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Simple Summary: In this study, we propose a novel deep-learning method based on multi-stage
transfer learning (MSTL) from ImageNet and cancer cell line image pre-trained models to classify
mammographic masses as either benign or malignant. The proposed method alleviates the challenge
of obtaining large amounts of labeled mammogram training data by utilizing a large number of cancer
cell line microscopic images as an intermediate domain of learning between the natural domain
(ImageNet) and medical domain (mammography). Moreover, our method does not utilize patch
separation (to segment the region of interest before classification), which renders it computationally
simple and fast compared to previous studies. The findings of this study are of crucial importance
in the early diagnosis of breast cancer in young women with dense breasts because mammography
does not provide reliable diagnosis in such cases.

Abstract: Despite great achievements in classifying mammographic breast-mass images via deep-
learning (DL), obtaining large amounts of training data and ensuring generalizations across different
datasets with robust and well-optimized algorithms remain a challenge. ImageNet-based transfer
learning (TL) and patch classifiers have been utilized to address these challenges. However, re-
searchers have been unable to achieve the desired performance for DL to be used as a standalone tool.
In this study, we propose a novel multi-stage TL from ImageNet and cancer cell line image pre-trained
models to classify mammographic breast masses as either benign or malignant. We trained our model
on three public datasets: Digital Database for Screening Mammography (DDSM), INbreast, and
Mammographic Image Analysis Society (MIAS). In addition, a mixed dataset of the images from these
three datasets was used to train the model. We obtained an average five-fold cross validation AUC of
1, 0.9994, 0.9993, and 0.9998 for DDSM, INbreast, MIAS, and mixed datasets, respectively. Moreover,
the observed performance improvement using our method against the patch-based method was
statistically significant, with a p-value of 0.0029. Furthermore, our patchless approach performed
better than patch- and whole image-based methods, improving test accuracy by 8% (91.41% vs.
99.34%), tested on the INbreast dataset. The proposed method is of significant importance in solving
the need for a large training dataset as well as reducing the computational burden in training and
implementing the mammography-based deep-learning models for early diagnosis of breast cancer.

Keywords: multi-stage transfer learning; patchless; mammogram; classification; cancer cell line

1. Introduction

Breast cancer is the most commonly diagnosed cancer, followed by lung cancer. With
an estimated 2.3 million new cases, breast cancer accounted for 12% of the total new
cancer cases globally in 2021, according to the World Health Organization [1]. Health
institutions recommend early diagnosis with mammography, which is crucial for mitigating
the mortality rate of breast cancer [2]. Population-wide mammography screening resulting
in the earlier detection of tumors has decreased breast cancer mortality rate by 40%, as
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reported in different studies [2,3]. Nevertheless, a high recall (asking a woman to return
for additional workup after a screening mammogram) rate, which is due to significant
false-positive and false-negative rates along with non-uniformity in the availability of an
expert reader, is a major concern in mammographic breast-cancer screening [4,5]. Breast-
mass characterization, the most important finding in screening breast cancer, particularly
for women with dense breasts and under the age of 40, is where mammography fails to
perform satisfactorily and is susceptible to false-positive and false-negative results [6,7]. If
a mass is not a simple cyst, additional imaging tests such as ultrasound may be required to
determine whether it could be a cancer [7,8]. Regular mammograms and ultrasound may
take time to detect a change in some masses; therefore, a biopsy may be required to check
the patients [7,9]. These tests can result in delayed diagnosis, unnecessary procedures,
and can affect both patient experience and overall cost [10,11]. Given the importance
of mammography in breast-cancer screening, there is an obvious need for an improved
algorithm that accurately discriminates between benign and malignant mammogram
breast-mass images.

To address the need for improving mammography performance, several recent studies
have applied deep learning and highlighted two key difficulties: obtaining large amounts
of training data and ensuring the generalization of these methods across different datasets
using a robust and well-optimized algorithm that performs satisfactorily [12–18]. Many
recent studies have applied ImageNet-based transfer learning (TL) to address the issue
of unavailability of large datasets and patch-based deep-learning methods as robust algo-
rithms [19–22]. However, there are still limitations in terms of accuracy, sensitivity, and
specificity of these deep-learning methods when compared to radiologists [23,24]. Most
efforts in transfer learning have focused on applying the existing techniques that have
been applied on natural images to mammography rather than devising new ones that
are particularly suited to the domain [25–28]. Medical images have properties differing
from those of natural images [29]. For instance, in natural images, the crucial features
determining a class mostly occupy a larger portion of the image; however, the regions of
interest in medical images are usually relatively small compared to the size of whole image.
The existing off-the-shelf convolutional neural network (CNN) architectures have been
developed for natural images and do not consider the above-mentioned characteristics.
Therefore, previous studies have failed to understand how the transfer-learning architec-
tures pre-trained with natural images could be enhanced for mammograms. Furthermore,
the algorithms in previous works are computationally complex, in which patch separation
is carried out to segment the region of interest before the classification of the tumor, which
makes the model-training process computationally infeasible and time consuming [30,31].

In this study, we propose a novel deep-learning method based on multi-stage transfer
learning (MSTL) from ImageNet and cancer cell line images pre-trained models to classify
mammographic breast mass as either benign or malignant. The importance of transfer
learning is in the case of scarcity of a large training dataset, which enables a model to better
generalize for target data based on previous knowledge from other domain data. In our
case, we are supposed to have millions of mammographic breast-mass training images in
a dataset to be able to develop an algorithm that works well on previously unseen data.
However, this is not achievable because collecting and labeling millions of mammogram
images is expensive. Even if we manage the cost, there are ethical issues that arise from
using the personal information of patients, making mammogram images collected by
different organizations inaccessible. Moreover, there are limited organizations that are able
to use such a big dataset to achieve their purpose because of the computational capacity
needed for large datasets. Therefore, an alternative approach must be sought, and here is
where the usage of cancer cell lines as intermediate transfer learning stage comes to play.
Cancer cell line images are not expensive to generate in a large amount compared to other
medical images (i.e., mammogram, ultrasound, magnetic resonance image (MRI)) and there
is no issue of personal information that may arise, making it accessible compared to other
medical images. On top of that, cancer cell line images share similar features as that of



Cancers 2022, 14, 1280 3 of 23

mammogram images, so that learned features from cancer cell line images improve the
learning scheme in the target mammographic image dataset. The proposed method allevi-
ates the challenge of obtaining large-sized labeled-mammogram training data by utilizing a
large number of cancer cell line microscopic images as an intermediate domain of learning
between the natural domain (ImageNet) and medical domain (mammography). Utilizing
the cancer cell lines further improves the learning process in classifying mammographic
images because mammographic images and microscopic images share more resembling
features than natural images, which help in improving the transfer learning process. More-
over, our method does not utilize patch separation to segment the region of interest, which
makes it computationally simpler and faster compared to the previous studies.

2. Literature Review

Mammography is not only a widely used frontline modality, but also an effective
technique for breast-cancer diagnosis. Mammography plays a significant role in the early
diagnosis of breast cancer, which helps doctors to administer proper medication to their
patients such that death from breast cancer can be avoided [2,32]. Accurately distinguishing
the type of mass at the early stage of breast cancer is one of the most important tasks that
doctors carry out [6]. However, mammography is prone to incorrect diagnostic results,
particularly in early-stage breast cancer detection, because it is challenging to characterize
the breast masses at early stages [3]. This is where deep learning comes into play, wherein
a CNN, well-trained on mammogram data, is utilized to assist radiologists in deciding the
diagnostic outcomes. Various studies achieved a performance similar to, or better than,
well-trained radiologists in classifying breast mass states properly [15–17]. However, these
studies have concluded two important challenges that act as a bottleneck in the success of
deep learning for the classification of mammographic breast masses.

