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Abstract

Visual information from a speaker’s mouth region is
known to improve automatic speech recognition ro-
bustness, especially in the presence of acoustic noise.
To date, the vast majority of work in this field has
viewed these visual features in a holistic manner,
which may not take into account the various changes
that occur within articulation (process of changing
the shape of the vocal tract using the articulators, i.e
lips and jaw). Motivated by the work being conducted
in fields of audio-visual automatic speech recognition
(AVASR) and face recognition using articulatory fea-
tures (AFs) and patches respectively, we present a
proof of concept paper which represents the mouth
region as a ensemble of image patches. Our exper-
iments show that by dealing with the mouth region
in this manner, we are able to extract more speech
information from the visual domain. For the task of
visual-only speaker-independent isolated digit recog-
nition, we were able to improve the relative word error
rate by more than 23% on the CUAVE audio-visual
corpus.

Keywords: Visual Speech Recognition (VSR),
Patches, Articulatory Features (AFs).

1 Introduction

Over the past twenty years, considerable research
activity has concentrated on utilizing visual speech
extracted from a speaker’s face in conjunction with
the acoustic signal, in order to improve robust-
ness of automatic speech recognition (ASR) systems
(Potamianos, Neti, Gravier, Garg & Senior 2003).
Critical to the performance of the resulting audio-
visual ASR (AVASR) system is the choice of visual
features that contain sufficient information about the
uttered speech (Potamianos & Scanlon 2005). Even
though the visual features used over this time have
shown to improve robustness to the overall AVASR
system in extreme noisy conditions, the visual-only
speech recognition (VSR) performance in these sys-
tems do lag by over a order of magnitude to its
acoustic counterpart in clean conditions (Potamianos
et al. 2003). This fact, clearly highlights the lack
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Figure 1: Following the extraction of the ROI, we
propose to extract and model the ROI as an ensemble
of image “patches” instead of the “holistic” approach
which is currently being used in AVASR literature.

of speech classification power current visual features
possess to extract speech information to the level of
its acoustic counterpart. It may be the case that the
visual modality does not hold as much information as
the acoustic modality, however, this has not yet been
quantified which motivates this research.

In AVASR literature, there have been numerous
different methods of extracting visual features from
the mouth region of interest (ROI) (see Section 2).
However, all of these techniques modelled the ROI in
a holistic, single stream manner. A potential prob-
lem which may arise from this approach is that these
features may not take into account all of the vari-
ous changes that occur within the mouth region dur-
ing articulation (process of changing the shape of the
vocal tract using the articulators, i.e lips and jaw)
(Fant 1960). In contrast to the majority of work be-
ing conducted in the field of VSR, Saenko et al. has
recently proposed the use of multiple streams of hid-
den articulatory features (AFs) to model the visual
domain (Saenko, Darrel & Glass 2004). In this work,
each sound is described by a unique combination of
various articulator states, such as “lip-opened”, “lip-
rounded”, “presence of teeth” etc.

Multi-stream approaches have also been used to
good effect in the field of face recognition. Techniques
that decompose the face into an ensemble of salient
patches have reported superior face recognition per-
formance with respect to approaches that treat the
face as a whole (Brunelli & Poggio 1993, Moghad-
dam & Pentland 1997, Martinez 2002, Kanade &
Yamada 2003). The idea behind breaking the face
into patches is that it is easier to take into account
changes in appearance due to the faces complicated
three-dimensional shape, in comparison to treating it
holistically (Lucey & Chen 2006).

Heavily motivated by the work being conducted
with patches in face recognition and AFs in AVASR,
we present a novel approach to VSR by breaking the
ROI into a series of image patches (see Figure 1).
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Figure 2: Block diagram of visual feature extraction process.
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Figure 3: An example ROI from a speaker uttering
the phoneme /th/ in the digit “three”. (a) original
image, (b) mean-removed image, (c) reconstructed
“holistic” image showing just the mouth somewhat
opened, and (d) reconstructed “patch-based” image,
displaying the presence of teeth and lip protrusion.

