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ABSTRACT

In many countries holders of patents must pay an annual renewal fee in

order to keep their patents in force. This paper uses data on the proportion

of patents renewed, and the renewal fees faced by, post World War II cohorts of

patents in France, the United Kingdom, and Germany, in conjunction with a model

of patent holders' renewal decisions, to estimate the returns earned from

holding patents in these countries. Since patents are often applied for at an

early stage in the innovation process, the model allows agents to be uncertain

about the sequence of returns that will be earned if the patent is kept in

force. Formally, then, the paper presents and solves a discrete choice

optimal stochastic control model, derives the implications of the model on

aggregate behaviour, and then estimates the parameters of the model from

aggregate data. The estimates enable a detailed description of the evolution

of the distribution of returns earned from holding patents over their lifespans,

and calculations of both; the annual returns earned from holding the patents

still in force (or the patent stocks) in the alternative countries, and the

distribution of the discounted value of returns earned from holding the patents

in a cohort.

Dr. Ariel Pakes
Department of Economics
Hebrew University of Jerusalem
Mount Scopus Campus
91905 Jerusalem
Israel



—1—

In many countries holders of patents must pay an annual renewal fee in

order to keep their patents in force. If the renewal fee is not paid in any

single year, the patent is permanently cancelled. Assuming that renewal

decisions are based on economic criteria, agents will only renew their patents

if the value of holding those patents over an additional year exceeds the cost

of renewal. Observations on the proportions of different cohorts of patents

which are renewed at alternative ages, together with the relevant renewal fee

schedules, will, in this case, contain information on the distribution of the

values of holding patents, and on the evolution of this distribution function

over the lifespan of the patents. Since patent rights are seldom marketed, this

is one of the few sources of information on the value of patents available.

This paper presents and then estimates a model which recovers the distribution

of returns from holding patents at each age over the lifespan of patents from

data on the renewal behaviour of, and the renewal fee schedules faced by, post

World War II cohorts of patents in each of the United Kingdom, France, and

Germany (renewal fees were not instituted in the United States until 1982).

The parameters of these distribution functions enable a calculation of; the

value, to patent holders, of the proprietary rights created by the patent laws;

the distribution of this value among patents; and the process which determines

the evolution of the value of patents over their lifespans.

This is not the first time patent renewal data has been used to estimate

parameters of the distribution of patent values. In a previous paper (see Pakes

and Schankerinan, 19?8) intercountry differences in the proportion of patents

renewed and in renewal fee schedules faced by cohorts of European patents were

used to estimate the rate of obsolescence on the returns from holding patents.

The earlier paper assumed that cohorts of patents were endowed with a

distribution of initial current returns which
decayed deterministically

thereafter. Methodologically, the major innovation in this paper is that it
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does not assume that the sequence of returns that will accrue to the patent if

it is to be kept in force are known with certainty at the time the patent is

applied for. The generalization to an uncertain sequence of returns is to allow

for the fact that agents often apply for patents at an early stage in the

innovation process, a stage in which the agent is still exploring alternative

opportunities for earning returns from use of the information embodied in the

patented ideas. In part early patenting arises from the incentive structure

created by the patent system, since, if the agent does riot patent the

information available to him
, somebody else might. This incentive is

reinforced by the fact that the renewal fees in all countries studied are quite

small during the early ages of a patent's life.

A patent holder who pays the renewal fee obtains both; the current returns

that accrue to the patent over the coming period, and the option to pay the

renewal fee and maintain the patent in force in the following period should he

desire to do so. An agent who acts optimally will pay the renewal fee

only if the sum of the current returns plus the value of this option exceeds the

renewal fee. It will be assumed that the agent values the option at the

expected discounted value of future net returns (current returns minus renewal

fees), taking account of the fact that an optimal policy will be followed in

each future period, and conditional on the information currently at the disposal

of the agent. Current decisions, therefore, depend on both current returns, and

on the distribution of future returns conditional on current information. An

optimal sequential policy for the agent has the form of an optimal renewal (or

stopping) rule; a rule determining whether to pay the renewal at each age. The

proportion of patents who drop Out at age a are the proportion who do not

satisfy the renewal criteria at that age, but who did at age a—i. The drop Out

proportions predicted by the model will be a function of the precise value of
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the vector of the model's parameters, and of the renewal fee schedules. The

data provide the actual proportion of drop outs. Roughly speaking, the estimation

problem is to find that value of the vector of the model's parameters which

makes the drop out proportions implied by the model as "close" as possible to

those we actually observe.

