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Purpose: In radiotherapy (RT) based on magnetic resonance imaging (MRI) as the only modality,

the information on electron density must be derived from the MRI scan by creating a so-called pseudo

computed tomography (pCT). This is a nontrivial task, since the voxel-intensities in an MRI scan are not

uniquely related to electron density. To solve the task, voxel-based or atlas-based models have typically

been used. The voxel-based models require a specialized dual ultrashort echo time MRI sequence for

bone visualization and the atlas-based models require deformable registrations of conventional MRI

scans. In this study, we investigate the potential of a patch-based method for creating a pCT based on

conventional T1-weighted MRI scans without using deformable registrations. We compare this method

against two state-of-the-art methods within the voxel-based and atlas-based categories.

Methods: The data consisted of CT and MRI scans of five cranial RT patients. To compare the perfor-

mance of the different methods, a nested cross validation was done to find optimal model parameters

for all the methods. Voxel-wise and geometric evaluations of the pCTs were done. Furthermore, a

radiologic evaluation based on water equivalent path lengths was carried out, comparing the upper

hemisphere of the head in the pCT and the real CT. Finally, the dosimetric accuracy was tested and

compared for a photon treatment plan.

Results: The pCTs produced with the patch-based method had the best voxel-wise, geometric, and

radiologic agreement with the real CT, closely followed by the atlas-based method. In terms of the

dosimetric accuracy, the patch-based method had average deviations of less than 0.5% in measures

related to target coverage.

Conclusions: We showed that a patch-based method could generate an accurate pCT based on

conventional T1-weighted MRI sequences and without deformable registrations. In our evaluations,

the method performed better than existing voxel-based and atlas-based methods and showed a

promising potential for RT of the brain based only on MRI. C 2015 American Association of

Physicists in Medicine. [http://dx.doi.org/10.1118/1.4914158]
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is increasingly being

used in modern radiotherapy (RT) treatment planning in

combination with computed tomography (CT). The main

reason is the superior soft tissue contrast which improves

target and organ at risk (OAR) definition in the brain and

other sites as compared to CT-based delineations.1–3 In order

to transfer the MRI delineations to the CT, the two scans

must be aligned. This is usually done by a manual and/or

automatic rigid registration between the CT and MRI scan.

It has been estimated that a mean cranial registration error

of approximately 2 mm is introduced in this process4,5 with

similar values for other body sites such as the prostate.6 These

errors produce a systematic shift in the delineations and may

ultimately lead to target under-dosage or an increased dose to

the adjacent OARs.

Basing the entire RT chain on MRI as the only modality,

so-called MRI-only RT, would remove these systematic errors

and reduce patient discomfort as well as lower the workload

and financial cost. It is, however, nontrivial to exclude

the CT, since the MRI images do not contain information
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about electron density which is needed for accurate dose

calculations. Furthermore, with conventional MRI sequences,

the signal from cortical bone is weak or nonexisting due to

its rapid transversal signal relaxation time (T2) in the range

0.5-2 ms.7,8 This means that MRI voxels containing bone are

indistinguishable from air, and that patient setup based on

digitally reconstructed radiographs (DRRs) is unfeasible. In

order to solve these problems, electron density assignment

must be done based on the MRI, which can then be used for

dose calculation and patient setup in an RT setting.

Two different approaches for automatic density assignment

have typically been taken to derive a so-called pseudo CT

(pCT) from MRI: voxel-based and atlas-based. In the voxel-

based approach, a pCT is generated from individual voxel

intensities in the MRI scan, either by segmentation and

subsequent bulk density assignment8–11 or using a regression

model to predict a continuous-valued pCT.11–14 Common for

these methods is the need for a specialized dual ultrashort

echo time (dUTE) MRI sequence that captures the signal

from components with a short T2 relaxation time. This

makes bone voxels separable from air in the resulting MRI

images.15 However, adding this nonstandard sequence is not

only inconvenient but also causes prediction errors in the pCT

scans at tissue interfaces such as in the ear and nasal cavities.

This has been attributed to partial volume and susceptibility

effects as well as a low signal-to-noise ratio (SNR) of the

dUTE scans.8,16,17

Atlas-based methods, on the other hand, estimate pCTs

using conventional (non-dUTE) MRI sequences, and must

therefore compensate for the bone/air ambiguity in the MRI

images. This is achieved using deformable registration of one

or multiple atlases of paired MRI/CT scans to the patient

MRI scan and then using the warped atlas CT scan(s) as

a pCT estimate.18–20 The pure atlas-based methods rely on a

correct deformable registration between atlas and patient MRI.

This can be both time consuming (in the case of multiple

atlases) and problematic if the patient is dissimilar to the

atlas.8 To correct for deformation errors, the method can be

extended with a subsequent step of pattern recognition using

Gaussian process regression based on 2D patches.21 Though

this improves robustness, the gain may be marginal compared

to the added computational complexity.20

In the field of automated brain MRI segmentation, patch-

based segmentation methods have recently been proposed

with promising results.22,23 In these approaches, 3D patches

(i.e., small cuboidal image subregions) are extracted from the

MRI and a spatially local search for the most similar patches

in a preacquired database of labeled MRI scans is performed.

The known labels of the resulting database patches are then

fused to give the predicted label at each position. To facilitate

the spatially local patch search, most patch-based methods use

a rough linear alignment between the database MRI scans and

the MRI to be segmented. The need for an accurate deformable

registration is thus removed and the segmentation is driven

mainly by patch similarities.

Based on these results, in this study, we investigate the

potential of patch-based methods for predicting a continuous-

valued pCT of the brain based on T1-weighted MRI scans. In

particular, we incorporate the CT numbers as label information

in the patch model to enable patch-based regression. We

compare this method with two state-of-the-art methods in

voxel-based and atlas-based pCT prediction, namely, (1)

Gaussian mixture regression (GMR) based on dUTE scans12

and (2) multiatlas information propagation based on T1-

weighted scans.19 We perform a voxel-wise, geometric, and

radiologic evaluation as well as a dosimetric evaluation for a

photon treatment plan.

