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Abstract

This paper addresses interferometric phase (InPhase) image denoising, i.e., the de-

noising of phase modulo-2π images from sinusoidal 2π-periodic and noisy observations.

The wrapping discontinuities present in the InPhase images, which are to be preserved

carefully, make InPhase denoising a challenging inverse problem. We propose a novel

two-step algorithm to tackle this problem by exploiting the non-local self-similarity of

the InPhase images. In the first step, the patches of the phase images are modelled using

Mixture of Gaussian (MoG) densities in the complex domain. An Expectation Max-

imization (EM) algorithm is formulated to learn the parameters of the MoG from the

noisy data. The learned MoG is used as a prior for estimating the InPhase images from

the noisy images using Minimum Mean Square Error (MMSE) estimation. In the sec-

ond step, an additional exploitation of non-local self-similarity is done by performing a

type of non-local mean filtering. Experiments conducted on simulated and real (MRI and

InSAR) data sets show results which are competitive with the state-of-the-art techniques.

1 Introduction

Phase imaging systems play a vital role in many present day technologies, namely in the field

of surveillance, remote sensing, medical diagnostic, weather forecasting and photography.

Often, in such systems, a physical quantity of interest is coded in an image of phase using a

suitable coherent imaging techniques.

Popular and relavant technologies in this categorie include Interferometric Synthetic

Aperture Radar & Sonar (InSAR/InSAS) [10], [26], [9], [24], [2], Magnetic Resonance

Imaging (MRI) [18], [12], Optical Interferometry [19] and High Dynamic Range (HDR)

Photography [19]. For e.g., in InSAR/InSAS, the radar/sonar signals scattered from a terrain

are collected using spatially distant sensors. The information related to the topography of

the terrain is coded in the phase differences of the signals collected at the different sensors.

Infact, the spatial diversity of the paths of the received signals are exploited and thereby
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the terrain topography is decoded [11]. In MRI, phase estimation is required to measure

the magnetic field deviation maps, which can be used to correct echo-planar image geomet-

ric distortions [14], to determine chemical shift based thermometry [22], and to implement

BOLD contrast based venography [23]. In optical interferometry, the shape, deformation,

and vibration of the objects are measured using phase estimation [19]. Phase unwrapping

algorithms are used in HDR photography to recover very high range radiance levels from a

single modulus image of limited bit depth.

Since the phase is closely linked with the wave propagation phenomenon, the measured

signals depend only on the principal (wrapped) values of the original phase (absolute phase),

which we term as interferometric phase, usually defined in the interval [−π,π). The inter-

ferometric phase is thus a sinusoidal and non-linear function of the absolute phase, which

renders absolute phase estimation a hard inverse problem. In addition, the interferometric

phase is usually corrupted by the noise introduced by the acquisition mechanism and elec-

tronic equipments, which further complicates the inverse problem which is the inference of

the absolute phase from interferometric measurements. This problem is often tackled in a

two-step approach. In the first step, denoising of the noisy wrapped phase is taken care and in

the second step, the denoised phase image is unwrapped. InPhase image denoising should be

addressed with special care since the wrapping discontinuities should be preserved carefully

for the second stage of unwrapping.

The local polynomial approximation (LPA) to InPhase image denoising consists in as-

suming that the absolute phase is well approximated by a low order polynomial in small

windows [15]. Though LPA performs well in areas of smooth phase variation, it results in

over-smoothing in those areas where the phase variation is large or there are discontinuities.

Another conventional but promising tool for wrapped phase denoising is the time-frequency

analysis [20], [21] based filtering. Here the windowed Fourier transform (WFT) of the phase

surface is considered and exploits the fact that quite often the WFT of the complex phase is

clustered in a small set of frequencies, i.e., the WFT coefficients are well approximated by

sparse representations.

In both of the aforementiond techniques, i.e. LPA [15] and WFT [20], [21] based, the

size of the window plays a key role. An oversized window damages the essential patterns

of the phase image whereas a very small window fails to perform effective denoising action.

One way to address this issue by adapting the size of the local windows based on phase

smoothness and the noise level. PEARLS algorithm [4] successfully addresses this issue

by incorporating a first order LPA using adaptive window size [15]. But the first order

polynomial limits the denoising performance in phase surfaces containing discontinuities.