The first challenge is the absence of a robust deep-learning algorithm that performs
better than radiologists while being feasible for deployment in clinical setups. To address
this issue, researchers have attempted to develop appropriate deep learning algorithms
for mammographic breast-mass classification. These works can be broadly categorized
into two types: deep learning algorithms based on breast-mass patches, and patchless
(whole image) classifiers. In patchless classifiers, end-to-end deep-learning models have
been directly employed to classify the entire mammogram. The prominent approach in
patchless (whole image) classifier methods is the use of multiscale convolution kernels.
In [33], the authors have proposed a multiscale all-convolutional neural network to classify
masses using the entire mammogram. Their approach involves context-feature extraction,
followed by classification. It was observed by the authors that integrating multiple scale
features significantly increased performance while speeding up the whole process of
classification compared to traditional classifiers. Similarly, Xie et al. [34] proposed an end-
to-end deep-learning model based on a multiscale approach for classifying mammographic
mass images without patch separation. Their method requires only labeled mammogram
images for training and classification. They achieved this by generating multiscale feature
maps, which enabled the model to learn the global and local structures of the image
for classification. They reported that utilizing a multiscale approach improves not only
performance, but also the computational efficiency. However, designing a better performing
deep-learning algorithm based on patch classifiers has been studied by few researchers.
The general concept of a patch-based classifier for mammographic mass classification is
that the suspected area of the tumor, called the region of interest (ROI), is searched from
the mammogram via searching algorithms, and based on the threshold probability set, the
high-probability area of the image, which is called a patch, is extracted from the whole
image. Consequently, the classifier is trained using the selected image patch, and the status
of the mass is determined. Many studies have proven that the patch-based classification
of mammographic mass images improved classification performance compared to the
whole image-based classification. However, patch-based classifiers are computationally
infeasible because they are slow and require a large memory. Representative works using
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the patch-based approach include the work by Chougrad et al. [35] in which they used
the preselected ROI patches to train a classifier and further used transfer learning as a
means of increasing the performance. In their study, they were able to obtain the best result
with InceptionV3 fine-tuned for two convolutional blocks. Furthermore, some studies
explored the use of more patches extracted from the mammogram images as a means
of improving the performance. Lotter et al. [19] generated two different patches from a
mammogram image and fused the extracted patches to achieve improved performance
compared to a single patch-based approach. In [36], the authors proposed a two-view
mammogram classification algorithm in which the breast mass features of craniocaudal
(CC) and mediolateral oblique (MLO) views were extracted as patches and then fused
together to obtain features from the two views. By doing so, they were able to achieve the
best performance compared to the single patch-based methods.

The second challenge is the requirement of a large training dataset to achieve a high-
performance deep-learning algorithm. Obviously, it is expensive to acquire large medical
images; therefore, most of the previous studies on mammographic-mass classification
have utilized augmentation and transfer learning to overcome the challenge of finding
large training datasets. In [37], a ConvNet pre-trained on ImageNet was used to train
unregistered mammograms and classify masses. In their study, authors observed that
fine tuning using layers from the ImageNet pre-trained model improved the performance
compared to randomly initializing a model in classifying mammographic breast mass
images. Similarly, in [38], Dhungel et al. proposed the use of a deep-learning classifier for
breast-mass classification based on a network pre-trained with regression to hand-crafted
feature values and fine-tuned based on the annotations of the breast-mass-classification
dataset. Consequently, the authors demonstrated that hand-crafted feature values and
CNN with pre-trained models achieved better results than hand-crafted feature values
and CNN without pre-trained models. Furthermore, the authors in [39,40] applied transfer
learning to extract tumor information from mammogram images using models pre-trained
on the ImageNet dataset. They improved performance using transfer learning. Moreover,
to tackle the challenge of acquiring large amounts of labeled mammogram data, learning
from unlabeled data using a small amount of labeled data has been proposed in [41]. This
is a graph-oriented semi-supervised learning method where unlabeled data are gradually
labelled via computed weights. The authors achieved better performance by utilizing the
features learned from the abundant-unlabeled datasets.

In recent years, the concept of multi-stage transfer learning has become popular in
the field of computer vision, where a model pre-trained on subsequent related domains
is transferred learning to improve the learning on the target task [42]. The effectiveness
of multi-stage transfer learning has been proven in different areas of applications, in-
cluding management [42] and machine-failure detection [43]. In medical applications, a
few studies have been carried out on digital breast tomography [44], magnetic resonance
imaging (MRI) [45], X-ray [46], and computed tomography (CT) [47] image classification.
In [44], transfer learning from an ImageNet pre-trained model for the classification of
breast-digitized screen-film mammogram images followed by transfer learning from a
mammogram pre-trained model was carried out to classify digital breast tomosynthe-
sis images. The authors reported improved performance compared to the conventional
ImageNet-only pre-trained model. Similarly, multi-stage transfer learning has been re-
ported to be better than conventional transfer learning in [45–47].

3. Materials and Methods
3.1. Datasets
3.1.1. Cancer Cell Line Dataset

We used a BITS (Biomedical Imaging, Therapeutics, and Sensing Lab) microscopic
cancer cell line image dataset. The cancer-cell-line microscopic images included HeLa
(human cervical cancer cells), MCF-7 (human breast cancer cells), and NCI-H1299 (human
lung cancer cells), which were utilized within 6 months of being acquired from the Korean
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Cell Line Bank (Seoul, Republic of Korea). The cell lines were cultured in high-glucose
Dulbecco’s modified Eagle medium containing 10% fetal bovine serum and 1% penicillin
streptomycin. The prepared cells were incubated at 37 ◦C in a humidified incubator with 5%
CO2. Images were acquired using an inverted optical microscope (IX73, Olympus, Japan).
The cell lines were imaged every day for 7 days during the cell culture, and a total of 608 im-
ages were taken (247 images of HeLa, 149 images of MCF-7, and 212 images of NCI-H1299),
with 6800 patches for each cell line, totaling 20,400 patches, before the augmentation.

3.1.2. Mammography Dataset

In this study, we utilized three independent mammogram-image datasets, namely,
the Digital Database for Screening Mammography (DDSM) [48,49], INbreast [50], and the
Mammographic Image Analysis Society Digital Mammogram Database (MIAS) [51]; a
mixed dataset, which is the union of the three datasets, was used to train and evaluate our
patchless deep transfer learning model. Table 1 summarizes the datasets used in the study.

Table 1. Mammogram datasets summary.

Characteristics DDSM INbreast MIAS

Origin USA Portugal UK
Age Yes Yes No

Number of cases 2620 115 161
Views MLO and CC MLO and CC MLO

Number of images 10,480 410 322
Resolution 8 and 16 bits/pixel 14 bits/pixel 8 bits/pixel

Benign: malignant ratio 0.65:0.35 0.72:0.28 0.84:0.16
Lesion type All types of lesions All types of lesions All types of lesions
Annotation Pixel level annotation Annotation including label of individual finding Center and ROI

Breast density information Yes Yes Yes

DDSM: Digital Database for Screening Mammography, MIAS: Mammographic Image Analysis Society, USA:
United States of America, UK: United Kingdom, MLO: mediolateral oblique, CC: craniocaudal, ROI: region
of interest.

