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Abstract

Though many tasks in computer vision can be formu-

lated elegantly as pixel-labeling problems, a typical chal-

lenge discouraging such a discrete formulation is often due

to computational efficiency. Recent studies on fast cost

volume filtering based on efficient edge-aware filters have

provided a fast alternative to solve discrete labeling prob-

lems, with the complexity independent of the support win-

dow size. However, these methods still have to step through

the entire cost volume exhaustively, which makes the solu-

tion speed scale linearly with the label space size. When the

label space is huge, which is often the case for (subpixel-

accurate) stereo and optical flow estimation, their compu-

tational complexity becomes quickly unacceptable. Devel-

oped to search approximate nearest neighbors rapidly, the

PatchMatch method can significantly reduce the complex-

ity dependency on the search space size. But, its pixel-wise

randomized search and fragmented data access within the

3D cost volume seriously hinder the application of efficient

cost slice filtering. This paper presents a generic and fast

computational framework for general multi-labeling prob-

lems called PatchMatch Filter (PMF). For the very first

time, we explore effective and efficient strategies to weave

together these two fundamental techniques developed in

isolation, i.e., PatchMatch-based randomized search and ef-

ficient edge-aware image filtering. By decompositing an im-

age into compact superpixels, we also propose superpixel-

based novel search strategies that generalize and improve

the original PatchMatch method. Focusing on dense cor-

respondence field estimation in this paper, we demonstrate

PMF’s applications in stereo and optical flow. Our PMF

methods achieve state-of-the-art correspondence accuracy

but run much faster than other competing methods, often

giving over 10-times speedup for large label space cases.

1. Introduction

Many computer vision tasks such as stereo, optical flow

and dense image alignment [13] can be formulated ele-

∗This study is supported by the HSSP research grant at the ADSC from

Singapores Agency for Science, Technology and Research (A*STAR).

gantly as pixel-labeling problems. In general, the com-

mon goal is to find a labeling solution that is both spatially

smooth and discontinuity-preserving, while matching the

observed data/label cost at the same time. To achieve this

goal, a Markov Random Field (MRF)-based energy func-

tion is often employed which involves a data term and a

pairwise smoothness term [18]. However, a serious chal-

lenge posed to this discrete optimization framework is com-

putational complexity, as global energy minimization algo-

rithms such as graph cut or belief propagation become very

slow when the image resolution is high or the label space

is large. Recently, edge-aware filtering (EAF) of the cost

volume [17, 14] has emerged as a competitive and fast al-

ternative to energy-based global approaches. Though sim-

ple, this kind of cost volume filtering techniques can achieve

high-quality labeling results efficiently. However, despite

their runtime being independent of the filter kernel size,

EAF-based methods do not scale well to large label spaces.

Almost concurrently, computing approximate nearest-

neighbor field (ANNF) has been advanced remarkably by

the recent PatchMatch method [4] and methods improving

it [5, 11, 9]. The goal of ANNF computation is to find for

each image patch P centered at pixel p one or k closest

neighbors in appearance from another image. In the energy

minimization context, ANNF’s sole objective is to search

for one or k patches that minimize the dissimilarity or the

data term with a given query patch, but the spatial smooth-

ness constraint is not enforced at all. This fact is consis-

tent with ANNF’s desire of mapping incoherence [11] that

is crucial for image reconstruction quality. The complexity

of ANNF methods is only marginally affected by the label

space size i.e., the number of correspondence candidates,

which is vital for interactive image editing tasks [4].

Then a motivating question that follows is – whether

these two independently developed fast algorithms, i.e.,

PatchMatch-based randomized search and EAF, can be

seamlessly woven together to address the curse of large la-

bel spaces very efficiently, while still maintaining or even

improving the solution quality. For the very first time, this

paper is positioned to solve this interesting yet challeng-

ing problem of general applicability to many vision tasks.
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However, this goal is nontrivial. First, these two algorithms

have different objective functions to optimize for. As shown

in Fig. 1(c, d), ANNF estimated by PatchMatch [4] is very

“noisy” and dramatically inferior to the desired true flow

map. Second, their computation and memory access pat-

terns are significantly disparate. In fact, the random and

fragmented data access strategy within the cost volume ef-

fected by PatchMatch is drastically opposed to the highly

regular and deterministic computing style of EAF methods.