The NL-InSAR method introduced in [7] is state-of-the-art. This method exploits the

non-local self-similarity existing in most real world images. A well known algorithm ex-

ploiting this property of the images of the real world is the block matching with 3D filtering

(BM3D) [6], in which similar patches of the images are grouped together and collaborative

filtering is applied. Another recent approach that exploits the non-local self similarity con-

sists in learning a dictionary in which patches are well approximated by linear combinations

of a few atoms taken from that dictionary[8]. Sparse regression on dictionaries identifies a

low dimensional sub-spaces of clean patches and implicitly projects the noise from a high

to a low dimensional subspace [13]. This gives rise to a large noise reduction since, in the

case of independent and identically distributed (iid) noise, the power of the projected noise

is proportional to the dimension of the subspace.

In this paper, we propose a novel approach to address InPhase image denoising by ex-

ploiting the non-local self-similarity of the phase images in a two-step algorithm. In the first
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step, the patches of complex phase images are modelled using MoG densities in the complex

domain. Due to the non-local self-similarity of the complex phase images, the clean patches

are well modelled by very few eigen-directions of the covariance matrices of the MoG com-

ponents. In other words, the first step exploits the eigenspace based sparsity of the phase

patches. The parameters, i.e., the covariance matrix, mean and mixing coefficients of the

MoG are learned from complex domain patches of the noisy data. The learned MoG is then

used as a prior for estimating the interferometric phase images from the noisy ones. The

main contribution of the first step of our work, which is inspired from the recent state-of-the-

art image denoising techniques based on MoGs (see, e.g. [1],[25]), can be summarized as

follows: 1) an algorithm to learn the probabilistic model; this is accomplished by designing

an Expectation Maximization (EM) algorithm for MoG densities in the complex domain; 2)

a Minimum Mean Square Error (MMSE) based estimation technique; this is to estimates the

clean patches from the noisy ones using the learned model.

The second step further exploits the non-local self-similarity; for each patch estimated

in MoGInPhase, a weighted patch average is carried out in which more similar patches are

given higher weights. To accomplish this, we use l2 distance between patches as a measure

of similarity for designing the weights. We term the first step as MoGInPhase and the second

step as Non-local averaging (NL-averaging).

Figure 1: Block diagram representation of the proposed InPhase denoising algorithm

2 Problem Formulation

Herein, we assume the following observation model at a given image pixel:

z = ae jφ+n, j =
√
−1, (1)

where a ≥ 0, φ, and n = nI + jnQ are the values of the amplitude, phase, and complex do-

main noise of the image at the given pixel. The noise is assumed to be zero-mean Gaussian

circular (details on circularity is given later) and white with variance σ2. Although the ob-

servation model may vary among the different phase imaging modalities, model (1) captures

the essence of the problem. We assume that the phase image is defined on a grid of size

N := N1 ×N2. The observed noisy pixels are arranged into a column vector z := [zi, i =
1, ...,N]T according to the lexicographical order of the set {1, ...,N1}×{1, ...,N2}. In a simi-

lar way, we form the column vector for the true amplitude image (a ∈R
N), true phase image

(φ ∈ R
N) and noise image (n ∈ C

N), i.e., a := [ai, i = 1, ...,N]T , φ := [φi, i = 1, ...,N]T and

n := [ni, i = 1, ...,N]T . The interferometric phase φ2π = [φ2πi
, i = 1, ...,N]T is defined as

φ2π :=W(φ), (2)
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where W(.) is the wrapping operator that performs component wise 2π-modulo wrapping

operation defined by

W : R −→ [−π,π)

φ −→ mod (φ+π,2π)−π, (3)

where the function mod (.,2π) denotes modulo 2π function. Let a clean complex patch

be denoted as x := [xi, i = 1, ...,N]T with xi = aie
jφi . We remark that φ2π = arg(x). The

denoising strategy that we propose is patch-based. We adopt the the method followed in

[13] for the formation and aggregation of the patches. Consider a complex noisy observation

z ∈ C
N . All possible patches of size

√
m×√

m are formed which is denoted as zi ∈ C
m

where i is the index corresponding to the centre pixel of the patch. The total number of

overlapping patches is Np = (N1 −
√

m+1)(N2 −
√

m+1). Let xi ∈ C
m and ni ∈ C

m be the

ith patches of x and n respectively. With the above notations in place, we define the InPhase

estimation as the estimation of xi from the noisy observation zi where

zi = xi +ni, i = 1, ...,Np. (4)

3 MoGInPhase Estimation

The complex vectors of patches xi ∈C
m are modelled with a mixture of circularly symmetric

Gaussian densities. An EM algorithm is formulated to learn the parameters of the MoG from

the noisy samples. The learned MoG is used as a prior to compute the MMSE estimates of

the clean patches from the noisy ones.