• Digital Database for Screening Mammography (DDSM): DDSM is a dataset used in
many studies involving deep learning for mammographic breast cancer diagnosis. It
is publicly available for researchers (accessible at http://www.eng.usf.edu/cvprg/
mammography/database.html (accessed on 8 September 2021)). It is the largest
publicly available database and has 2620 cases of mediolateral oblique (MLO) and
craniocaudal (CC) views of both breasts, for a total of 10,480 images. The images
include all types of findings, from normal images to images with benign and malignant
lesions. It includes patient information, such as age, and has breast imaging reporting
and data system (BI-RADS) annotations and breast-density annotations based on the
American College of Radiology (ACR). The images are annotated as a pixel-level
boundary of the findings.

• INbreast: The INbreast dataset is composed of full-field mammography images ac-
quired between April 2008 and July 2010 from the Breast Center in CHSJ, Porto.
INbreast is another popular publicly available dataset (accessible at https://biokeanos.
com/source/INBreast (accessed on 8 September 2021)). with 410 images, including
115 cases, of which 90 cases are with MLO and CC views of each breast and 25 cases are
from only one breast collected from women who underwent mastectomy. The dataset
involves all types of findings. Information about the age of patients and family history
as well as BI-RADS classification and ACR breast density annotations are provided.
Biopsy results for BI-RADS 3, 4, 5, and 6 cases are also included. This dataset has
strong annotation, including the labels of individual findings.

• The Mammographic Image Analysis Society’s digital mammogram database (MIAS):
MIAS is the oldest mammographic image dataset that has been used to develop
many deep-learning algorithms for breast cancer diagnosis (accessible at http://peipa.

http://www.eng.usf.edu/cvprg/mammography/database.html
http://www.eng.usf.edu/cvprg/mammography/database.html
https://biokeanos.com/source/INBreast
https://biokeanos.com/source/INBreast
http://peipa.essex.ac.uk/info/mias.html
http://peipa.essex.ac.uk/info/mias.html
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essex.ac.uk/info/mias.html (accessed on 8 September 2021)). MIAS is a dataset with
161 cases with MLO views only, constituting 322 digitized images. It involves all types
of findings, including benign and malignant lesions as well as normal images. It
possesses breast-density information that is not classified according to ACR standards.
The annotation was performed in such a way that the center and radius of a circle
around the area of interest are provided.

• Mixed dataset: The mixed dataset was formulated by mixing the three datasets (DDSM,
INbreast, and MIAS) to investigate the robustness of the proposed method for datasets
from different sources. The mixed dataset was formed in such a way that all the breast
mass images from DDSM, INbreast, and MIAS datasets are added together to form
a larger, diversified dataset. The benign images from the three datasets formed a
benign mixed dataset whereas the malignant images from the three datasets formed a
malignant mixed dataset.

3.1.3. Dataset Size and Categories

The study cohort was prepared by extracting the breast-mass images from all three
dataset sources to form a mammographic breast mass image sub-dataset for the three
independent datasets. Consequently, 2188 cases from DDSM, 106 cases from INbreast, and
53 cases from MIAS were extracted. Subsequently, augmentation was carried out to increase
the number of datasets for improved feature learning. This increases the dataset size to
13,128 images of DDSM, 7632 images of INbreast, and 3816 images of MIAS mammographic
breast mass image datasets. Additionally, a mixed dataset, consisting of a union of the three
datasets comprising 24,576 mammographic-breast-mass images was prepared to study the
robustness of the proposed model across a mixed dataset of different sources. Finally, each
dataset was categorized into a 6:2:2 ratio for training, validation, and testing, respectively,
as shown in Table 2.

Table 2. Dataset categories.

Dataset Category Sub-Category Dataset Size Validation Test

DDSM
Benign - 3582 1194 1194

Malignant - 4293 1431 1431

INbreast
Benign - 1512 504 504

Malignant - 3066 1022 1022

MIAS
Benign - 1422 474 474

Malignant - 864 288 288

Mixed

Benign

DDSM 3582 1194 1194
INbreast 1512 504 504

MIAS 1422 474 474
Total 6516 2172 2172

Malignant

DDSM 4293 1431 1431
INbreast 3066 1022 1022

MIAS 864 288 288
Total 8233 2741 2741

DDSM: Digital Database for Screening Mammography, MIAS: Mammographic Image Analysis Society.

3.2. Pre-Processing

The pre-processing (see Figure 1) performed on the cancer cell line images includes
adaptive thresholding to binarize the acquired image, followed by selecting the area of
interest using OpenCV bounding box [52]. To prevent the outline of a small floating object
other than the cell from being detected, an object with less than a certain number of pixels
(100 × 100 pixels) is removed using the remove_small_objects function of Scikit-image.
The selected cell region was extracted as an input image for learning and validation with
a size of 300 × 300 pixels. By segmenting 608-cell bright-field images obtained through
the microscope, 6800 images of each cell line were randomly chosen to form a total of 20,

http://peipa.essex.ac.uk/info/mias.html
http://peipa.essex.ac.uk/info/mias.html
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400 datasets. The cancer-cell-line data were categorized using a 7:2:1 ratio for training,
validation, and test sets (that is, 14,280 for training, 4080 for validation, and 2040 for
test). The training data were further augmented (via rotation, width and height shift, and
vertical flip (vertical flip is preferred over horizontal flip for microscopic images because
microscopic images are inverted)) to increase the training dataset size to 28,560 images.
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Figure 1. Cancer cell line image acquisition and pre-processing.

The mammogram images were augmented [53], including horizontal shift, vertical
shift, horizontal flip, vertical flip, and random rotation augmentations, as shown in Figure 2.
Furthermore, contrast-limited adaptive histogram equalization was performed on the
images. The mammographic images were originally of different pixel sizes and were
resized to a uniform size of 227 × 227 pixels.
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3.3. The Deep-Learning Method

We developed a novel deep-learning method based on multi-stage transfer learning
from ImageNet [54] and a pre-trained cancer cell line image model to classify mammo-
graphic breast masses as either benign or malignant, as shown in Figure 3. A multi-stage
transfer learning process was designed in such a way that a model trained on the ImageNet
dataset for classifying the natural images into 1000 classes is used as a pre-trained model to
classify the cancer cell line images into three classes, namely, breast cancer, cervical cancer,
and lung cancer, via transfer learning with a slight modification. Consequently, this model,
pre-trained on cancer cell line images to classify them into three classes, was in turn used as
a pre-trained model to classify mammography breast-mass images into two classes: benign
and malignant.
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We utilized a modified version of EfficientNetB2 [55] CNN architecture. In general,
the EfficientNet models perform well in terms of both accuracy and efficiency, compared
to existing CNNs, while lowering the parameter size and floating-point operations per
second (FLOPS) by an order of magnitude. For instance, compared with the widely used
ResNet, EfficientNet improves the accuracy of ImageNet by 6.3% using a similar FLOPS.
EfficientNet performs better because it uniformly scales every dimension with a constant
set of scaling coefficients in contrast to conventional approaches, which promptly scale
network dimensions including width, depth, and resolution [55]. EfficientNet models
outperform the other models with state-of-the-art accuracy and up to ten times better
efficiency (smaller and faster) [55].