2. MATERIALS AND METHODS

2.A. Imaging

The data used in this study consisted of MRI and CT

scans of five whole brain RT patients, three male and two

female, aged 55–82 yr. The study was approved by the

Capital Regional Ethics Committee (protocol number H-3-

2011-107). The CT scans were acquired on a Philips Brilliance

Big Bore CT with a voxel resolution 0.6 × 0.6 × 2 mm,

512×512×110 voxels using a standard protocol for brain

scans (120 kV, 300 mAs). The MRI scans were acquired on a

Philips Panorama 1 T open scanner. The sequences were a T1-

weighted 3D fast field echo (FFE), TE/TR= 6.9/25 ms, voxel

resolution 0.85×0.85×1.2 mm, 188×188×152 voxels, and

two dUTE scans at flip angles 10◦ and 25◦ with TE1/TE2/TR

= 0.09/3.5/7.1 ms and an isotropic voxel resolution of 1 mm

with 2563 voxels. The scan time of a dUTE scan at one flip

angle was approximately 7 min. The patients were fixed in

treatment position during both the MRI and CT scanning using

thermoplastic masks. Informed consent was obtained from all

patients prior to acquiring the MRI scans additional to their

standard imaging. Each patient’s MRI/CT pair was rigidly

aligned using mutual information with the default settings as

implemented in 3D Slicer.24 The CT scans were resliced and

cropped to match the resolution and field of view of the MRI

scans, thus generating dUTE/CT scan pairs at the dUTE scan

resolution and T1-weighted/CT scan pairs at the T1-weighted

scan resolution.

2.B. Patch-based pCT prediction

In order to facilitate an intensity-based similarity search,

the tissues should have a consistent intensity throughout all

T1-weighted scans. To achieve this, a histogram-matching ap-

proach was used with two linear mapping segments separa-

ted at the average median intensity.25

A patch, P(x), was defined as a cube with side length

m voxels centered on the spatial location x in a MRI image.

Similarly, a target value, T(x), was defined for each P(x) as the

Hounsfield unit (HU) value at x in the corresponding rigidly

aligned CT image. For S patients, corresponding patches and

target values were extracted for all positions, x, to create a

database of patches, Ps(x), with corresponding target values,

Ts(x), where s denotes one of S patients. Using this database,

a pCT for a test patient was predicted by extracting patches

from his/her MRI scan and doing an intensity-based nearest

neighbor search in the patch database. For a patch at position y

Medical Physics, Vol. 42, No. 4, April 2015
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in the MRI of the test patient, the similarity measure was

defined as

d(s,x)= ∥P(y)−Ps(x)∥
2
2, (1)

where d(s,x) denotes the squared L2-norm between P(y) and

Ps(x). The search then consisted of finding the database patch

that minimized d(s,x) and storing the corresponding patient

and spatial position

(smin,xmin)= argmin
s,x

d(s,x). (2)

The search was extended to find the K most similar database

patches and the K relevant target values were extracted from

the database as Tsmin
k

(xmin
k

) with k = 1,..., K . To assign a pCT

HU value, a similarity-weighted average was computed

pCT(y)=



k

wk×Tsmin
k

(xmin
k )



k

wk

, (3)

with weights defined as

wk = exp
*.
,

−d(smin
k

,xmin
k

)

min
k

d(smin
k

,xmin
k

)

+/
-
. (4)

This ensured that if one patch was more similar than the rest,

this patch would be weighted highly; conversely, if all patches

were equally similar, they would be weighted equally.

To ensure that the local similarity search was indeed local

and to limit the number of similarity comparisons required

per patch, we applied the search space reduction and patch

preselection method as described by Coupé et al.22 An affine

alignment of each database MRI and the patient MRI was

performed and the search was constrained to only contain

database patches in a local cubiodal search volume, Vsearch,

of side length v voxels around y , such that x ∈ Vsearch in

Eq. (2). The structural similarity measure (SSIM)26 was used

to discard highly dissimilar patches in the local neighborhood.

This is a computationally simple similarity measure based on

the mean and variance in each patch. All patches with SSIM

< 0.95 were discarded prior to the patch search performed in

Eq. (2). If all patches were discarded in a search volume, the

pCT value in the affected voxel was flagged as unknown. In

postprocessing, such voxels were assigned the average pCT

value of the closest assigned voxels. For the intensity fusion

in Eq. (3), the K = 8 most similar patches were used unless the

SSIM only allowed a smaller number. An illustration of the

patch-based pCT generation is shown in Fig. 1 for a simplified

2D case – the actual algorithm works in 3D.

2.C. Comparison of algorithms: GMR and multiatlas

The patch-based method was compared with Gaussian

mixture regression based on dUTE scans12 and multiatlas

information propagation based on T1-weighted scans;19 two

state-of-the-art techniques for pCT prediction within the

voxel-based and atlas-based categories, respectively.

The multiatlas method consists of deformable registrations

of multiple atlases of MRI/CT pairs to the patient MRI. A

multiresolution B-spline transform in Elastix27 was used for

this purpose. Mutual information with 32 histogram bins was

used as a metric and the final control point spacing was set

to 5 mm. The local normalized cross correlation (LNCC)

between the patient MRI and the atlas MRI was used to

determine a voxel-wise ranking of each atlas CT before finally

fusing the HU values. A high LNNC means a high degree of

local similarity between the patient MRI and the deformed

atlas MRI and thus results in a high ranking. Two parameters

were involved in these steps, namely, a Gaussian kernel

width, σgk, controlling the local neighborhood size involved

in the LNCC calculation and a weight constant, β, controlling

the decay of an exponential function used when converting

the LNCC ranking to a fusing weight.

