for training. (b) five measure-
ments for training. (c) seven measurements for training. (d) nine measurements for training. 

TABLE 5
BEST RECOGNITION RATES (%) OF SEVEN ALGORITHMS ON THE TESTING SETS OF UMIST 

Number of Training  3 5 7 9 
PCA 71.13 (58) 82.86 (99) 90.62 (71) 93.79 (69) 
GTM 73.17 (49) 84.08 (74) 90.93 (112) 94.98 (98) 
PKPCA 74.04(58) 84.82 (99) 93.16 (110) 95.02 (112) 
LDA 78.23 (16) 88.24 (19) 93.82 (19) 95.10 (19) 
SLPP 75.58(19) 85.92 (19) 91.91 (19) 93.36 (19) 
MFA 79.55 (20) 90.00 (17) 94.76 (31) 96.05 (27) 
DLA 84.04 (40, 2, 1) 93.35 (44, 2, 2) 96.76 (33, 4, 5) 98.58 (24, 6, 5) 

For PCA, PKPCA, GTM, LDA SLPP, and MFA, the numbers in the parentheses are the selected subspace dimensions. For DLA, the 
first numbers in the parentheses are the selected subspace dimensions, the second and the third numbers are the paramete s 1k  a  

2k , respective
r nd

ly. 
 

5.4 Building patches 
In this subsection, we study effects of 1k  (the number of 
Neighbour Measurements of a Same Class) and 2k  (the 
number of Neighbour Measurements of Different Classes) 
on the recognition rates in the validation phase based on 
the YALE database with nine measurements in each class 
for training. The selected subspace dimension was fixed 

to 30. 

 
Fig. 7. Sample images from FERET. 

By fixing 2k  to an arbitrary value and varying 1k  from 
1 to 1iN −  (= 8), we can obtain the recognition rate curve 
with respect to 1  as shown in Fig. 9a. There is a peak on 
the curve when 1

k
k 4= . By fixing 1  and varying 2  

from 0 to i

4k = k
N N−  (= 126), another recognition rate curve 

with respect to 2k  can be obtained as shown in Fig. 9b. 
There is a peak on the curve when 2 . By varying 1k  
from 1 to 8 and 2  from 0 to 126 simultaneously, the rec-
ognition rate surface can be obtained as shown in Fig. 10. 
In this figure, there is a peak which corresponds to 1k

4k =
k

4=  
and 2 4k = , so, the local neighbourhood in DLA character-
izes the discriminability better than global structure.  
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Fig. 8. Recognition rate vs. subspace dimension on the validation sets of FERET. (a) three measurements for training. (b) five measurements 
for training. 
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Fig. 9. Building patches. (a) recognition rate vs. number of Neighbour Measurements of a Same Class. (b) recognition rate vs. number of
Neighbour Measurements of Different Classes. 

5.5 Discussion 
Based on the experimental results in the subsections 5.1–
5.4, we have the following observations: 
1. DLA considers both the discriminative information 

and the locality of measurements. Therefore it works 
better that LDA, PCA, and SLPP. Although MFA 
takes these two aspects into account, it might not be 

as good as DLA in terms of classification accuracy. 
This is because some discriminative information is 
discarded by the PCA step in MFA; 

TABLE 6
BEST RECOGNITION RATES (%) OF SEVEN ALGORITHMS ON 

THE TESTING SETS OF FERET 

Number of Training  3 5 
PCA 41.45 (88) 51.20 (78) 
GTM 43.15 (114) 52.90 (67) 
PKPCA 43.65 (94) 53.10 (114) 
LDA 50.05 (38) 54.50 (52) 
SLPP 48.95 (99) 55.10 (99) 
MFA 55. 05 (48) 57. 20 (41) 
DLA 87. 90 (17, 1, 6) 93.00 (30, 2, 6) 

For PCA, PKPCA, GTM, LDA SLPP, and MFA, the numbers in the 
parentheses are the selected subspace dimensions. For DLA, the first 
numbers in the parentheses are the selected subspace dimensions, the 
second and the third numbers are the parameters  and , respectively.1k 2k  
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Fig. 10. Recognition rates vs. the number of Neighbour 
Measurements of a Same Class and the number of 
Neighbour Measurements of Different Classes. 