We modified the EfficientNetB2 network to enable it to provide a vector of binary
labels indicating the possible type of mammography breast mass images. To do so, we used
the ImageNet pre-trained EfficientNetB2 model and modified it to use it as a pre-trained
model to classify the cancer cell line images into three classes. To modify the model, we
changed the input layer for the appropriate cancer cell line image size and resolution.
Subsequently, the average pooling on the original EfficientNetB2 model was replaced
with global average pooling, and one additional fully connected layer was added with
a Softmax output layer as shown in Figure 3. This model, pre-trained on the cancer cell
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line images, was subsequently used as a pre-trained model with a modification to classify
mammography breast mass images as benign or malignant. The modifications include the
application of a dropout along with the addition of three dense layers and a Softmax, as
shown in Table 3. The final output is the probability distribution of the two classes.

Table 3. Model additional layers size.

Layer Type Input Output

Input Layer 16 × 227 × 227 × 3 16 × 227 × 227 × 3
EfficientNetB2 Load EfficientNetB2 from Keras and remove classifier & input Layer

Global Average Pooling 16 × 7 × 7 × 1408 16 × 1408
Fully Connected Layer1 with L2 16 × 1408 16 × 1024

Fully Connected Layer2 16 × 1024 16 × 8
Fully Connected Layer3 16 × 8 16 × 8

Softmax 16 × 8 16 × 2

3.4. Implementation Details

We trained EfficientNetB2 model with pre-trained weights from ImageNet as well
as cancer cell line images. A careful study of the hyper-parameters effect resulted in the
best choice of model parameters. In order to do so, we picked three state-of-the-art CNN
architectures, including ResNet50, InceptionV3, and EfficientNetB2 architectures and three
optimizers, including stochastic gradient descent (SGD), Adam, and Adagrad. Using the
same parameters, such as batch size, learning rate, epoch number, and other parameters,
we carried out a preliminary study to pick the best model and optimizer combination.
Consequently, the combination of the EfficientNetB2 model and the Adagrad optimizer
resulted in a relatively better result on all three datasets. Following this, we carried out
optimization for the EfficientNetB2–Adagrad combination by varying parameters such as
batch size, learning rate, epoch number, optimizers, and others.

Along these lines, we report the parameter values that achieved the best results. Our
EfficiebtNetB2 model was trained for 150 epochs using Adagrad with a momentum of 0.96.
We set the dropout rate to 0.6 and the initial learning rate to 0.001, which subsequently
decayed exponentially.

After fixing the different parameters of our model, we carried out improvement
involving arrangement of the datasets. We have employed two dataset categorization
approaches in which we have categorized our datasets in to 7:2:1 and 6:2:2 ratios for
training, validation and tests. Based on the results from the studies, we decided to use the
6:2:2 ratio as it involves greater size of the test dataset and the results were comparable.
Then, we performed the same procedure to generate the results reported in this paper using
the nested 5-fold cross-validation for each of the training, validation, and test partitions.

The deep-learning model was implemented on RTX 3090 GPUs. The model was
trained for 150 epochs at each TL stage, which was selected after careful study using early
stopping and a fixed epoch of 150, as shown in Table 4. We ran our model using early
stop with two patience values, 5 and 10, with respect to loss (that is, whether the loss is
constant or decreasing for five consecutive iterations). With both patience values of 5 and
10, the model found its optimal value of epochs to be 150. However, when the model runs
for both early stop and a fixed epoch of 150, the loss is relatively low for the fixed epoch;
consequently, we chose a fixed epoch of 150. The training batch size was set to 16.
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Table 4. Results of learning using early stop and fixed epoch.

Dataset Training Condition Validation Accuracy Loss Stopping Epoch

DDSM
Early stop with patience = 5 100 0.65 150
Early stop with patience = 5 99.97 0.64 150

Fixed epoch of 150 100 0.05 150

INbreast
Early stop with patience = 5 99.93 0.078 150
Early stop with patience = 5 99.93 0.08 150

Fixed epoch of 150 99.93 0.078 150

MIAS
Early stop with patience = 5 99.92 0.87 150
Early stop with patience = 5 99.92 0.87 150

Fixed epoch of 150 99.92 0.86 150

Mixed dataset
Early stop with patience = 5 99.95 0.05 133
Early stop with patience = 5 99.98 0.07 150

Fixed epoch of 150 99.98 0.07 150

3.5. Experimental Settings
3.5.1. Patchless Multi-Stage Transfer Learning Evaluation Experimental Settings

The proposed patchless multi-stage transfer-learning method was employed using
three independent datasets, and performance metrics based on 5-fold cross validation were
recorded. The EfficientNetB2 architecture with the Adagrad optimizer was used to evaluate
the performance of the proposed method. The implementation details are as discussed in
the previous section (see Section 3.4).

3.5.2. The Dataset and Algorithm Wise Robustness Analysis Settings

Two evaluations were performed to determine the robustness of the proposed method
for a dataset from different sources in terms of the acquisition device, type of image, and ge-
ographical location of the data sources. The evaluations were also performed to determine
the algorithm-wise robustness of the proposed model over different architectures proposed
by various researchers. Therefore, we mixed the datasets from the three sources, i.e., DDSM,
INbreast, and MIAS, to form a mixed mammogram dataset. The implementation details
of the proposed method on the mixed dataset were the same as those of the individual
datasets. We categorized individual datasets into a 6:2:2 ratio for training, validation, and
random testing. Following this, we mixed each training dataset from the three independent
datasets to form a mixed training dataset. The same procedure as that of the mixed training
dataset was followed to form the validation and test mixed datasets. This forms a dataset
categorized as training, validation, and testing with a ratio of 6:2:2. The remainder of the
processing was the same as that of the individual datasets.

Furthermore, the algorithm-wise robustness analysis of the proposed patchless multi-
stage transfer learning model was performed using two additional CNN models, ResNet50 [56]
and InceptionV3 [57], and two additional optimizers, Adam and SGD optimizers [58]. For
both ResNet50 and InceptionV3 models, the same modification as that of EfficientNetB2
were employed, that is, a dropout along with the addition of two dense layers in place of
the original model’s final layer and a sigmoid function in place of Softmax. The models
were trained for 150 epochs with Adam and SGD with a momentum of 0.96, similarly to
the EfficentNetB2 and Adagrad model. The same dropout rate of 0.6 and an initial learning
rate of 0.001, which subsequently decayed exponentially, were used. The dataset settings
were also the same to ensure unbiased comparison.

3.5.3. Comparison of the Proposed Multi-Stage Transfer Learning (MSTL) Method against
the Conventional Transfer Learning (CTL) Method Settings

Evaluation of our multi-stage transfer-learning method by comparing it with the
conventional ImageNet-based transfer learning was performed by choosing the CNN
model and optimizer reported to be the best-performing by previous papers [19,21,22].
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Consequently, the ResNet50 architecture and Adam optimizer were utilized for comparison
in this study. In the case of conventional transfer learning, the ImageNet-pre-trained
ResNet50 model with Adam optimizer was used to classify mammographic breast mass
images on the three datasets as well as on a mixed dataset. The ImageNet pre-trained
ResNet50 model was modified in such a way that the average pooling layer changed into
global average pooling and the Softmax layer changed into a sigmoid layer. The model was
trained for 150 epochs using a training batch size of 16. All the weights were frozen during
training, except for the last layer.

