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Patch-based non-local functional for denoising

fluorescence microscopy image sequences
Jérôme Boulanger, Charles Kervrann, Patrick Bouthemy,

Peter Elbau, Jean-Baptiste Sibarita, Jean Salamero

Abstract—We present a non-parametric regression

method for denoising 3D image sequences acquired via

fluorescence microscopy. The proposed method exploits

the redundancy of the 3D+time information to improve

the signal-to-noise ratio of images corrupted by Poisson-

Gaussian noise. A variance stabilization transform is first

applied to the image-data to remove the dependence be-

tween the mean and variance of intensity values. This pre-

processing requires the knowledge of parameters related

to the acquisition system, also estimated in our approach.

In a second step, we propose an original statistical patch-

based framework for noise reduction and preservation of

space-time discontinuities. In our study, discontinuities are

related to small moving spots with high velocity observed

in fluorescence video-microscopy. The idea is to minimize

an objective non-local energy functional involving spatio-

temporal image patches. The minimizer has a simple form

and is defined as the weighted average of input data

taken in spatially-varying neighborhoods. The size of each

neighborhood is optimized to improve the performance of

the pointwise estimator. The performance of the algorithm

(which requires no motion estimation) is then evaluated on

both synthetic and real image sequences using qualitative

and quantitative criteria.

Index Terms—Video-microscopy, fluorescence, image se-

quence denoising, patch-based approach, Poisson noise,

variance stabilization, adaptive estimation, energy mini-

mization.

I. INTRODUCTION

Fluorescence video-microscopy is an investigation

tool used in biology for dynamics analysis at sub-

cellular levels. Combined with fluorescent tags such

as genetically engineered fluorescent chimeric proteins

(e.g. Green Fluorescence Protein GFP), both confocal

microscopy and wide-field microscopy allow 3D live

protein imaging. Mainly used to analyze isolated cells,

confocal microscopy can also be used in vivo if com-

bined with endomicroscopy. Unfortunately, when cell

viability needs to be preserved and photo-bleaching

avoided, light exposure time must be limited, resulting

in low signal-to-noise ratios.

While improving the signal-to-noise ratio, denoising

may allow us to reduce exposure time and therefore to

open new opportunities in live cell imaging. Moreover,

frame rates can be increased without increasing radiation

dose, which could be relevant to capture fast events at

sub-cellular levels. Finally, if the point spread function

of the objective is not affected by denoising, images

may still be compatible with a deconvolution process.

This allows to significantly increase the performances of

deconvolution algorithms for images with low signal-to-

noise ratios and as a consequence, the ability to detect

and track objects of interest.

Currently, denoising is a widely studied but still open

problem in image processing. Many methods have been

described in the literature, and a recent comprehensive

review can be found in [1], [2]. Methods based on

the full knowledge of noise statistics are probably the

most efficient. In fluorescence video-microscopy, it is

established that the low level of fluorescence is related

to a limited number of photons that can be modeled

as a Poisson process. Besides, additive electronic noise

is usually present even if a cooling system is used on

the detector. Therefore the resulting images are assumed

to be contaminated by a combination of Poisson and

Gaussian noise. Several approaches have been introduced

to deal with such signal-dependent noise. In [3], the

authors proposed a maximum penalized likelihood es-

timator for Poisson noise removal in very low count

situations. The problem is more challenging for Poisson-

Gaussian noise and another line of work consists in

stabilizing the noise variance using ad-hoc transforms.

The more common transform is the so-called Anscombe

transform [4] designed for Poisson noise. This transform

was further generalized to Poisson-Gaussian noise [5],

with satisfying results if the number of counts is large

enough and more recently for "clipped" (under- and

over-exposure) raw-data [6]. In the case of very low

count situations (≤ 1 photons in average), the more

sophisticated Fisz transform allows one to better stabi-

lize Poisson noise [7], [8]. Finally, local estimation of

image-dependent noise statistics (assumed to be locally

Gaussian) has also been investigated, especially in the

case of adaptive Wiener filtering [9]–[11].

Denoising temporal sequences is even more com-
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plex since there are currently no satisfactory methods

for processing fluorescence video-microscopy 3D im-

age sequences contaminated by Poisson-Gaussian noise.

Most of them only restore each frame separately with-

out using the temporal redundancy of image series

[12], [13]. When temporal coherence is exploited, it

is usually recommended to consider a motion estima-

tion/compensation stage as proposed for video denoising

[14]–[17] and, for instance, for low-dose fluoroscopy

image sequence filtering [11]. This is especially true

for real-time imaging applications. Thus, Kuznetsov et

al. recently proposed to use a temporal Kalman-Bucy

filter to improve the quality of video-microscopy im-

ages [18]. The main difficulty in video-microscopy is

to estimate the motion of small and similar objects

moving with high velocity in the image sequence. To

overcome this problem, sophisticated methods (see [1])

but designed for still images have been adapted to videos.

Wavelet shrinkage [19], [20], Wiener filtering [21] or

PDE-based methods [22] are typical examples of such

methods. Some of them have been successfully adapted

to video-microscopy [23], [24]. Recently, an extension of

the non-local means filter [1] also related to the universal

denoising (DUDE) algorithm [25] and the entropy-based

UINTA filter [26], has been proposed to process image

sequences. It assumes that an image sequence contains

repeated patterns [27]. Noise can then be reduced by

averaging data associated to the more similar patches in

the image sequence. Finally, patch-based approaches are

now very popular in texture synthesis [28], inpainting

[29] and video completion [30].

Nevertheless, searching similar examples in the whole

image for denoising with the non-local means filter, is

untractable in practice in 2D, and unrealistic for video

sequences. As a consequence, a variant of this filter has

been recently proposed in [31] in which the authors

use a pre-classification of the pixels of the sequence

in order to speed up the denoising procedure. Another

improvement introduced in [32] consists in collecting

similar patches to build 3D arrays. A unitary transform

and a hard-thresholding are then applied to remove noise.