Formally then, this paper presents and solves a dynamic discrete choice

optimal stochastic control model, derives the implications of this model on

aggregate behaviour, and then estimates the parameters of the model from aggregate

data. Dynamic discrete choice models have appeared in the economic literature

in several contexts (see for eg. Roberts and Weitznian, 1981); and a small number

of them have actually been estimated on micro data. Miller (1982) estimates

such a model for the length of job matches, and Wolpin (1982) estimates one for

the birth sequences of married women. All three of these models have a range of

applications and provide an extremely rich interpretation to the data. They are

each, however, based on quite different stochastic specifications (and rightly

so given the diversity of the empirical problems they deal with) and, due to the

complexity of the estimation problem, it is difficult to determine the

robustness of the conclusions to the particular stochastic assumptions chosen.

The model used here embeds a Markov assumption, an assumption that the

distribution of the next period's return conditional on current information

depends only on current returns and the parameters of the problem, in a search

model with three types of outcomes. Each year the agents perform experiments to

explore alternative ways of best exploiting their patented ideas. One possible

outcome of these experiments is that they provide no new information
, another

is that they determine that the patented ideas can never be profitably

exploited, and the third is that the experiments indicate a use which allows the

agent to increase the returns which accrue to the patent at subsequent ages.

The conditional distribution of beneficial outcomes, should they occur, is not
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assumed, a priori, to be stationary over ages. This non—stationarity is to

allow for the possibility that agents explore their most promising alternatives

first; a possibility which is distinctly favored by the data. In addition, s:ince

there is a statutory limit to patent lives (an age beyond which the agent cannot

keep the patent in force by payment of an annual fee), the model has a finite

horizon.

Given our assumptions, it is possible to obtain an explicit solution for

the renewal rule as a function of the parameters of the Markov process, the age

of the patent, and the renewal fee schedules. However, the model is not as

benevolent with respect to the calculation of the aggregate drop Out probabilities.

To allow for heterogeneity, it is assumed that there is a distribution of initial

returns among patents. This distribution is modified over time as agents uncover

more profitable ways of exploiting their patented ideas. The distribution of

returns at each age does not have, to the best of my knowledge, an analytical

form, and, as a consequence, neither do the drop out probabilities. I therefore

resort to the simulated frequency approach, suggested by Let-man and Manski (1981),

to estimate these probabilities for different values of the parameter vector.

The assumptions of the nxDdel, together with the parameter estimates, enable

a detailed description of the evolution of the distribution of the current

returns earned from holding patents over their lifespans. This information

is used to characterize the learning process and to calculate both; the annual

returns earned from holding the patents still in force (or the patent stocks) in

the alternative countries, and the distribution of the discounted values of

returns earned from holding the patents in a cohort. I consider more general

aspects of the empirical results, those related to modelling the inventive

process and to the private value generated by the patent system, in the final

section of the paper.
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Section 1 provides an overview of the model, while Section 2 fills in the

specific details of its stochastic specification. Section 3 provides a

description of how the parameter estimates are actually obtained. The data is

described in Section 4. and Section 5 presents and interprets the parameter

estimates. Section 6, which closes the paper, provides a brief discussion of

some more general implications of the empirical results. An accompanying

appendix, which has three parts, deals with different technical points that

arise in the course of obtaining the parameter estimates.
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Section 1. A Description of the Model

This section provides an overview of the renewal model used in this paper.

It begins by considering the decision problem faced by an agent who holds a

patent, and ends with the likelihood function implied by our assumptions.