3.5.4. Comparison against Patch and Whole Image Classifier Settings

Li Shen et al. proposed a deep-learning algorithm in which a model that classifies
local image patches is pre-trained on a well-annotated dataset with ROI information [31].
The weight parameters of the patch classifier are then utilized to initialize the weight
parameters of the entire image classifier, which can be further fine-tuned using datasets
without ROI annotations. In [30], the authors used a DDSM dataset to construct the patch
and whole image classifier, and then employed it on the INbreast dataset as the whole
image classifier. Following the same procedure, we deployed a patch and whole-image
classifier using ResNet50 architecture and Adam optimizer as in [31] and compared its
performance against our proposed patchless method using the same architecture and
optimizer, that is, ResNet50 and Adam. The DDSM dataset was utilized for training, and
the INbreast dataset was utilized for testing, as in [31].

3.5.5. Evaluation and Statistical Analysis

To evaluate the proposed patchless MSTL method, performance analysis in terms of
the area under the ROC curve (AUC) [59], specificity, sensitivity, and F1 measure were
additionally employed to test accuracy [60]. These performance metrics were evaluated by
averaging over five-fold, nested cross-validation results [61]. The five-fold cross-validation
shuffles data randomly and then divides it into five equally sized subsets that help to
combat the risk of having a model that works well on training data but fails on the data it
has never seen before. We also performed Student’s t-test [62] to evaluate the significance
of the improvement from using our method against the conventional ImageNet-based
transfer learning, which is widely used in different studies.

4. Results

We evaluated the performance of the proposed method by training and testing it
with image datasets from three sources, namely, DDSM, INbreast, and MIAS datasets, as
well as a mixed dataset from the three sources. The results, which were calculated using
F1 measure, AUC, test accuracy, sensitivity, and specificity, are summarized in Table 5.
Generally, the proposed model performed well on the DDSM dataset, as expected, because
of the large size of the training dataset. Moreover, the model’s higher performance was
recorded from the mixed dataset following the DDSM dataset. The reason for this may be
that the model leverages the richness of information using datasets from different sources
to learn more features. The higher performance of the mixed dataset implies the robustness
of the proposed model across different datasets from different sources.

Table 5. Performance summary of patchless multi-stage transfer learning based on EfficientNetB2
architecture with Adagrad optimizer.

Dataset F1 AUC Test Accuracy Sensitivity Specificity

DDSM 1 1 1 1 1
INbreast 0.9995 0.9994 0.9993 0.9996 0.9992

MIAS 0.9989 0.9993 0.9992 0.9987 1
Mixed 0.9998 0.9998 0.9998 1 0.9997

AUC: area under receiver operating curve; DDSM: Digital Database for Screening Mammography; MIAS: Mam-
mographic Image Analysis Society database.
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4.1. Results on DDSM

We found that our proposed method effectively distinguished between malignant and
benign breast-mass images in the DDSM dataset with an average 5-fold cross-validation F1
score of 1, AUC of 1, test accuracy of 1, sensitivity of 1, and specificity of 1. The proposed
method misclassified no image among the test images involving all the cases. Figure 4a
shows the learning curve for the classification of benign and malignant breast- mass images
for the DDSM dataset.
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4.2. Results on INbreast

We found that our proposed method effectively distinguished between malignant and
benign breast-mass images in the INbreast dataset with an average 5-fold cross validation F1
score of 0.9995, AUC of 0.9994, test accuracy of 0.9993, sensitivity of 0.9996, and specificity
of 0.9992. Figure 4b shows the learning curve for the classification of benign and malignant
breast mass images.

4.3. Results on MIAS

We found that our proposed method effectively distinguished between malignant and
benign breast mass images in the MIAS dataset with an average 5-fold cross validation of F1
score of 0.9989, AUC of 0.9993, test accuracy of 0.9992, sensitivity of 0.9987, and specificity
of 1. Figure 4c shows the learning curve for the classification of benign and malignant
breast mass images.
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4.4. Robustness Analysis Using Mixed Dataset

The performance of deep-learning models must be consistent and reproducible over
mammograms obtained from different sources with mammography devices from various
vendors to be used in clinical settings. A close evaluation of the performance of deep-
learning algorithms across various devices is necessary because different devices from
different vendors follow their own systems in generating the images for usage. This has a
significant effect on the generalization of CNN models for mammography images from
different sources. To evaluate the robustness of the proposed method over different dataset
sources, we also trained and tested the proposed model on a mixed dataset from the three
dataset sources, that is, DDSM, INbreast, and MIAS. We found that our proposed method
effectively distinguished between malignant and benign breast mass images in the mixed
dataset with an average 5-fold cross validation F1 score of 0.9998, AUC of 0.9998, test
accuracy of 0.9998, sensitivity of 1, and specificity of 0.9997. Figure 4d shows the learning
curve for the classification of benign and malignant breast mass images.

4.5. Robustness Analysis Using Other CNN Architectures and Optimizers

We have also employed our multi-stage transfer-learning method using different
models and optimizers, as shown in Table 6, to examine the robustness and possible
extension of our method to other state-of-the-art deep-learning algorithms using additional
ResNet50 and InceptionV3 models as well as Adam and SGD optimizers. By doing so, we
observed that our model performed consistently across other CNN models and optimizers,
providing results close to those obtained using the EfficientNetB2–Adagrad combination.
Notably, the EfficientNetB2–Adagrad combination showed the highest test accuracy across
all datasets, with a test accuracy of 1 for DDSM, 0.9995 for INbreast, 0.9989 for MIAS, and
0.9998 for mixed datasets. However, for the DDSM dataset, even the ResNet50–Adagrad
combination achieved the same test accuracy of 1 compared to the EfficientNetB2–Adagrad
combination. This implies that the proposed method reproduces higher results, irrespective
of utilizing different model and optimizer combinations.

Table 6. Results of robustness analysis of the proposed system across different CNN models
and optimizers.

Dataset CNN-Optimizer
Combination F1-Score AUC Test Accuracy Sensitivity Specificity

DDSM

EfficientNetB2-Adagrad 1.0 1 1.0 1.0 1.0
EfficientNetB2-Adam 0.99993 0.99993 0.99992 1.0 0.99986
EfficientNetB2-SGD 1.0 1.0 1.0 1.0 1.0
ResNet50-Adagrad 1.0 1.0 1.0 1.0 1.0

ResNet50-Adam 0.94108 0.89991 0.90898 0.79983 1.0
ResNet50-SGD 0.99986 0.99986 0.99984 1.0 0.99972

InceptionV3-Adagrad 1.0 1.0 1.0 1.0 1.0
InceptionV3-Adam 0.88227 0.8 0.81809 0.6 1.0
InceptionV3-SGD 1.0 1.0 1.0 1.0 1.0

INbreast

EfficientNetB2-Adagrad 0.99951 0.99941 0.99934 0.99960 0.99921
EfficientNetB2-Adam 0.99872 0.99802 0.99829 0.99722 0.99882
EfficientNetB2-SGD 0.99664 0.99637 0.99554 0.99880 0.99393
ResNet50-Adagrad 0.99892 0.99821 0.99855 0.99722 0.99921

ResNet50-Adam 0.97055 0.96968 0.96371 0.98730 0.95209
ResNet50-SGD 0.99647 0.99486 0.99528 0.99365 0.99608

InceptionV3-Adagrad 0.99793 0.99764 0.99724 0.99880 0.99647
InceptionV3-Adam 0.99786 0.99603 0.99711 0.99285 0.99921
InceptionV3-SGD 0.99892 0.99852 0.99855 0.99841 0.99863



Cancers 2022, 14, 1280 14 of 23

Table 6. Cont.

