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Abstract

Background: An adaption of the optimal foraging theory suggests that herbivores deplete, depart, and finally

return to foraging patches leaving time for regrowth [van Moorter et al., Oikos 118:641–652, 2009]. Inter-patch

movement and memory of patches then produce a periodic pattern of use that may define the bounds of a home

range. The objective of this work was to evaluate the underlying movements within home ranges of elk (Cervus

elaphus) according to the predictions of this theory. Using a spatial temporal permutation scan statistic to identify

foraging patches from GPS relocations of cow elk, we evaluated return patterns to foraging patches during the

2012 growing season. Subsequently, we used negative binomial regression to assess environmental characteristics

that affect the frequency of returns, and thereby characterize the most successful patches.

Results: We found that elk return to known patches regularly over a season, on average after 15.4 (±5.4 SD) days.

Patches in less-rugged terrain, farther from roads and with high productivity were returned to most often when

controlling for the time each patch was known to each elk.

Conclusions: Instead of diffusion processes often used to describe animal movement, our research demonstrates

that elk make directed return movements to valuable foraging sites and, as support for Van Moorter et al.’s [Oikos

118:641–652, 2009] model, we submit that these movements could be an integral part of home-range development

in wild ungulates.
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Background
Home-range development and range-use dynamics are

key components of foraging behaviour with implications

for animal movement, habitat selection, and fitness [1,2].

The home range often is defined to be the area known

by the animal and remembered or maintained because

of its value, presumably in resources required by the ani-

mal for survival and reproduction [1,3,4]. However, sim-

ulations of memory processes alone have failed to yield

stable home ranges [5,6] and the biological mechanisms

underlying the development and maintenance of home

ranges in non-territorial animals are still missing. There

is a growing body of literature on mechanistic home

range models hypothesizing the underlying rules for

movement or landscape structure that may define or re-

sult in the development of stable home ranges [5,7-10].

Compared to traditional techniques that describe home

ranges, mechanistic models are more comprehensive at-

tempts to unveil the processes that result in home-range

behaviour. Because these models are based not only on

the movements of animals but upon the underlying rules

for movement, they have the ability to predict an individ-

ual’s spatial use, not only describe it [9,11]. As such these

models, when validated, are especially powerful tools for

predicting responses to changes in habitat [9,12] either by

human land-use change, or natural perturbations to the

environment. Because of their potential predictive powers,

numerous mechanistic home range models have been

developed recently. Unfortunately, these works focus

primarily on the development of defended ranges or ter-

ritories of central place foragers [3,13,14], not the

ranges of more diffuse foragers (e.g. most cervids) with-

out a central place or a discrete and defended territory.

In an attempt to address this gap, a model by Van

Moorter et al. [5] simulates home-range development

combining the rules of optimal foraging theory and a

two-part memory system. Foragers move between dy-

namically valued patches distributed across the land-

scape, removing food from a patch until depletion

stimulates departure according to the marginal value

theorem [15]. Their movement is biased by the utility of
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surrounding patches and both short-term memory and

long-term memory that prevent backtracking over de-

pleted patches while maintaining knowledge of success-

ful patches and allowing time for forage regrowth prior

to return.

Seidel and Boyce [Seidel DP, Boyce MS: Varied tastes:

home range implications of foraging patch selection,

forthcoming] evaluated four formative assumptions of

Van Moorter et al.’s model in two populations of elk in

SW Alberta. Their work formed the first empirical sup-

port for this model but they did not investigate the pre-

dicted movement patterns or returns to foraging sites.

Although directed movements between areas of resource

abundance where animals linger to forage have been dem-

onstrated [16-18], few studies have shown returns or re-

cursive movement patterns in ungulate populations and

none exhibit returns directly to identified foraging patches

[19,20]. As such, our objective was to evaluate movement

within home ranges according to predictions of a pro-

posed mechanistic home range model for foragers.

We used a flexible space-time permutation scan statistic

(STPSS) to identify and approximate the scale of discrete

elk foraging patches in space and time. We first sought to

establish whether and how frequently elk return to these

patches. Secondly, our goal was to identify the characteris-

tics of a patch that increased the likelihood of reuse. Con-

necting patch-return likelihood to attributes of these

patches and surrounding landscape lays the groundwork

for understanding why and how animals use various areas

within their home range and allows us to evaluate the ex-

pectation that those patches that are revisited should be of

higher quality than other available patches.