The agent's problem is to decide on whether to pay a renewal fee

which will keep the patent in force over the coming year. If the renewal fee is

not paid, the patent is permanently cancelled. If the renewal fee is paid and

the age of the patent is less than the statutory limit to patent lives, the

agent will face a similar problem at the beginning of the next year. If the

patent's age equals the statutory limit to patent lives, the current is the last

year the agent can keep the patent in force by payment of a renewal fee.

Agents are asssumed to maximize the expected discounted value of the net

returns from their actions, and may be uncertain about the sequence of returns

that will be earned if the patent is kept in force. This uncertainty allows for

the possibility that, at least during the early years of a patent's life, the

agent is actively exploring alternative ways to best exploit the ideas embodied

in the patent. An implication is that there is a positive probability that the

agent will discover a use for the patented ideas which makes future returns to

patent protection significantly higher than those being currently earned, and

this probability may induce the agent to pay the current renewal fee even if

current returns are lower than the cost of renewal.

Let Via be the expected discounted value of patent protection to the

holder of the jth patent just prior to its athl renewal. If the renewal fee is

not paid the patent lapses and v
a

= 0. If the renewal fee is paid the agent

earns the current return to patent protection and, in addition, maintains the

option to renew and keep the patent in force at age a + 1. The value of this

option to the agent equals the expected discounted value of the patent at age

a + 1 conditional on the agent's current information set. Formally then,
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Vi,a = max {o, na — Ca
+ E [Via+i (1)

for all i, and a = 1, ..., L; where L is the statutory limit to patent lives,

r. is the Current returns to patent protection, c IS the Cost of renewal,
i,a a

is a discount factor, Q. represents the information set of the agent In the
1 ,a

patents ath year, and it is to be understood that zero is an absorbing state in

the stochastic process generating {V}'1 (so that if the patent is not

renewed at any age it will not be in force thereafter). In equation (1), r
Ca + E [Via+i i,a1 is the value of holding the patent over its ath year.

If this expression is negative, the agent will allow the patent to lapse.

To complete the description of the value function we need to specify the

conditional distributions of future returns and costs of renewal that are held

by the agent. Given these distributions, the solution for the sequence

IL1 is found by starting with the terminal equation, that is v1
L
=

max{O, r.L — CL} and integrating the system in (1) backwards recursively.

Assumptions Al and A2 provide the general properties of these distribution

functions.

Al. G (r. 2. ) = C (r. r. , w ) for all i and a=1, ..., L—1; where— a i,a+l i,a a i,a+l i,a "g
C (r.

(
. ) defines the distribution of r. conditional on , anda i,a+l i,a i,a+1

w Is a vector of known parameters.

A2. Agent's hold point expectations on the renewal fees that will be required

to keep the patent in force at later ages equal to the current real renewal fees

for those ages.

These assumptions simplify the analysis considerably. A2 was motivated by

the fact that the renewal fee schedules are published data, and though these

schedules are changed periodically, the real renewal fee at any age does not

vary much with the year the patent reaches that age. I will assume an
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exogenousiy given initial distribution of current returns to patent

protection [of r11] . Al assumes that the stochastic process generating

subsequent sections (i.e. generating {r. }L2) is both Markov, and invariant

over i. It should be noted that, in addition to Al and A2, the proofs of the

propositions required for our estimation technique use both the empirical fact

that all renewal fee schedules are nondecreasing in age (see section 4), and the

precise functional form of {G(' I)}' (see the next section). For an

understanding of the general characteristics of the model, however, we need only

point out two properties of this sequence of distribution functions. First the

probability that the coining year's returns will be greater than a given number

is higher the larger are current returns; or if ) z, then Ga i z, w)

C (z1 z, w). for z1 z2, z c R+, and a=l , ... L—l, Second, though the

solution to the agents decision problem provided in this section does require

certain restrictions on the evolution of the sequence of conditional

distributions, of G(• •), over age (see the next section), it does not

require stationarity. This non—stationarity of the stochastic process

generating {r} turns Out to be an important feature of the empirical results.