3.1 Circular-Symmetric Assumption

Let X=
[
x1, ...,xNp

]T
be complex jointly-Gaussian random vectors. The key idea of MoGIn-

Phase is that the non-local and self-similar phase patches are modelled by few eigen-directions

of the covariance matrices of the MoG components. In order to have an efficient represen-

tation using MoG, in the context of patch-based phase inference, we assume a rotationally

invariant probability distribution, i.e., a patch xi and an another patch x j = e jγ xi (with a com-

mon phase shift γ to all of its pixel) should have the same probability distribution for any

given γ ∈ R. This motivates the assumption of circular-symmetry to the components of the

MoG. The probability distribution of the complex domain phase patch xi = xiℜ + jxiℑ is de-

fined as the joint probability distribution of its real and imaginary parts[17], i.e., the distribu-

tion of the random variable x̃i = [xiℜ,xiℜ]
T ∈ R

2m. With the assumption of circular symme-

try, it is straightforward to prove that the mean [µxi
= E (xi) ,E is the expectation operator]

and the pseudo covariance matrix
[
Mxi

= E
{
(xi −µxi

)(xi −µxi
)T
}]

are zeros. This simpli-

fies the expression of circular symmetric Gaussian probability density to be (see [17]),

N (xi;Σ i)
∆
=

1

πm det(Σ i)
e−xH

i Σ−1
i xi

, (5)

where H denotes the conjugate transpose operator and Σ i denotes the covariance matrix

which is defined as

Σ i
∆
=E

[
xixi

H
]
. (6)
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3.2 EM Algorithm for Complex Domain Circular-Symmetric MoG

Hereafter we use the term ‘circular-symmetric MoG’ which is to be understood as a mixture

of densities with Gaussian components having circular symmetry property. We model the

patches of the phase image using a circular symmetric MoG, i.e.,

pX(xi) =
K

∑
k=1

αkN (xi;Σ k), (7)

where K is the number of components, and αk and Σ k are the mixing coefficient and the

sample covariance matrix of the kth component of the MoG respectively. The EM algorithm

shown below is used to learn these parameters from the noisy patches. zi = xi +ni. Assum-

ing that the noise is also circular symmetric Gaussian with covariance matrix σ2I, then we

have pZ(zi) = ∑
K
k=1 αkN (zi;Γk), where Γk = Σk +σ2I.

The EM Algorithm

1. Initialization: Initialize the parameters α̂ = {α̂k}K
k=1 and Γ̂ = {Γ̂k}K

k=1 and evaluate

the initial value of the log likelihood.

2. E-STEP: Evaluate the posterior probabilities using the current parameter values

γik := α̂kN (zi;Γ̂k)

∑
K
j=1 α̂ jN (zi;Γ̂j)

, for i=1, . . . , N and k=1, . . . , K

Nk := ∑
Np

i=1 γik

3. M-STEP: Re-estimate the parameters using the current posterior probabilities

(a) Γ̂k := 1
Nk

∑
Np

i=1 γikziz
H
i , for k = 1,2...K

(b) α̂k := Nk
Np

, for k = 1,2...K

4. Log Likelihood Evaluation:

ln{pZ(z)} := ∑
Np

i=1 ln∑
K
k=1 α̂kN (zi;Γ̂k)

5. Convergence Check: Check for convergence of log likelihood. If the convergence

criterion is not satisfied return to step 2, else stop the EM algorithm.

Since Γ̂k ≃ Σ̂ k + σ2I, for k = 1, ...K, Σ̂ k is estimated as Σ̂ k = Γ̂k − σ2I. We use eigen

value decomposition and a simple threshold function to get positive definite Σ̂ k, i.e., Σ̂ k =
U
(
S−σ2I

)
+

UH , where the matrices U and S are eigenvector and eigenvalue (diagonal)

matrices of Γ̂k and x+ := max(0,x).