For the GMR method, the joint distribution of MRI and CT

intensities was estimated as a mixture of multivariate Gaussian

distributions using expectation maximization (EM).28 Using

this model, the expected value of the CT conditioned on

newly observed MRI values can be found and used as a pCT

prediction. Input images in addition to the dUTE scans were

created using mean and standard deviation filters on the dUTE

scans. A mask was then created to exclude air surrounding the

head from the model training data. Fifty independent runs

of k-means clustering with k-means++ initialization29 were

performed on the training data to estimate the initial values of

the means, covariance matrices, and mixing proportions. The

values resulting in the minimum total energy were chosen as

initialization for the EM algorithm.

2.D. Model optimization

In order to ensure a fair comparison between the different

methods, a nested cross validation scheme was used to find

the optimal parameters for all methods. This meant that for

each test patient, leave-one-out cross validation (LOOCV)

was performed cyclically on the remaining four patients. In

each of these four LOOCV folds, three patients were used

to predict pCTs of the fourth using all possible combinations

of a manually defined subset of model parameters. For each

parameter configuration, the voxel-wise mean absolute error

[MAEvox, as defined later in Eq. (5)] was used to evaluate the

pCT. The parameter configuration that resulted in the average

best performance across the four folds was then chosen as the

optimal for that test patient and was used to predict his/her

pCT using the remaining four patients. This scheme is well

suited for model comparisons since each test patient is not

involved in the parameter optimization, which gives an almost

unbiased estimate of the true prediction error.30 For the patch-

based method, the optimal patch side length was found to

be m = 5 or m = 7 voxels (depending on the patient) and

the optimal search volume side length was v = 15 voxels,

yielding a maximum of 153
×4= 13 500 database patches to

search through for each pCT voxel. Note that the value of K ,

used in Eq. (3), was set empirically to K = 8 and therefore

not optimized. For the multiatlas method, parameters for the

LNCC ranking scheme were optimized. The Gaussian kernel

Medical Physics, Vol. 42, No. 4, April 2015
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F. 1. 2D patch-based pCT prediction. (a) A patch, P(y), is extracted from the test MRI at position y . (b) A database of spatially close patches, Ps(x), stored

with their corresponding CT value, Ts(x). (c) Using the SSIM, highly dissimilar patches are discarded from the database. (d) Using Eq. (2), the eight most

similar database patches, P
s

min
k

(xmin
k

), and their CT values, T
s

min
k

(xmin
k

), are found from the remaining database. (e) Using Eq. (3), the CT values, T
s

min
k

(xmin
k

), are

combined to produce the final pCT value at position y .

width, σgk, was 5–9 voxels depending on the patient and the

weight constant was β = 0.9 for all patients. Note that the

deformable registration parameters were chosen empirically

and thus were not included in the nested cross validation. For

the GMR method, the number of Gaussians to use in the model

was found and set to 20–23, again depending on the patient.

2.E. Geometric evaluation

The pCTs were compared in terms of the voxel-wise

mean absolute error MAEvox in the head region (excluding

surrounding air),

MAEvox=
1

N

N

i=1

|CT(i)−pCT(i)|, (5)

where N is the total number of voxels in the head region. To

reveal in which tissue regions errors were present, the MAEvox

in bins of 20 HU across the HU scale was also calculated.

To determine whether the predictions were biased toward an

underestimation or overestimation of the real CT number, the

mean voxel-wise error was calculated

MEvox=
1

N

N

i=1

[CT(i)−pCT(i)]. (6)

To evaluate the correctness of the pCT bone geometry, the

Dice similarity coefficient (DSC)31 of bone was calculated

DSC=
2(V

pCT

bone
∩V CT

bone
)

V
pCT

bone
+V CT

bone

, (7)

where V
pCT

bone
and V CT

bone
are the volumes of bone in the pCT

and the real CT, respectively. We defined the bone volume

as all voxels with a value > 200 HU giving a density of

1.14 g/cm3 according to our CT calibration curve. DSC= 1

means complete overlap between the volumes and DSC = 0

means no overlap.

The MAEvox, MEvox, and DSC are pure voxel-wise and

geometric measures of the pCT accuracy. To provide a

radiologic error measure, an evaluation based on the water

Medical Physics, Vol. 42, No. 4, April 2015
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equivalent path length (WEPL) was introduced10,32

l ′=


i

∆li× ρi, (8)

where ∆li is the physical path length of voxel i and ρi is

a radiological scaling factor that depends on the type of

radiation and tissue. For MeV photons, it is the electron

density relative to water. The value of ρi was found from

the voxel CT number using a verified standard calibration

curve in the treatment planning system. To compare WEPLs

in the CT and pCT, a common point in both was defined at

the level of the nasal cavity centered in the head. A sphere

with its center in that point was defined, covering the entire

head. The WEPL was then calculated in radial spokes from the

center point toward the edge of the sphere. When the spokes

traversed the edge of the head, the WEPL calculation was

terminated so the length of each spoke varied with the patient

anatomy. The spokes were defined in spherical coordinates

with the center point as origin and with an angular spacing of

2π/60 in both the polar and azimuthal angles. All polar angles

between 0.5π and 1.5π were excluded from the calculation,

resulting in a volume including only the upper hemisphere of

the head, covering most of the brain (see Fig. 2). In total, this

yielded 60×31= 1860 spokes. The tissue was sampled every

∆l = 0.02 mm along each spoke. The CT number was then

found at each sample by trilinear interpolation. To measure

the difference in WEPL between the CT and pCT, the mean

absolute WEPL error (MAEWEPL) was defined as

MAEWEPL=
1

L

L

j=1

|l ′CT
j − l

′ pCT

j
|, (9)

where L is the number of spokes and l ′
j

is the WEPL of the

jth spoke. Similarly, the mean WEPL error (MEWEPL) was

defined as

MEWEPL=
1

L

L

j=1

l ′CT
j − l

′ pCT

j
. (10)

F. 2. The WEPL was calculated along spokes (not shown) from the center

point (open circle) at (x, y, z) = (0,0,0) toward all points on the surface of the

patient (dots). Along the spokes, the CT number was sampled and converted

to relative electron density for WEPL calculation.