Results
SatScan clustering

Using the STPSS procedure, 815 clusters were identified

over the summer season with a total of 2,112 returns

overall. Clusters with radii less than 15 m in length were

removed, 47(5.8%) qualifying clusters, leaving 768 clus-

ters for analysis. The average number of clusters identi-

fied in total each week was 54.86(±8.24 SD) clusters

(minimum: 42, maximum: 63).

An average of 109.7(±8.36 SD) clusters per individual

was identified over the 3-month season. The average ra-

dius of analysed clusters was 92.4 m (±39.1 SD) and in-

cluded an average of 2.63(±1.21 SD) fixes in each

cluster. SatScan output also provides number of ob-

served fixes within the cluster. This value is often larger

(but never smaller) than the number of fixes included in

the cluster and represents the total number of fixes

within the spatial boundaries of the cluster over the en-

tire analysed temporal period, e.g. 7 days. The average

number of observed fixes in each cluster was 2.77(±1.47

SD) indicating that animals frequently revisited the clus-

ter within the same week but not within the chosen tem-

poral window.

Investigating returns

Our calculations suggested that across all animals, clus-

ters were returned to an average of 2.75 (±2.37 SD)

times over the 3-month season (including single fix

returns). Animals returned to each cluster after an aver-

age of 15.38 days (±5.39 SD) and the average rate of re-

turn (#returns/timeknown) was 0.034 (±.027 SD) returns

per day (or 3.34 returns per patch over the study period).

Some clusters (17.1%) did not experience a return for-

aging event. See Table 1 for additional summary statis-

tics on returns.

A high frequency of zeroes is often best explained by

length of time that the patch was known to the elk– es-

pecially evident in Livingstone animals. For example, be-

cause E144 moved to a new area of her home range just

3 weeks before the end of the sampling period, her late-

season clusters had a much shorter period of time for

Table 1 Summary statistics on returns for cow elk, summer 2012

n % unreturned #UnRet (SingleRet) Avg returns MAXReturns Avg # singles Avg return rate (no singles)

E144 111 20.72 23 (4) 5.22 11.00 1.10 11.96

E146 118 24.58 29 (6) 2.06 5.00 0.29 12.66

E159 117 6.84 8 (3) 3.14 7.00 0.80 20.24

E164 117 11.97 14 (7) 3.29 7.00 1.20 24.82

E170 96 15.63 15 (8) 3.21 9.00 0.83 15.54

E172 105 8.57 9 (4) 3.67 10.00 0.90 13.17

E173 104 31.73 33 (9) 2.49 7.00 0.65 9.24

AVG 109.71 17.15 3.30 0.82 15.38

SD 8.36 9.03 1.00 0.30 5.39

Across 7 cow elk, an average of 109.7 clusters per animal was detected in GPS relocations from summer 2012. An average of 17% of these clusters, presumed

foraging patches, were unreturned to, however the percentage of patches unreturned to drops 2.6-8.7% when including single fix returns over the season which

were not immediately considered foraging returns. The average number of returns per cluster, as well as maximum number of returns recorded, are presented for

each animal and then averaged for the population. The “average return rate” is the average number of days between return events, not including singles and not

accounting for differences in time known to the individual.
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revisitation and account for 69.6% of her non-returned

patches over only 21% of the study period. This

phenomenon is explored using a Kaplan-Meier curve

demonstrating that until a patch is known for about

20 days it has nearly a hundred percent chance of not

being returned to but after 100 days a return is a near

certainty (Figure 1).

Returns were overdispersed (mean = 2.75, variance =

5.63) and a negative binomial distribution examined for

better fit. As expected, a fixed negative binomial outper-

formed a fixed Poisson model by 14 AIC (Akaike Infor-

mation Criterion) units and reduced the Pearson χ2

dispersion coefficient from 1.34 to 1.10. When mixed-

effects models were estimated with Poisson and negative

binomial families, fit was improved compared to fixed

models. Unexpectedly, the mixed-effects models differed

only by 0.14 AIC units (mixed Poisson 2857.92, mixed

NB 2857.78) but again the Pearson χ2 coefficient indi-

cated less over dispersion with the negative binomial

(1.21 to 1.13 respectively).