2. in experiments on building patches, by setting 1 8k =  
and 2 126k = , DLA is similar to LDA because the 
global structure is considered. With this setting, DLA 
ignores the local geometry and performs poorly for 
classification. Therefore, by setting 1k  and 2k  suitably, 
DLA captures both the local geometry and the dis-
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criminative information of measurements. It is not 
necessary to traverse all possible values of 1k  and 2k  
for parameter selection because 1k  and 2k  are usually 
small to represent the locally Euclidean property; and 

3. it is demonstrated by Figs. 4a, 4b, 4c, 6a, and 6b: 
when an optimal value of DLA subspace dimension 
is achieved (i.e., classification error is minimized), the 
classification accuracy decreases fast while the di-
mension of DLA subspace is increased. This is be-
cause the effective DLA subspace is determined by 
the rank of TXLX  (as described in (9)), which de-
pends on the cardinality of the training set ( N ) if 
m N>> . In Figs. 4a, 4b, 4c, 6a, and 6b, cardinalities of 
training sets are 45, 75, 105, 60, and 100, respectively. 
These low cardinalities limit the dimension of effec-
tive DLA selected subspaces and thus the classifica-
tion accuracies drop quickly after the dimension of 
DLA subspace achieves an optimal value.  

6 CONCLUSIONS 
In this paper, a unifying framework, “patch alignment”, 
was proposed as a powerful analysis and development 
tool for dimensionality reduction. It implements the idea, 
“part optimization and whole alignment”. The proposed 
framework was first applied to reformulate various exist-
ing spectral analysis based dimensionality reduction al-
gorithms into a unified form, allowing the different algo-
rithms to be analyzed and compared. Different algo-
rithms were shown to construct whole alignment matri-
ces (for global coordinate construction in the subspace) in 
an almost identical way, but vary with patch optimiza-
tions (associated with different measurements and have 
different objectives on these built patches). 

Based on this framework, we developed a new dis-
criminative dimensionality reduction algorithm, Dis-
criminative Locality Alignment (DLA). DLA can be seen 
as a special case of the framework and it: 1) overcomes 
the nonlinear distribution of measurements; 2) preserves 
the discriminative ability; and 3) avoids the matrix singu-
larity problem. Experimental results show the effective-
ness of DLA on YALE, UMIST, and FERET face image 
databases in comparison with popular dimensionality 
reduction algorithms.   

ACKNOWLEDGMENT 
The authors thank the handling Associate Editor Prof. 
Sameer Singh and four anonymous reviewers for their 
constructive comments on this paper. The first author 
thanks Mr. Deli Zhao (CUHK) for beneficial discussions 
and selfless help. The work was supported by National 
Science Foundation of China (No. 60675023) and Chinese 
National 863 High Technology Plan (No. 2007AA01Z164). 

REFERENCES 
[1] Y. Aslandogan and C. Yu, “Techniques and Systems for Image 

and Video Retrieval,” IEEE Trans. Knowledge and Data Engineer-
ing, vol. 11, no. 1, pp. 56- 63, 1999. 

[2] P. Belhumeour, J. Hespanha, and D. Kriegman, “Eigenfaces vs. 
Fisherfaces: Recognition Using Class Specific Linear Projec-

tion,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 
19, no. 7, pp. 711-720, 1997. 

[3] M. Belkin and P. Niyogi, “Laplacian Eigenmaps and Spectral 
Techniques for Embedding and Clustering,” Advances in Neural 
Information Processing System, vol. 14, pp. 585-591, 2002.  

[4] R. Bellman, Adaptive Control Processes: A Guided Tour. Princeton 
University Press, 1961. 

[5] Y. Bengio, J. Paiement, P. Vincent, O. Dellallaeu, L. Roux , and 
M. Quimet, “Out-of sample Extensions for LLE, Isomap, MDS, 
Eigenmaps, and Spectral Clustering,” Advances in Neural Infor-
mation Processing System, vol. 16, 2004. 

[6] C.M. Bishop, M. Svensén, and C.K. I. Williams, “GTM: The 
Generative Topographic Mapping,” Neural Computation, vol. 10, 
no. 1, pp. 215-234, 1998.   

[7] C.M. Bishop, M. Svensén, and C.K. I. Williams, “Developments 
of the Generative Topographic Mapping,” Neurocomputing, vol. 
21, 203-224, 1998.  

[8] D. Cai, X. He and J, Han, “Document Clustering Using Locality 
Preserving Indexing,” IEEE Trans. Knowledge and Data Engineer-
ing, vol. 17, no. 12, pp. 1624-1637, 2005. 

[9] D. Cai, X. He and J, Han, “SRDA: an Efficient Algorithm for 
Large Scale Discriminant Analysis,” IEEE Trans. Knowledge and 
Data Engineering, vol. 20, no. 1, pp. 1-12, 2008. 