Note that Al and A2 imply that the expected value of the option to renew

the patent at age a + 1 depends only on current returns (r.), the parameters

of the Markov process generating future returns
(g) and the current vector

of renewal fees (ca), that is; E [V. 2 I = E [V. r. a w ] , wherei,a+1 i,a i,a+l i,a -
it is to be understood that this, and subsequent functions, depend also on the

discount factor, . The system in (1) can therefore be rewritten as

V (a,r; a
g) = max {o, B (a,r; L' g) — c8} (2)
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where B (a,r; a, g) = ra +
E [Va+i I r a, g} and the subscript i is

omitted for convenience; for a=l, ..., L—l, and r c R+. B(a,r) provides the

total benefits from holding the patent for an additional year (the sum of

current returns and the value of the option).

The solution to the agents decision problem follo%.s directly from the

properties of this benefit function. These properties are provided in the

following proposition, and explained immediately thereafter.

Proposition 1 (proved in Appendix 1). The value of the option, that is

B(a,r) — r, is; uniformly continuous and nondecreasirig in r, and is

nonincreasing in a, for rc R+ and a=1,...,L,

Figure 1 illustrates the form of B(a,r). Since V(a+l, r) ' 0 with probabi-

lity one, the expected value of the option to renew is nonnegative and B(a,r) )

r (the 45 degree line); while the fact that the probability that future returns

will be above a given number is larger the higher are current returns implies

that the value of the option [the difference between B(a,r) and the 45 degree

line] is nondecreasing in r. As the patent ages there are less future years in

which the patent can earn returns, and renewal fees rise. Either of these

facts is, in general, sufficient to insure that B(a,r) — r decreases in age.

Note that though B(a,r) is continuous in r everywhere, there are points at which

it is not differentiable in r (see Appendix 3).

Equation (2) implies that it is in the agent's interest to pay the renewal

fee if B(a,r) > Ca The following corollary of proposition 1 provides an optimal

renewal (or stopping) rule for the agent.

Corollary 1 (proved in Appendix I and illustrated in Figure 1). For each age

there exists a unique r c [0, c], such that it is optimal for the agent to

renew the patent if and only if r > Moreover, the sequence
— L

{r}1 is nondecreasing in age.
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The first sentence in this corollary provides a simple renewal criteria.

The patent ought to be renewed only if current returns are greater than

the cutoff, r . Note that r ( c , so that in general the difference c — r isa a a a a

positive. If ra c a' Ca) it is optimal for the agent to take a loss in

current net returns (ra —
Ca < 0) in order to maintain the option of patent pro-

tection in the future. This is one difference between a myopic model, wherein

returns decay deterministically over time and an agent would not renew unless

r > c , and the stochastic model. It can be shown that the difference betweena a

the renewal fee and the cutoff, i.e. C — r, is nondecreasing in the current

renewal fee (c), nonincreasing in the renewal fees for later ages (C+ , T > 0)

and, at least in the later ages, nonincreasing in age (since L is the last year

the patent can be kept in force cL — rL
= 0). The fact that the renewal fees

are increasing in age, while B(a,r) is decreasing, implies that the cutoffs

are nondecreasing in age. Clearly the cutoffs are functions of; age, Sag' and

or r r(a, a g) for a = l ..., L.

It is now straightforward, at least conceptually, to determine the propor-

tion of patents who drop out, that is who stop paying the renewal fee, at each

age. First note that the distribution of initial returns [which we denote
by

F1(r; w1)J, the stochastic process generating subsequent returns (Al), the

renewal fee schedules, and the renewal rule (corollary 1), determine the

distribution of returns at each age, say F(r; c, w); where w' = [w',
w1'J

(that is w contains the parameters of the Markov process and of the initial

distribution of returns), C is a vector consisting of the renewal fee schedules

faced at each age, and, formally

1—F (r; c, w) =a

/ j dCa_1(Xa Xa_l Ig)dGa_2(Xa_i Xa_2g . .dF1(x1)
0 x = (Ca,W ) x ra—I a—l'- —g a
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for r c and a=1 ..., L. From corollary 1 the proportion of patents who pay

the renewal at age a is the proportion with current returns above r or

1_Fa(ra; c, w); while the proportion who drop Out at age a, say n(a; s, w), is

simply the difference between the proportions not paying the renewal fee at age

a, and those not paying the renewal fee at age a—i or

JT(a; £' w) = F (ra; c, w) — F1 (r1; (4)

for a=1, ..., L. Note that a; c, w) is calculated as the difference of

quantiles on two different distribution functions. This is a result of a second

difference between the myopic and stochastic models; in the stochastic model the

distribution of r changes in a non—trivial manner over age as agents uncover

more profitable ways of using their patented ideas.