F. 3. Sagittal view of the two PTVs used in the dosimetric evaluation.

2.F. Dosimetric evaluation

A 6 MV photon treatment plan for two different spherical

planning target volumes (PTVs) of 3 cm in diameter was

created for all the patients. The first plan used a PTV

positioned anterior to the center of the cerebrum (PTV 1,

Fig. 3) with two 15◦ wedged lateral opposing fields and one

anterior field, all equally weighted. The second plan had

a PTV positioned behind the nasal cavity (PTV 2, Fig. 3)

with four equally weighted fields, two lateral opposing, and

two anterior/posterior opposing. For all fields, the apertures

were cropped to the PTV plus a 0.5 cm margin. The PTVs

were chosen to represent theoretically easy and difficult

cases, respectively, with PTV 1 positioned in a homogeneous

part of the brain and PTV 2 having a large degree of

heterogeneity in the tissue composition of its surroundings.

The treatment planning was carried out on each patient’s

pCT in Eclipse v11.0 (Varian Medical Systems, Inc., Palo

Alto, CA), prescribing a mean dose of 2 Gy in 30 fractions

(Dpre= 60 Gy) to the PTV and calculating the dose distribution

using the analytical anisotropic algorithm (AAA). The plan

was then transferred to the real CT and recalculated using

the same plan parameters and monitor units. The PTV

dose volume histogram (DVH) was used to evaluate the

dosimetric difference between CT and pCT. The percentage

point deviation was calculated for the DVH points relevant to

PTV coverage, i.e., the near-minimum (D98%), near-maximum

(D2%), and median (Dmedian) absorbed dose.33 Furthermore, a

normalized mean absolute dosimetric error (nMAEdos) was

calculated as

nMAEdos=
1

M

M

i=1

|DCT
vol(i)
−D

pCT

vol(i)
|

Dpre

, (11)

where M is the total number of DVH points between D100% and

D0% in dose increments of 0.1 Gy and Dvol(i) is the accumulated

dose in Gy given to vol(i)% of the volume in either the

CT or pCT. Similarly, the normalized mean dosimetric error

(nMEdos) was calculated as

Medical Physics, Vol. 42, No. 4, April 2015
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nMEdos=
1

M

M

i=1

DCT
vol(i)
−D

pCT

vol(i)

Dpre

, (12)

nMAEdos explains the magnitude of the errors and nMEdos

reveals if the errors are biased toward underestimation or

overestimation. The combined dosimetric score (CDS) is a

combination which penalizes bias in the errors11

CDS= nMAEdos+ |nMEdos|. (13)

3. RESULTS

In Fig. 4, transverse slices of the real CT and predicted

pCTs are shown for the different methods. Visually, the results

based on T1-weighted MRI in (c) and (d) are better than the

dUTE-based in (b), especially in the nasal cavities.

Figure 5 shows the MAEvox calculated as a function of

the real CT value in bins of 20 HU and averaged for the five

patients. In general, GMR shows the highest errors in the bone

region (> 200 HU), fat region (approximately [−100;−50]

HU), and the region between air (−1000 HU) and fat tissue.

This HU range is dominated by values of partial volume

effects in the real CT. The patch-based and multiatlas methods

have similar performance in most regions. Table I shows the

average voxel-wise, geometric, and radiologic errors for the

different methods. On average, the patch-based and multiatlas

methods have the lowest MAEvox and the highest DSC, with

a slight favor for the patch-based method. Looking at the

MEvox, the patch-based and multiatlas methods have average

values closer to 0, indicating no consistent pattern in the errors.

However, given the magnitude of the standard deviation for

GMR, MEvox = 0 is also a plausible value for this method.

Looking at the WEPL evaluation in Table I, the patch-based

and multiatlas methods have the smallest MAEWEPL, with

slightly lower values for the patch-based method.

In Fig. 6, the results of the dosimetric evaluation are

shown. For all methods, the metrics show average smaller

errors, i.e., values closer to 0, for PTV 1 compared to

PTV 2, illustrating the more challenging position of PTV

2. The difference in performance between the methods is

also generally smaller for PTV 1 than for PTV 2. Looking

at PTV 1, the nMAEdos is similar for the patch method and

GMR, but the nMEdos reveals that GMR has a bias toward

overestimating the dose. The multiatlas method has the largest

nMAEdos, with a bias (nMEdos) toward underestimating the

dose. Looking at the coverage of PTV 1 (lower panels), the

patch-based method has an average deviation close to 0%.

The other methods have deviations < 0.5%. When looking at

PTV 2, the average nMAEdos is the lowest for the patch-based

method, with GMR and multiatlas having higher values and

larger standard deviation. We observe that both the GMR and

multiatlas methods have a bias toward underestimating the

dose as seen in the upper middle panel. With regards to the

dose coverage (lower panels), the patch-based method has

the smallest average deviations, except for D98%, where GMR

has a slightly smaller deviation. On average, multiatlas has a

better performance than GMR in Dmedian and D2%.

F. 4. Transverse slices for comparison of pCTs with real CT. (a)–(d) show

the real CT, the GMR pCT, the multiatlas pCT, and the patch-based pCT,

respectively. (e)–(g) show the difference maps between the real CT and the

GMR, the multiatlas, and the patch-based pCTs, respectively. Negative values

indicate an overestimation of the HU value and positive values indicate an

underestimation.

4. DISCUSSION

In this paper, we evaluated a patch-based method for

predicting brain pCTs based on conventional T1-weighted

MRI images. The method required no deformable registrations

and was shown to yield comparable or better results than

existing methods using Gaussian mixture regression on dUTE

scans or multiatlas information propagation on T1-weighted

scans.
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F. 5. MAEvox calculated in bins of 20 HU and averaged across the five

patients.

In terms of the MAEvox curves shown in Fig. 5, the dUTE-

based method showed the largest voxel-wise errors in most

tissue regions of the brain. The errors we observed in the

fat region could be caused by the data being recorded on

a 1 T scanner where water/fat phase cancellation occurs

approximately at 3.5 ms after excitation, i.e., at TE2 of the

dUTE sequence. In a previous study, we tested if adding

a Dixon sequence as GMR model input would aid in

discriminating fat/water and bone.34 Though this improved

bone predictions, it did not improve predictions in fat voxels.