To explain variation in the pattern of returns, we fit

biologically plausible alternative models and identified

the model with the smallest AIC (see Table 2). The best

fit model by AIC indicates that time known, ruggedness,

distance to road and productivity at the site most signifi-

cantly influenced the likelihood of return across all

patches. The AIC-selected model explained approxi-

mately 13% of the deviance when compared with the

null model. The dispersion parameter for the top

reported model was 34.716 (25.61 SE). The width of this

standard error and the magnitude of the corrective par-

ameter were large but the parameter estimates were

stable across mixed Poisson and Negative Binomial

approaches and the Pearson Chi Squared dispersion par-

ameter, 1.13, indicates that the remaining 13% overcor-

relation is within suitable bounds for use of the negative

binomial distribution [21].

Higher relative productivity of a patch (NDVI) in-

creased the likelihood of return (Table 3). Elk preferred

to return to patches farther from roads and the inter-

action parameter between herd and distance to road was

included in the top model indicating the road effect on

returns was magnified in the Waterton herd. Addition-

ally, our model shows that Waterton animals return less

often than Livingston animals overall. The censorship

parameter, TmKnown, proved to have the largest effect

size, positively impacting return likelihood almost twice

as much as any other variable. The longer that a patch is

known by, i.e. available to, an animal the more likely it

will receive a return visit. Examination of this variable

using a Kaplan-Meier survival curve further emphasizes

its importance in the revisitation of patches. According

to our data, patches known to an elk for less than 60 days

have roughly only a 25% chance of being revisited; this

chance doubles once patches have been known to the

elk for at least 100 days (Figure 1).

Discussion
Our results confirm that individual elk make repeated

foraging visits to patches within a growing season. Fur-

thermore, we demonstrate that distance from roads, as

well as landscape ruggedness, and green herbaceous

productivity contribute to increased returns at foraging

patches indicating that patch value influenced the likeli-

hood of return to a patch, just as proposed by Van

Moorter et al.’s [5] home-range model.

Return behaviours have been shown before in wild un-

gulates, but to our knowledge, this is the first empirical

demonstration of recursive movements specifically to

identified foraging sites. Wolf et al. [20] and Bar-David

et al. [19] both identified recursion events to previously

used or “known” locations related to resources, or for-

aging behaviours, though neither estimated returns dir-

ectly to identified foraging areas. By analysing return

patterns to a specific location and use, we uniquely ex-

plored how foraging selection might drive movement

patterns.

Differences across return distributions of individuals

and across herds were noted (Figure 2A&B), with

Waterton animals returning less often overall. These dis-

tributions are likely influenced by subtle range shifts

over the season and by individual movement behaviours.

Larger home ranges lead to fewer returns and longer

Figure 1 Kaplan-Meier curve examining the influence of

TMKnown on cluster visits. TmKnown, or the number of days

between an individual’s first visit to a patch and the end of the

study period, has a noteworthy effect on the likelihood that an

identified patch will be revisited. Revisited patches have, on average,

been known for 85 days, suggesting that many clusters not returned

to were potentially not known long enough to be returned to

within the sampled season.
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time between returns at individual patches [van Moorter

B: unpublished manuscript]. This is logical: when there

is more space to cover and more patches to visit, the

time between returns will be longer leading to fewer

returns over a single season. Movement between (and

thus return rates to) patches could be influenced by

other environmental features such as ruggedness of ter-

rain or overall extent of home range although we did

not explore these explicitly in this analysis. We observed

that Waterton cows expanded their home ranges over

the course of the season, but maintained returns to the

entire area, even as it expanded late in the summer

down into the aspen forests and wetlands on the east

shore of lower Waterton lakes where bull elk typically

concentrated their summer movements. Maintenance of

larger home ranges may explain a portion of the reduced

return likelihood of Waterton patches.