3.3 MMSE Estimation of the Clean Patches

The posterior probability of a patch xi given zi, for i = 1, . . . ,Np, is given by

pX |Z(xi|zi) =
pZ|X (zi|xi)pX (xi)

pZ(zi)
=

pZ|X (zi|xi)∑
K
k=1 αk pk

X (xi)

∑
K
k=1 αk pk

Z(zi)
(8)

pk
X (xi) :=N (xi; Σ̂ k), (9)

pk
Z(zi) :=N (zi; Σ̂ k +σ2I) (10)
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The MMSE Estimate (Posterior Mean) of a patch xi is given by

x̂i,mmse =
∫ ∞

−∞
xi pX |Z(xi|zi)dxi =

∫ ∞

−∞
xi

pZ|X (zi|xi)∑
K
k=1 αk pk

X (xi)

∑
K
k=1 αk pk

Z(zi)
dxi, (11)

which on further calculation gives,

x̂i,mmse =
K

∑
k=1

α̂kx̂k
i,mmse, (12)

α̂k =
αk pk

Z(zi)

PZ(zi)
, x̂k

i,mmse = Σ̂ k(Σ̂ k +σ2I)−1zi. (13)

For more details of the derivation of the posterior mean for the MoG component k, i.e.

x̂k
i,mmse, refer [16]

4 NL-Averaging

After the MMSE denoising step, we obtain a set of filtered patches in which the noise is

largely attenuated. However, there is still room to reduce the noise by further exploiting the

image self-similarity using non-local (NL)-averaging in the spirit of [5]. For each x̂i,mmse ∈
C

m, the NL-average is found as

x̂i =
Np

∑
j=1

x̂ j,mmsee
−‖x̂i,mmse−x̂ j,mmse‖2

F
h2 for i = 1,2, ...,Np, (14)

where h is a parameter tuned experimentally (h = 0.48σ ) and ‖.‖2
F is the Frobenius norm.

As this is computationally expensive, we restrict the averaging process within a fixed size

neighbourhood (square window of size 11×11) of each patch. We thus compute

x̂i = ∑
x̂ j,mmse∈NBi

x̂ j,mmsee
−‖x̂i,mmse−x̂ j,mmse‖2

F
h2 for i = 1,2, ...,Np, (15)

where NBi denotes the set of patches which are near to the patch i in their respective posi-

tions in the original image. We remark that compared with the original NL-filtering scheme

introduced in [5], we use denoised patches to compute the Euclidean distances, which has a

positive impact in the final results.

5 Experiments and Results

The performance of the proposed algorithm is compared with the state-of-the-art techniques

for Inphase Image denoising, namely SpInphase [13] and WFT [20]. As our interest is on

unsupervised or mildly supervised scenarios, we do not consider any deep learning methods

for the quality comparison. We adopt a quality measure termed as peak signal-to-noise ratio

(PSNR) to compare the performance of different algorithms [13].
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PSNR := 10log10

4Nπ2

∥∥∥W(φ̂2π −φ)
∥∥∥

2

F

[dB], (16)

where φ is the true phase (unwrapped), φ̂2π is the estimated wrapped phase and W is the

wrapping operator defined in (3). As already mentioned in Section 1, the process of interfero-

metric phase estimation is usually accomplished by Phase Denosing and Phase Unwrapping.

The success of Phase Unwrapping depends crucially on the quality of the denoised inter-

ferometric phase. To account this factor, we unwrap the denoised InPhase image using the

state-of-the-art PUMA algorithm [3]. To measure the quality of the unwrapped denoised

phase (φ̂), as in [13], we define a set of image pixels having error less than π compared

to the true phase image (φ), i.e., I :=
{

i : |φ̂i −φi| ≤ π, i = 1, ...N
}

. Based on this set, we

define number of error larger than π (NELP) and a new peak signal-to-noise ratio (PSNRa)

as

NELP := N −|I|; PSNRa := 10log10

4Nπ2

∥∥∥(φ̂I −φI)
∥∥∥

2

F

[dB], (17)

where the notation φI stands for the restriction of φ to the set I [13]. The number of com-

ponents of the MoG in all the following experiments are selected heuristically for optimal

performance. Also, the patches considered are of the size 10×10 (i.e., m = 100). Although

the time cost of the algorithm is not considered in the performance evaluation, we would

like to mention that the computational complexity of the proposed algorithm (MMSE and

NL-Averaging) is linear with the number of pixels considered.