Rank et al. reported errors in pCT bone prediction due to fatty-

tissue appearing hyperintense in dUTE scans acquired at 3 T.10

This suggests that issues in the fat region may be independent

of field strength and not due to phase cancellations.

In the bone region, the two methods based on the T1-

weighted MRI had the smallest errors, even though bone is

not uniquely defined in terms of intensity in these images.

The deformable registration used in the multiatlas method can

compensate for this lack of information, assuming a successful

alignment of the atlas MRIs and the patient MRI. In the present

study, this assumption seemed to hold, but as implied earlier,

this may not always be the case if the anatomical variation

is large. Furthermore, the deformable registration introduces

another set of parameters to adjust, and it can be hard to

T I. The voxel-wise and geometric quality measures: mean absolute

voxel-wise error (MAEvox), mean voxel-wise error (MEvox) in HU, and

DSC of bone volume. Radiologic measures: mean absolute WEPL error

(MAEWEPL) and mean WEPL error (MEWEPL) of the water equivalent path

lengths (in mm). Average value and standard deviation (σ) for the five

patients are shown.

Patch-based Multiatlas GMR

MAEvox (HU) 85 (σ = 14) 97 (σ = 19) 148 (σ = 22)

MEvox (HU) 1 (σ = 14) −4 (σ = 17) 22 (σ = 28)

DSC 0.84

(σ = 0.02)

0.83

(σ = 0.01)

0.67

(σ = 0.03)

MAEWEPL (mm) 2.2 (σ = 1.0) 2.7 (σ = 0.8) 4.8 (σ = 1.3)

MEWEPL (mm) 0.4 (σ = 1.8) −0.6 (σ = 1.9) 1.1 (σ = 2.1)

find one configuration that provides a successful registration

for all patients. Here, we tested a few parameter settings and

chose the one that resulted in the average lowest MAEvox. For

a more unbiased estimate of the prediction performance of

the multiatlas method, the registration parameters could be

included in the nested cross-validation.

The patch-based method, on the other hand, achieved

a lower error in the bone region without a deformable

registration. Instead, the neighborhood information contained

in each patch in combination with the constrained search

volume ensured that bone and air patches were not confused.

In terms of the voxel-wise errors and DSC presented in

Table I, the patch-based method had the best performance.

Johansson et al. reported an average MAEvox of 137 HU

for five patients using the GMR method,12 which is within

the standard deviation of our GMR findings. The GMR

results could potentially be improved by adding spatial

information to the Gaussian mixture model or using different

MRI reconstruction techniques.16,35 This was not investigated

further in our study. For the multiatlas method, Burgos et al.

reported an average MAEvox of 102 HU (σ = 10) for seven

patients,19 which also agrees with our findings. We included

the DSC measure since the bone geometry is important for

generating DRRs. As was shown in Fig. 5, the patch and

multiatlas methods have the highest prediction accuracy in

the bone region, which is also reflected in the DSC results.

This suggests that these methods are better suited for DRR

generation. In a qualitative evaluation, Jonsson et al. described

an overall acceptable quality of DRRs generated on the basis

of GMR pCTs, except in the nasal cavity and sphenoidal

sinuses.36 From our results, it seems that the pCTs based on

T1-weighted MRI visually have a better quality in this region.

However, the quality of the resulting DRRs and their potential

for treatment setup was not investigated further in the present

study. A factor that could influence the pCT predictions is the

nonuniform intensity variations intrinsic to MRI scans. In the

present study, we did not apply a correction for this. From a

visual inspection, the acquired MRI scans showed only minor

nonuniform intensity variations in the imaged volume, which

is probably due to the relatively low field strength. For the

patch-based method, applying a bias field correction did not

improve predictions. It could potentially improve predictions

of the other methods, however, and it will be an important step

for the patch-based method at higher field strengths and/or

larger fields of view.

The WEPL evaluation was introduced to provide a

radiologically more relevant error measure than the pure

voxel-wise errors. It takes into account the piece-wise linear

relationship between the HU and electron density and also

provides a simplistic imitation of the treatment simulation

where radiation encounters several tissues when sent through

the patient. The errors in WEPL are dependent on the position

of the center point and the direction of the radial spokes.

Here, we chose to evaluate the whole upper hemisphere of the

head to produce an average estimate for all possible planning

scenarios. Maybe, due to this averaging, the results of the

WEPL evaluation did not diverge from the trends observed in

the voxel-wise and geometric evaluation.
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F. 6. Dosimetric errors for the two PTVs. PTV 1: gray lines and open circles. PTV 2: black lines and crosses. Dashed line indicates zero. Top row: normalized

mean absolute dosimetric error (nMAEdos), normalized mean dosimetric error (nMEdos), and CDS. Bottom row: percentage point deviation in Dmedian, D98%,

and D2%. Average values are shown along with ±σ interval.

For the dosimetric evaluation, an easy and a challenging

PTV site was chosen, which was reflected in the magnitude

of the errors in Fig. 6. Overall, the patch-based method had

the lowest average errors, following the trend from the other

evaluations. Looking at the CDS, GMR performed well and

was on par with the patch-based method for PTV 1 and with

multiatlas for PTV 2. We obtained a comparable value of

around 0.02 for the CDS of GMR for a target similar to PTV

2 in a previous study.11 It should be noted that since the CDS

only accounts for the magnitude of nMEdos, the direction of

the error is removed. When averaging across patients, this

means that a method with consistent overestimation of the

dose can get the same CDS as a method where the direction

of error is random. This effect explains why the patch method

and GMR have similar CDS for PTV 1, even though the patch

method performs better in nMEdos.

In D98%, GMR performed well for PTV 2 but with a larger

standard deviation. In a dosimetric evaluation of the GMR

method, Jonsson et al. reported a percentage point deviation

of 0.86% in D90% (Ref. 36) for a target somewhat similar to

PTV 2 in the present study. Though D90% is less sensitive to

changes in the DVH shape, it seems that the dosimetric error

is of the same order as our findings in D98%.