In the meanwhile, a general modeling framework based

on signal theory and machine learning has been proposed

by Elad et al. for image and video sequence analysis. The

authors assume that the image is sparsely represented

over an over-complete dictionary of atoms that are either

fixed (e.g. DCT) or learned from exemplar patches [33],

[34]. The approximation problem is then equivalent to

the minimization (using a K-SVD algorithm) of an

energy functional involving a data term and a penalty

term that encodes sparsity [35]. This method is able to

produce impressive image denoising results, including

on image sequences, but requires intensive minimization

procedures and the adjustment of several parameters.

Unlike the previous patch-based approaches [27], [31],

[34], [36], we present in this paper a space-time patch-

based adaptive statistical method for 3D+time video-

microscopy image sequence restoration. As already men-

tioned, patch-based methods have been proposed for

denoising image sequences, but, to our knowledge, only

anisotropic diffusion and wavelet shrinkage have been

applied to 2D+time fluorescence video-microscopy [23],

[24]. The main features of the proposed method have

already been presented in a discrete setting at the IEEE-

ISBI’08 conference [37]. In our approach, we propose

first a variance stabilization step to be applied to the

data in order to obtain independence between the mean

and the variance. Second, we consider spatio-temporal

neighborhoods to restore series of 3D images as already

proposed for 2D image sequences in [36]. Our method

is based on the minimization of an energy functional

while exploiting image patches. The minimizer of this

energy functional established in a continuous setting has

a simple form and corresponds to a weighted average of

intensity values taken in spatially (and temporally) vary-

ing neighborhoods. The neighborhood size is adapted

on-line to improve the performance (in the sense of the

L2 risk) of the pointwise estimator. No learning step

or wavelet decomposition is required. Also, no motion

estimation is involved as originally described in [36].

Finally, the designed algorithm comprises only a few

parameters which are easily calibrated.

The remainder of this paper is organized as follows.

In Section II, we introduce the denoising problem in

fluorescence video-microscopy. In Section III, we first

present the generalized Anscombe transform and detail

an original approach to estimate its parameters and cor-

rect the induced bias. Then, we introduce the space-time

patch-based estimator. In Section IV, we demonstrate

the performance of the algorithm (controlled by a small

number of parameters) on both synthetic and real video-

microscopy images and image sequences.

II. PROBLEM STATEMENT

In this section, we present a general framework for

image sequence analysis in wide-field or confocal mi-

croscopy. Our study is limited to the restoration of

artifacts due to random noise. We do not consider

the issue of correcting the signal distortions due to

diffraction (e.g. deconvolution problem) but we will later

show the compatibility of the proposed method with a

deconvolution post-processing step.

Acquired images correspond to stacks of 10 to 60
slices with an axial resolution (depth) lower than the
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lateral one. Anisotropy in 3D microscopy can be an issue

for 3D wavelet methods, especially for processing stacks

with a limited number of slices due to boundary effects.

The processed images depict tagged proteins appearing

as bright particles of size 3 to 10 pixels and moving

with speeds ranging from 1 to 10 pixels per frame. The

small amount of light collected by sensors and thermal

agitation in electronic components induce a Poisson-

Gaussian noise. Accordingly, we assume the following

affine stochastic model:

Zi = g0Ni + εi, (1)

where Zi
△
= Z(xi) is the observation at space-time lo-

cation xi ∈ Rd, i ∈ {1, . . . , n} and d the dimension of

the space-time domain. The gain of the overall electronic

system is denoted g0. The number Ni of collected photo-

electrons at pixel xi is a random variable assumed to

follow a Poisson distribution of parameter θi
△
= θ(xi)

with density: p(Ni) =
θ

Ni

i
e−θi

Ni!
. Finally, the dark current

is treated as a Gaussian white noise of mean E[εi] = m
and variance Var[εi] = σ2

ε . In our model, the two random

variables Ni and εi are independent. Finally, we denote

fi
△
= f(xi) = g0θ(xi) + m.

In this paper, we consider the problem of estimating fi

at each pixel xi from noisy data Zi. A root-unroot strat-

egy [38] is considered to deal with the Poisson-Gaussian

noise context while a patch-based functional yields an

estimator of the intensity value whose parameters are

estimated in an iterative fashion.

III. PROPOSED METHOD

A. Noise variance stabilization

1) Definition: The Anscombe transform is the more

commonly-used transform for stabilizing the variance of

Poisson noise [4]. Murtargh et al. considered a more

general Anscombe transform (GAT) for Poisson and

Gaussian noise [39]. Using the notation introduced in

(1), the GAT can be expressed as:

TGA(Zi) =
2

g0

√
g0Zi +

3

8
g2
0 + σ2

ε − g0m. (2)

Note that variance stabilization and skewness correction

are incompatible.

2) Parameter estimation: In contrast to the usual

parameter-free Anscombe transform, the GAT requires

the setting (or the estimation) of a small set of param-

eters, g0, σ2
ε and m, related to the acquisition system.

In [40], the authors proposed a bias-variance trade-off

criterion to determine the parameters of their multi-scale

variance stabilization transform. However, they do not

provide the method to estimate the parameters g0, σ2
ε

and m. Nevertheless, Starck et al. proposed in [41] an

iterative algorithm to estimate the gain g0 and the dark

current parameters from images.

Instead, we propose an approach based on a linear

regression in the 2D-space (E[Zi], Var[Zi]). This method

has been previously sketched in [42] and we provide here

additional details and some improvements. A similar

approach has been since described in [24], [43]. From

(1), we have
{

E[Zi] = g0θi + m,
Var[Zi] = g2

0θi + σ2
ε .