Equation (4) provides the theoretical probabilities required to calculate

the likelihood function implied by the model. In order to formulate this

likelihood function explicitly, we require a brief description of the data (section

4 provides more detail on the data set), The data contain information on

different cohorts of patents, where a cohort is defined by the year the patent was

applied for. For some of these cohorts we do not observe the patents dropping

out at later ages, and for some we do not observe those dropping out at earlier

ages (there is censoring from both the left and the right). Let the index j

distinguish between alternative cohorts, f. and 1. be the first and last ages at

which we observe the number of patents paying the renewal for cohort j, and A. =

{f.,f.+1,...,l.,l.+1}, for j1,...,J. Then, for each j, the data contain: :1)

the sequence {n(a,j)}CA where ; n(f.,j) denotes the number of patents who did
J

not pay the renewal at f., n(a,j) for f. < a 1. denotes the number of patents

who stopped paying the renewal at each subsequent age until (and including) 1.,

and n(l.+1 ,j) denotes the number of patents which were still in force after

1.; and, (ii) the vector of the renewal fee schedules faced by the cohort, or
c.



—13—

Now consider a patent drawn randomly from a given cohort. It will either drop

Out by age f., drop Out at a subsequent age before 1.-f-i, or still be in force

after l.• Equation (4) implies that for each j the probabilities of these

mutually exclusive and exhaustive alternatives are given by:

(f; ) = EJ it (a; c., w); it (a; c., w) for a = f,-F1, .... 1.;

and it (1 .+l) = 1 — it (a; c., w), respectively. Given this definition of

{ rr(a £j'j)}acA the (log) likelihood of a particular value of the parameter
J

vector conditional on the observed data, or .Q(w), is

J
£(w) = n(a,j) log it (a; c., w) (5)

j1 acA.
J

The empirical results presented in section 5 are based on maximizing this

likelihood with respect to w. Letting n. be the total number of patents in
J J

cohort j and N = zn., the limiting (as N+oo) properties of the maximum likelihood
j=lJ

estimator are provided in proposition 2.

Proposition 2 (proved in Appendix 2). Let u" be the maximum likelihood estimator

of u defined by the equation, £(w*) = £(w); where T is a subset of Rk con-

taining, in its interior, the true value of , say w0. Then, provided an iden—

tifiability and invertibility condition are met (see Appendix 2), * converges

in probability to as N + , holding {w. n/N}1 constant, and

(w* — w0) fl(O, [i° ]_1),

D
where —---÷ reads converges in distribution, ri(.,.) denotes the multivariate normal

distribution, and 1rS1 denotes the information matrix evaluated in general as
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a(a; w) ii(a; c., w)

1r,s j1 acAj
) r

for r,s=l, ... k; and denotes this matrix evaluated at =

Two points should be noted here. First the dimension in which the

properties of w approach those provided in proposition 2 is N, the sum of the

number of patents in the J cohorts, and as section 4 shows, N is unusually

large in our samples. Second, the limiting distribution of w follows from a

proposition due to Rao (1973, section 5.e.2), and the fact that the functions

n(a; c., u) [acA., j = 1, ..., J] admit first order partials which are

continuous at O [since the benefit function in equation (2) is not differentiable

everywhere, this statement is not immediately obvious]. This same property

together with the consistency of the maximum likelihood estimator insure that

[i*rs], the information matrix when evaluated at w, is a consistent estimate

of [j0 ] , and, as a result, [i* ]1 is used to estimate the variance—covariance
r,s r,s

matrix of the parameter estimates.

To complete the specification of the model we require a detailed description

of both the Markov process generating the returns from holding a patent, and of

the distribution of initial returns. This is provided in the next section.