A statistical criterion for the reliable use of MRI-only states

that for 95% of the patients, the maximum uncertainty in the

DVH points related to target coverage should be within 2%.37

Although a study with more patients is still needed, we note

that for PTV 1, all methods fulfilled this criterion. This speaks

in favor of a reliable use of MRI-only for targets positioned

away from cavities. We also note that the patch-based method

fulfilled the criterion for the challenging PTV 2, showing

potential for a more general use of MRI-only RT.

From the voxel-wise and radiologic evaluation, we ex-

pected that the multiatlas method would have dosimetric errors

closer to those of the patch-based method. This did not seem

to be the case, especially for PTV 2, where the multiatlas

and GMR methods were closer in performance. Therefore,

even though the voxel-wise and radiologic error may serve

as a proxy for the dosimetric performance, they should be

accompanied by a dosimetric evaluation to get the full picture.

This agrees with our previous findings.11

Comparing the two methods based on T1-weighted MRI,

the voxel-wise and radiologic differences were small with a

slight favor of the patch-based method. In terms of dosimetry,

the patch-based method had an average better performance,

especially in PTV 2. The advantage of both methods is that

they work on any MRI sequence as long as an atlas or

database of MRI/CT pairs has been obtained. This means

that they can be adapted to the clinical practice without the

need for extra sequences and scan time. The patch-based

method further has the advantage that it relies only on linear

registrations to provide a rough alignment of the database

MRI and patient MRI. Linear registrations can be performed

faster than deformable ones, which could potentially make the

patch-based method faster than the multiatlas method. In the

current Matlab implementation, however, using a brute force

search for the most similar patches, it took approximately

15 hours to predict a pCT with four database patients. On

the same hardware, the multiatlas and GMR methods took

roughly 36.5 min (including deformable registrations) and
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6.5 min, respectively. None of the implementations were

optimized for speed, and especially the patch-based method

could be improved substantially by using an approximate

nearest neighbor (ANN) patch search algorithm such as

OPAL.38 A subsequent implementation of an ANN algorithm

with similarities to OPAL, reduced the pCT prediction time

for one patient to 38 min with an increase in MAEvox of 9 HU.

We believe this can be further improved, but it was not the

focus of the present study.

The patch-based method is still dependent on anatomical

similarity, even without the deformable registration. Indeed,

in smaller regions of the brain in one patient, we found that

all patches in the database were discarded due to the SSIM

being below the threshold value. These dissimilar regions

could be present in the MRI of patients with tumors or other

brain abnormalities that are not found in the patch database.

This poses a problem for the method. However, based on

the SSIM, we were able to produce a pCT with problematic

(dissimilar) regions marked for quality assurance. This is in

contrast to the multiatlas approach, where it can be hard to

know where the deformable registrations were unsuccessful

without manual inspection of each atlas. In the cases where

no patches matched, we assigned the average pCT value

of the neighboring assigned voxels, which did not seem to

affect the accuracy of the pCT. Still, this way of handling the

problem may prove too simple in the general case, especially

if the dissimilar regions are large or if the tissue type of the

neighboring voxels differs from that of the region. Increasing

the size of the patient database could potentially alleviate some

of this issue, but a focus of our future work is to incorporate

a more advanced system for outlier handling.

As mentioned in the introduction, a pattern recognition step

using Gaussian process regression (GPR) based on 2D patches

has previously been investigated for improving an atlas-based

method using deformable registrations.21 The presented patch-

based method shares some similarities with the GPR method

since both are examples of so-called kernel smoothers. The

difference lies in the way the kernel is defined, which is

done explicitly in Eq. (4) for the patch-based method and

implicitly through a covariance function in the GPR method.

Furthermore, the patch-based method uses linear registrations,

so the assumption of exact spatial correlation between the

patient and database is not met. Therefore, the position of

a patch does not affect its contribution weight, which is the

case in the GPR method. Finally, the patch-based method

adaptively normalizes the kernel for each test patch with the

minimum L2-norm in Eq. (4).

An average MAEvox of 100.7 HU was reported with the

GPR method on T1-weighted scans for 17 patients,21 which

is close to our results using the multiatlas or patch-based

methods. It was not reported whether this value was calculated

for the entire image volume or only for the head region, as in

the present study.

Overall, the methods for pCT prediction based on simi-

larities in conventional MRI scans seem promising for MRI-

only RT. Interpatient anatomical variability does introduce an

uncertainty in the pCTs, but the higher voxel-wise, geometric,

and dosimetric accuracy compared to current voxel-based

methods may make this a worthwhile compromise. A larger

study of the robustness of the patch-based method and the

dosimetric uncertainty is still needed and is part of our future

work.

5. CONCLUSION

In this study, we showed that a patch-based method

could generate a pCT based on a conventional T1-weighted

MRI sequence without using deformable registrations or

special dUTE sequences. We demonstrated a competitive

performance of the method in several quality measures

when compared to state-of-the-art atlas-based and voxel-based

methods. In terms of dosimetric accuracy, the patch-based

method showed a promising potential for use in MRI-only RT

of the brain including PTVs positioned in challenging regions.

ACKNOWLEDGMENT

This work was supported by a research grant from Varian

Medical Systems, Inc.

a)Author to whom correspondence should be addressed. Electronic mail:

dana@dtu.dk
1R. Prabhakar, K. Haresh, T. Ganesh, R. Joshi, P. Julka, and G. Rath,

“Comparison of computed tomography and magnetic resonance based target

volume in brain tumors,” J. Cancer Res. Ther. 3(2), 121–123 (2007).
2M. Ahmed, M. Schmidt, A. Sohaib, C. Kong, K. Burke, C. Richardson, M.