Our top model demonstrates that at the population

level, TmKnown, ruggedness, productivity, distance to

road, and interactions between distance to road and herd

and TmKnown and productivity were the most influen-

tial environmental covariates determining return counts

at patches across the season. The importance of prod-

uctivity in return models supports the underlying thesis

of Van Moorter et al.’s [5] model which values patches

based on replenishment of resources. As expected our

results demonstrate that productive patches are returned

to more often than less productive patches. An attrac-

tion to productive forage is consistent with previous

work demonstrating that elk migration often follows the

start of spring photosynthetic activity, or greenup; as

new growth extends into higher elevations over summer

so do elk [22]. Forage research on elk also shows attrac-

tion to intermediate levels of biomass, often more di-

gestible and productive than tall late-season stands, and

forage abundance has been shown to encourage site fi-

delity in nonmigratory elk populations on short time in-

tervals, supporting our results that productivity may

strongly influence returns [23-25].

Distance to nearest road and its interaction with the

Herd variable appeared in the top model, with Waterton

animals being more sensitive to road proximity. Animals

in national parks often seem undisturbed by roads, ha-

bituated to traffic and people, and attracted by the road-

side vegetation and protection from predators that roads

and human settlements offer [26], but in other popula-

tions, especially in those facing hunting pressure, roads

and high traffic have been shown to alter movement

near roads [27,28]. From the perspective of foraging, hu-

man disturbance has been shown to increase vigilance,

Table 2 Candidate models and akaike weights

Candidate models AIC DeltaAIC AICw

Model M* ~ TmKnown*NDVI + Ruggedness + Herd*(DistRd), rand(ElkID) 2857.8 0.0 0.77

Model L* ~ TmKnown + Ruggedness + Herd*(DistRd) + NDVI, rand(ElkID) 2860.7 2.9 0.18

Model K* ~ TmKnown + Ruggedness + Herd*(DistRd), rand(ElkID) 2863.1 5.3 0.05

Model G* ~ TmKnown + NDVI + Herd*(DistRd + Traffic), rand(ElkID) 2878.4 20.7 0.00

Model J ~ TmKnown + Ruggedness, rand(ElkID) 2882.4 24.6 0.00

Model H* ~ TmKnown*NDVI, rand(ElkID) 2884.4 26.7 0.00

Model I* ~ TmKnown*Aspect, rand(ElkID) 2887.7 29.9 0.00

Model E ~ TmKnown + NDVI, rand(ElkID) 2888.3 30.6 0.00

Model F ~ TmKnown + NDVI + Aspect + Canopy, rand(ElkID) 2891.1 33.3 0.00

Model D* ~ NDVI + Herd*(DistRD + Traffic), rand(ElkID) 3180.7 323.0 0.00

Model C ~ NDVI + Aspect + Canopy, rand(ElkID) 3187.6 329.8 0.00

Model A ~ NDVI, rand(ElkID) 3193.0 335.2 0.00

Model B ~ NDVI + Aspect, rand(ElkID) 3195.0 337.2 0.00

*All models with interaction effects included main effect terms of interacting covariates.

The candidate model set contained 13 models comparing the influence of vegetation, physiogeographic and disturbance variables. The top model included

ruggedness, TmKnown, distance to road, and productivity, receiving 77% of support in the data.

Table 3 Coefficient estimates for top model, model M

Coefficients Estimate S.E.

(Intercept) 0.936 0.113

TimeKnown 0.545 0.036

Productivity (NDVI) 0.093 0.032

Ruggedness −0.153 0.039

Herd.WATERTON −0.281 0.174

Distance to Road 0.051 0.035

TimeKnown*NDVI −0.079 0.036

Herd.WATERTON*DistRd 0.104 0.051

Random Effect: ELKID Variance

(Intercept) 0.046
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reducing time spent foraging, foraging efficiency, and in-

take [29-31] and, recently, to deter foraging patch selec-

tion in elk [Seidel DP, Boyce MS: Varied tastes: home

range implications of foraging patch selection, forthcom-

ing]. Our analysis demonstrates that disturbance also

might affect whether or not that animal returns to

patches over time.

Inclusion of the TmKnown variable markedly im-

proved the fit of our model to the data and emphasizes

the temporal dynamics at play driving returns.

