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PATCH-BASED SPARSE REPRESENTATION FOR BACTERIAL DETECTION
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ABSTRACT

In this paper, we propose an unsupervised approach for bacterial de-

tection in optical endomicroscopy images. This approach splits each

image into a set of overlapping patches and assumes that observed

intensities are linear combinations of the actual intensity values as-

sociated with background image structures, corrupted by additive

Gaussian noise and potentially by a sparse outlier term modelling

anomalies (which are considered to be candidate bacteria). The ac-

tual intensity term representing background structures is modelled as

a linear combination of a few atoms drawn from a dictionary which

is learned from bacteria-free data and then fixed while analyzing new

images. The bacteria detection task is formulated as a minimization

problem and an alternating direction method of multipliers (ADMM)

is then used to estimate the unknown parameters. Simulations con-

ducted using two ex vivo lung datasets show good detection and cor-

relation performance between bacteria counts identified by a trained

clinician and those of the proposed method.

Index Terms— Sparse representation, anomaly detection, bac-

teria detection, Optical microscopy, patch-based methods, ADMM.

1. INTRODUCTION

Outlier/anomaly detection problems can usually be addressed us-

ing unsupervised or supervised methods [1]. In unsupervised ap-

proaches, the objects/anomalies to be detected are learned from

the data by fitting them with suitable distributions without using

explicitly-provided labels [2–10]. On the other hand, considering

supervised approaches, the dataset is usually divided into training

and testing sets. In the training phase, a model is trained by pairing

inputs with their expected outputs, which are also known as the

ground truth. The trained model can then be used to estimate the

output of the test dataset [11–14].
In this work, we investigate the performance of an unsuper-

vised approach for bacterial detection in datasets of optical endomi-

croscopy (OEM) lung images [15–21]. The main contributions of

this work are threefold. First, we formulate the problem of simul-

taneous bacteria detection and background estimation as a (robust)

sparse coding problem and use an ADMM algorithm to solve the

bacteria detection problem. To the best of our knowledge, it is the

first time this problem is addressed by a sparse representation ap-

proach. Second, we provide simulations using real datasets, whereby

we investigate different bacterial concentrations including control

cases in which no bacteria are present, and different SmartProbes

that cause weak and strong bacteria fluorescence. Third, we com-

pare the results of the proposed model with bacteria annotations per-

formed by a trained clinician and three widely used spot-detection
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Fig. 1: An OEM image with bacteria shown within circles annotated

by a trained clinician.

algorithms, using both dot-annotation and count-annotation meth-

ods.
The reminder of the paper is organized as follows. Section 2

formulates briefly the problem of bacteria detection in OEM images

using a sparse coding approach, followed by Section 3, which sum-

marizes the proposed model and possible estimation strategy to re-

cover the unknown model parameters. Experimental results and dis-

cussions are presented in Section 4. Conclusions and future work

are finally reported in Section 5.

2. OUTLIER DETECTION FORMULATION

Figure 1 shows an example of an OEM image with bacteria shown

within circles that are annotated by a trained clinician. We can ob-

serve that bacteria appear as high intensity dots in the image in ad-

dition to as bright as background structures representing elastin and

collagen, making the differentiation of bacteria a quite challenging

task. The problem of bacteria detection is formulated such that,

given a test image I ∈ R
m×n, a data matrix Y ∈ R

P×L is formed

by splitting the image into a set of L overlapping square patches

containing P = N2
p pixels. These patches are vectorized and finally

gathered in Y = [y1,y2, · · · ,yL]. The data matrix Y can then be

well approximated by a sparse linear model, excluding a small num-

ber of pixels - the outliers - which significantly deviate from this

model. The collection Y is described as follows

Y = DΨ+R+W, (1)

where D ∈ R
P×K is a dictionary assumed to be known, Ψ ∈

R
K×L is the sparse coefficient matrix, R ∈ R

P×L has few non-

zero elements that represents sparse deviations from the linear model

DΨ representing background image structures, and W ∈ R
P×L is

a low-energy noise component, which is assumed to be independent

and identically distributed (i.i.d.) Gaussian.
The primary objective here is to estimate the outlier matrix R

in Eq. (1), given that the sparse coefficients in Ψ are also unknown.

Thus we proposes to estimate jointly (R, Ψ) from the observation

matrix Y. To solve this problem, we propose an optimization-based

method to estimate the unknown parameters.