It is hoped by modelling each patch separately, we
can take advantage of the local information contained
within each patch, and also monitor any dynamic
changes that occur during articulation.

By approaching visual speech in this manner, we
hope to extract more speech information which will
hopefully in turn increase the overall performance
of VSR. A benefit of the following approach is that
we are able to avoid the curse of dimensionality
(Chatfield & Collins 1991) by alleviating the restric-
tion of the number of visual features able to be used.
This is our main motivation behind this work and is
described and discussed in some detail in Section 2.

Following that, Section 3 describes the baseline
VSR system, namely ROI detection and tracking,
and the holistic visual feature extraction technique
and modelling details. Section 4 describes the Patch-
based VSR system. Section 5 presents our experimen-
tal results, and, finally Section 6 concludes the paper
with a summary and a few remarks.

2 Motivation for Patch-Based Approach

Visual speech features can be categorized into two
types, namely: area, and contour based represen-
tations. Area-based representations are concerned
with transforming the whole region of interest (ROI)
mouth pixel intensity image into a meaningful low-
dimensional feature vector. Such transforms used
for this approach include principal component anal-
ysis (PCA) (Bregler & Konig 1994), discrete cosine
transform (DCT) (Heckmann, Kroschel, Savariaux
& Berthommier 2002), linear discriminant analysis
(Belhumeur, Hespanha & Kriegman 1997) or a com-
bination of DCT and LDA (Potamianos et al. 2003).
Contour based representations, are concerned with
parametrically atomising the mouth, based on a priori
knowledge of the components of the mouth (i.e. outer
and inner labial contour, tongue, teeth, etc.) (Wark
& Sridharan 1998). An Active Appearance Model
(AAM) (Cootes, Edwards & Taylor 1998), combines
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Figure 4: An example ROI from a speaker uttering
the phoneme /uh/ in the digit “two”. (a) original
image, (b) mean-removed image, (c) reconstructed
“holistic” image showing just lip openness informa-
tion, and (d) reconstructed “patch-based” image, dis-
playing the presence of lip roundness and protrusion.

both the area and contour parameters together into
a single feature vector. None of these above ap-
proaches have shown themselves to be clearly superior
to each another, but due to its ability to be com-
puted quickly, most researchers have preferred to use
the area-based representation, as highlighted by the
review conducted by Potamianos et al. (2003).

For area-based features, the current state-of-the-
art consists of a hierarchical process. It is based on
the hierarchical LDA (or HiLDA) process devised by
Potamianos et al. (2003) and is shown in Figure 2.
Firstly, the mouth ROI is extracted and features ex-
tracted using the two-dimensional DCT. The top M
energy features are then selected to give a compact
representation of the ROI. This resulting vector is
called the static feature. This static feature vector is
then concatenated with ±J adjacent frames and then
LDA is used to project it down to N features giving
the resultant dynamic feature vector ot (See Section
3.2 for full description).

In literature, some researchers use only the top 20-
30 DCT or PCA (very similar performance to DCT)
coefficients for their static feature (Gowdy, Subra-
manya, Bartels & Bilmes 2004, Heckmann et al. 2002,
Liang, Liu, Zhao, Pi & Nefian 2002). Potamianos
et al. (2003) use the top 100 features, then use
LDA to project it down to 30 features. As dynamic
features provide the most information about speech
(Goldschen, Garcia & Petajan 1994), it is necessary
to keep the number of static features low, as comput-
ing the LDA matrix for high input features in com-
putationally prohibitive (hence the reason why 20-30
static features are used). However, it is our contention
that limiting the number of static features to around
this number limits the amount of available speech
stemming from the visual modality. This contention
is backed up by the work conducted by Potamianos
and Scanlon (Potamianos & Scanlon 2005), as they
proposed another way of overcoming the dimensional-
ity problem of the static feature vector. In this work,
they made use of the laterally symmetric nature of
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Figure 5: Comparison of the various approaches to
visual speech recognition. (a) Shows the holistic ap-
proach currently being used in VSR. (b) Shows the
multi-stream approach using articulatory features.
(c) Shows our patch-based approach, which differs as
each patch is treated independently from the initial
ROI detection and tracking module.

a speaker’s lips by removing the odd frequency dis-
crete cosine transform (DCT) components from the
selected visual feature vector. By removing redun-
dancies in the frequency domain, they reported some
improvement in visual speech classification.