TmKnown was the strongest indicator of return likeli-

hood, with an effect size nearly twice that of any other

predictor; this is a logical result. Patches visited earlier in

the season have a longer period of time during which

they can returned. The Kaplan-Meier estimation demon-

strates clearly that patches must be known for roughly

20 days before attracting a return (Figure 1). Given the

time needed for regrowth, revisits before 20 days would

likely be disadvantageous giving further support to the

Van Moorter et al. model [5]. Additionally this figure

demonstrates that nearly all patches known for at least

115 days were revisited and displays a sharp uptake in

revisits once a patch was known for 90 days or more.

Exhibition of return behaviour overall indicates that

animals are not avoiding previous locations and that pre-

vious use may increase subsequent use, just as demon-

strated by Wolf et al. [20]. If this coefficient had been

diminished or even negative, we would expect that ani-

mals were likely moving into novel environments, not

cycling back over the season either due to range drift or

possibly resource depletion or predator avoidance. In fu-

ture research, it would be useful to explicitly evaluate

how the demonstrated increase in return probability

over time compares to probabilities extracted from sim-

ple biased random walk models (i.e. biased to a central

location, considering both mono- and multi-nuclear

models), or more advanced multi-phasic movement

models. Such a comparison of models, using empirical

data for parameterization, could be very informative and

offer a unique evaluation of current proposed models for

understanding movement and space use of large

mammals.

Traditionally, simple random-walk or diffusion models

have been used widely to model animal movement and,

dependent on the time scale in question, can provide a

realistic approximation of movement for many species

[32]. Diffusion alone however does not result in emer-

gent home-range behaviour; using a diffusion approach,

eventually the paths of an animal will expand to fill any

available extent. Diffusion models with an attraction vec-

tor to a central place (e.g. a den, a nest) can result in a

circular, unimodal, home ranges but empirical observa-

tion shows that animals’ real home ranges generally ex-

hibit multimodal use with non-circular edges [32].

Mechanistic home range models have evolved in an at-

tempt to identify and model the movement processes

that can simulate emergent multimodal utilization distri-

butions and realistic home-range boundaries (see [3,32]

for further review of recent movement and home-range

modelling). The Van Moorter et al. [5] model, predicting

Figure 2 Distribution of return frequency to clusters by (A) Individual and (B) Herd across the summer season. Histograms depicting

frequency of returns to identified foraging patches are presented for each individual cow and each herd cumulatively. These histograms

demonstrate the wide variation present across individual and herd return frequencies, potentially influenced both by differences in habitat and

behaviour across the season.
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a foraging and memory-driven model, provides a realis-

tic model for the intra-home-range movement in wild

ungulates, without requiring presupposition of home

range centers or a single attractive nuclei. Our field

observations have demonstrated repeated movements

among multiple nodes of attraction which are indicative

of memory processes, and negate simple diffusion or cen-

tral place models for ungulate home range development.

Conclusions
We have demonstrated that elk will return to foraging

patches repeatedly over the season. Return behaviour

should be driven in part by patch value, and indeed, we

show that productivity, terrain ruggedness, and proxim-

ity to road all influenced the likelihood that elk would

return to foraging patches. These results demonstrate

that the Van Moorter et al. [5] model for home-range

development appropriately characterizes key aspects of

elk foraging and movement behaviour and furthers un-

derstanding of within home range movement of free

ranging elk. Increased research into the mechanisms

driving space use and empirical evaluation of theoretical

home range models will improve our understanding of

the dynamic nature of animal space use and movements,

especially in response to human land-use change.

Methods
Study area & animals

Elk in this study ranged freely within the montane eco-

system of SW Alberta. The study area is characterized

by steep mountainous terrain to the west, abruptly tran-

sitioning in the east to rolling grasslands and agricultural

land. Seven cow elk from two herds (Waterton and

Livingston) were included in these analyses. The three

Waterton animals ranged within the boundaries of

Waterton Lakes National Park, and were predominately

associated with the Park’s northwestern hills and the

aspen forests and wetlands southeast of Lower Waterton

Lake. Tourism to the national park during summer is a

unique disturbance for animals in this herd. The four

radiocollared Livingstone animals ranged on both sides

of the Livingstone Range, an eastern ridge of the Rocky

Mountains where they encountered timber cut blocks of

varying age and dense forests dominated by lodgepole

pine (Pinus contorta) to the west, and rolling agricultural

and range lands to the east.