3. PROPOSED MODEL

The recovery of R and Ψ in Eq.(1) is formulated as the following

unconstrained minimization problem

minimize
Ψ,R

1

2
‖Y −DΨ−R‖2

F
+ α ‖Ψ‖1,1 + β ‖R‖1,1 , (2)

where Ψ = [Ψ1, · · ·ΨK ]T , ‖Ψ‖1,1 =
∑

k
‖Ψ(k, :)‖1, similarly

R = [R1, · · ·RP ]
T , ‖R‖1,1 =

∑

p
‖R(p, :)‖1, α and β are two

positive scalar parameters controlling the degree of sparsity of Ψ

and R respectively, and ‖·‖
F

denotes the Frobenius norm. Problem

(2) encourages a solution in which Ψ is sparse. However, for the

outliers that cannot be represented exclusively by D, it permits non-

zero entries in R.
The optimization problem in Eq. (2), although convex, cannot be

solved using standard gradient-based methods due to the non-smooth

terms. The core idea is to convert this unconstrained minimization

problem into another constrained one by the application of a vari-

able splitting operation (see Eq. (3) below). Finally, the obtained

constrained problem is solved with using ADMM [19, 22, 23]. By a

careful choice of the new variables, the initial problem is converted

into a sequence of much simpler problems, which can be solved iter-

atively. To solve the problem depicted in Eq. (3), we introduce a new

variable Z for the regularization function in Ψ in order to decouple

it from the data fidelity term. Therefore, the constrained version of

problem (2) can be written as follows

minimize
Ψ,R

1
2
‖Y −DΨ−R‖2

F
+ α ‖Z‖1,1 + β ‖R‖1,1 ,

subject to Z = Ψ. (3)
The augmented Lagrangian corresponding to the problem in Eq.

(3) can be written as L(Ψ,R,Z,M) = 1
2
‖Y −DΨ−R‖2

F
+

α ‖Z‖1,1 + β ‖R‖1,1 + µ

2
‖Z−Ψ−M‖2

F
, where M is the set of

Lagrange multiplier corresponding to the splitting, and µ > 0 is a

constant. The ADMM algorithm using to solve Eq. (3) (also Eq. (2))

is shown in Algorithm 1. During each step of this iterative scheme,

L is optimized with respect to Ψ (step 2), R (step 3) and Z (step 4),

and then the Lagrange multipliers are updated (step 5).

Algorithm 1 Sparse coding with Bacterial Detection - Version I

0: set k = 0, choose µ > 0,Ψ(0),R(0),Z(0), and M(0)

1: repeat (k ← k + 1)

2: Ψ(k+1) ← minimizeΨ L(Ψ,Rk,Zk,Mk)

3: R(k+1) ← minimizeR L(Ψk+1,R,Zk,Mk)

4: Z(k+1) ← minimizeZ L(Ψk+1,Rk+1,Z,Mk)

5: Update M : M(k+1) ←M(k) −
(

Z(k+1) −Ψ(k+1)
)

6: until some stopping criterion is satisfied.

Solving the minimization problems in Algorithm 1 leads to Al-

gorithm 2, where Υ = Y − R, F = Z + M and soft is the

soft thresholding function [24]. The parameter µ > 0 is updated

within the algorithm to keep the primal and dual residual norms

within a factor of 10 of one another. The stopping criterion we use

is
(
∥

∥

∥
Z(k) −Ψ(k)

∥

∥

∥

F
+ µ

∥

∥

∥
M(k) −M(k+ρ)

∥

∥

∥

F

)

≤ ǫ, which is the

sum of the primal and dual residuals, where ǫ =
√
P × L × 10−6

[19, 22].

4. EXPERIMENTAL RESULTS

4.1. Datasets

The proposed algorithm was assessed using two datasets of ex

vivo ventilated whole ovine lungs with bacteria present. Dataset

I contains seven videos assessing a combination of fluorescent

dyes (SmartProbes) and bacterial types, including control seg-

ments. It contains (i) three videos of ovine lungs instilled with

Algorithm 2 Sparse coding with Bacterial Detection - Version II

1: set k = 0, choose µ > 0,Ψ(0),R(0),Z(0), and M(0)

2: repeat (k ← k + 1)

3: Ψ(k+1) ← (DTD+ µ(k)I)−1(DTΥ(k) + µ(k)F(k)),

4: R(k+1) ← soft(Y −DΨ(k+1), β),

5: Z(k+1) ← soft(Ψ(k+1) −M(k), α
µ
),

6: M(k+1) ←M(k) − (Z(k+1) −Ψ(k+1))
7: until some stopping criterion is satisfied.

Video
# of

frames

Bacteria

concent.

(OD)

Fluorophore Bacteria

1 26

2

PKH
Staphylococcus

aureus
2 19

3 13

4 32

SmartProbe

Pseudomonas

aeruginosa

5 19
Staphylococcus

aureus

6 12
NA NA Control

7 12

Table 1: Description of dataset I.