5.1 Experiments Conducted on Simulated Data Set

Five different data sets are created to model five different topologies. The size of the data

sets, shown in Fig. 2, is 100× 100. The observed data is generated according to (1). The

interferometric phases shown in the subfigures are represented in gray level: black represents

−π and white represents π . Each of the above surfaces is considered for the phase image

φ. Here we focus on the inference of interferometric phase and the detailed statistical char-

acterisation of the amplitude image is beyond the scope of this paper. But we remark that

the propsed approach gives competitive results even for a constant amplitude signal model,

though the MoG is not the best density model for such cases. In the following experiments

conducted on the simulated data sets, we consider a smoothly varying non-negative surface,

i.e., the mountain surface of Fig. 2 (d), as the amplitude image (a). We present two sets of ex-

periments with these simulated data set. In the first set of experiments, which is pre-learning

experiment (pl), the learning (MoG: 30 components, SpInphase: 512 atoms ) is done from

the five clean images combined together. The second set of experiments are self-learning (sl)

experiments in which the learning (MoG: 15 components, SpInphase: 256 atoms ) is done

from the noisy data itself. Also to test the algorithm, noisy versions of each of the aforemen-

tioned surfaces are considered with σ ∈{0.3,0.5,0.7,0.9,1}. Table 1 shows the performance

of the proposed algorithm in comparison with the state-of-the-art. The complete process of

InPhase denoising and unwrapping [3] are illustrated in Fig. 3.
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(a) Truncated Gaussian (b) Sinusoidal (c) Discontinuous sinusoidal (d) Mountainous (e)Shear Planes

Figure 2: Simulated data sets

Figure 3: From top to bottom: the true interferometric phase, the noisy interferometric phase for σ = 0.5, the InPHASE estimate,

unwrapped surface. From the left to the right: Truncated Gaussian, Sinusoidal, Discontinuous Sinusoidal, Mountains, Shear Planes.

Table 1 shows that the proposed approach is highly competitive with the state-of-the-

art even for the surfaces like discontinuous sinusoidal where the amount of discontinuity is

very high. Also, the very low NELP values, in most of the cases, show that the wrapping

discontinuities are preserved very well which is a crucial factor that maintains the quality of

the unwrapped InPhase images.

Surf. σ PSNR (dB) NELP PSNRa (dB)

MoG SP MoG SP WFT MoG SP MoG SP WFT MoG SP MoG SP WFT

(pl) (sl) (pl) (sl) (pl) (sl)

Trunc. 0.3 45.31 45.08 44.51 44.43 44.06 0 0 1 0 0 45.31 45.08 44.52 44.43 44.06

0.5 41.21 42.16 39.81 42.38 40.24 11 0 0 0 0 42.22 42.16 39.81 42.38 40.24

Gauss. 0.7 38.14 40.75 36.55 39.00 37.40 9 0 6 0 0 40.10 40.75 36.92 39.00 37.40

0.9 37.77 39.03 36.28 38.14 36.58 43 0 36 0 0 39.72 39.03 37.83 38.14 36.58

Sinu.

0.3 47.76 48.69 51.72 47.80 40.45 0 0 0 0 0 47.76 48.69 51.72 47.80 40.45

0.5 46.43 48.06 46.86 42.84 35.95 0 0 0 0 0 46.43 48.06 46.86 42.84 35.95

0.7 41.88 44.12 43.38 37.57 33.15 0 0 0 0 0 41.88 44.12 43.38 37.57 33.15

0.9 40.61 42.87 40.78 35.99 29.78 0 0 0 0 0 40.61 42.87 40.78 35.99 29.78

Sinu.
0.3 45.05 43.65 45.47 46.18 39.11 0 0 0 0 0 45.05 43.65 45.47 46.18 39.11

0.5 42.35 40.60 42.68 43.00 35.38 0 0 0 0 0 42.35 40.60 42.68 43.00 35.38

Disc.
0.7 40.19 39.41 39.75 41.92 33.04 0 0 0 0 1 40.19 39.41 39.75 41.92 33.16

0.9 37.36 37.27 39.21 37.54 30.55 0 0 0 0 11 37.36 37.27 39.21 37.54 30.80

Mount.