However, in an effort to get away from conven-
tional holistic techniques and inspired by the work
conducted in face recognition with patches, we sought
motivation from the following examples shown in Fig-
ures 3 and 4. In VSR systems like our baseline one
(see Section 3), initially the mean ROI image is sub-
tracted to remove speaker dependencies (Figure 3b
and 4b). Due to dimensionality restrictions, only the
top 30 DCT coefficients are then extracted from each
frame. Upon reconstruction of these images using the
30 top DCT coefficients, it can be seen that not much
mouth information is visible (Figure 3c and 4c). Only
maybe the mouth being open, and some coarse shape
information is retained. However, when you view the
original mean-removed images, it can be seen that
other important visible articulatory information in-
formation such as the presence of teeth (Figure 3b)
or lip roundness and protrusion (Figure 4b) is omit-
ted. However, if we break the ROI images into patch
quadrants, and use the top 30 DCT coefficients per
patch, we are able to gain a closer representation of
the original ROI, obviously due to the four-fold in-
crease in features (Figure 3d and 4d). In Figure 3d,
teeth information is present, along with lip protru-
sion and mouth opening information. In Figure 4d
not only is it visible that the mouth is open, lip pro-
trusion and roundness information can be seen.

Obviously by using more features, we are able to
see more detail in the images. However, this exam-
ple shows the benefit of using patches, as each patch
can be modelled separately, hence overcoming the di-
mensionality restriction enforced on the static feature
vector by the holistic single-stream topology. This ap-
proach is similar to Saenko et al. (2004), where they
used multiple streams of hidden articulatory features
(AFs) to model the visual domain. However, this
approach requires additional complexity to the over-
all VSR framework, where each of these articulatory
states (such as “lip-opened”) require extra classifi-
cation (via a Support Vector Machine) prior to the
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Figure 6: Overview of lip tracking system.

sound classification. The differences between all 3
approaches are shown in Figure 5.

In this paper, we show by representing the ROI
as an ensemble of independent patches, we are able
to obtain more visible speech information from the
static features, in turn improving the overall vi-
sual speech recognition performance. This is shown
through the improvement in performance for the task
of speaker-independent isolated digit recognition on
the CUAVE database (Patterson, Gurbuz, Tufekci &
Gowdy 2002).

3 Baseline Visual Speech Recognition Sys-
tem

We now proceed to briefly components of our base-
line VSR system. There exist three main components,
which are over-viewed in the next three subsections:
(a) visual front-end; (b) visual feature extraction; and
(c) the visual modelling step. This baseline VSR sys-
tem will be compared our patch-based system in Sec-
tion 4.

3.1 Visual Front-End

Before the visual speech features can be extracted, the
ROI has to be detected and tracked. In an AVASR
system, this is performed by the visual front-end. For
AVASR to be effective, it is essential that the visual
front-end be highly accurate, otherwise these errors
will cascade throughout the system and have a large
effect on the ability of the final AVASR system to
reliably recognize speech. This is known as the front-
end effect.

In this study, the visual front-end consisted of
three stages; face location, eye location and lip lo-
cation. As shown in Figure 6, each stage was used to
help form a search region for the next stage.

3.1.1 Face Location

Before face location was performed on the videos, 10
manually selected skin points for each speaker are
used to form thresholds for the red, green and blue
(r, g, b) values in colour-space for skin segmentation.
The thresholds for each colour-space were calculated
from the skin points as

µc − σc ≤ pc ≤ µc + σc, (1)

Where c ∈ {r, g, b}, µc and σc are the mean and stan-
dard deviation of the 10 points in colour-space c, and
pc is the value of the pixel being thresholded in colour-
space c.