[10] D. Cai, X. He and J, Han, “Using Graph Model for Face Analy-
sis,” Department of Computer Science Technical Report No. 
2636, University of Illinois at Urbana-Champaign, Sept. 2005. 

[11] D.L. Donoho and C. Grimes, “Hessian Eigenmaps: New Locally 
Linear Embedding Techniques for High-dimensional Data,” 
Proceedings of the National Academy of Sciences, vol. 100, no. 10, 
pp. 5591-5596, 2003. 

[12] R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2000. 

[13] R.A. Fisher, “The Use of Multiple Measurements in Taxonomic 
Problems,” Annals of Eugenics, vol. 7, pp. 179-188, 1936. 

[14] B. Gao, T. Liu, G. Feng, T. Qin, Q. Cheng, and W. Ma, “Hierar-
chical Taxonomy Preparation for Text Categorization Using 
Consistent Bipartite Spectral Graph Copartitioning,” IEEE Trans. 
Knowledge and Data Engineering, vol. 17, no. 9, pp. 1263-1273, 
2005. 

[15] D.B. Graham and N.M. Allinson, “Characterizing Virtual Ei-
gensignatures for General Purpose Face Recognition, ” in Face 
Recognition: From Theory to Applications, NATO ASI Series F, 
Computer and Systems Science, vol.163, H. Wechsler, P.J. Pil-
lips, V. Bruce, F. Fogelman-Soulie and T.S. Huang, eds. 
Springer, 1998, pp.446-456. 

[16] X. He, D. Cai, and J. Han, “Learning a Maximum Margin Sub-
space for Image Retrieval,” IEEE Trans. Knowledge and Data En-
gineering, vol. 20, no. 2, pp. 189-201, 2008. 

[17] X. He, D. Cai, J. Wen, W. Ma, and H. Zhang, “Clustering and 
Searching WWW Images Using Link and Page Layout Analy-
sis,” ACM Trans. Multimedia Computing, Communications, and 
Applications, vol. 3, no. 2, 2007.  

[18] X. He, D. Cai, S. Yan, and H. Zhang, “Neighborhood Preserving 
Embedding,” Proc. IEEE Int’l Conf. Computer Vision, pp. 1208-
1213, 2005. 

[19] X. He and P. Niyogi, “Locality Preserving Projections,” Ad-
vances in Neural Information Processing System, vol. 16, 2004. 

[20] H. Hotelling, “Analysis of A Complex of Statistical Variables 
into Principal Components,” Journal of Educational Psychology, 
vol. 24, pp. 417-441, 1933. 

[21] I.T. Jolliffe, Principal Component Analysis, 2nd ed., Springer-
Verlag, 2002. 

[22] E. Kokiopoulou and Y. Saad, “Orthogonal Neighborhood Pre-
serving Projections: A Projection-Based Dimensionality Reduc-
tion Technique,” IEEE Trans. Pattern Analysis and Machine Intel-
ligence, vol. 29, no. 12, pp. 2143-2156, 2007. 

[23] Y. Koren and L. Carmel, “Robust Linear Dimensionality Reduc-
tion,” IEEE Trans. Visualization and Computer Graphics, vol. 10, 
no. 4, pp. 459-470, 2004. 

 



14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, MANUSCRIPT ID 

[24] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET 
Evaluation Methodology for Face-recognition Algorithms,” 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 
10, pp. 1090-1104, 2000. 

[25] S. Rosenberg, The Laplacian on a Riemannian Manifold. Cam-
bridge University Press, 1997. 

[26] S.T. Roweis and L.K. Saul, “Nonlinear Dimensionality Reduc-
tion by Locally Linear Embedding,” Science, vol. 290, pp. 2323-
2326, 2000. 

[27] L.K. Saul and S.T. Roweis, “Think Globally, Fit Locally: Unsu-
pervised Learning of Low Dimensional Manifold,” Journal of 
Machine Learning Research, vol. 4, pp.119-155, 2003.  

[28] L.K. Saul, K.Q. Weinberger, J.H. Ham, F. Sha, and D.D. Lee, 
“Spectral Methods for Dimensionality Reduction,” In Semisu-
pervised Learning, O. Chapelle, B. Schoelkopf, and A. Zien, eds. 
MIT Press, 2006. 

[29] G. Shakhnarovich and B. Moghaddam, “Face Recognition in 
Subspaces,” Handbook of Face Recognition, Stan Z. Li and Anil K. 
Jain, Eds. Springer-Verlag, 2004. 