Clustering

To identify patches used for foraging, a retrospective

space–time permutation scan statistic (STPSS) was used

to identify clusters in the relocation data for each indi-

vidual elk using SaTScan® [33]. The scan statistic is de-

fined by a moving cylindrical window with a base in

geographic space and height defined by time. Using this

method, each relocation was considered to be the center

of a possible cluster (containing a minimum of 2 fixes)

across multiple spatial windows and at each available

time window (i.e., over 1 day, 2 days, or 3 days). The

analysis considers all relocations within a wide range of

cylinders when evaluating for clusters: everything from

relocations within tall poles, i.e. small spatial windows

but across many days, to those that might be described

to occur within wide flat discs, i.e. large spatial windows

during a single day [34]. For detailed information on the

probability function underlying this clustering method,

see Kulldorff et al. [33].

Following adaptations explained by Webb et al. [34] to

use this method with GPS relocation data, we let czd =

number of locations at geographic coordinate z during

day d, and defined C, the total number of observed GPS

elk locations, as

C ¼
X

z

X

d

czd

On day d at location z the expected number of GPS

locations (U) is

Uzd ¼
1

C

X

z

czd

 !

X

d

czd

 !

Because each relocation point in a GPS dataset is

unique, the number of GPS locations at a location z

across all days sums to one and, subsequently, Uzd =1.

Expected number of locations UA in a cylinder A is the

summation of these expectations within that cylinder:

UA ¼
X

z;dð Þ∈A

Uzd

When there is no space–time interaction, cA, the ob-

served number of locations within the cylinder, is dis-

tributed according to a hypergeometric distribution with

mean UA and probability function:

P cAð Þ ¼

X

z∈A
czd

cA

 !

N−

X

z∈A
czd

X

d∈A
czd−cA

 !

C
X

d∈A
czd

 !

When both the number of geographic locations and

the number of days within a cylinder are small compared

to C, cA is expected to be approximately Poisson distrib-

uted with mean and variance UA. As such, the evidence

that a given cylinder contains a cluster can be measured

by a Poisson Generalized Likelihood Ratio.

Elk most actively forage during crepuscular periods

[35-37] thus, to help ensure that clustering could iden-

tify patches primarily used for foraging and not some
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other activity, e.g., grooming or bedding, data from peak

hours of day and night were removed (10:00–14:00 and

22:00–2:00) prior to clustering. In addition, all resulting

clusters with a radius ≤ 15 m were removed because

these likely represent GPS error on resting or bedded

animals [23]. Three decision rules had to be made prior

to running the scan statistic: the maximum spatial win-

dow, the maximum temporal window, and permission

for geographic overlap of clusters.

Frair et al. [23] used a first-passage time analysis,

assessing how long an animal spends in an area of a

given size, to identify the scales at which three separate

movement processes occurred: resting, foraging, and

traveling from 2-hr fix data. When foraging, female elk

travelled an average of 265.7 m (42.5 m SD) between

fixes; accounting for this previous work and given the lo-

gistical constraints of our field sampling, a maximum

diameter of 300 m was chosen as an upper spatial bound

for analysis. The maximum number of sequential days

evaluated for clusters of points, i.e., the maximum tem-

poral window, was left broad: including up to 3 days of

points. Finally, within an individual scan (over the data

of one elk for a single week), no geographic overlap was

allowed between reported clusters; this is a constraint

imposed to ensure that we captured unique patches in

space.

Counting returns

After identifying the boundaries of foraging patches, we

recorded all revisits by an elk to its known patches dur-

ing the summer season. Patches were identified weekly

from telemetry data for each animal and were aggre-

gated from June-August 2012 for return analyses.

Returns to each patch were calculated for the entire dur-

ation of the summer season. Sampling began the first

week of June to reduce the likelihood of including

patches encountered on spring migration to the summer

range as these patches are unlikely to be used again

within the season.