Our main contribution is to propose a generic and fast

computational framework for general multi-labeling prob-

lems called PatchMatch Filter (PMF). We take compact su-

perpixels and subimages parsimoniously containing them

as the atomic data units, and perform random search, label

propagation and efficient cost aggregation collaboratively

for them. This enables the proposed PMF framework to

benefit from the complementary advantages of PatchMatch

and EAF while keeping the overhead at a minimum. PMF’s

run-time complexity is independent of the aggregation ker-

nel size and only proportional to the logarithm of the search

range [4]. We further propose superpixel-based efficient

search strategies that generalize and improve the original

PatchMatch method [4]. Though not limited to the cor-

respondence field estimation, PMF’s applications in stereo

matching and optical flow estimation are instantiated and

evaluated in this paper. The label space considered is of-

ten huge due to e.g., two-dimensional motion search space,

displacement in subpixel accuracy, or over-parameterized

surface or motion modeling [7]. Experiments show that our

PMF methods achieve state-of-the-art correspondence ac-

curacy also with a superior advantage of over an order of

magnitude speedup over the other competing methods.

2. Related Work

Here we review the work most related to our method.

Cost-volume filtering and EAF. Though the MRF-

based energy minimization formulation for discrete labeling

problems is elegant [18], the energy minimization process

is still time-consuming even with modern global optimiza-

tion algorithms. Leveraging the significant recent advance

in edge-aware image filtering techniques, e.g. [19, 16, 10],

several methods have been proposed for fast cost-volume

filtering [17, 14]. They often achieve labeling results as

good as those obtained by global energy-based approaches

but at much faster speed, with the complexity typically inde-

pendent of the filter kernel size. However, filtering each cost

slice individually, albeit allowing straightforward applica-

tion of various efficient EAF techniques, makes the runtime

scale linearly with the label space size. This makes discrete

approaches very slow in the case of large label spaces.

ANNF computation and PatchMatch. As explained

before, computing ANNF for every patch in a given image

with another image is computationally challenging, due to

��� ��� ���
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Figure 1. Problems with PatchMatch [4] and CostFilter [17] for

correspondence field estimation. (a,b) Input images. (c) ANNF

of PatchMatch (with the same color coding for optical flow). (d)

Ground-truth flow [1]. (e) Flow map of CostFilter [17]. (f) Flow

map of our PMF method, running 10-times faster than [17] under

fair settings. Average endpoint error of (e) 0.0837 and (f) 0.0825.

the large search space. Recent years have witnessed signifi-

cant progress in accelerating this computation, which is key

to non-parametric patch sampling used in many vision and

graphics tasks. Motivated by the coherent natural structure

in images, the PatchMatch method [4, 5] devised a very effi-

cient randomized search and nearest-neighbor propagation

approach, achieving substantial improvements in speed and

memory efficiency over the prior arts. Inspired by Patch-

Match, a few faster algorithms [11, 9] have been proposed

which in one way or another allow efficient propagation

from patches similar in appearance. However, with its ob-

jective to find the nearest neighbors, the computed ANNF

is very different from the true visual correspondence field

which is spatially smooth and discontinuity-preserving.

PatchMatch-based stereo. Realizing PatchMatch’s

power in efficient search, Bleyer et al. [7] proposed to over-

parameterize disparity by estimating an individual 3D plane

at each pixel. They showed that this method can deal with

slanted surfaces much better than previous methods and

achieved leading subpixel disparity accuracy. This idea has

also been integrated into a global optimization framework to

accelerate the message passing speed [6]. To handle dispar-

ity discontinuities, adaptive-weight cost aggregation [21] in

35 × 35 windows is used in [7]. Though PatchMatch can

significantly reduce the complexity dependency on the label

space size, such a brute-force adaptive-weight summation

has a linear complexity dependent on the window size and

it slows down the overall runtime noticeably. In addition,

more general and challenging dense correspondence prob-

lems such as optical flow are not addressed in these meth-

ods [7, 6]. It is worth noting that the histogram-based dis-

parity prefiltering scheme [15] was proposed to reduce the

complexity caused by large label spaces down to processing

only e.g. 10% plausible disparities detected for each pixel.

But this reduction is not as aggressive as in PatchMatch, and

also efficient local cost aggregation was not supported.
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3. Problem Formulation and Challenges

We briefly present a general framework and notations

of cost volume filtering-based methods for discrete labeling

problems, and focus particularly on visual correspondence

field estimation here. As in [17], given a pair of images I
and I ′, the goal is to assign each pixel p = (xp, yp) a label l
from the label set L = {0, 1, ..., L−1}. L denotes the label

space size. For general pixel-labeling problems, the label

l to be assigned can represent different local quantity [18].