Once the thresholds were calculated, they were
used for skin segmentation of the video to generate
a bounding box of the face region within the frames
every 20 frames, and this face location was remem-
bered in the intermediate frames.
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Figure 7: Calculating lip search region from eye loca-
tions.

3.1.2 Eye Location and Tracking

When transformed into Y CbCr space, the eye re-
gion of face images exhibit a high concentration of
blue-chrominance, and a low concentration of red-
chrominance. Therefore eye detection can be done in
the Cr −Cb space with reasonable results. However,
eyebrows often appear as false positives and can de-
grade results. To remove the influence of eyebrows the
Cr−Cb image can be shifted vertically and subtracted
from the original Cr − Cb image. This will cancel
the eyebrow minima by subtracting the eye minima,
whereas the eye minima will be subtracted by the
high values in the skin region and receive a large neg-
ative value suitable for thresholding (Butler, McCool,
McKay, Lowther, Chandran & Sridharan 2003).

To locate the eyes from the face region from the
previous stage, the top half of the face region was
designated as the eye search-area, which was then
searched using the shifted Cr − Cb algorithm for
the eye locations. The possible eye candidates were
searched for two points that were not too large, too
close horizontally, and not too distant vertically. Fi-
nally the two candidates which had the largest hor-
izontal distance were chosen to be the eye locations.
This process was performed every 10 frames, and
the locations were remembered in the intermediate
frames.

3.1.3 Lip Location and Tracking

Once the eye locations have been found, they are used
to calculate a lip search region, as shown in Figure 7.
The lip search region is then rotation-normalised, con-
verted to R/G colour-space, and thresholded. The
lip candidates from the thresholding are examined to
remove unlikely lip locations (eg. too small, wrong
shape). A search-window of 125 × 75 pixels is then
scanned over the lip candidate image to find the win-
dows with the highest concentration of lip candidate
regions. The final lip ROI is chosen as the lowest,
most central of these windows. Once the ROI was
correctly located, the detected ROI was converted to
grayscale and downsampled to 60 × 36 pixels for the
experiments.

3.2 Visual Feature Extraction

The visual feature extraction process is given in Fig-
ure 2. Following the ROI extraction, the mean ROI
over the utterance is removed. For purposes of nota-
tion the mouth ROI image matrix I(x, y) is also ex-
pressed as the vectorised column vector y = vec(I).
So the mean removed mouth sub-image y∗ is cal-

culated from a given temporal mouth sub-image se-
quence Y = {y1, . . . , yT } such that,

y∗t = yt − ȳ, where ȳ =
1
T

T∑
t=1

yt (2)

This approach is very similar to cepstral mean sub-
traction used on acoustic cepstral features to improve
recognition performance by providing some invariance
to unwanted variations such as speaker dependencies.
It is also similar to the feature mean normalisation of
Potamianos et al. (2003), however in our approach
we remove the redundant “DC” component in the
image domain, instead of in the feature domain. A
two-dimensional, separable, discrete cosine transform
(DCT) is then applied to the resulting mean-removed
image, with the M = 30 top DCT coefficients ac-
cording to the zig-zag pattern retained, resulting in
a “static” visual feature vector. Subsequently, to in-
corporate dynamic speech information, 21 neighbor-
ing such features over ±J = 10 adjacent frames were
concatenated, and were projected via an inter -frame
LDA cascade to N = 60 dimensional “dynamic” vi-
sual feature vector.

3.3 The Speech Recognition System

In our experiments, we will be comparing two VSR
systems: this baseline system, and our patched-based
system (see Section 4). Both systems were designed
to recognize isolated digits. As we are fusing multi-
ple streams of data together, we saw isolated speech
recognition as an ideal way to test our patch-based
concept as it is easily implemented by calculating the
likelihoods for the visual observations for a given word
model. The continuous speech recognition paradigm
is a much more complicated task as the number of
possible hypothesis of word sequences becomes very
large, and the number of best hypothesis obtained for
each stream might not necessarily be the same. Our
future work will concentrate on the continuous speech
scenario, through the implementation of a Dynamic
Bayesian Network (DBN) (Gowdy et al. 2004), which
provides a framework to combine multiple streams to-
gether effectively.