For purposes of our analysis, a return was defined to

be a series of 2 or more sequential fixes within 300 m of

the cluster point separated by more than 3 days (i.e., 36

fixes) from the previous visit. This mirrored the spatial

rule used for defining clusters by the STPSS (maximum

300 m diameter) and required a temporal window that

would help to ensure that animals left the general area

and subsequently returned in a separate event. Elk often

spend several days encamped in one area and then re-

locate to another distant area of their home range [17];

we expected these rapid relocation events to occur

within our 3-day buffer and to separate one series of

cluster visits from another. Single fix events within the

appropriate spatial and temporal definition were denoted

as “singles” but were not assumed to represent a

foraging event. Biologically, we hypothesize these single

fix events could represent exploratory returns to assess

biomass regeneration in the presence of competing her-

bivores (e.g., cattle) but given their duration were not

considered to be a foraging return for this analysis.

To count returns to each patch, we first imposed the

spatial boundary of the patch and then tallied return

events. Distances between each relocation for an animal

and each cluster for that animal over the study period

were calculated using Geospatial Modelling Environ-

ment (GME) [38]. In Program R [39], we identified the

subset of fixes within 300 m of a cluster point. This sub-

set contained all returns to the 300 m buffer including

the foraging event originally clustered, but at this point

they are undifferentiated events (See Figure 3). To accur-

ately count the number of returns to a site, we used the

sequential fix numbers (adjusted for missing fixes) in-

cluded in the subset table to isolate clusters in time.

Figure 3 Example subset table for differentiating return events.

This example patch has received 2 returns and 1 single fix event

over the season. Note that a return can occur prior to the event

clustered by the space-time permutation scan statistic.
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Using the diff function in GME, the table was read separ-

ating events of sequential fixes. In this way, nonsequential

points outside the 3-day buffer represented start points of

events that were isolated and tallied, separating single-fix

events from multi-fix events, or returns. Based on this

method, the number of returns to an area equals the

(number of events in the area) – 1, accounting for the ori-

ginally clustered foraging event. A correction to the returns

count was needed in instances when the final record was

a single-fix return: in this case, returns equal (number of

events in the area) – 2, accounting for both the last single

event and the original cluster point.

Return analysis

Using counts of returns to a patch as our response vari-

able, we sought to model how environmental covariates

might influence an elk’s decision to return to patches

later in the season using an information-theoretic ap-

proach for model selection [40]. All covariates were

standardized to mean = 0 and SD = 1, and using mixed

negative binomial regression through the glmmADMB

package in Program R [39], we investigated which envir-

onmental covariates influenced the incidence of return

count data at 768 clusters.

Our model set included 13 biologically relevant candi-

date models to explore the influence of environmental

and anthropogenic factors on the number of times a

patch was revisited (Table 2). Ungulates move to

maximize forage intake and typically seek out areas of

intermediate biomass with highest quality and quantity

of available forage plants [41]. As such, productivity and

vegetation models were included to explain the variation

in the number of returns to a patch.

Model A tests the idea that returns are solely related

to relative productivity of the patch. Higher productivity

is expected to shorten regrowth times and provide more

available biomass over the season, potentially increasing

the number of returns occurring over the time window

by decreasing the number of days between returns. The

normalized difference vegetation index, NDVI, an index

of above-ground primary productivity, was compiled

from images collected by MODIS remote-sensing satel-

lites during May through September 2012 at a 250 m

resolution every 16 days. The mean NDVI value of all

clusters in each reporting period demonstrates the typ-

ical parabolic trend in productivity values over the sum-

mer (see Figure 4). Extracting the NDVI value at each

cluster during peak productivity (early July) allowed us

to include a covariate indicating the relative productivity

Figure 4 Boxplot demonstrating mean NDVI and its variance throughout summer. MODIS satellites retrieve imagery from the study site

every 16 days, twice each month. The 6 boxplots present the average and variance of Normalized Difference Vegetation Index (NDVI) values for

each photoperiod. These averages and variances are calculated from NDVI values reported at all clusters identified. The first reporting period of

July (July1) has the highest mean and the lowest variance making it the best choice for a parameter demonstrating relative productivity of each

cluster. The higher variance early and late in the season is likely due to timing variation of snow melt, growth, and die-off along elevation and

cover gradients all of which influence NDVI values.
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of each patch during the summer season. Elk respond to

physiogeographic features that determine where forage

is most available (e.g. ruggedness, slope, elevation, aspect).

Differences in elevation, slope, and aspect can create micro-

climates that affect localized productivity and available for-

age [23] and subsequently may affect elk movement [42].