For the stereo and optical flow problems considered here,

l = (u, v), where u and v correspond to the displacement in

x and y directions. Stereo matching degenerates to assign-

ing a disparity d(u = d) to pixel p, where v = 0.

Unlike global optimization-based discrete methods [18],

local window-based methods stress reliable cost aggrega-

tion from the neighborhood and evaluate exhaustively every

single hypothetical label l ∈ L. The final label lp for each

pixel p is decided with a Winner-Takes-All (WTA) scheme.

To achieve spatially smooth yet discontinuity-preserving

labeling results, edge-aware smoothing filters have been

adopted in the local cost aggregation step of several leading

local methods [17, 14]. Given the raw cost slice C(l) com-

puted for a label l, we denote its edge-aware filtered output

as C̃(l). Then the filtered cost value at pixel p is given as:

C̃p(l) =
∑

q∈Wp(r)

ωq,p(I)Cq(l) . (1)

Wp(r) is the local aggregation window centered at pixel

p with a filter kernel radius r. ωq,p(I) is the normalized

adaptive weight of a support pixel q, which is defined based

on the structures of the input image I . Various EAF tech-

niques [19, 16, 10, 14] can be applied here, and they differ

primarily in their ways of defining and evaluating ωq,p(I).
Though EAF is very efficient, the linear complexity de-

pendency on the label space size L requires repeated filter-

ing of C(l) as in (1), and C(l) is of the same size of I .

This makes the runtime unacceptably slow when L is large.

To largely remove this complexity dependency, recent tech-

niques such as PatchMatch [4] appear helpful conceptually.

However, it can be discerned that PatchMatch’s randomized

label space visit pattern for each individual pixel p is very

incompatible with the regular image-wise cost filtering rou-

tine that is essential to the efficiency of EAF-based methods.

4. PatchMatch Filter Based on Superpixels

This section proposes a superpixel-based computational

framework for fast correspondence field estimation by ex-

ploiting PatchMatch-like random search and EAF-based

cost aggregation synergistically. Our key motivation draws

from the observation that labeling solutions for natural im-

ages are often spatially smooth with discontinuities aligned

with image edges, in contrast to the very “noisy” ANNF

(see Fig. 1). The very nature of spatially coherent ground-
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Figure 2. (a) SLIC superpixels of approximate size 64, 256 and

1024 pixels. Figure courtesy from [3]. (b) Bounding-box B(ck)
containing the superpixel S(k) centered at pixel ck and r-pixel

extended subimage R(ck).

truth labeling solutions actually advocates a collaborative

label search and propagation strategy for similar pixels cov-

ered in the same compact superpixel, without necessarily

going to the pixel-wise fine granularity in PatchMatch [4].

Another key motivation from a computing perspective

is that the efficiency of EAF essentially comes from the

high computational redundancy or the vast opportunity for

shared computation reuse among neighboring pixels when

filtering an image or cost slice. However, PatchMatch pro-

cesses each pixel with its random set of label candidates

individually in raster scan order. This renders EAF tech-

niques not applicable and the cost aggregation runtime to

grow linearly with the filter kernel size m = (2r + 1)2 [7].

Based on the above analysis, we propose to partition the

input image into non-overlapping superpixels, and use them

as the basic units for performing random search, propaga-

tion and subimage-based efficient cost aggregation collab-

oratively. As a spatially regularized labeling solution is

favored, such a superpixel-based strategy, adapting to the

underlying image structures, is more consistent with the

goal of correspondence field estimation than its pixel-based

counterpart. Compared to the propagation from the imme-

diate causal pixels [4], taking superpixels as the basic primi-

tive also effectively extends the propagation range and ame-

liorates the issue of being trapped in local optimum. More

importantly, superpixel-based collaborative processing cre-

ates desired chances for computation reuse and speedup.

4.1. Superpixel-Based Image Representation

As a key building block to many computer vision al-

gorithms, superpixel decomposition of a given image has

been actively studied. In this paper, we choose the recently

proposed SLIC superpixel algorithm [3] to decompose an

input color image I into K non-overlapping superpixels

or segments, i.e., S = {S(k)|
⋃K

k=1 S(k) = I and ∀k �=
l, S(k)∩S(l) = ∅}. Compared to other graph-based super-

pixel algorithms e.g. [8], the SLIC method yields state-of-

the-art adherence to image boundaries, while having a faster
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runtime linear in the number of pixels M . Another impor-

tant advantage is that SLIC superpixels are compact and of

more regular shapes and sizes (M/K on average), giving

a low overhead when their bounding-boxes are sought as

discussed later. Spatial compactness also assures that the

pixels from the same superpixels are more likely to share

similar optimal labels. Fig. 2(a) shows SLIC superpixels

generated with different parameters. For the convenience of

later presentation, we also define two additional variables.