(3)

which yields

Var[Zi] = g0E[Zi] + σ2
ε − g0m. (4)

It follows that a linear regression in the 2D-space

(E[Zi], Var[Zi]) provides an estimation of the two pa-

rameters g0 and eDC = σ2
ε − g0m. Accordingly, (2) can

be written as

TGA(Zi) =
2

g0

√
g0Zi +

3

8
g2
0 + eDC . (5)

In order to get uncorrelated estimates of the local mean

and of the local variance, it is crucial to partition the

space-time volume into non-overlapping blocks. Instead

of defining in advance the size of these blocks, we

propose to divide the image using a quadtree/octree

segmentation procedure. Each region is recursively di-

vided into four/eight smaller regions if the variance of

the data Zi in the current region is not explained by

the variance of the noise. The variance in a region R
containing |R| pixels is given by: SZ(R) =

∑
i∈R(Zi −

1
|R|
∑

j∈R Zj)
2/(|R| − 1). The variance of the noise is

defined by Sε(R) =
∑

i∈R(ri − 1
|R|
∑

j∈R rj)
2/(|R|− 1)

where the pseudo-residuals ri are defined by (see [44]):

ri =
1√

l2 + l
∆Zi. (6)

Here ∆Zi denotes the Laplacian operator involv-

ing l = 2d + 1 surrounding pixels and is de-

fined for a d-dimensional space as: ∆Zi = lZi −∑d
j=1(Z(xj + sj) + Z(xj − sj)) with sj a vector

whose jth coordinate is 1 and the other 0. Furthermore,

a Fisher test is used to compare the two variances:

min(SZ(R), Sε(R))/ max(SZ(R), Sε(R)) ≶ TαF ,|R|−1.

The threshold TαF ,|R|−1 corresponds to the αF -quantile

of F-distribution with |R| − 1 degrees of freedom. This

procedure results in a partition of the image into regions

with homogeneous variance. Figure 1 shows an example

of such an image partition. Finally, estimates of pairs of

local mean and variance can be then robustly estimated

within these regions. The mean can be estimated using a
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Fig. 1. Partition of the image domain using a quadtree segmentation

based on the comparison of the local variance of the image and the

local variance of the noise. The image corresponds to the exposure

time of 500ms as shown in Fig. 8.

robust M-estimator (using a Leclerc influence function)

[45] while an estimate of the variance of the noise is pro-

vided by the “Least Trimmed Square” robust estimator

[46].

Given empirical estimates of the mean and the vari-

ance, a robust linear regression provides the values of

parameters g0 and eDC . The Generalized Anscombe

Transform is then applied to the input data {Zi}i∈[1,n]

to produce new input data {Yi = TGA(Zi)}i∈[1,n] with

Gaussian statistics. Finally, in order to be able to generate

images with the same noise signature defined by the

triplet (g0, σε, m), one has to estimate first the parame-

ters of the dark current σε and m. In most images, these

two parameters can be deduced from the variance and

the intensity values corresponding to the darker regions.

3) Image quality assessment: Evaluating the image

quality, is an important step in video-microscopy as it

will allow to measure the errors involved in the quantifi-

cation steps [47]. It is worth noticing that the Generalized

Anscombe transform provides a way to evaluate the

image quality of acquired images. Once stabilized, the

noise variance is expected to be homogeneous in the

whole image domain and equal to 1. Hence, we can

define the following Poisson Peak Signal to Noise Ratio:

PPSNR(Z) = 20 log10

(
max

i
{TGAZi} − min

i
{TGAZi}

)

Instead of the image contrast, this measure could also

involve the contrast of objects using a background sub-

traction method in the same fashion than the signal-

to-noise S/N ratio introduced in [48] for astronomical

images and nowadays used in microscopy [47]. Finally,

this approach provides a fully automatic quantification

of the image quality.

4) Un-biased inverse GAT: After variance stabiliza-

tion, one can apply an algorithm designed for Gaussian

noise to the transformed data {Yi}i∈[1,n] and get an

estimate û of the underlying function u defined on the

image domain Ω ⊂ Rd, with d the space-time dimension.

At location xi ∈ Ω we have Yi = u(xi) + ξi with ξi

a Gaussian centered white noise of variance 1. Then

inverting the Generalized Anscombe Transform yields to

an estimate f̂ = TGA−1(û) of the function f . However,

this procedure would introduce an additive bias. When

the number of counts is high and when the number of

samples is large enough, the bias tends to 1/4. Figure 2

illustrates this effect on the estimation of the count of a

Poisson distributed random variable θ. The bias exhibits

a behavior that can be heuristically approximated by

(1 − exp(−1.3θ))/4 where the coefficient 1.3 has been

estimated from the simulation shown in Fig. 2. Since θ
is unknown, an interative procedure is used to estimate

the bias correction operator CAT (f) defined as:

CAT (f)(xi) =
1

4

(
1 − e−1.3f̂(xi)+CAT (f)(xi)

)

where f̂(xi) is the value obtained by directly inverting

the Anscombe transform at point xi. Finally, the unbi-

ased estimate is given by f̂unbiased = f̂ + CAT . This

experiment contradicts the conclusion drawn in [5]. In

particular, the Anscombe transform performs well for

θ > 3 instead of θ > 30, which is reasonable for our

application.

B. Patch-based space-time estimation

In this section we first extend the continuous non-

local patch-based functional introduced by Kinderman

et al. in [49]. Given its fixed point solution we derive an

other functional also related to [50]. We finally present a

discretization of the minimizer and a method to estimate

its parameters.