[30] D. Tao, X. Li, and S.J. Maybank, “Negative Samples Analysis in 
Relevance Feedback,” IEEE Trans. Knowledge and Data Engineer-
ing, vol. 19, no. 4, pp. 568-580, 2007.  

[31] D. Tao, X. Li, X. Wu, and S.J. Maybank, “General Tensor Dis-
criminant Analysis and Gabor Features for Gait Recognition,” 
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 
10, pp. 1700-1715, 2007. 

[32] J. Tenenbaum, V. Silva, and J. Langford, “A Global Geometric 
Framework for Nonlinear Dimensionality Reduction,” Science, 
vol. 290, pp. 2319-2323, 2000.  

[33] M.E. Tipping and C.M. Bishop, “Probabilistic Principal Com-
ponent Analysis,” Journal of the Royal Statistical Society B, vol. 21, 
no. 3, pp. 611-622, 1999. 

[34] M. Turk and A. Pentland, “Face Recognition Using Eigenfaces,” 
Proc. IEEE Int’l Conf. Computer Vision and Pattern Recognition, pp. 
586-591, 1991.  

[35] D. Xu, S. Lin, S. Yan, and X. Tang, “Rank-one Projections with 
Adaptive Margin for Face Recognition, ” IEEE Trans. Systems, 
Man and Cybernetics, Part B, vol. 37, no. 5, pp. 1226-1236, 2007. 

[36] S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, and H. Zhang, “Mul-
tilinear Discriminant Analysis for Face Recognition,” IEEE 
Trans. Image Processing, vol. 16, no. 1, pp. 212-220, 2007.  

[37] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph 
Embedding and Extensions: A General Framework for Dimen-
sionality Reduction,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 29, no. 1, pp. 40-51, 2007.  

[38] T. Zhang, J. Yang, D. Zhao, and X. Ge, “Linear Local Tangent 
Space Alignment and Application to Face Recognition,” Neuro-
computing, vol. 70, pp. 1547-1553, 2007. 

[39] Z. Zhang and H. Zha, “Principal Manifolds and Nonlinear Di-
mension Reduction via Local Tangent Space Alignment,” SIAM 
J. Scientific Computing, vol. 26, no. 1, pp. 313-338, 2005. 

[40] S. Zhou, “Probabilistic Analysis of Kernel Principal Compo-
nents: Mixture Modeling and Classification,” CfAR Technical 
Report, CAR-TR-993, 2003. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tianhao Zhang received the PhD degree in 
Pattern Recognition and Intelligence System 
from Shanghai Jiao Tong University in 2008. 
He is currently a Postdoctoral Researcher at 
the Section of Biomedical Image Analysis 
(SBIA), Department of Radiology, University 
of Pennsylvania. He has spent one year at 
Department of Computing, the Hong Kong 
Polytechnic University as a Research Assis-
tant (Visiting PhD) from 2007 to 2008. His 
research interests include machine learning, 

computer vision and medical image analysis. He has published ex-
tensively in the IEEE Transactions on Knowledge and Data Engi-
neering (TKDE), the IEEE Transactions on Systems, Man and Cy-
bernetics, Part B (TSMC-B), Pattern Recognition (PR), the European 
Conference on Computer Vision (ECCV), the International Joint 
Conference on Neural Networks (IJCNN), etc. He is a reviewer for 
TSMC-B, Neurocomputing, and IJCM. He has been a program 
committee of PAKDD 2009, ICIAR 2008, PSIVT 2007 and 2008, 
DMAMH 2007, and a workshop in ICDM 2008. He also reviews for 

CNN 2008 and ICASSP 2009. 

 

nal Processing Soci-
ty, and IEEE SMC Technical Committee on Cognitive Computing. 

 
 
 
 
 
 
 
 

IJ
 
 
 

Dacheng Tao (M'07) received the B.Eng. 
degree from the University of Science and 
Technology of China (USTC), the MPhil 
degree from the Chinese University of Hong 
Kong (CUHK), and the PhD degree from the 
University of London (Lon). Currently, he is 
a Nanyang Assistant Professor with the 
School of Computer Engineering in the 
Nanyang Technological University, a Visiting 
Professor in Xi'Dian University, a Guest 
Professor in Wuhan University, and a Visit-