Usher, S. Brennan, A. Riddell, M. Davies, K. Newbold, K. J. Harrington, and

C. M. Nutting, “The value of magnetic resonance imaging in target volume

delineation of base of tongue tumours – A study using flexible surface coils,”

Radiother. Oncol. 94(2), 161–167 (2010), Selected papers from the 10th

Biennial ESTRO Conference on Physics and Radiation Technology for

Clinical Radiotherapy.
3C. Rasch, R. Steenbakkers, and M. van Herk, “Target definition in prostate,

head, and neck,” Semin. Radiat. Oncol. 15(3), 136–145 (2005).
4G. M. Cattaneo, M. Reni, G. Rizzo, P. Castellone, G. L. Ceresoli, C.

Cozzarini, A. J. M. Ferreri, P. Passoni, and R. Calandrino, “Interobserver

variability and impact of image registration of MR(pre-operative) images

on treatment planning CT scans,” Radiother. Oncol. 75(2), 217–223 (2005).
5K. Ulin, M. M. Urie, and J. M. Cherlow, “Results of a multi-institutional

benchmark test for cranial CT/MR image registration,” Int. J. Radiat. Oncol.,

Biol., Phys. 77(5), 1584–1589 (2010).
6T. Nyholm, M. Nyberg, M. Karlsson, and M. Karlsson, “Systematisation

of spatial uncertainties for comparison between a MR and a CT-based

radiotherapy workflow for prostate treatments,” Radiat. Oncol. 4, 54 (2009).
7I. L. Reichert, M. D. Robson, P. D. Gatehouse, T. He, K. E. Chappell, J.

Holmes, S. Girgis, and G. M. Bydder, “Magnetic resonance imaging of

cortical bone with ultrashort TE pulse sequences,” Magn. Reson. Imaging

23(5), 611–618 (2005).
8V. Keereman, Y. Fierens, T. Broux, Y. D. Deene, M. Lonneux, and S. Van-

denberghe, “MRI-based attenuation correction for PET/MRI using ultra-

short echo time sequences,” J. Nucl. Med. 51, 812–818 (2010).
9Y. Berker, J. Franke, A. Salomon, M. Palmowski, H. C. Donker, Y. Temur, F.

M. Mottaghy, C. Kuhl, D. Izquierdo-Garcia, Z. A. Fayad, F. Kiessling, and

V. Schulz, “MRI-based attenuation correction for hybrid PET/MRI systems:

A 4-class tissue segmentation technique using a combined ultrashort-echo-

time/dixon MRI sequence,” J. Nucl. Med. 53(5), 796–804 (2012).
10C. M. Rank, N. Hünemohr, A. M. Nagel, M. C. Röthke, O. Jäkel, and S.

Greilich, “MRI-based simulation of treatment plans for ion radiotherapy in

the brain region,” Radiother. Oncol. 109(3), 414–418 (2013).
11J. M. Edmund, H. M. Kjer, K. Van Leemput, R. H. Hansen, J. A. Andersen,

and D. Andreasen, “A voxel-based investigation for MRI-only radiotherapy

of the brain using ultra short echo times,” Phys. Med. Biol. 59(23), 7501

(2014).

Medical Physics, Vol. 42, No. 4, April 2015

mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
mailto:dana@dtu.dk
http://dx.doi.org/10.4103/0973-1482.34694
http://dx.doi.org/10.1016/j.radonc.2009.12.021
http://dx.doi.org/10.1016/j.semradonc.2005.01.005
http://dx.doi.org/10.1016/j.radonc.2005.03.012
http://dx.doi.org/10.1016/j.ijrobp.2009.10.017
http://dx.doi.org/10.1016/j.ijrobp.2009.10.017
http://dx.doi.org/10.1186/1748-717X-4-54
http://dx.doi.org/10.1016/j.mri.2005.02.017
http://dx.doi.org/10.2967/jnumed.109.065425
http://dx.doi.org/10.2967/jnumed.111.092577
http://dx.doi.org/10.1016/j.radonc.2013.10.034
http://dx.doi.org/10.1088/0031-9155/59/23/7501


1605 Andreasen et al.: Patch-based generation of a pseudo CT 1605

12A. Johansson, M. Karlsson, and T. Nyholm, “CT substitute derived from

MR sequences with ultrashort echo time,” Med. Phys. 38(5), 2708–2714

(2011).
13A. Johansson, M. Karlsson, J. Yu, T. Asklund, and T. Nyholm, “Voxel-

wise uncertainty in CT substitute derived from MRI,” Med. Phys. 39(6),

3283–3290 (2012).
14D. Andreasen, “Creating a pseudo-CT from MRI for MRI-only based

radiation therapy planning,” Master’s thesis, Technical University

of Denmark, DTU Compute, Denmark, 2013, E-mail: compute@compute.

dtu.dk, Matematiktorvet, Building 303-B, DK-2800 Kgs. Lyngby.
15J. Rahmer, U. Blume, and P. Börnert, “Selective 3D ultrashort TE imaging:

Comparison of ’dual-echo’ acquisition and magnetization preparation for

improving short-T2 contrast,” Magn. Reson. Mater. Phys., Biol. Med. 20(2),

83–92 (2007).
16A. Johansson, A. Garpebring, M. Karlsson, T. Asklund, and T. Nyholm,

“Improved quality of computed tomography substitute derived from

magnetic resonance (MR) data by incorporation of spatial information –

Potential application for MR-only radiotherapy and attenuation correc-

tion in positron emission tomography,” Acta Oncol. 52(7), 1369–1373

(2013).
17C. Rank, C. Tremmel, N. Hünemohr, A. Nagel, O. Jäkel, and S. Greilich,

“MRI-based treatment plan simulation and adaptation for ion radiotherapy

using a classification-based approach,” Radiat. Oncol. 8(51), 1–13 (2013).
18J. A. Dowling, J. Lambert, J. Parker, O. Salvado, J. Fripp, A. Capp, C.

Wratten, J. W. Denham, and P. B. Greer, “An atlas-based electron density

mapping method for magnetic resonance imaging (MRI)-alone treatment

planning and adaptive MRI-based prostate radiation therapy,” Int. J. Radiat.