1) Non-local functional of Kindermann, Osher and

Jones: Kindermann et al. introduced in [49] a non-

local patch-based functional for denoising and deblurring

images. This functional is built upon a new norm which

measures the degree of similarities between patches. We

propose to extend it as follows:

J(u, u0) = λ
σ2

∫
Ω(u(x) − u0(x))2 dx

+
∫
Ω2 φ

(∫
Ω G(t) (u(x+t)−u(y+t))2

Q(x+t,y+t) dt
)

K
(‖x−y‖

h(x,y)

)
dy dx,

(7)

where u is the function to estimate defined on the image

domain Ω ⊂ Rd and d the dimension of the space-time

domain. The function u0 represents the initial data Y
(i.e. u0 = u + ξ where ξ is the noise as defined in
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Fig. 2. Analysis of the bias of the Anscombe transform for the mean estimator of 400 Poisson distributed samples in the range [0, 5]. On

the left, the stabilized variance is displayed for the Anscombe Transform (AT) and the unbiased Anscombe transform (UAT) which are by

definition the same. The middle graph shows the bias of the two estimators computed from 400 trials. On the right, the variances of the

estimators are displayed.

Section III-A4). The function φ is a R → R differen-

tiable function (typically φ(x) = 1−e−x). The proposed

extension lays in the introduction of the locally variable

bandwidths defined by the two functions Ω × Ω 7→ R:

Q and h. To be able to derive a fixed point iteration,

one can show that the symmetry of these bandwidths

i.e. Q(x, y) = Q(y, x) and h(x, y) = h(y, x), is needed.

The fixed point equation for minimizing (7) has the

following form:

û(x) =
u0(x) + 2σ2

λ

∫
Ω2 A(x, y, z)u(y) dz dy

1 + 2σ2

λ

∫
Ω2 A(x, y, z) dz dy

(8)

where

A(x, y, z) = G(z)
Q(x,y)K

(
‖x−y‖

h(x−z,y−z)

)

× φ′
(∫

Ω G(t) (u(x+t−z)−u(y+t−z))2

Q(x+t−z,y+t−z) dt
)

. (9)

The convergence of the fixed point iteration is not guar-

anteed. We can also point out the fact that the minimizer

of the functional (7) involves overlapping patches which

is an original feature compared to other patch-based

variational approaches [50]–[53].

2) Proposed functional: Instead of (7), we propose to

minimize the following functional (see also [50]):

J(u, u0) =

∫

Ω

(∫
Ω B(x, y, z)u0(y) dz dy∫

Ω B(x, y, z) dz dy
− u(x)

)2

dx

(10)

where

B(x, y, z) = G(z)
Q(x,y)K

( ‖x−y‖
h(x−z,y−z)

)

× φ′
(
E
[∫

Ω G(t) (u0(x+t−z)−u0(y+t−z))2

Q(x+t−z,y+t−z) dt
])

. (11)

This expression relies on the expectation of the distance

between patches instead of the distance itself making it

less sensitive to noise.

The minimizer of the functional (10) is trivial since

the function u does not appear in the first term. On the

other hand, the calculation of the expectation in (11)

makes the evaluation of B(x, y, z) difficult. However, if

E[u0(x)] = u(x) and Var[u0(x)] = σ2, we can use the

following identity (see [1]):

E
[∫

Ω G(t) (u0(x+t)−u0(y+t))2

Q(x+t,y+t) dt
]

=
∫
Ω G(t) (u(x+t)−u(y+t))2+2σ2

Q(x+t,y+t) dt (12)

Finally, since J is positive, we have:

û(x) = arg min
u

J(u, u0)

= arg min
u

∫
Ω2 B̃(x, y, z)u0(y) dz dy
∫
Ω2 B̃(x, y, z) dz dy

,
(13)

with

B̃(x, y, z) = G(z)
Q(x,y)K

(
‖x−y‖

h(x−z,y−z)

)

× φ′
(∫

Ω G(t) (u(x+t−z)−u(y+t−z))2+2σ2

Q(x+t−z,y+t−z) dt
)

. (14)

3) Numerical aspects and discretization: For the im-

plementation of the estimator defined by equation (13),

we consider a discrete setting. We can also initialize the

fixed point iteration using the data obtained after variance

stabilization and set u0 = Y . We have thus the following

expression for the estimator:

ûi =
n∑

j=1

n∑

k=1

ωijkYj (15)

where ωijk = B̃(xi, xj , xk)/(
∑n

j=1

∑n
k=1 B̃(xi, xj , xk))

and ûi denotes the fixed point solution at pixel xi. We

can also compute the following approximation for the

variance of this estimator:

υ̂i = σ2
n∑

j=1

n∑

k=1

ω2
ijk. (16)
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These two expressions are almost equivalent to the esti-

mator (and its variance) introduced in [37]. As a trade-

off between computational efficiency and simplicity, the

kernel G is defined as the indicator function on the

interval [−p/2, p/2]d. In addition, we define the “tonal”

bandwidth as Q(xi, xj) = (υ̂i + υ̂j)/(λαυ̂iυ̂j). Given

the shape of G, the parameter λα is related to an α-

quantile of the χ2 distribution whose number of degrees

of freedom is given by nG − 1 where nG is the number

of points lying in the support of the kernel G. This

definition of G fulfills the condition of symmetry. Under

some assumption, the fixed-point iterations converge

relatively fast and few iterations are used in practice.

4) Space-time bandwidth selection: We define

now the bandwidth h(x, y) of the kernel K as

h(x, y) = min(h(x), h(y)) and consider the estimation

of hi
△
= h(xi) for each point xi of the image sequence.