As a secondary variable influencing productivity, north-

ness, or cos(Aspect), was used for interpretation of the cir-

cular variable aspect in models. Model B includes this

second productivity related parameter, Aspect, to assess

how hillshade may play a role in return likelihood in

addition to relative productivity (NDVI). In addition to

seeking out forage, research has shown that elk movement

can be driven by predator avoidance [23,42]. Remaining

close to or within cover is an important predator avoid-

ance strategy for elk [29]. To evaluate the influence of

cover on return frequency, CanopyClosure was extracted

from a 2005 map created by the Foothills Research Insti-

tute [43]. This cover map is a composite of remotely

sensed LandSat data with 30-m resolution on land cover

and crown closure, as well as species composition, and

agricultural and regeneration masks. Model C includes

Canopy, Aspect, NDVI, for a full vegetation model, ac-

counting for the importance of cover for predator avoid-

ance [29], and the attraction of productive forage [41].

Human disturbance from road networks potentially

acts as a deterrent to returning elk. The road network

described in a traffic model developed for our study area

[44] was used to obtain estimates for the distance to

road, DistRd, and average summer daily traffic on near-

est road, Traffic. In Waterton National Park, high levels

of tourist traffic push through the park’s few roads daily.

In Livingstone, the landscape contains small, seldom-

travelled roads. Due to the large difference in road

density and traffic between the two herds, a binary and

categorical covariate of Herd was included in models

and allowed to interact with Traffic and DistRd variables.

The Herd variable specifies whether a patch occurs

within the boundaries of the Livingstone or Waterton

herds and was included to account for differences in the

impact of roads and traffic on return likelihood to

patches across the two herds. Model D incorporates the

effect of these human disturbances as well as the base-

line productivity of a patch (NDVI) that we hypothesize

attracted returns.

The TmKnown covariate refers to the number of days

elapsed between the first ever visit to the patch by an elk

and the end of the sampling period at the end of August.

This variable accounts for the increased likelihood of

revisitation that some patches have over others in the

dataset just based on when they were first encountered

in the season and the length of our sampling period.

Additionally, this covariate has some simple biological

relevance accounting for animal learning and memory.

The longer a patch is known to an animal, and the lon-

ger we monitored returns to it, the more returns that

patch is likely to accrue. Model E added TmKnown to

the baseline productivity model (Model A). Similarly,

Model F added TmKnown to the complete vegetation

model (Model C) and Model G considers TmKnown

within the productivity and disturbance model (Model

D). These function as direct comparisons for the effect

of TmKnown on return likelihood. Interactions between

TmKnown and productivity parameters (NDVI and As-

pect) were included to test for the potential temporal

variation in the attraction of patches; it is possible that

patches might be returned to more or less over the time

they are known based on their productivity across the

summer (Model H and I).

Movement by elk is restricted by rugged terrain and

we hypothesize that the returns would be more frequent

at less-rugged patches because they likely require less

energy for travel to and within [29,44,45]. Terrain rug-

gedness, Ruggedness, was included in models to reflect

this predicted influence on movement [29]. Model J in-

cludes just Ruggedness and TmKnown, representing the

hypothesis that returns are only explained by the acces-

sibility of the patch and how long it has been known. In

a model representing landscape terrain, Model K in-

cludes both road networks and the Ruggedness of the

terrain as well as the TmKnown variable. Model L and

Model M represent combinations of the terrain model

with the productivity parameter (NDVI) and its inter-

action with TmKnown.

Individual variation in return patterns was substantial

(see Figure 2A) and ElkID was included as a random effect

in all candidate models to account for this variation. Al-

though differences in terrain ruggedness were visually

identifiable across herds, an interaction between rugged-

ness and herd was not expected to influence return fre-

quency. That is to say, the return behaviour of Livingstone

animals was not influenced differently by ruggedness than

was the behaviour of Waterton animals, despite the

greater overall ruggedness of Livingstone terrain. All of

the observed differences between herds were attributable

to the difference in tourism levels between areas and indi-

vidual variation accounted for by the random effect. Fi-

nally, the influence of the TmKnown parameter on return

likelihood was examined using a Kaplan-Meier survival

curve built using the survival package in Program R [39].
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