As shown in Fig. 2(b), for a given segment S(k), B(ck) rep-

resents its minimum bounding-box centered at pixel ck and

B(ck) ∈ I . We then use R(ck) to denote the subimage that

contains B(ck), but with its borders extended outwards by

r pixels while still being restricted to remain within I .

4.2. PatchMatch Filter Algorithm

Now we present the PatchMatch filter (PMF) – a gen-

eral computational framework to efficiently address discrete

labeling problems, which exploits both superpixel-based

PatchMatch search and efficient edge-aware cost filtering.

The PMF framework is very general and allows the integra-

tion of various ANNF and EAF techniques. We will present

improved superpixel-based search strategies in Sect. 4.3.

Unlike the regular image grid that has a default neigh-

bor system, an adjacency (or affinity) graph is first built for

an input image decomposed into K superpixels in a prepro-

cessing step. We use a simple graph construction scheme

here: every segment serves as a graph node, and an edge

is placed between two segments if their boundaries have an

overlap. Similar to PatchMatch [4], a random label is then

assigned to each node. After this initialization, we process

each superpixel S(k) roughly in scan order. The PMF algo-

rithm iterates two search strategies in an interleaved man-

ner, i.e., neighborhood propagation and random search.

First, for a current segment S(k), we denote its set of

spatially adjacent neighbors as N (k) = {S(i)}. A candi-

date pixel t ∈ S(i) is then randomly sampled from every

neighboring segment, totaling a number of |N (k)|. As a re-

sult, a set of current best labels Lt = {lt} assigned to the

sampled pixel set {t} can be retrieved, and they are propa-

gated to the superpixel S(k) under consideration. Given this

set of propagated labels Lt, EAF-based cost aggregation in

(1) is then performed for the subimage R(ck) defined for

S(k), but the filtering result is used only for the pixels in

B(ck). The reason is that pixels in R(ck)\B(ck) are not

supplied with all possible support pixels needed for a reli-

able full-kernel filtering, and also they tend to have a lower

chance of sharing similar labels with pixels in S(k). We

denote such a subimage-based cost filtering process over a

selected set of labels with a function f defined as follows,

f : C (R(ck), {l ∈ Lt}) �→ C̃ (B(ck), {l ∈ Lt}) , (2)

where C and C̃ represent the raw and filtered cost volume of

cross-section size of |R(ck)| and |B(ck)|, respectively. For

Current segment
Most similar segment
Initial displacement for

I I ′

W W

)(kS
Adjacent neighbor
Appearance neighbor )( jS

a
)(iS )( jS′

)(kS

Enrichment Initialization

Figure 3. Generalized affinity graph and improved strategies.

any pixel p ∈ B(ck), its current best label lp is updated in-

stantly by a new label l ∈ Lt whenever C̃(p, l) < C̃(p, lp).
After the preceding propagation step, a center-biased

random search as in PatchMatch [4] is performed for the

current segment S(k). It evaluates a sequence of random

labels Lr sampled around the current best label l∗ at an ex-

ponentially decreasing distance. We set the fixed ratio α be-

tween two consecutive search scopes [4] to 1/2. Different

ways exist to define l∗. Here we randomly pick a reference

pixel s ∈ S(k) to promote the label propagation within a

segment. We set l∗ = ls, where ls is the current best label

for s. The function f is then applied again to filter those cost

subimages specified by Lr by substituting for Lt in (2).

To remove unnecessary computation, a list recording the

labels that have been visited for each segment S(k) is main-

tained. Therefore, no subimage filtering will be needed if a

candidate label has been visited before. It is also clear from

Fig. 2(b) that compact superpixels S(k) are favored in our

PMF algorithm, as the filtering overhead incurred by the

stretched sizes of R(ck) and B(ck) will be kept low.

Note that prior stereo or optical flow methods [22, 12]

often take segments as the matching units and infer a sin-

gle displacement for each segment. To achieve pixel-wise

accuracy, further (continuous) optimization is still required

that makes them even slower. In contrast, our PMF method

works like other cost-volume filtering methods [17]. It di-

rectly estimates and decides the optimal label for each pixel

independently, while leveraging their shared spatial neigh-

bors and plausible label candidates for fast computation.