Section 3 explains the procedure used to obtain the maximum likelihood

estimates and the information matrix.
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Section 2. The Stochastic }rocess Generating and the

Distribution of Initial Returns

Equation (6), and the explanation which follows it, describe the Markov

process assumed to generate the returns from holding a patent. The conditional

distribution of ra+l is defined by

ra÷l
f

U with probability exp(—Or)

r max{ór,z} with probability
l—exp(—0r8)

(6)
where the density of z, q(z), is a two parameter exponential, that 5

—1
q8(z) = o + z)/c]

and 0a = a—1 ; for a1,...,L—1.

One advantage of the process specified in (6) is that is permits an explicit

solution for the sequence {r}L1 as a function of the parameter of the

model (see the next section). This process also has the following economic

interpretation. At each age agents perform experiments designed to enable them

to increase the profits from their patented ideas. These experiments can have

one of three types of outcomes. First, they may reveal that the patented ideas

can never be profitably exploited. This event occurs with probability

exp(—Or), that is it occurs with smaller probability the larger are the current

returns from holding the patent; and if such an outcome does materialize the

agent does not pay a renewal fee in the following year (the zero state is an

absorbing state in the stochastic process generating current returns. which

implies that if it is drawn the agent will let the patent lapse). The second

possible outcome is that the absorbing state does not occur, but the experiments

do not result in a use for the patented ideas which is more profitable than the

current one. In this case current returns decay at the rate < 1 , as steps



—16--

forward by other agents in the economy gradually obsolete the returns from the

agent's own patent, and the agent must decide whether current returns and/or

the possibility of discovering a use which may increase those returns in the

future, make it worthwhile to pay the next renewal fee. Finally, the experiments

may actually uncover a use for the patented ideas which improves upon the

returns which could have been generated with the inforniation of the previous

year (the absorbing state does not occur and z > 6ra). The extent of the

iinprovment depends on the precise realization of z. This random variable has a

two parameter exponential distribution, that is; z has probability exp(—y/o)

of being greater than zero (experiments do not necessarily lead to outcomes

which yield positive returns), and has a density which declines at the constant

rate 0a thereafter. Note that 0a = a1 a. With < 1 this allows for the

possibility that the probability of uncovering a use which leads to returns

greater than a given number declines over age; or for the possibility that agents

perform their best experiments first. < 1 is also a sufficient condition for

proposition 1 of the last section.

We have now defined the stochastic process generating the distribution of

(r2',r3,...,rL) from the distribution of r1. Note that this process is a member

of a five parameter family, that is w' To complete the specifi-

cation of the model we require also a distribution of initial returns over

different patents, that is we require F1(r;w1). It is assumed that initial

returns distribute lognormally, or

log r1 '°R (7)

This implies that (,aR); so that = (g (1 contains seven parameters.

Equations (6) and (7) complete the specification of the model outlined in

Section 1. The next section contains a brief description of how the maximum

*likelihood estimate of w, that is u
,

was actually obtained, while Section 4

describes the data.
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*
Section 3. Obtaining

*
Three technical problems must be solved before we can obtain w

First a method must be provided to calculate the cutoffs, or the sequence

as defined in corollary 1 , as a function of c and w . Given

w, these cutoffs determine the drop out probabilities, or the sequence,

as defined in equation (4), which in turn determine the likelihood

of u (see equation 5). The second problem, then, is to provide a method which

calculates the drop Out probabilities correponding to particular values of w and

{r}'1. Finally, a maximization algorithm which finds that value of w that

maximizes the likelihood is required. I now consider each of these problems in

turn.

Appendix 3 develops a recursive system of analytic equations which solves

for the sequence {r = r(a;w,c)}L1, This sytem is obtained by solving for the

benefit function in an interval containing 1a at each age.' The cutoffs

corresponding to particular values of A and c were obtained by simply substi-

tuting these values into the system defined in this appendix.