We would like to select the bandwidth minimizing the

mean square risk of the proposed estimator defined

as R(ûi, u(xi)) = E[(ûi − u(xi))
2]. This risk can be

decomposed as the sum of the squared bias and the

variance. The bias can not be directly estimated because

it depends on the unknown function u. However we can

use an upper bound for the squared bias b2
i term and

derive the following property for the optimal estimator

û∗
i [54]:

(b∗i )
2

υ∗
i

=
d2

4

△
= γ2, (17)

where d is the dimension of the space-time domain.

Expression (17) does not depend on image regularity.

Following the Lepskii’s principle [55], we exploit this

property to minimize the L2 risk R(ûi, u(xi)). The idea

is to design a sequence of increasing bandwidths Hi =
{hℓ

i , ℓ ∈ {0, . . . , L − 1} : hℓ−1
i ≤ hℓ

i}. Assuming that

the variance υℓ
i is a decreasing function of h the number

of samples taken into account is progressively increased

to reduce the estimator variance while controlling the

estimator bias. Formally, the so-called “bias-variance

trade-off” corresponds to the following inequality:

h∗
i = sup

hℓ

i
∈Hi

{|bℓ
i |2 ≤ γ2υℓ

i}. (18)

This stepwise procedure provides a reasonnable estimate

of the bandwidth minimizing the local quadratic risk

within the pre-defined set H. Since the bias bℓ
i is un-

known, we consider instead a weaker “oracle” to detect

the optimal bandwidth for smoothing (see [56], [57]):

h∗
i = sup

hℓ

i
∈Hi

{ℓ′ < ℓ : |ûℓ
i − ûℓ′

i |2 ≤ ρυℓ′

i } (19)

where ρ is a positive constant (we choose ρ = 8,

see [58]). The design of a sequence of increasing

bandwidths is now required. However, in the case of

image sequences, the relationship between the temporal

and spatial dimensions is related to the object size

and movement, which are both unknown. Accordingly,

the space and time bandwidths should be considered

independently. For this reason, we decide to increase

alternatively the size of the support of K using two

distinct radii. We note respectively hs and ht the spatial

and temporal neighborhoods which can vary from one

point to another. It is worth noting that, unlike [57],

the sequence of shape of K is not known in advance

since we consider two parameters hs and ht. In our

experiments, we use a dyadic scale in space and a linear

scale in time to achieve a compromise between accuracy

and computational efficiency.

5) Wiener filter: In [59], a Wiener filter is used

to combine estimates obtained at each iteration while

in [1], the same approach is used to recover details

after filtering. We have also observed some improvement

using such approach and propose to filter at each iteration

the successive estimates:

(ûℓ
i)

Wiener =

(
ûℓ

i

υ̂ℓ
i

+
ûℓ−1

i

υ̂ℓ−1
i

)(
υ̂ℓ

i υ̂ℓ−1
i

υ̂ℓ
i + υ̂ℓ−1

i

)

(20)

and
(
υ̂ℓ

i

)Wiener
=

υ̂ℓ
i υ̂ℓ−1

i

υ̂ℓ
i + υ̂ℓ−1

i

. (21)

Actually, isolated and unaltered pixels in the restored

image can be slightly modified using this filtering, which

enhances image quality.

6) Patch pre-selection: Finally, we propose to extend

the patch pre-selection related to [31], [60] to reduce the

computational load and in the meanwhile improve the

results. Thus, the weights ωijk in (15) and (16) are set

to 0 if

(G ∗ ûℓ
i − G ∗ ûℓ

j)(G ∗ υ̂ℓ
iG ∗ υ̂ℓ

j)

2(G ∗ υ̂ℓ
i + G ∗ υ̂ℓ

j)
> η1 (22)

and

max(G ∗ υ̂ℓ
i , G ∗ υ̂ℓ

j)

min(G ∗ υ̂ℓ
i , G ∗ υ̂ℓ

j)
> η2, (23)

where ∗ denotes the convolution operator, G remains the

same kernel than in (7) and η1 and η2 are respectively

two thresholds (with some approximations) related to a

quantile of the Normal distribution and to a quantile of

the F-distribution.

In the following experiments, Wiener filtering and

patch pre-selection were used to speed-up the compu-

tation time and enhance the image quality.
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IV. EXPERIMENTS

A. Synthetic image sequence

In order to test the proposed method, we have gen-

erated synthetic image sequences representing moving

tagged vesicles. Using this procedure, we aim to analyze

the influence of the generalized Anscombe transform on

the final result and to demonstrate that the proposed

space-time adaptive method is competitive when com-

pared to the state-of-the-art methods.

First, we have created a synthetic image sequence

showing moving objects superimposed on a static back-

ground. The true image sequence is composed of 50
frames of 16 bits 3D volumes of 256× 256× 10 voxels.

The background is generated using two or three Gaussian

profiles of radius 20 pixels at random locations. The

background is an essential component of the photometric

dynamic of images and thus will probably alter the

stabilization process. Typically, the background may be

associated to auto-fluorescence within the cell as well

as the non specific accumulation of fluorescent tags on

organelles. The flux of photo-electrons related to this

component ranges from 10 to 2000 photo-electrons per

pixel. In addition, 256 spots are drawn as 3D Gaussian

functions of radius 2 pixels and of intensity 200 photo-

electrons. The movements of objects are assumed to

be described by a Gaussian random walk of standard

deviation of 3 pixels. A Poisson noise is generated from

this image of flux. Then a gain g0 = 0.4 is applied

and finally the dark current is simulated with a Gaussian

noise of mean m = 100 and a standard deviation

σε = 4. All these values have been obtained by statistical

analysis of photometric properties observed in real image

sequences. The synthetic image sequence is composed of

small spots with intensities of 70 gray levels above the

background level, and of 4 large blobs with a maximal

intensity of about 900. The slice #5 extracted from a

volume at time t = 25 of the simulated (noise free)

ground truth and the corresponding noisy slice are shown

respectively in Fig. 3(a) and (b).