Methicillin-sensitive Staphylococcus aureus (MSSA) stained with a

commercially available laboratory dye (PKH67, Sigma-Aldrich), a

highly fluorescent cell membrane dye, (ii) two videos of ovine lungs

instilled with bacteria (gram-positive MSSA and gram-negative

Pseudomonas PA3284) stained in situ with an in-house bacterial

detection SmartProbe [25], and (iii) two videos of ovine lungs with-

out the presence of any bacteria. Videos 1 to 5 were instilled with

a single concentration of bacteria, equivalent to Optical Density

(OD595nm) of 2.
Dataset II contains four videos, each with an increasing bacterial

concentration (OD595nm 0.004, 0.04, 0.4, 4), all labelled with an in-

house bacterial detection SmartProbe. This dataset is considered to

make sure that as the concentration increases, the counts of the clin-

ician and of the algorithm also increase. Tables 1 and 2 summarise

the details of Datasets I and II respectively.

Video
# of

frames

Bacteria

concent.

(OD)

Fluorophore Bacteria

1 14 0.004

SmartProbe
Pseudomonas

aureus

2 14 0.04

3 15 0.4

4 15 4

Table 2: Description of dataset II.

The Cellvizio fibred confocal OEM imaging platform (Mauna

Kea Technologies, Paris, France) [16,17] was used to acquire all data

in this study. Image sequences of size 274 × 384 pixels (306µm ×
429µm) were captured at 12 frames per second. Random frames that

are representative of each of the entire video sequences are chosen

from each of the two datasets by a trained clinician. These com-

prise 133 image frames for Dataset I, and 58 frames for Dataset II

as described in Tables 1 and 2 respectively. In each frame, a trained

clinician marked the coordinates of phenomena that are thought with

high confidence to be bacteria. Ambiguous points are ignored.

4.2. Dictionary Learning for Bacterial Detection

Each dataset is split into training and testing phases. In the training

phase, one dictionary is learned for each dataset from its correspond-



Fig. 2: Example of dictionary atoms learned from Dataset I.

ing videos; namely D1 for Dataset I and D2 for Dataset II. Every

set of frames in each video has a certain elastin and collagen pat-

tern. Hence, one frame from each set is chosen as a representative.

This yielded 12 frames from Dataset I and 17 frames from Dataset

II. Features are then extracted from each frame by dividing it into

square overlapping patches of fixed size. In this work, we employed

a 27×27 window size with 50% overlap. The patches that are anno-

tated by the clinician as containing bacteria are then excluded from

the training dataset (see Fig. 1). The remaining bacteria-free patches

are vectorised and gathered in the training matrix Ytr ∈ R
729×3553

for Dataset I and Ytr ∈ R
729×7087 Dataset II. The method of op-

timal directions (MOD) dictionary learning method [26] is then ap-

plied to train the dictionaries. The K-SVD algorithm [27] is also

investigated but provided similar results to MOD, thus the results

are not reported here. Figure 2 shows 20 dictionary atoms learned

for a selection of frames from Datasets I.

4.3. Algorithm evaluation

In the testing phase, after the dictionaries have been learned, Al-

gorithm 2 is run for each of the remaining frames which are 111
(resp. 41) remaining frames for Dataset I (resp. Dataset II), yield-

ing the estimated outlier matrix R̂ for each frame. The final outlier

image is then reconstructed using these overlapping patches by aver-

aging their intensities. The outlier image is then normalized to [0, 1]
range and thresholded (by ℓd), while pixels that exceed this thresh-

old value are counted as a potential bacteria. Since each bacterium

corresponds to a set of connected pixels, each group of connected

detections is counted as a single detection. The estimated number of

bacteria is thus the number of estimated groups and their positions

are computed using the barycenter of each region.
Once these connected detections are identified, they are then re-

placed by a single detection at the mean of their locations, which

gives the final number of detected bacteria in each frame.
Due to the unbalance of this two-class problem (absence/ exis-

tence of bacteria), we consider precision-recall curves to assess the

bacteria detection performance, in which the reference is the set of

annotations from the clinicians. Precision-recall curves are plots of

precision versus recall at different cut-off thresholds (different ℓd)

for the resulting outlier amplitude image. The precision and the re-

call can be calculated as Precision = TP
TP+FP

, Recall = FP
FP+FN

respectively, where TP, FN, and FP refer to the number of true pos-

itives, false negatives, and false positives respectively. Given the

pixel locations where a bacterium has been annotated by the clini-

cian, we defined a disk of radius r = 10 pixels [28], and we consider

that any detection that is present within the disk as a match (TP); any

detection outside any of the disks as FP; and any clinician’s annota-

tion that does not match with any of the algorithm detection as FN.
We test different parameters for evaluating the performance of