0.3 43.05 42.71 40.98 43.06 44.60 0 0 0 0 0 43.05 42.71 40.98 43.06 44.60

0.5 40.22 40.16 38.23 40.43 41.47 0 0 0 0 0 40.22 40.16 38.23 40.43 41.47

0.7 38.57 38.50 36.55 38.72 39.20 0 0 0 0 1 38.57 38.50 36.55 38.72 39.20

0.9 36.28 37.51 35.08 36.35 37.85 0 0 0 0 0 36.28 37.51 35.08 36.35 37.85

Shear 0.3 53.39 49.50 52.45 52.37 45.75 0 0 0 0 0 53.39 49.50 52.45 52.37 45.75

0.5 49.23 47.35 49.24 47.23 41.86 0 0 0 0 0 49.23 47.35 49.24 47.23 41.86

Plane 0.7 46.18 45.27 45.41 42.86 39.31 0 0 0 0 0 46.18 45.27 45.41 42.86 39.31

0.9 42.87 43.81 43.43 41.46 37.22 0 0 0 0 0 42.87 43.81 43.43 41.46 37.22

Table 1: Performance Indicators for the surfaces shown in Fig.2. pl: pre-learned, sl: self-learned

5.2 Experiments Conducted on Real MRI Data

Figure 4: Top: MRI InPhase images of a bottle with increasing noise level from left to right. Bottom: Corresponding MoGInPhase estimates.
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Fig. 4 shows MRI interferometric phase images of a bottle filled with liquid. The MRI

images, of size 512 ×228, were acquired using decreasing scan times from the left to right.

A 20-component MoG is used and the parameters are learned from the noisy data. It is

assumed that the complex valued signal varies smoothly and the noise is estimated from the

first order horizontal and vertical differences. The noise variance estimated are 0.158, 0.382,

0.720. The results for the proposed algorithm in comparison with the state-of-the-art are

tabulated in Table 2. The Table 2 shows that the proposed method is well suited for the real

MRI InPhase data and is highly competing with the state of the art in terms of PSNR, NELP

and PSNRa

sigma PSNR (dB) NELP PSNRa (dB)

MoG SPIn Phase WFT MoG SPIn Phase WFT MoG SP InPhase WFT

0.153 35.900 35.487 35.777 164 141 417 36.120 35.489 35.781

0.382 34.842 34.830 34.601 176 448 499 34.899 34.847 34.610

0.72 32.371 32.520 32.684 447 274 143 33.000 32.606 32.689

Table 2: Performance Indicators for the MRI images shown in Fig.4. MoG (20 components) is learned from the noisy images

5.3 Experiments Conducted on InSAR Data

Experiments are conducted using the InSAR data distributed with the book [9]. The data

sets were generated based on a real digital elevation model of mountainous terrain around

Longs Peak and Isolation Peak, Colorado, using a high-fidelity InSAR simulator. The de-

tailed description of the simulator are given in [9, Chapter 3] and we conduct the same set

of experiments as described in [13]. The PSNR values (in dB) obtained for MoGInPhase,

SPInPhase and WFT are respectively (24.06, 26.02, 20.42) for the Longs Peak and (23.40,

24.13, 20.77) for the Isolation Peak. In these two experiments, the proposed algorithm per-

forms very close to the SPInPhase, although a bit below. We are not providing the NELP

values for this experiment as the unwrapping of InSAR data with quality map is beyond the

scope of this work.

Figure 5: Estimation results for the real digital elevation model. Top: Longs Peak, Bottom: Isolation Peak, Left to Right : Original Wrapped InPhase image, InPhase image

with InSAR noise, MoGInPhase estimate in the order

6 Conclusion

This paper introduced an effective two-stage algorithm for interferometric phase image de-

noising. The two stages, i.e., MoGInPhase and NL-averaging are designed to exploit the

non-local self-similarity of the phase images. The experiments conducted on real and simu-

lated data show results which are competitive with the state-of-the-art techniques. One of the

relevant contributions of the proposed algorithm is that it opens the door to the exploitation

of “learned priors" from the specified classes of the interferometric phase images, which can

then be used in various phase inverse problems.
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