4.3. Superpixel-Induced Efficient Search Strategies

For the clarity sake, we presented the proposed PMF

framework in Sect. 4.2 based on a baseline search and prop-

agation strategy conceptually close to the original Patch-

Match principle [4]. We further propose some improved

search strategies induced by the superpixel-based image

representation (see Fig. 3). Compared to the baseline Patch-

Match method [4], the new strategies are more effective and

efficient in finding and propagating plausible candidates.

Enrichment. First, we generalize the adjacency graph

in Sect. 4.2 to add at most κ new appearance neighbors to

every node or segment. Specifically, given a segment S(k),
we search within a predefined window the top κ segments

N a(k) = {Sa(j), j = 1, 2, ...κ} most similar to S(k). Due

185518551857



to arbitrary shapes and uneven sizes of different segments,

we use a loose form to define the inter-segment similarity:

H(S(k), S(j))=
∑

s∈S(k),t∈S(j)

exp

(

−
‖s−t‖2

σ2
s

−
‖Is−It‖

2

σ2
r

)

.

(3)
s and t denote pixels randomly sampled from segment S(k)
and S(j), respectively. We repeat this random pair sampling

for a fixed number of times, e.g. 10% of the average super-

pixel size. σs and σr control the spatial and color similarity.

Picking the top κ segments {Sa(j)} closest to S(k) and also

above a similarity threshold, N a(k) augments the original

spatial neighbor set N (k) for S(k) by non-local neighbors

similar in appearence. We set κ = 3 and σs =∞ here. This

enrichment scheme allows effective and fast propagation of

plausible label candidates from similar segments.

Initialization. As image representation in superpixels

greatly reduces the graph complexity, this motivates us to

design a better label initialization strategy than the random

initialization [4]. The basic idea is to assign a potentially

good candidate label rather than a random label to each seg-

ment S(k). Given the maximum label search range W , we

select for segment S(k) in image I a closest segment S′(j)
from the target image I ′ within a slightly enlarged range.

The similarity between segments is evaluated as in (3), but

with σs decreased to 100 to favor spatially close segments.

The displacement vector between the centroids of S(k) and

S′(j) is used as the initial label for S(k). Such a preprocess-

ing method of low complexity makes PMF converge faster

and tackles small objects with large displacements better.

4.4. Complexity

Given an image of size M , the label space size L and

the superpixel number K, we further denote the total area

size of subimages by R̃ =
∑K

k=1 |R(ck)|. Enabling the in-

tegration of linear-time EAF techniques for cost filtering,

our PMF approach removes the complexity dependency on

the matching window size m, in contrast to the PatchMatch

methods [4, 7]. Consequently the complexity of our PMF

is O(K2 + R̃ logL), with O(K2) accounting for the com-

plexity upper bound of the new initialization strategy in

Sect. 4.3. This overhead is negligible, also because search-

ing for similar segments can be well constrained in a pre-

defined search window. The dominant part of PMF is then

O(R̃ logL)≈O(M logL), as R̃ is larger than M by a factor

of a small leading constant. Table 1 gives the comparison.

The memory complexity of the PMF method is O(M +
K logL). O(M) is used to hold the filtered cost associated

with the current best label at each pixel. Much less than

O(M), O(K logL) records the list of the labels that have

been visited for each segment S(k). In our implementation,

we pre-organize all the subimages {R(ck)} of the input im-

age I into an array of compact 2D buffers, which facilitates

cost computation and filtering in the label search process.

CostFilter [17] PatchMatch [7] PMF

Complexity O(ML) O(mM logL) O(M logL)
Memory O(M) O(M) O(M)

Table 1. Complexity comparison of three different techniques.

5. Applications

We present two applications of the proposed PMF frame-

work: stereo matching and optical flow estimation. As for

the EAF techniques, we use the guided filter (GF) [10] and

the zero-order cross-based local multipoint filter (CLMF-

0) [14] in this paper, though other methods can be easily

employed in our framework as well. Both techniques have

a linear time complexity to compute (1), depending only on

the image size M but not on the filter kernel size m.