the proposed algorithm. First, we fix the regularization parame-

ter α corresponding to the sparse representation matrix Ψ to α =
1 × 10−5, and vary the outlier regularization parameter (β). Sec-

ond, we investigate the impact of the number of atoms (K) within

the learned dictionary. Finally we vary the outlier amplitude im-

age threshold (ℓd) between 0 and 1, and construct the precision-

recall curves accordingly. Statistical comparison of bacterial counts

(count-annotation) and detections (dot-annotation) performed by the

(a) (b)

Fig. 3: Plot of maximum achieved AUC reported for Dataset I in (a)

and II in (b). The corresponding values of β are provided above each

bar in red.

trained clinicians and the algorithm output is then considered after

choosing the best combination of the parameters described above.

4.4. Results and Discussion

Dot-annotation effect: Figure 3(a) shows a plot of different smart-

probes (represented by video ranges) versus different numbers of

dictionary atoms and the maximum achieved area under precision-

recall curve (AUC). It can be noted that the bacteria detection perfor-

mance is enhanced when increasing the number of dictionary atoms.

Although a strong smartprobe which produces high fluorescence sig-

nals is used for videos 1:3, the reported AUC is close to that for

videos 3:4, for which a weaker smartprobe is used. This is because

videos 4 and 5 have less elastin and collagen structures, and hence

there is lower probability of getting false positive detections. Re-

garding the control cases (videos 6 and 7), it can be observed that

the optimal regularization parameter β (printed in red on top of each

bar) is always higher than that of the bacteria stained videos (videos

1:3 and 4:5), which in turn promotes more outlier sparseness and

hence fewer counts. Moreover, the AUCs of these videos are lower

than those of videos 1:3 and 4:5, as they are not stained by fluo-

rophores and hence makes the fluorescence of bacteria weaker and

more difficult to discriminate, stressing the need for SmartProbes for

bacterial detection. We also noticed that there a broad range of out-

lier regularization parameters provides very similar precision-recall

curves, and the results are not extremely sensitive to the value of β.
Figure 3(b), on the other hand, shows a plot of the four concen-

trations (represented by video numbers) versus different numbers of

atoms and the maximum achieved AUC. We note that there is not

much difference in the achieved maximum AUC for the two tested

dictionary atom numbers. We also noticed that there is a broad range

of the regularization parameter β values that provides same AUC.
Count-annotation effect: For Dataset I, the algorithm counts

are compared with the clinician counts in each frame as shown in

Fig. 4. This corresponds to precision of 50% and recall of 86.12%
that also corresponds to cut-off threshold to the outlier amplitude

images of ℓd = 0.07. We considered the values of β providing the

maximum AUC per each fluorophore. We can observe an almost lin-

ear relationship between the clinician counts and algorithm counts,

with an empirical linear correlation between the manually and auto-

matically detected anomalies as 0.823. Furthermore, for videos 1, 2

and 3 in which a highly fluorescent SmartProbe is used, and videos

4 and 5 in which an in-house SmartProbe which produces weaker

fluorescence signals is used, a similar trend is observed between the

numbers of clinician’s annotations and the counts provided by our

algorithm. This also depending on the type of bacteria the samples

are stained with. Videos 6 and 7, which are controls, show minimal

annotations and counts, which reflects the ability of the algorithm to



Fig. 4: Plot of clinician bacteria count versus algorithm bacteria

count for Dataset I. Dots correspond to frames, and colours corre-

spond to videos.

(a) (b)

Fig. 5: Mean number of detections per selected frames in videos

1 to 4 of Dataset II and the corresponding standard deviation. (a)

clinician’s opinion, (b) proposed method.

differentiate bacterial loads from control.
Similarly, for Dataset II, we compared the clinician-algorithm

counts for different cut-off thresholds ℓd, ranging between ℓd =
0.05 and ℓd = 0.08, which corresponds to total sensitivity of

82.03% to 66.58% and precision of 23.64% to 32.4%, and pro-

vided the results in Fig. 5. This corresponds to the counts provided

by maximum AUC when different values of β are tested. We can ob-

serve that the counts of both the algorithm and the clinician increase

as the bacteria concentration increases, which reflects the agreement

between the approach considered and the clinician’s annotations.
We can also observe that the algorithm counts are higher than

those of the clinician for the two processed datasets, as we expect

the algorithm to be able to identify dots that are barely visible to

the naked eye. Moreover, the clinician did not annotate ambiguous

dots, meaning that a number of these were not chosen. This, along

with false positives, is the main reason why the algorithm counts are

higher than the clinician counts.