1

Briefly, this problem is first reduced to a more manageable one by
expressing B(a,r), for each age, as the sum of L—a component functions. The
component functions for age a are definite integrals of the component functions
at age a+1 where the limits of integration are determined by the value of r and
by the subsequent cutoffs (by a+T, for t=1,...,L—a). This fact leads to a
functional recursion which can be solved using Macsyma (1983; Macsyma is a
computer programme designed for symbolic mathematical manipulations) to produce
the recursive system of analytic equations for {a}. The continuity of the
benefit function together with the features of Macsyma enable a check of the
Macsyma results for possible programming errors. Finally, the solution can be
simplified further by noting that the values of the component functions,
evaluated at a' must lie between two simple functions of the parameters of
the model. These boundary functions become progressively closer together for
the later functions at each age and can, therefore, be used to form an approxi-
mation whose error must lie in an easily calculable range, The Macsyma results
for this problem were obtained by Andrew Myers and myself.
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One cannot, to the best of my knowledge, obtain the drop out probabilities

as analytic functions of w and a=1 As a result the simulated frequency

approach, suggested by Lerman and Manski (1981), was used to obtain estimates of

these probabilities. The simulation estimator of {TT(a; ,)}L1 , say {(a; .)}L

is found by taking pseudo random draws from the distribution of initial returns

defined by equation (7) and w1, passing each through the stochastic process

defined by equation (6) and g' and calculating the proportion with r1 >

ral but 1a < ra, for a=1,...L [see the definition of rr(a;.) in equation

4] Let NSIM be the number of pseudo random draws used to evaluate the

simulated frequencies. It is well known that 1(a;.) converges almost surely, in

NSIM, to ii(a;.) and has variance equal to !T(a;.)[1—ir(a;.)}/NsIM, (a=1 ,... ,L).

Define the pseudo likelihood of w, say £(w), to equal that value of the likelihood

function otained from substituting the simulated for the actual frequencies

*in equation (5). w was obtained by maximizing £(u) with respect to w.

The information matrix was obtained by perturbing each parameter by one percent
*

from w , calculating the implied derivatives of the simulated frequencies, and

substituting these derivatives into the formula for the information matrix pro—

vided in proposition 2. The NSIM used in the final round of the maximization

subroutine was twenty thousand (see the next paragraph and section 5); and the

change from an NSIM of ten thousand, to an NSIM of twenty thousand, did not have

a perceptible effect on the estimates.

Evaluating the simulated frequencies at a given value of w is a computer

time intensive task; the CPU time for a given evaluation being approximately

linear in NSIM. A maximization subroutine for a problem involving simulated

frequencies should, therefore, conserve on the number of times it evaluates the

likelihood function at large NSIM. The subroutine used here varied NSIM within

2
The computer programme to perform the simulation was designed by

Bronwyn Flail and myself, and her assistance was, as always, gratefully appreciated.
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each run. It was developed by modifying a programme entitled ON1DIF (a quasi

Newton method for obtaining the maximum of a function of k variables available

from the National Physics Laboratory, 1983; see also Gill, Murray, and

Wright, 1981). The jth round of the subroutine was defined by an NSIM, say

NSIM(j), and a perturbation vector, say = [lw, ..., tw3}. The modifications

made to QNMDIF directed it to find, with a relatively small number of function

evaluations, an w, say w, such that £.(w3) > wi+l,k),
for i=1...k. The J+1 round used as a starting value, an increased NSIM

[NSIM(j+1) > NSIM(j)J, and a perturbation vector with smaller components

(w1 < &; i=1,... ,k). The final two rounds used an NSIM of ten and twenty

thousand, respectively, and a perturbation vector equal to one percent of the

starting value of

That completes the description of both the model and the estimation

technique. The next section describes the data set, while section 5 presents

and interprets the parameter estimates.

This maximization subroutine was developed by Dvora Ross and myself.
Two of the modifications we made to QNMDIF turned Out to be particularly
important. First to find the gradient vector for each iteration we used the
2k function evaluations obtained from changing each component of the parameter
vector by positive and negative values of that component of the perturbation
vector. If both perturbations with respect to a parameter resulted in function
values less than the starting value for the iteration, the derivative with
respect to that parameter was set equal to zero. If not, the derivative was
set equal to that implied by the function evaluations. Second the stepsize
search was modified so that function values corresponding to small differences
in stepsize were not calculated. I am grateful to the staff of the Hebrew
University computing center for their help in allocating computer time to us.
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Section 4. The Data

The data used in this study were obtained directly from the patent offices

of France, Germany, and the United Kingdom (the U.K.) by Mark Schankerman and

myself.4 Table 1 summarizes some of the characteristics of this data.