In these experiments, each of the digits were mod-
elled using 9 states and 18 Gaussians per state us-
ing HTK (Young, Everman, Hain, Kershaw, Moore,
Odell, Ollason, Povey, Valtchev & Woodland 2002).
These models were bootstrapped from the timed
labelled transcriptions provided with the database.
This topology was used as experimental and heuristic
evidence showed that this was the optimal configura-
tion.

4 Patch-Based Visual Speech Recognition
System

The patch-based VSR system is very similar to that
of the holistic baseline system, which was described in
the previous section. The overall system is depicted
in Figure 8. As it can be seen from the figure, this
system is very basic. Essentially it is the baseline
system being split into four parallel streams. The
intended reason for this simple structure was to show
that this configuration could be implemented easily.
Also, by only breaking the ROI only into quadrants
patches (no overlapping), we wanted to illustrate the
benefit of treating parts of the ROI locally instead of
as a whole.

As can be seen in Figure 8, the patch-based system
uses the same visual front-end as the baseline system.
Once the ROI has been detected and tracked, each
grayscale 60 × 36 ROI image is broken up into 30 ×
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Figure 8: Block diagram of visual feature extraction process using the patch-based representation.
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Figure 9: Once the mouth ROI has been detected
and tracked, each ROI is broken up into quadrants
and labelled.

18 quadrants (labelled as per Figure 9). Each one
of these patches are then independently and visual
features are extracted and modelled as per the process
described in Section 3.2 and 3.3 respectively.

As mentioned previously, as a proof of concept
we just conducted these experiments for the task of
speaker-independent isolated digit recognition. As
this was the case, fusion of the patches was performed
via the weighted sum rule. Hence, let each spoken
word be represented by a multiple visual speech ob-
servations O, defined as

O = O1,O2, . . . ,OR (3)

where Or refers to the sequence of visual speech
observations with regard to patch r. The isolated
digit recognition can then be regarded as that of com-
puting

arg
10

max
i=1

{
R∑

r=1

βrP (ωi|Or)} (4)

where ωi is the i’th digit and βr refers to the as-
signed patch weight. Also it is worth noting that∑R

r βr = 1, where 0 > βr > 1.

5 Experimental Results

We now proceed to report a number of experimental
results on the performance of the developed patch-
based VSR system. The experiments were conducted
on the CUAVE database.

5.1 The CUAVE Audio-Visual Corpus

For this work, we compared the speaker-independent
visual-only isolated speech recognition performances
on our baseline and patch-based systems. Train-
ing and evaluation visual speech was taken from the
Clemson University, CUAVE, audio-visual database

(Patterson et al. 2002). The CUAVE database was
selected as it is presently the only common audio-
visual database which is available for all universities
to use. This is important for benchmarking and com-
parison purposes. The CUAVE database consists of
two major sections, one of individual speakers and one
of speakers pairs. For this study, only the station-
ary connected-digit string section of the individual
speakers were used. The stationary connected-digit
string section of the database consisted of each of the
36 individual speakers uttering the connected digits
“zero” to “nine” a total of 5 times each. The 36 in-
dividual speakers were divided arbitrarily into a set
of 28 training speakers and 8 different test talkers for
a completely speaker-independent grouping. As the
database is so small, we used 10 different permuta-
tions of this configuration to see the effect of having
different speakers in the training/testing set.

5.2 Isolated Digit Recognition Results

Generally, an accurate measure of how much speech
information is contained within the visual features is
indicative of how well it performs in the task it is
being used for, which in this case is isolated digit
VSR. We first performed this on the static visual fea-
tures for the holistic (H), patch-based (P), fused holis-
tic and patch-based features (F), patches concate-
nated (PC), and patches and holistic concatenated
(FC). The first experiment was conducted using the
same amount of features as the holistic system (i.e.
M = 30 for H, P, F, PC and FC). For P, 8 features
were used for P1 and P2 and 7 features for P3 and
P4, and each patch was weighted equally. For F,
6 features where used for each patch quadrant and
the holistic patch. For this configuration, the holis-
tic approach was weighted 50% and each patch was
weighted 12.5%. The PC and FC experiments were
conducted to see the effect of modelling each patch
independently instead of in a single stream.