4.5. Comparison with existing approaches

In this subsection, we compare the proposed approach with popu-

lar spot-detection methods from the literature, namely the Laplacian

of Gaussian (LoG) and its approximation; the difference of Gaus-

sians (DoG) filters [9, 29], and the grey scale opening top-hat filter

(GSOTH) [7, 8]. These methods, although simple, have been con-

sidered in the literature of spot and blob detection in various appli-

cations. In this work, from preliminary trials to optimize perfor-

mance, the LoG filter is implemented by employing a 5 × 5 kernel

of standard deviation of 0.8 to each frame. Similarly, the DoG filter

is implemented by considering the difference of two 5 × 5 Gaus-

sian kernels of standard deviations of 0.5 and 0.8 respectively. The

GSOTH is employed by first smoothing the input image by a Gaus-

sian kernel to reduce the noise, then by computing the morphologi-

cal opening of the input image by employing a 3× 3 flat disc, which

achieves the best detection results and then subtracts the result from

the original image. The same post processing steps described ear-

lier (pixel grouping and computation of the barycenters) are also

employed. The comparison is conducted in terms of AUC of the

Sparse

coding
LoG DoG GSOTH

Videos AUC

Dataset I

1:3 0.754 0.58 0.56 0.749

4:5 0.8 0.53 0.63 0.786

6:7 0.27 0.175 0.104 0.172

Average 0.61 0.43 0.43 0.569

Dataset II

1 0.32 0.142 0.14 0.257

2 0.43 0.18 0.268 0.322

3 0.30 0.09 0.116 0.184

4 0.26 0.136 0.115 0.226

Average 0.33 0.137 0.16 0.247

Table 3: Area under curve measures of the resulting precision-recall

curves of the proposed approach and three existing methods. Bold

(resp. underlined) represent best (resp. second best) results.

resulting precision-recall curves, as well as in terms of computation

time.
Table 3 compares the maximum achieved AUC of the proposed

algorithm for Datasets I and II with those of the three methods de-

scribed above. We can observe that the proposed algorithm provides

the highest AUC for both Datasets I and II. Although the grey scale

opening top-hat filter provides competitive results for videos 1:3 and

4:5 in Dataset I, it fails to identify the control cases as good as the

proposed approach. The LoG and the DoG filters, on the other hand,

show similar performance.
The average computation times of the four methods are 0.4,

0.11, 0.05 and 0.22 seconds respectively. For the proposed approach,

the resulting number of test patches is 468 yielding Y ∈ R
729×468,

and the dictionary tested is D ∈ R
729×100. The experiments were

conducted on ACER core-i3-2.0 GHz processor laptop with 8 GB

RAM. Although the proposed approach provides slightly higher

computation time, it crucially brings the benefit of providing higher

detection performance with respect to the other three methods.

5. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated the performance of an unsu-

pervised approach for bacterial detection in OEM images of distal

lung tissue using targeted SmartProbes. We learned a dictionary for

background image structure (elastin, collagen, etc.), which was then

used to predict any deviating outliers in testing frames. We have

provided simulations on two ovine lung datasets instilled with bac-

teria, which demonstrated that the estimated bacterial counts corre-

lates with the bacterial counts performed by a clinician and good

AUC were achieved. However, precautions should be considered

when learning the dictionaries for such problems. While annotating

ground truth, it is highly likely that the annotator makes mistakes:

they can either falsely annotate a bacterium when it is noise, or sim-

ply miss-annotating a bacterium due to their overwhelming num-

bers in each frame. These types of error are common in any annota-

tion process, but it might have a more severe impact on learning the

dictionary since our target objects are ‘dots’ with similar structure.

Therefore, wrongly annotated/un-annotated bacteria can provide bi-

ased dictionary atoms that cause errors in the estimation process.

Current investigations include robust methods for learning the dic-

tionary in the case of absence or unreliability of annotations. More-

over, while a standard ℓ1- sparsity penalty (in the image domain) is

used for the bacterial contributions, structured sparsity and tailored

bacteria dictionaries can be used to account for bacteria size/shape

and enhance the robustness of the proposed approach. Extension to

detection of different bacteria types using colour/multispectral im-

ages is also worth investigating.
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F. Berier, B. Abrat, and N. Ayache, “Towards optical biopsies

with an integrated fibered confocal fluorescence microscope,”

in Medical Image Computing and Computer-Assisted Interven-

tion (MICCAI). Saint-Malo, Brittany, France: Springer, Sept

2004, pp. 761–768.
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