Dataset CNN-Optimizer
Combination F1-Score AUC Test Accuracy Sensitivity Specificity

MIAS

EfficientNetB2-Adagrad 0.99896 0.99936 0.99921 0.99873 1.0
EfficientNetB2-Adam 0.99860 0.99874 0.99895 0.99957 0.99791
EfficientNetB2-SGD 0.99310 0.99564 0.99475 0.99199 0.99930
ResNet50-Adagrad 0.99193 0.99242 0.99396 0.99873 0.98611

ResNet50-Adam 0.95908 0.96780 0.96825 0.96962 0.96597
ResNet50-SGD 0.99235 0.99365 0.99422 0.99536 0.99236

InceptionV3-Adagrad 0.99614 0.99645 0.99711 0.99915 0.99375
InceptionV3-Adam 0.99450 0.99608 0.99580 0.99494 0.99722
InceptionV3-SGD 0.99476 0.99554 0.99606 0.99831 0.99236

Mixed

EfficientNetB2-Adagrad 0.99985 0.99985 0.99983 1.0 0.99970
EfficientNetB2-Adam 0.99919 0.99913 0.99910 0.99935 0.99890
EfficientNetB2-SGD 0.99926 0.99926 0.99918 0.99990 0.99861
ResNet50-Adagrad 0.99905 0.99893 0.99894 0.99889 0.99897

ResNet50-Adam 0.93016 0.88472 0.89688 0.77956 0.98986
ResNet50-SGD 0.99766 0.99737 0.99739 0.99714 0.99759

InceptionV3-Adagrad 0.99828 0.99806 0.99808 0.99788 0.99824
InceptionV3-Adam 0.88094 0.79390 0.81700 0.59410 0.99365
InceptionV3-SGD 0.99821 0.99797 0.99800 0.99769 0.99824

SGD: stochastic gradient descent; CNN: convolutional neural network; AUC: area under receiver operating curve;
DDSM: Digital Database for Screening Mammography; MIAS: Mammographic Image Analysis Society database.

4.6. Comparison of the Proposed Multi-Stage Transfer Learning (MSTL) Method with
Conventional Transfer Learning (CTL)

We calculated the p-value of the t-test to determine the significance of the improvement
due to the usage of cancer cell images in the second stage of our MSTL to compare it with
the CTL (Table 7). We implemented conventional transfer learning by using the ResNet50
CNN and Adam optimizer based on the highest performance reported for conventional
transfer learning by previous popular works in mammography [19,31]. Note that the
ResNet50–Adam combination is not the best-performing model in our case. However, to
be able to use the best practice for the CTL as reported in previous works, we compare our
method and the CTL method based on the ResNet50–Adam combination. We considered
the average five-fold cross-validation test accuracy results of each dataset as a single entry
to obtain the p-value. The resulting p-value was 0.044 (that is, a probability of 4.4% that the
improvement in performance from using our method will be false), which is less than the
standard 0.05 (that is, 5%) significance cut-off p-value. This shows that our MSTL achieved
a significant improvement in classifying mammographic breast mass images on all the
datasets that were used, compared to the CTL that was based on the non-best practice
in our case. Furthermore, we compared the CTL best practice with our proposed best
model to determine the statistical significance of the accuracy improvement achieved by
using our best model. The resulting p-value was 0.00294 (that is, a probability of 0.294%
that the improvement in performance from using our method will be false), which is far
less than 0.05 (that is, 5%), the standard significance cut-off p-value. This shows that our
MSTL made a significant performance improvement in classifying mammographic breast
mass images on all the datasets that were used, compared to CTL. Moreover, the proposed
patchless multi-stage transfer-learning method outperformed the patch classifier-based
model in both cases (using the best practice for patch classifiers based on the ResNet50 and
Adam optimizer, as well as using our best model based on EfficientNetB2 and Adagrad) on
individual datasets. On the DDSM dataset, the ResNet50–Adam model-based patchless
multi-stage TL method, with a test accuracy of 90.898%, achieved 5% more accuracy than
the patch-based classifier, which demonstrated a test accuracy of 85.723%. Similarly, our
best model based on EfficientNetB2–Adagrad, with a test accuracy of 100%, achieved 14%
more accuracy than the best practice using a patch classifier, which demonstrated a test
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accuracy of 85.723%. The same was observed using the other datasets also. Furthermore,
the proposed method was computationally feasible compared to the conventional transfer
learning method, with a relatively smaller training time, as shown in Table 7. For the
same architecture and optimizer (ResNet50 and Adam), the proposed method training
time was 1.709594928 h while the training time for the conventional transfer learning was
1.833570639 h, averaged over the four datasets. Here, the network sizes are almost the
same except for the conventional transfer learning; the last pooling layer of the original
ResNet50 architecture has been replaced with a new global pooling layer followed by one
fully connected layer, whereas in the multistage transfer learning, two additional fully
connected layers and a drop-out layer were added to the original architecture. The training
time was even smaller for the proposed method using EfficientNetB2 and Adagrad, with a
training time of 1.561507118 h, averaged over the four datasets.

Table 7. Comparison of the proposed multistage transfer learning against conventional transfer learning.

Model Dataset Type CNN Architecture Optimizer Time (h)
Five-Fold Cross
Validation Test
Accuracy (%)

Best practice
Conventional TL

DDSM ResNet50 Adam 1.846567529 85.723
INbreast ResNet50 Adam 1.824081421 83.566

MIAS ResNet50 Adam 1.805489539 90.670

Mixed ResNet50 Adam 1.858144065 86.335

Multistage TL with the
same set up as CTL

DDSM ResNet50 Adam 1.711060605 90.898
INbreast ResNet50 Adam 1.708678728 96.371

MIAS ResNet50 Adam 1.694282732 96.825

Mixed ResNet50 Adam 1.724357648 89.688

Multistage TL with
our best model

DDSM EfficientNetB2 Adagrad 1.60336038 100
INbreast EfficientNetB2 Adagrad 1.51702123 99.934

MIAS EfficientNetB2 Adagrad 1.50130263 99.921

Mixed EfficientNetB2 Adagrad 1.62434423 99.983

CNN: convolutional neural network; TL: transfer learning; CTL: conventional transfer learning; DDSM: Digital
Database for Screening Mammography; MIAS: Mammographic Image Analysis Society database; hr.: hour.