A scatter plot of the estimated mean and noise

variance is shown in Fig. 4(a). The regression line

for the first image of the sequence is estimated as

V̂ar[Zi] = 0.407 Ê[Zi]−24.44, while the true equation is

Var[Zi] = 0.4 E[Zi]−24.0. We can analyze the accuracy

of the estimation by considering the next volumes of the

sequence. We found that the mean of g0 is 0.408 and

the standard deviation is 6.79 · 10−3. For the parameter

eDC , the mean is −24.31 and the standard deviation

is 0.879. Accordingly, we can conclude that, for this

simulation, the parameters of the generalized Anscombe

transform have been satisfyingly estimated. In addition,

(a) (b)

Fig. 3. Volume of 256×256×10 voxels extracted from a simulated

image sequence (slice #5 and time t = 25), (a) ground truth (b) noisy

image sequence (logarithmic scale).

Fig. 4(b) shows that the variance of the noise has been

well stabilized: the noise variance is now 1.001. The

width of the cloud of points is related to the estimation

errors of the noise variance. However, the global trend

is correctly estimated and the noise variance is reliably

stabilized.

This simulation shows that our approach is quite

effective at stabilizing the noise variance in the case of

a Poisson-Gaussian noise. It is fully automatic and fast.

The computation time of an unoptimized C++ implemen-

tation is about 250ms for a single 256 × 256 × 10 3D

frame 256 × 256 × 10 on a 1.8Ghz PC. The parameters

are estimated for each 3D frames of the sequence and

smoothed in time using a moving average in order to

take into account the possible variations of the sensor

characteristics.

To demonstrate the performance of both the variance

stabilization procedure and the 3D+time denoising pro-

cedure, we consider three experiments. In experiments A

and B, we assume respectively a Poisson-Gaussian noise

model and a Gaussian noise model. In experiment C, we

assume a Poisson-Gaussian noise model but each volume

of the sequence is denoised independently. In these three

experiments, we used 5×5×5 patches and the algorithm

parameters are unchanged.

In order to compare the different methods and noise

models, we measured the L∞, L1 and L2 norms (see

Table I) between the original sequence f and the re-

constructed image sequence f̂ . The results are reported

in Table II and Fig. 5. Finally, we consider the signal-

to-noise ratio SNR = 10 log10(Var[f ]/‖f̂(x) − f(x)‖2).
From a noisy image with SNR = 24.0dB we obtained

the following value of SNR: 33.04dB, 31.06dB and

32.55dB respectively for the denoised image sequences

corresponding to experiments A, B and C. All the

considered metrics show the interest of tacking into
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Fig. 4. Noise variance stabilization for a synthetic image sequence. Robust estimation of the local mean E[Zi] and noise variance Var[Zi]

(a) before stabilization and (b) after stabilization. Each dot corresponds to a couple (Ê[Zi], V̂ar[Zi]) estimated non-overlapping blocks. The

dashed line represents the fit of the theoretical model Var[Zi] = g0E[Zi] + eDC . After stabilization, the dependence between the signal

intensity and the noise variance is canceled.

Lp norm

L∞ supx∈Ω
|f(x) − v̂(x)|

L1

∫
x∈Ω

|f(x) − v̂(x)| dx

L2

∫
x∈Ω

|f(x) − v̂(x)|2dx

TABLE I

DEFINITIONS OF Lp NORMS USED FOR EVALUATION.

account Poisson/Gaussian noise modeling and space-

time information.

Moreover the visualization of the sequence restored

frame by frame, makes clearly appear a flickering artifact

due to the lack of temporal coherence between consec-

utive images. In Fig. 7 we can notice the differences

between experiments A and B. Flickering artifacts are

visible in Fig. 7(b) corresponding to experiment B while

in Fig. 7(a) the temporal coherence is reinforced. We

can also remark that temporal abrupt changes are well

preserved. As expected, these experiments visually con-

firm that considering the whole image sequence provides

better results than processing each frame of the sequence

independently.

B. Spatial denoising of real samples using various ex-

posure times

In this section, we consider several spinning disk

acquisitions of the same fixed HeLa cell expressing

GFP tagged Rab6 proteins. For these experiments, the

exposure time varies from 30 to 500ms. The acquired

3D stacks have the size of 400×400 voxels. In this case

temporal information is not used since the cell is fixed.

Several methods are also applied to these data for com-

parison: 3×3 and 3×3×3 median filters combined with

the proposed GAT, the multi-scale variance stabilization

(MS-VST) approach using a 7/9 orthogonal filter [61]

and the parameters g0, m and σ0 estimated as described

in Section III-A, the BM3D method [59] combined with

the proposed GAT. Finally, we evaluate our method in

2D and 3D.

Results are shown in Fig. 8. The results corresponding

to the two median filters, performing badly, are not

displayed in order to better focus on the other methods.

In this experiment the BM3D method outperforms the

other methods except when the exposure time is very low

(about 30− 50ms). For this range of exposure time, the

proposed method exploiting additional 3D information

is able to provide better results. The MS-VST method

would also potentially produce better results using a

more adapted wavelet basis. For each image, the square

root of the mean squared error is displayed. A reference

image is defined as the average of the images displayed

on the last row corresponding to an exposure time of

500ms. In order to compare the denoising results with

different exposure times to this reference image, the

histograms have to be aligned. A linear relationship

is assumed between the intensity of each image and

the reference image. Once the parameters have been

estimated using a linear regression, the intensity can be

corrected and the mean squared error computed. This

procedure does not take into account possible motions

between frames. However excepted for t = 50ms, the

images were aligned. Moreover, motion compensation

would imply the interpolation of noisy data and could

therefore introduce potential artifacts. The mean squared
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TABLE II

INFLUENCE OF THE VARIANCE STABILIZATION TRANSFORM AND OF THE USE OF TEMPORAL INFORMATION ON THE ERROR. THREE

NORMS ARE USED TO MEASURE THE PERFORMANCE OF THE DENOISING METHOD. THE MEAN AND STANDARD DEVIATION WITH

RESPECT TO TIME ARE REPORTED. THE COMPUTATION TIMES te FOR EACH EXPERIMENT IS ALSO GIVEN FOR THE NOISY SEQUENCE;

3D+TIME - GAUSSIAN AND POISSON NOISE (A) ; 3D+TIME - GAUSSIAN NOISE (B) ; 3D - POISSON AND GAUSSIAN NOISE (C).