5.1. Stereo Matching

We present two different PMF-based stereo methods

that model the scene disparity and parameterize the corre-

sponding label space differently. Like most stereo meth-

ods [17, 14], the first approach makes an assumption of

fronto-parallel local support windows, whereby pixels in-

side are matched to pixels in another view at a constant (in-

teger) disparity. We call this method PMF-C. Similar to [7],

the second approach attempts to estimate a 3D plane Qp at

each pixel p, so pixels lying on the same slanted surfaces

can then be used for reliable cost aggregation with high sub-

pixel precision. This method is called PMF-S. Both meth-

ods can benefit from the PMF technique, as the disparity

search range can be quite large due to high-resolution stereo

images or an infinite number of possible 3D planes. Since

PMF-S solves a more generalized and challenging labeling

problem than PMF-C, we focus on presenting PMF-S.

Slanted surface modeling. For each pixel p, we search

for a 3D plane Qp defined by a three-parameter vector

lp = (ap, bp, cp). Given such a plane, a support pixel

q = (xq, yq) in p’s neighborhood Wp(r) in the left view

I will be projected to q′ = (xq′ , yq′) in the right view I ′ as:

xq′ = xq−dq = xq−lp·(xq, yq, 1)⊤ , and yq′ = yq . (4)

Disparity dq in (4) is computed from the plane equation

whose value exists in a continuous domain. This enables

PMF-S to handle slanted scene objects much better than

PMF-C by avoiding discretization of disparities.

Raw matching cost. For both PMF-C and PMF-S, we

compute the raw matching cost between a pair of hypothet-

ical matching pixels q and q′ in the similar way as [17, 20]:

Cq(l) = (1 − β) · min
(∥

∥Iq − I ′q′

∥

∥ , γ1

)

+ β · min
(∥

∥∇Iq −∇I ′q′

∥

∥ , γ2

)

.
(5)

For PMF-C, the label l represents a disparity candidate d,

while l corresponds to the three parameters (ap, bp, cp) of a

plane evaluated for the center pixel p in PMF-S. For stereo,

∇ evaluates only the gradient in x direction in (5). The
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color and gradient dissimilarity is combined using a user-

specified parameter β. γ1 and γ2 are truncation thresholds.

Since q′ generally takes fractional x-coordinates in PMF-S,

linear interpolation is used to derive its color and gradient.

PMF-based cost aggregation. We apply the PMF al-

gorithm described in Sect. 4.2 to perform superpixel-based

collaborative random search, propagation and cost subim-

age filtering. The implementation of cost aggregation for

PMF-C is straightforward, whereas more care needs to be

taken for the random plane initialization and iterative ran-

dom search steps in PMF-S1. To this end, we adopt the ap-

proach presented in [7], and use a random unit normal vec-

tor (nx, ny, nz) plus a random disparity value sampled from

the allowed continuous range as proxy for the plane repre-

sentation. View propagation [7] is also used in PMF-S to

propagate the plane parameters of the matching pixels.

Post-processing. After deciding an initial disparity map

using a WTA strategy, we detect unreliable disparity esti-

mates by conducting a left-right cross-checking. Then, they

are filled by background disparity extension [17] in PMF-C,

and plane extrapolation [7] in PMF-S. Finally, a weighted

median filter is applied to refine the resulting disparity map.

5.2. Optical Flow

We now present a PMF-based optical flow method

named PMF-OF. Its main work flow closely resembles that

of PMF-C, but a label l represents a displacement vector

(u, v) in x and y directions. The label space for optical flow

is therefore often much larger than typical label spaces tack-

led in stereo matching. Based on a discrete labeling formu-

lation, PMF-OF solves for subpixel accurate flow vectors by

upscaling the label dimension to allow fractional displace-

ments along both x and y directions. As in [17], an upscal-

ing factor of 8 is used in this paper, and the pixel colors at

subpixel locations are obtained from bicubic interpolation.

Given a candidate label l, a pixel q in image I is matched

to the pixel q′=q+(u, v) in the second image I ′. We use (5)

to measure the raw matching cost Cq(l), but computing the

gradients in both x and y directions. The PMF-based label

search and cost filtering algorithm is then applied, including

those improved strategies presented in Sect. 4.3 to more ef-

fectively tackle the huge motion search space. Afterwards,

the WTA decision, occlusion handling and post-refinement

as in [17] are performed to give the final flow map.

6. Experimental Results

We implemented the PMF algorithm in C++, and also

GF [10] and CLMF-0 [14] used for EAF in (1). The follow-

ing same parameter settings are used across all stereo and

optical flow datasets: {r, σr, β, γ1} = {9, 0.1, 0.9, 0.039}.