ing Research Fellow at Birkbeck in Lon. His research is mainly on 
applying statistics and mathematics for data analysis problems in 
data mining, computer vision, machine learning, multimedia, and 
visual surveillance. He has published more 90 scientific papers in-
cluding IEEE TPAMI, TKDE, TIP, TMM, TCSVT, TSMC, CVPR, 
ECCV, ICDM; ACM TKDD, Multimedia, KDD etc., with one best 
paper runner up award. Previously he gained several Meritorious 
Awards from the International Interdisciplinary Contest in Modeling, 
which is the highest level mathematical modeling contest in the world, 
organized by COMAP. He is an associate editor of Neurocomputing 
(Elsevier) and the Official Journal of the International Association for 
Statistical Computing -- Computational Statistics & Data Analysis 
(Elsevier). He has authored/edited six books and eight special issues, 
including CVIU, PR, PRL, SP, and Neurocomputing. He has (co-
)chaired for special sessions, invited sessions, workshops, and con-
ferences. He has served with more than 50 major international con-
ferences including CVPR, ICCV, ECCV, ICDM, KDD, and Multimedia, 
and more than 15 top international journals including TPAMI, TKDE, 
TOIS, TIP, TCSVT, TMM, TIFS, TSMC-B, Computer Vision and 
Image Understanding (CVIU), and Information Science. He is a 
member of IEEE, IEEE SMC Society, IEEE Sig
e
 
 
 
 
 
 
 
 
 
 

 



ZHANG ET AL.:  PATCH ALIGNMENT FOR DIMENSIONALITY REDUCTION 15 

 

itive Computing, and a member of 
veral other technical committees of IEEE Systems, Man and Cy-

ernetics Society and IEEE Signal Processing Society Technical 
ommittee on Machine Learning for Signal Processing (MLSP). He 
 a Chapters Coordinator of the IEEE Systems, Man and Cybernet-
s Society. 

 
 
 
 
 
 
 

artificial intelligence, including two 973 projects, three 
national 863 projects, four NSFC projects, three international coop-
erative projects with institutions from France, Korea, and Japan. He 
has published more than three hundreds of articles in national or 
international academic journals and conferences. Up to now, he has 
guided 3 postdoctoral, 28 doctors and 38 masters, awarded four 
research achievement prize from ministry of Education, China and 
Shanghai municipality. 

Xuelong Li (M'02-SM'07) holds a perma-
nent post at Birkbeck College, University of 
London and a visiting/guest professorship at 
Tianjin University and University of Science 
and Technology of China. His research fo-
cuses on cognitive computing, image/video 
processing, pattern recognition, and multi-
media. His research activities are partly 
sponsored by EPSRC, the British Council, 
Royal Society, and the Chinese Academy of 
Sciences. He has over a hundred scientific 

publications with several Best Paper Awards and finalists. He is an 
author/editor of four books, an associate editor of IEEE Trans. on 
Image Processing, IEEE Trans. on Circuits and Systems for Video 
Technology, IEEE Trans. on Systems, Man and Cybernetics Part B, 
and IEEE Trans. on Systems, Man and Cybernetics Part C. He is 
also an associate editor (editorial board member) of ten other inter-
national journals and a guest co-editor of eight special issues. He 
has served as a chair of around twenty conferences and a program 
committee member for more than eighty conferences. He has been a 
reviewer for over a hundred journals and conferences, including 
eleven IEEE transactions. He is a academic committee member of 
the China Society of Image and Graphics, a senior member of the 
IEEE, the chair of IEEE Systems, Man and Cybernetics Society 
Technical Committee on Cogn

Jie Yang is the Professor and Director of 
Institute of Image Processing and Pattern 
recognition in Shanghai Jiao Tong University, 
Shanghai, China. He was born in Shanghai, 
in August 1964. In 1985, he received his 
bachelor degree in Automatic Control in 
Shanghai Jiao Tong University, where a 
master degree in Pattern Recognition and 
Intelligent System was achieved three years 
later. In 1989, as one of the nation’s first-
class graduate students, he was enrolled by 

the Department of Computer Science, University of Hamburg, Ger-
many. In 1994, he came back with a PhD degree. He has been the 
principal investigator of more than 30 nation and ministry scientific 
research projects in image processing, pattern recognition, data 
mining, and 

se
b
C
is
ic
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	1 Introduction
	2 Patch Alignment Framework
	2.1 Part optimization
	2.2 Whole alignment
	3.1 LLE/NPE/ONPP
	3.2 ISOMAP
	3.3 LE/LPP
	3.4 LTSA/LLTSA
	3.5 HLLE
	3.6 PCA
	3.7 LDA
	3.7 Discussions

	4 DLA: Discriminative Locality Alignment
	4.1 Part optimization
	4.2 Whole alignment

	5 Experiments
	5.1 YALE
	5.2 UMIST
	5.3 FERET
	5.4 Building patches
	5.5 Discussion

	6 Conclusions