Sequences
L∞ L1 L2

te
mean std mean std mean std

Noisy 62.67 4.21 4.39 6 · 10−3 35.0 12 · 10−3

A 38.35 2.87 1.56 16 · 10−3 2.94 28 · 10−3 65 min

B 53.10 5.83 1.96 17 · 10−3 3.78 25 · 10−3 55 min

C 37.98 2.44 1.65 14 · 10−3 3.01 24 · 10−3 28 min
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Fig. 5. Influence of the variance stabilization transform and the adjacent temporal volumes on the signal-to-noise ratios. (See text)

(a) (b) (c)

Fig. 6. XY slices #5 at time t = 25 of the denoised synthetic image sequence corresponding to experiments A , B and C, respectively in

(a), (b) and (c) (logarithmic scale).

(a) 3D+t denoising (b) 3D denoising

Fig. 7. YT slice #5 at x = 250 of the denoised synthetic image sequence corresponding to experiments A and C, respectively in (a) and

(b) after histogram equalization. More flickering effects are visible when the volumes are independently processed.



10

0

10

20

30

40

50

60

0 100 200 300 400 500

√
M

S
E

Exposure time (ms)

Original
Median filter 2D

MSVST 2D
BM3D 2D

Proposed method 2D
Median filter 3D

Proposed method 3D

Fig. 9. Square root of the mean squared error is plotted against the

exposure time showing the improvement of the filtering in the case

of a fixed sample (see Fig. 8).

error values of all the experiments are summarized in

Fig. 9. This experiment allows to make a direct link

between the image quality and the exposure time. How-

ever due to the normalization procedure and the possible

motions, the results have to be interpreted carefully

and depend as well on the image content. Finally, note

that exploiting temporal information would increase even

more the quality of the images.

C. 2D Space-time denoising of a synthetic image se-

quence

In order to compare the proposed method to another

2D+time denoising procedure, we have simulated a 2D

image sequence having the same photometric character-

istics than the original image used in the previous exper-

iment with an exposure time of 500ms. Approximately

300 spots were detected and re-drawn on an estimated

background profile. A Gaussian random walk was then

applied to the spot positions. Noise has been generated

using the same parameters than those estimated on the

original image and the global intensity of the image

has been varied by a factor 1, 3/4 and 1/2. The ob-

tained image sequences have been then denoised using

the multi-frame fast Haar wavelet denoising approach

proposed in [63] (using 3 frames and 1 cycle spinning)

and using the proposed method (using 3 × 3 patches

and 5 iterations). In both case, the noise parameters are

the same than in the noise generation step. Table III

contains the associated mean square errors. On this data-

set, the proposed method performs slightly better than

the method proposed in [63]. However, adjusting the

parameters could potentially improve the first method.

D. Real 3D+time image sequence

In this section, we evaluate the proposed denoising

method on a real 3D+time image sequence composed

intensity original [63] proposed method

1.00 14.85 3.96 3.11

0.75 18.21 4.60 3.66

0.50 32.82 14.3 13.8

TABLE III

SQUARE ROOT OF THE MEAN SQUARE ERROR FOR SEVERAL

INTENSITY LEVELS USING A SIMULATED 2D IMAGE SEQUENCE

HAVING THE SAME PHOTOMETRIC PROPERTIES THAN THE

REFERENCE IMAGE IN FIG. 8. THE RESULTS OF THE

MULTI-FRAME FAST HAAR WAVELET DENOISING [63] AND OF

OUR METHOD ARE REPORTED.

of 50 volumes of 696 × 520 × 6 voxels. The slice #3
extracted at time t = 20 is displayed in Fig. 11(a). This

sequence has been acquired using a “fast” 4D wide-field

microscope. The biological sample is a chimeric protein

construct between GFP and Rab6A (GFP-RAB6A) a

member of the Rab-GTPase proteins reversibly bounded

to specific membranes within the living cell. At the

steady state, this protein is associated to the Golgi appa-

ratus as well as to rapidly moving transport intermediates

and is present in the cytosol. Cellular dynamics of

Rab6A is influenced by at least three distinct phenomena:

i) lateral diffusion dictated by lipid movement within

a continuum of membranes ; ii) continuous exchange

between cytosolic and membrane bound pools ; iii)

directional motion on membrane transport intermediates.

In the sequence, the Rab6A proteins appear as dark spots

when associated to small moving vesicles inside the

living cell. The large dark stable structure corresponds

to the Golgi apparatus while the background of the cell

reveals its presence in the cytosol.

The estimation of the parameters of the generalized

Anscombe transform is illustrated in Fig. 10. The regres-

sion line has been estimated and we found V̂ar[Zi] =

0.447 Ê[Zi] − 33.15. As shown in Fig. 10(b), once

stabilized, the noise variance is 1.01. The results ob-

tained with our denoising method (5 × 5 × 5 patches)

are reported in Fig. 11(b). Again, we can notice that the

noise has been strongly reduced and that fine details like

fluorescent particles are well preserved. The computation

time for the whole volume sequence is about 80min

using a standard C++ implementation. Experiments on

numerous volume sequences confirm the ability of the

proposed method to preserve space-time discontinuities.