Oncol., Biol., Phys. 83(1), e5–e11 (2012).
19N. Burgos, M. Cardoso, M. Modat, S. Pedemonte, J. Dickson, A. Barnes, J.

Duncan, D. Atkinson, S. Arridge, B. Hutton, and S. Ourselin, “Attenuation

correction synthesis for hybrid PET-MR scanners,” Medical Image Comput-

ing and Computer-Assisted Intervention – MICCAI 2013, Lecture Notes in

Computer Science Vol. 8149, edited by K. Mori, I. Sakuma, Y. Sato, C.

Barillot, and N. Navab (Springer, Berlin, Heidelberg, 2013), pp. 147–154.
20J. Uh, T. E. Merchant, Y. Li, X. Li, and C. Hua, “MRI-based treatment

planning with pseudo CT generated through atlas registration,” Med. Phys.

41(5), 051711 (8pp.) (2014).
21M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff, M.

Brady, B. Schölkopf, and B. J. Pichler, “MRI-based attenuation correction

for PET/MRI: A novel approach combining pattern recognition and atlas

registration,” J. Nucl. Med. 49, 1875–1883 (2008).
22P. Coupé, J. V. Manjón, V. Fonov, J. Pruessner, M. Robles, and D. L. Collins,

“Patch-based segmentation using expert priors: Application to hippocampus

and ventricle segmentation,” NeuroImage 54(2), 940–954 (2011).
23F. Rousseau, P. Habas, and C. Studholme, “A supervised patch-based

approach for human brain labeling,” IEEE Trans. Med. Imaging 30(10),

1852–1862 (2011).

24A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J. C. Fillion-Robin, S.

Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward,

J. Miller, S. Pieper, and R. Kikinis, “3D Slicer as an image computing

platform for the quantitative imaging network,” Magn. Reson. Imaging

30(9), 1323–1341 (2012).
25L. Nyul, J. Udupa, and X. Zhang, “New variants of a method of MRI scale

standardization,” IEEE Trans. Med. Imaging 19(2), 143–150 (2000).
26Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-

ment: From error visibility to structural similarity,” IEEE Trans. Image

Process. 13(4), 600–612 (2004).
27S. Klein, M. Staring, K. Murphy, M. A. Viergever, and J. P. W. Pluim,

“Elastix: A toolbox for intensity-based medical image registration,” IEEE

Trans. Med. Imaging 29(1), 196–205 (2010).
28A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” J. R. Stat. Soc., Ser. B 39(1), 1–38

(1977).
29D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful

seeding,” in Proceedings of the Eighteenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA ’07 (Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2007), pp. 1027–1035.
30S. Varma and R. Simon, “Bias in error estimation when using cross-

validation for model selection,” BMC Bioinf. 7(1), 91 (2006).
31L. R. Dice, “Measures of the amount of ecologic association between

species,” Ecology 26(3), 297–302 (1945).
32S. Mori, G. T. Chen, and M. Endo, “Effects of intrafractional motion on water

equivalent pathlength in respiratory-gated heavy charged particle beam

radiotherapy,” Int. J. Radiat. Oncol., Biol., Phys. 69(1), 308–317 (2007).
33International Commission on Radiation Units and Measurements (ICRU),

“Report 83: 3. Special considerations regarding absorbed-dose and dose-

volume prescribing and reporting in IMRT,” J. ICRU 10(1), 27–40 (2010).
34D. Andreasen, J. L. Andersen, R. H. Hansen, K. Van Leemput, and J. M.

Edmund, “The impact of a Dixon sequence in creating a pseudo CT scan

from MR images using a Gaussian mixture regression model,” Radiother.

Oncol. 106(2), S229 (2013).
35A. Johansson, A. Garpebring, T. Asklund, and T. Nyholm, “CT substitutes

derived from MR images reconstructed with parallel imaging,” Med. Phys.

41(8), 082302 (7pp.) (2014).
36J. H. Jonsson, A. Johansson, K. Söderström, T. Asklund, and T. Nyholm,

“Treatment planning of intracranial targets on MRI derived substitute CT

data,” Radiother. Oncol. 108(1), 118–122 (2013).
37M. Korsholm, L. Waring, and J. Edmund, “A criterion for the reliable use of

MRI-only radiotherapy,” Radiat. Oncol. 9(1), 16 (2014).
38V. T. Ta, R. Giraud, D. Collins, and P. Coupé, “Optimized patchmatch for

near real time and accurate label fusion,” Medical Image Computing and

Computer-Assisted Intervention – MICCAI 2014, Lecture Notes in Com-

puter Science edited by P. Golland, N. Hata, C. Barillot, J. Hornegger, and

R. Howe (Springer International Publishing, 2014), Vol. 8675, pp. 105–112.

Medical Physics, Vol. 42, No. 4, April 2015

http://dx.doi.org/10.1118/1.3578928
http://dx.doi.org/10.1118/1.4711807
http://dx.doi.org/10.1007/s10334-007-0070-6
http://dx.doi.org/10.3109/0284186X.2013.819119
http://dx.doi.org/10.1186/1748-717X-8-51
http://dx.doi.org/10.1016/j.ijrobp.2011.11.056
http://dx.doi.org/10.1016/j.ijrobp.2011.11.056
http://dx.doi.org/10.1118/1.4873315
http://dx.doi.org/10.2967/jnumed.107.049353
http://dx.doi.org/10.1016/j.neuroimage.2010.09.018
http://dx.doi.org/10.1109/TMI.2011.2156806
http://dx.doi.org/10.1016/j.mri.2012.05.001
http://dx.doi.org/10.1109/42.836373
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TMI.2009.2035616
http://dx.doi.org/10.1109/TMI.2009.2035616
http://dx.doi.org/10.1186/1471-2105-7-91
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1016/j.ijrobp.2007.05.018
http://dx.doi.org/10.1093/jicru/ndq008
http://dx.doi.org/10.1118/1.4886766
http://dx.doi.org/10.1016/j.radonc.2013.04.028
http://dx.doi.org/10.1186/1748-717X-9-16