The second experiment was conducted using the
same method, however, the same amount of features
were used for the patched-based system (i.e. M = 120
for H, P, F, PC and FC). For P, 30 features were used
for P1 − P4. For F, 24 features were used for each
patch quadrant and the holistic patch. The experi-
ments were carried out in this way so that we could
evaluate how much speech information there is for
the same amount of features. The results are given in
Table 1.

As can be seen in Table 1, using the same amount
of features, the patch-based system outperforms the
holistic system using both 30 and 120 features. And



Exp H P F PC FC
1 57.10 44.72 44.27 66.25 55.16
2 58.69 45.38 44.80 63.73 56.17

Table 1: Isolated WERs of the static features for the:
(H) holistic or baseline system, (P) patch-based sys-
tem, (F) fused holistic and patch-based system, (PC)
patches concatenated, (FC) holistic and patches con-
catenated. For experiment 1, M = 30 and for exper-
iment 2, M =120.

Exp H P F
1 30.10 25.95 22.92
2 - 28.22 23.68

Table 2: Isolated WERs of the dynamic features con-
catenating ±10 frames then using LDA to yield 60
features from the static features given in Table 1.

when the holistic and patch-based system were fused
together more improvement was gained. It is some-
what interesting to note that the better performance
was gained in experiment 1, and not 2, with the
fused holistic and patch-based system achieving the
best performance with a word-error-rate (WER) of
44.27% compared to 57.10% for the holistic system.
This goes against our initial hypothesis regarding di-
mensionality, as lower number of features actually
obtained around the same or marginally more static
speech information. However, it may be the case that
the top 30 features contain most of the speech infor-
mation, whilst the remaining features contain mostly
unique speaker information. Another interesting re-
sult is that modelling each patch independently seems
to achieve better results than concatenating the fea-
tures and modelling them as one (PC, FC). This may
suggest that representation of features is the key to
VSR, and not just the sheer number of features used.
However, it must be noted that these results may not
be significant due to the small size of the database
and further investigation is need before any claims
can be made about performance.

To gauge the overall performance of the systems
using the full system (i.e incorporating the dynamic
features); the holistic, patch-based, and fused holistic
and patch-based system were compared. The results
are given in Table 2. As can be seen from these re-
sults, the fused system was again was the best per-
formed following the trend of the previous experi-
ments. For experiment 1, the WER of 22.92% was
much better than the holistic one of 30.10%, giving a
23.9% relative improvement. Again these results look
very promising, but further investigation really needs
to be done before determining whether these results
are significant or not. It is also worth noting that no
holistic result for experiment 2 could be gain as the
dimensionality for the LDA matrix was too large to
be computed.

6 Summary and Conclusion

In this paper, we presented a novel patch-based ap-
proach to the task of VSR which showed improvement
over holistic approaches. Our results show that our
concept of breaking up the mouth ROI into patches,
instead of just one whole, could extract more speech
information from the visual domain. We understand
that a major limitation of our experiments was the
small size of our training and testing database. How-

ever, we believe that the results give an indication
that this patch-base approach is worth pursuing on
an larger database, as well as on the more compli-
cated task of continuous speech recognition. Our fu-
ture work will concentrate on the continuous speech
recognition scenario, through the implementation of
a Dynamic Bayesian Network (DBN), which provides
a framework to combine multiple streams together
effectively. We believe the DBN framework is a far
more prudent way to go rather than using feature fu-
sion as this approach really is not practical as it does
not allow us to weight the various patches and may
cause catastrophic fusion. Another task we will be
undertaking in the future will be investigating which
patches in the ROI (or even the face) are most per-
tinent for visual speech (such as corner of mouths,
mouth center, cheeks etc), so as to further enhance
VSR.
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