E. Combining denoising and deconvolution

Wide-field deconvolution microscopy has been widely

used this last twenty years in cell biology [64], [65]

as a regular tool for monitoring the living cell activity

at high spatial and temporal resolution. Compared to
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Fig. 8. Experiments on a fixed HeLa cell tagged with GFP-Rab6 acquired in spinning disk microscopy. The first column contains a 2D slice

of the original 3D images taken with exposure times ranging from 30ms to 500ms. The corresponding PPSNR is increasing logarithmically

with the exposure time from 25.83dB to 38.41dB. The second and third columns represent the corresponding denoising results obtained

respectively with the multi-scale variance stabilization method [62] using an anisotropic wavelet basis, the proposed method in 2D and 3D,

and the BM3D method [59] using the proposed variance stabilization. The numbers indicated correspond to the
√

MSE computed using the

mean of the images obtained for 500ms of exposure time (last row) as a reference image.
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Fig. 10. Noise variance stabilization for the real image sequence shown in Fig. 11a. Estimation of the local mean E[Zi] and local variance

Var[Zi] (a) before stabilization and (b) after stabilization.

(a) (b)

Fig. 11. Denoising of a wide-field microscopy image sequence of 50 volumes of size 696 × 520 × 6 voxels. The slice #3 of the original

volume at time t = 20 is displayed in (a) and the corresponding denoised volume is shown in (b) (logarithmic scale). As a result of

photo-bleaching, the PPSNR decreases along time from 37.29dB to 36.75dB.

confocal like microscopy, it has the advantage to be

faster, because of the wide-field illumination, and more

efficient thanks to the absence of pinhole to reject

photons and the highest quantum efficiency of detectors.

Out-of-focus information is used and computationally

reassigned to its original location, therefore increasing

contrast and signal-to-noise ratio. It is known that the two

main limitations of photonic microscopy are i) spatial

resolution due to diffraction limit of optics and ii) the

number of photons reaching the detector to statistically

form the diffraction limited image. In modern living

cell microscopy, the number of photons is decreased as

much as possible in order to reduce the radiation dose

on the sample to keep the cell alive and to increase the

acquisition frame rate. The main limitation resides in the

limited number of emitted photons reaching the detector

to form an image. In addition, deconvolution algorithm

efficiency is sensitive to the image signal-to-noise ratio

(SNR). The smaller the SNR is the less the algorithms

are capable to restore the relevant signal from the noise,

up to not being able to make the difference between

noise and signal, resulting in artifacts.

In this section, we propose to combine the proposed

denoising approach with an iterative constrained Gold-

Meinel deconvolution method [66] using a fixed biologi-

cal sample. Although this deconvolution method does not
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Fig. 14. The square root of the mean squared errors is plotted against

the exposure times in the case of a fixed sample shown in Fig. 12.

The Gold-Meinel deconvolution algorithm is applied respectively to

the original and denoised images.

represent the state of the art, it shows a good robustness

to the inaccuracy of the point spread function. Moreover,

it is widely used and therefore the combination with the

proposed denoising method is of interest.

In the same fashion than in Section IV-B, we propose

to compare stacks acquired with several exposure times

ranging from 10ms to 100ms to a reference image

acquired with an exposure time of 200ms. Figure 12

shows the maximum intensity projection of the results.

The intensity of original image shown in the first row

ranges from 96−260 gray levels for the image acquired

at 10ms of exposure time to 124 − 3315 gray levels for

the image acquired at 200ms of exposure time. Figure 13

shows a zoomed area of an optical section and intensity

profiles along a microtubule (polymers of α- and β-

tubulin dimers which are one of the components of

the cytoskeleton). This illustrates that fine details are

preserved and that the noise level is strongly reduced.

Finally, mean squared errors, computed on normalized

images and displayed in Fig. 14, confirm that the

deconvolution is improved if the denoising is applied

beforehand.

V. CONCLUSION

In this paper, we have first tackled the issue of mod-

eling a 3D+time video-microscopy image sequence. We

have proposed to use the generalized Anscombe trans-

form to stabilize the variance of the Poisson and Gaus-

sian noise. We have introduced a patch-based functional

and we have shown that the fixed-point solution yields an

estimator involving image patches taken in a spatially-

varying neighborhood. The analysis of the bias-variance

of this estimator enables to properly select, for each

point of the space-time domain, the optimal bandwidth

within a sequence of increasing bandwidths. Spatial and

temporal dimensions are adequately handled. The overall

method involves a limited number of parameters so that

we do not have to tune them in practice.

We have demonstrated that the proposed method out-

performs other very competitive methods in 2D and

2D+time. Moreover, experiments on real image se-

quences show that the space-time discontinuities are

well preserved without motion estimation. Finally, we

have used the capability of the proposed algorithm to

efficiently denoise 3D images in order to use it as

a pre-processing step prior to deconvolution. We have

illustrated the efficiency of such a combination to restore

low signal-to-noise ratio images. This opens interesting

perspectives for monitoring biological samples at high

temporal and spatial resolution, without increasing the

radiation dose. To conclude, we point out that the

proposed method is not restricted to video-microscopy,

but could deal with other 2D+time as well as 3D+time

noisy image modalities, provided that an appropriate

noise modeling is adopted. In this respect, this “breaking

sensitivity barrier” approach advantageously completes

“breaking resolution barrier” new optics [67].
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Fig. 12. A fixed Hela cell is acquired with five increasing exposure times. The first row contains the maximum intensity projection along

z direction of the 200 × 200 × 36 original images. The two last rows correspond respectively to results obtained with the Gold-Meinel

deconvolution algorithm [66] and the combination with the proposed patch-based denoising.
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