4.7. Comparison of the Proposed Method with Patch and Whole Image Classifier

We developed a patch and whole-image classifier based on [31] and compared its
performance with that of our proposed patchless method. In doing so, we used the same
model and optimizer as in [31], which is based on the ResNet50 CNN and Adam optimizer.
Moreover, we trained our model on the DDSM dataset and tested it on the INbreast
dataset following the setup in [31]. Consequently, the patch and whole image classifier
achieved a 5-fold cross validation average test accuracy of 91.41%, whereas the proposed
patchless method achieved a 5-fold cross validation average test accuracy of 99.34% on the
INbreast dataset (see Table 8). This demonstrates that our patchless approach performs
better than patch- and whole image-based methods. Moreover, the proposed method
reduced computational complexity by converging faster than the patch- and whole-image
classifier, resulting in a shorter training time. The training time for the proposed method
was 1.734480832 h, whereas the training time for the patch-and whole image classifier was
2.043398834 as reported in Table 8. For the patch and whole-image method network, we
utilized original ResNet50 architecture where the last pooling layer was replaced with a
spatial pyramid pooling layer followed by a flattening layer and two fully connected layers.
The proposed patchless multistage transfer learning method utilized the original ResNet50
model where the last pooling layer is replaced with a global pooling layer, followed by a
drop-out and three fully connected layers.
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Table 8. Comparison of the proposed patchless multistage transfer learning method against the patch
and whole-image classifier.

Fold Number
Patch and Whole Image Classifier Proposed Patchless Multistage Transfer

Learning Method

Accuracy (%) Time (h) Accuracy (%) Time (h)

Fold 1 98.165 2.1730723 99.213 1.714756812
Fold 2 77.129 2.12583438 99.737 1.757123122
Fold 3 87.614 2.10610313 99.344 1.736005956
Fold 4 94.695 2.09312669 99.279 1.730858592
Fold 5 99.476 1.71885766 99.017 1.733659677

Average 91.416 2.043398834 99.344 1.734480832

5. Discussion

Failure to accurately identify the state of breast mass widely causes false positive and
false negative findings in the early diagnosis of breast cancer using mammography, calling
for unnecessary biopsy and diagnosis using other imaging modalities. To address this
issue, we developed a patchless multi-stage transfer-learning model to accurately classify
mammographic breast masses as benign or malignant. In our model, a well-established Effi-
cientNetB2, pre-trained on the ImageNet dataset to classify natural images into 1000 classes,
is used via transfer learning with the necessary modifications to classify cancer cell line
images into three categories. This model, which was trained on both ImageNet and cancer
cell line images, is used as a pre-trained model for classifying mammographic breast mass
images as benign or malignant by fine-tuning it with modifications on the network. The
proposed model was implemented using three publicly available mammography datasets:
DDSM, INbreast, and MIAS, as well as a mixture of these three datasets. The proposed
model, based on the EfficientNetB2 architecture and Adagrad optimizer, achieved AUCs
of 1, 0.9994, 0.9993, and 0.9998 for DDSM, INbreast, MIAS, and mixed datasets, respec-
tively. Moreover, the proposed patchless multi-stage transfer-learning method performed
better than the models using conventional transfer-learning methods (that is, models only
pre-trained on ImageNet before being utilized for classifying mammographic breast-mass
images). The performance improvement of our model was statistically significant; our
model provided a p-value of 0.00294 over the best-performing conventional ImageNet-
based transfer learning model. Furthermore, our patchless approach performed better than
the patch- and whole image-based method improving accuracy by 8% (91.41% vs. 99.34%),
tested on the INbreast dataset.

Representative deep-learning studies related to the classification of mammographic
breast mass using the datasets in our study are summarized in Table 9, which shows
that our patchless multi-stage transfer-learning method outperforms most of the state-
of-the-art methods implemented using the same dataset. Among the studies that used
the DDSM dataset, Al-masni et al. [22] reported an AUC of 0.9645 and an accuracy of
96.33%; Al-antari et al. [21] reported a maximum accuracy of 97.5% among the different
architectures they used; Chougrad et al. [35] reported an AUC of 0.98 and an accuracy of
97.35%; Lotter et al. [14] reported an AUC of 0.92; and our proposed method achieved
an AUC of 1 and a test accuracy of 1. Among the studies carried out using the INbreast
dataset, Al-antari et al. [21] reported a maximum accuracy of 95.32% among the different
architectures used; Ribli et al. [63] reported an AUC of 0.95, Chougrad et al. [35] reported
an AUC of 0.97 and an accuracy of 95.5%; Dhungel et al. [38] reported a maximum AUC of
0.91 and a maximum accuracy of 95%; whereas our proposed method achieved an AUC of
0.9994 and a test accuracy of 0.9993. Furthermore, among the studies performed using the
MIAS dataset, Chougrad et al. [35] reported an accuracy of 98.23% and an AUC of 0.99, and
Saraswathi and Srinivasan et al. [64] reported an accuracy of 94.7%, whereas our proposed
method achieved an AUC of 0.9993 and a test accuracy of 0.9992. From these comparisons,
it can be inferred that our proposed method outperforms state-of-the-art methods trained
and tested using the same datasets, even though there are differences in the experimental
settings of these previous studies and our study.
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Table 9. Comparison of the proposed multistage transfer learning method with the state-of-the-art mammographic breast cancer classification methods.

Paper Application Image Dataset Dataset Size Model Validation CNN Model AUC Accuracy (%)

Al-masni et al. [22] Classification DDSM 600 with augmentation 5-fold CV CNN, F-CNN 0.9645 96.33

Al-antari et al. [21] Classification DDSM, INbreast
9240 DDSM and 2266

INbreast with
augmentation

5-fold CV CNN, ResNet50,
InceptionResNet-V2

CNN = 0.945,
ResNet-50 = 0.9583,

and InceptionResNet-V2 = 0.975
on

DDSM and CNN = 0.8767,
ResNet50 = 0.9233, and

InceptionResNet-V2 = 0.9391 on
INbreast

CNN = 94.5,
ResNet-50 = 95.83,

and InceptionResNet-V2 = 97.5
on

DDSM and CNN = 88.74,
ResNet50 = 92.55, and

InceptionResNet-V2 = 95.32 on
INbreast

Ribli et al. [63] Classification DDSM, SUD, INbreast 2949 with augmentation NA Faster RCNN 0.95 NA

Chougrad et al. [35] Classification DDSM, BCDR, INbreast,
mixed, MIAS 6116 with augmentation 5-fold CV Deep CNN

0.98 on DDSM, on 0.96 BCDR,
0.97 on INbreast, and 0.99 on

MIAS

97.35 on DDSM, on 96.67 BCDR,
95.50 on INbreast, and 98.23 on

MIAS

Lotter et al. [14] Classification DDSM 10,480 with
augmentation CV by patient Wide ResNet 0.92 NA

Dhungel et al. [38] Classification INbreast 410 without
augmentation 5-fold CV CNN, RF, BO 0.69–0.76 MUI, 0.8–0.91 MS Maximum of 95%