As in [17], γ2 = 0.008 (0.016) is used for stereo (optical

flow). We set the smoothness parameter ǫ = 0.012 in GF,

1Our improved strategies are not used to allow fair comparison with [7].

Figure 4. Time-accuracy trade-off study of PMF approaches.

and the inlier threshold τ = 0.1 in CLMF-0. The segment

number K is set to 500. All algorithms were run on an Intel

Core i5 2.5GHz CPU with a single-core implementation.

6.1. Time-Accuracy Trade-off Evaluation of PMF

First, we present a quick time-accuracy trade-off study

of our PMF approaches in Fig. 4. Two test image pairs

RubberWhale and Reindeer from the Middlebury optical

flow/stereo datasets [2, 1] are used to evaluate the PMF-OF

and PMF-S methods (using CLMF-0), respectively. It can

be observed that for a reasonable range of K settings, opti-

cal flow or stereo results have almost always converged after

8-10 iterations. This also holds true for other images tested

with GF, though not shown here. Fig. 4(a1) shows that our

improved search strategies in Sect. 4.3 lead to a faster con-

vergence speed than the baseline method, especially for the

first few iterations. For the same iteration number, choosing

a larger K (namely a smaller superpixel size) gives a better

gain in accuracy on optical flow estimation than stereo, due

to intrinsically more complex 2D motions. However, this

is at a price of a longer runtime per iteration caused by the

increased adjacency graph size and increased subimage pro-

cessing overhead. In general, we find that K = 500 gives a

good balance between the complexity of each iteration and

the iteration number for a target accuracy level.

6.2. Stereo Matching Results

We evaluate our PMF-C and PMF-S stereo methods

combined with CLMF-0 and GF filtering techniques, us-

ing the Middlebury stereo benchmark [2] in Table 2. When

the default error threshold 1.0 is used, all our PMF-S and

PMF-C methods are highly ranked out of over 135 stereo al-

gorithms. They also achieve disparity accuracy comparable

to or even better than the top-performing local stereo meth-

ods – PatchMatch stereo [7] and CostFilter [17]. We also

evaluated those algorithms designed specifically to tackle

slanted surfaces with subpixel precision, setting the Mid-

dlebury error threshold to 0.5. The upper part of Table 2
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Algorithm
Err. thre. = 1.0 Err. thre. = 0.5

Rank Err. % Rank Err. %

PMF-S (w/ CLMF-0) 15 4.04 6 8.67

PMF-S (w/ GF) 16 4.06 2 7.69

PatchMatch [7] 18 4.59 8 9.91

PMBP [6] 21 4.46 4 8.77

PMF-C (w/ CLMF-0) 23 5.26 - -

CostFilter (w/ GF) [17] 24 5.55 - -

PMF-C (w/ GF) 25 5.48 - -
Table 2. Middlebury quantitative stereo evaluation results.

Algorithm
Teddy Cones

nocc all disc nocc all disc

PMF-S-GF 4.452 9.442 13.72 2.891 8.312 8.221

PMBP [6] 5.603 12.06 15.53 3.483 8.884 9.414

PMF-S-CLMF0 4.071 10.53 12.11 2.962 8.843 8.382

PatchMatch [7] 5.664 11.85 16.54 3.805 10.26 10.25

Table 3. Stereo evaluation results when error threshold = 0.5.

shows that our PMF-S methods with GF or CLMF-0 (us-

ing the same parameter settings for the error threshold 1.0)

perform better than PatchMatch stereo [7]. They are also

better than or close to the state-of-the-art PMBP [6], while

the latter uses belief propagation for global optimization. In

particular, our PMF-S methods achieve the top performance

for the more complex datasets of Teddy and Cones among

all Middlebury stereo methods as shown in Table 3. Fig. 5

shows the disparity maps estimated by our PMF-S methods,

which preserve depth discontinuities while generating spa-

tially smooth disparities with high subpixel accuracy. Com-

pared to the fronto-parallel version i.e., PMF-C, PMF-S re-

constructs the slanted surfaces at much higher quality.

Our PMF-C methods have a runtime comparable with

CostFilter [17] on the Middlebury dataset of small dispar-

ity ranges, but run over 3-7 times faster than [17] for high-

resolution stereo images (e.g. 1M pixels to 4K movie reso-

lution) as the disparity range increases accordingly. Without

reducing the iteration number nor turning off plane refine-

ment, our PMF-S methods achieve a few times speedup over

PM stereo [7] (e.g. 20 sec vs. 1 minute). In fact, our fair

comparison indicates over 10-times speedup over [7]. Us-

ing a low-order regression model, CLMF-0 brings 2-3 times

overall speedup over GF for PMF-C and PMF-S algorithms.