Saraswathi &
Srinivasan [64] Classification MIAS 322 without

augmentation 10-fold CV FCRN NA 94.7

The proposed
method Classification DDSM, INbreast,

MIAS, mixed

13,128 DDSM, 7632
INbreast, and 3816

MIAS. 24,576 mixed
5-fold CV EfficientNetB2

1 on DDSM, 0.9995 on INbreast,
0.9989 on MIAS, and 0.9998 on

mixed dataset

100 on DDSM, 99.93 on INbreast,
99.92 on MIAS, and 99.98 on

mixed dataset

CNN: Convolutional Neural Network; AUC: area under receiver operating curve; CV: cross-validation; DDSM: Digital Database for Screening Mammography; SUD: Semmelweis
University dataset; F-CNN: Fourier Convolutional Neural Networks; NA: not available; Faster RCNN: faster region-based convolutional neural network; BC: breast cancer; BCDR: breast
cancer digital repository; MIAS: Mammographic Image Analysis Society database; DM: digital mammograms; DCNN: Deep Convolutional Neural Network; MIAS: Mammographic
Image Analysis Society database; RF: Random Forests; MUI: minimal user intervention; MS: manual set-up; BO: Bayesian optimization; FCRN: Fully complex-valued relaxation
neural network.
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Most of the popular works in the area of deep learning for mammographic breast
cancer images involve patch classification, where finding the region of interest is performed
using moving windows, and the patches made with these moving windows are used
as input for training the deep-learning algorithms. Despite their success in improving
performance, these algorithms are computationally complex and time-consuming. Our
patchless deep-transfer learning algorithm achieved better performance than that of the
patch and whole-image classifiers for mammographic breast cancer classification trained
on the DDSM dataset and tested on the INbreast dataset. Our method achieved better
performance, with a test accuracy of 99.34%, compared to that of the patch and whole-image
classifier, with a test accuracy of 91.41% averaged over 5-fold cross validation. The main
reason for this is the use of the cancer cell line image-pre-trained model as an intermediate
transfer learning dataset in our case, rather than directly using an ImageNet only pre-
trained model. The use of cancer cell line images enables the transfer learning model
to acquire knowledge of features from microscopic images, which are more related to
mammographic images than the natural images in the ImageNet dataset.

To evaluate the robustness of our patchless multi-stage transfer learning model, we
mixed the three datasets from DDSM, INbreast, and MIAS and trained our model on this
mixed dataset. The performance of our model for the mixed dataset was consistent with
that of the individual datasets from the same source. This proves the robustness of our
model for any dataset from different sources, such as those from different institutions
or devices. This is an important finding because most deep-learning algorithms fail to
perform consistently for mammogram datasets from different sources. Furthermore, we
deployed our model using two additional CNN architectures (ResNet50 and InceptionV3)
and two optimizers (Adam and SGD). The results suggest that our approach is robust
across different CNN architectures and optimizers (see Table 6).

The proposed model based on the EfficientNetB2 architecture and Adagrad optimizer
did not miss any image in classifying the DDSM dataset. However, the model missed a few
low-quality images from the INbreast and MIAS datasets. Figure 5 shows the images from
the INbreast, MIAS, and mixed datasets that were missed by the proposed model. It can be
easily deduced from these missed instances that these images were not properly acquired
and were of low quality.
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Undoubtedly, this work is of great importance for early breast-cancer diagnosis be-
cause of its primary focus on breast mass-based cancer discrimination, which is crucial for
breast cancer screening in young women with dense breasts. The strengths of this work
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include the use of microscopic cancer-cell-line-image features related to mammographic
images that serve as an intermediate domain between the natural image (ImageNet) and
the target medical image (mammogram) domain training to achieve a high-performance
deep-learning algorithm. The usage of cancer cell lines as an intermediate transfer learning
stage helps the model to acquire more knowledge of the medical image domain because
microscopic images and other medical images share more similar features than with nat-
ural images [65]. On top of this, the cancer cell line image dataset can be generated in a
larger size compared to other medical images in terms of costs and ethical issues, which
makes cancer cell line images the primary candidates for the intermediate transfer learning
stage. The other advantage of this work is that it does not apply patch separation prior
to training, which decreases the computational complexity and time required for training.
This would be of great importance in the clinical application of deep-learning methods
because it has the ability to be employed with reasonable resource allocation. In addition,
deep learning based on the whole breast images would provide additional information that
would help the model to learn more features other than the region of interest, in contrast to
patch-based classification methods. Finally, most of the studies involving deep learning
for mammography images have been performed using datasets from the same sources,
both geographically and equipment-wise. One of the strengths of our method is that we
implemented the proposed model using datasets from three different sources as well as
with the mixed dataset from these three sources acquired from different locations using
different equipment.

This study had some limitations. Firstly, it did not include a reader study to compare
the performance of patchless deep-transfer learning against that of radiologists. The reason
for this is that the nature of the used datasets does not allow us to do so. We are currently
trying to obtain other datasets that are private and suitable for reader study in order to
compare the performance of our patchless multi-stage transfer learning model against the
performance of radiologists. This would help us to confidently conclude the extent of the
performance of our deep-transfer learning model. Additionally, the ethnicity ratio within
each dataset is not proportional for white and black people because of the origins of the
datasets. A large portion of the datasets were of white people. Therefore, it is obvious
that any model trained on such a dataset would be biased against under-represented data
sources, and we doubt that our model will also be susceptible to such outlays. Therefore,
a dataset that represents all ethnicities equally should be used to ensure that this model
is unbiased for every ethnicity. The other limitation of the work is that we used only
image information to retrieve the results of diagnosis, whereas radiologists utilize both
image information and other patient information for diagnosis. A recent study involving
patient information proved that the performance of deep learning can be improved with
the use of patient information in addition to image information. Further investigation
involving the use of patient information in addition to image information in our model
could result in an improved performance of the proposed patchless multi-stage transfer-
learning model. Furthermore, we did not study the effect of using different dataset sizes
for cancer cell line images. The effect of increasing or decreasing the dataset size has to
be investigated in the future to determine how the performance of deep-transfer learning
would be affected. Moreover, we used cervical, lung, and breast cancer cell lines. We did
not study the effect of using additional types of cancer cell lines or only breast cancer cell
lines. Therefore, investigations considering the use of additional cancer cell lines should be
carried out to fully understand and describe the effects of the use of cancer cell lines on the
performance of the proposed deep-transfer learning model. We attempted to investigate
the robustness of the hypothesis of patchless deep-transfer learning using two additional
CNNs on top of the EfficientNetB2 model, including InceptionV3 and ResNet50 models; as
well as two additional optimizers (Adam and SGD). It is important to employ a patchless
deep-transfer learning model using additional CNN models and optimizers to investigate
the performance patterns for different models and optimizers.
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6. Conclusions

In conclusion, we developed a patchless multi-stage transfer learning model to dis-
tinguish between benign and malignant mammographic breast mass images. To this end,
we utilized multi-stage transfer learning in which an EfficientNetB2 model pre-trained
on ImageNet was fine-tuned via transfer learning for three-class classification on a cancer
cell line dataset. Then, this model was used as a pre-trained model to classify mammo-
graphic breast mass images as benign or malignant. We recorded better performance
on Digital Database for the Screening Mammography (DDSM) dataset, INbreast dataset,
Mammographic Image Analysis Society (MIAS) dataset, and the mixture of these three
datasets using our patchless deep-transfer learning model compared to the conventional
ImageNet-based transfer learning and whole image and patch classifier model. Moreover,
the proposed model demonstrated better performance than that of previous studies on the
same datasets. This study has also improved computational efficiency by alleviating the
need for patch separation to obtain a region of interest before classification, which has been
used in previous studies to achieve high performance. The proposed method is important
for solving the need for a large training dataset, for decreasing the computational burden
in training, and for implementing mammography image-based deep-learning models.
With improvements involving further studies, this work could be used as a tool to assist
radiologists in the early diagnosis of breast cancer via mammography.
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