6.3. Optical Flow Results

We evaluate our PMF-OF methods using the Middlebury

flow benchmark [1]. In all the following tests, we have fixed

the motion search range to [−40, 40]2×82 (about 410,000

lables) and the number of iterations to 10. Table 4 lists the

average ranks of a few competing methods also based on

discrete optimization as well as the top-performing MDP-

Flow2 [20] measured in the average endpoint error (AEE)2.

2Please refer to [1] for the complete results using other error measures.

Figure 5. Visual results. Top row (left to right): Segmented

Teddy image, PMF-S (w/ CLMF-0) result and close-up compar-

ison. Middle row (left to right): Segmented Cones image, PMF-

S (w/ GF) result and close-up comparison. Bottom row (left to

right): Synthesized novel-view images using PMF-C and PMF-S.

Both PMF-OF (w/ GF) and PMF-OF (w/ CLMF-0), though

simple and free of a large number of parameters, have a very

competitive ranking out of over 70 methods. In particular,

they both outperform CostFilter [17] (see also Fig. 1), even

though image-wise cost filtering has been exhaustively per-

formed for every single label in [17]. This very fact of a

label space subsampling method giving better results was

also observed and explained from the information represen-

tation perspective in [15]. Also, using compact superpixels

as the atomic units tends to have better spatial regularization

than [17], without compromising the accuracy along motion

discontinuities. Table 4 shows that PMF-OF methods per-

form quite well for the three challenging scenes with fine

details and strong motion discontinuities. PMF-OF (w/ GF)

even tops the disc rank for Teddy. In Fig. 6, we compare

visually the flow maps estimated by PMF-OF (w/ GF) and

other competing methods. Our method preserves fine mo-

tion details and strong discontinuities, and handles nonrigid

large-displacement flow without changing any parameters.

Fig. 7 verifies the strength of our superpixel-induced initial-

ization and search strategies over the baseline approach.

As reported in Table 4, our PMF methods have a sig-

nificant runtime advantage and often give an order of mag-

nitude speedup over the previous methods. Tested on the

same CPU, PMF-OF runs even over 30-times faster than

CostFilter [17] on the Urban sequence, thanks to slashing

the complexity dependency on the huge label space size.

7. Discussion and Future Work

This paper proposed a generic PMF framework of solv-

ing discrete multi-labeling problems efficiently. We have
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Figure 6. Visual result comparison on Schefflera, Teddy and HumanEva by a) PMF-GF b) CostFilter [17] c) DPOF [12] d) MDP-Flow2 [20].

Algorithm µRank Schefflera Grove Teddy sec

MDP-Flow2 [20] 5.0 (2,2,1) (9,10,10) (2,2,2) 342

PMF-GF 19.9 (5,5,8) (4,4,3) (3,1,7) 35

MDP-Flow 21.6 (6,8,28) (21,21,26) (44,47,43) 188

PMF-CLMF-0 22.5 (15,17,8) (8,8,2) (4,2,9) 18

CostFilter [17] 25.0 (4,4,13) (6,7,4) (9,18,9) 55∗

DPOF [12] 31.2 (6,6,28) (12,15,8) (22,18,4) 287
Table 4. Middlebury quantitative flow evaluation results measured

with average endpoint error (AEE) for three challenging scenes.

In brackets are the ranks for (all, disc, untext). Runtime is given

for the Urban sequence. ∗Runtime measured on a powerful GPU.
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Figure 7. Advantages of our improved search strategies. a) Better

initialization. b) Non-local neighbor propagation (# iteration = 3).

particularly demonstrated its effectiveness in estimating

smoothly varying yet discontinuity-preserving stereo and

optical flow maps. Though we focused on the random-

ized search paradigm here, more efficient ANNF com-

puting methods e.g. [9] can be readily plugged into our

PMF framework. Similarly, optical flow can also be over-

parameterized with an affine motion model by taking ad-

vantage of the power of randomized search in the high-

dimensional parameter space. Interestingly, dense patch

matching [4] has been employed in state-of-the-art optical

flow method [20] to find multiple extended displacements.

Our method can be used to generate a good initial motion

field quickly for further continuous optimization. Exploring

the proposed PMF algorithm to tackle other pixel-labeling

tasks efficiently is also an interesting future direction.
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