Row 1 of the table provides the first age at which a renewal fee is due, or

f. There is no information on renewals for ages less than f and the renewals at

age f reflect events that have occurred over the first f ages. In the U.K. then,

the first age at which we have information on the drop Outs resulting from

events that have occurred over the previous year is a=6. Rows 2.3, and 4

provide, respectively; the last age at which a patent can be kept in force by

payment of a mandatory renewal fee (L), the dates of application for the

cohorts studied, and the years in which renewals are observed.5 In all

countries, then, we have at least partial information on the renewal

behaviour of cohorts applied for in most of the 1950's, throughout the 1960's,

and in the early 1970's. The required renewal fee schedules (see assumption 2,

or A2, in section 1) were obtained in nominal domestic currency, converted to

real domestic currency using the country's own implicit G.N.P. deflator, and

then transferred into 1980 U.S. dollars using the official exchange rate in

1980. All monetary values are, therefore, in 1980 U.S. dollars.

Rows 5 and 6 illustrate an important intercountry difference in the charac-

teristics of the data. In France and the U.K. the data include all the patents

This data set will be described in more detail in a paper we are
currently writing. We are indebted to the respective patent offices for
providing us with the data and graciously answering our subsequent queries.

Post world war Germany allowed reapplication of patents previously applied
for. By 1952 these were less than 1% of German applications, and this explains
the choice of 1952 for the starting cohort for Germany. The French patent
office only provided information on renewals between 1970 and 1981 . Given the
values of f and L in France, this implies that the data contain partial infor-
mation on the renewal behavior of cohorts applied for between 1951 and 1979 in
that country. In light of these facts, I decided to use only post 1950 cohorts
for the analysis of the U.K. L was changed to 20 in 1976 in Germany, and in
1980 in the U.K., and this explains the final renewal years for these countries.
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Table 1. Characteristics of the Data

Country France U.K. Germany

Characteristic

1. f 2 5 3

2. L 20 16 18

3. Application Dates of Cohorts 1951—79 1950—74 1952—72

4. First/Last year in which 1970/81 1955/78 1955/74
renewals are observed

5. Patents Studied from Cohort:
all patents Applied for Applied for Granted

6. Estimated Average Ratio of
Patents Granted to Patents .93 .83 .35*Applied for

7. NPAT = N/J 36,865 37,286 21,273

*a Symbols are defined as follows: f = the first age at which a renewal fee is

due; L = the last age at which an agent can keep the patent in force by payment

of an annual renewal fee; and NPAT the average number of patents per cohort.

*b
For France and the U.K. these estimates were obtained as follows. Let

be the number of patents applied for in year t, and be the number of patents

_1T 4
granted. Then the ratio was calculated as T

[(E.25n+)/n].t=1 i=1
In Germany the ratio of the patents granted to those applied for from a given

cohort was directly available, and these ratios were simply averaged over the

cohorts studied.
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applied for in the cohorts specified in row 3, but in Germany the data contain

only those patents granted. Patents granted by date of application were not

available for France and the U.K. , though a rough estimate of the ratio of

grants to applications in these two countries can be obtained by comparing

the number of patents applied for to those granted over time (see the notes to

Table 1). This ratio was quite large in France (.93), a bit smaller in the U.K.

(.83), but only .35 in Germany (row 6). As a result of the facts that the data

contain grants in Germany (in contrast to applications in France and the U.K.),

and that the German granting criteria select Out only a relatively small portion

of the patents applied for, the average number of patents per cohort is smaller

in Germany (about 21,000) than in France or in the UK. (about 37,000; see row 7).

Note that rows 3 and 7 imply that the data contain information on about one

million patents in each of France and the U.K.
, and on about half of a million

patents in Germany.

Figures 2 and 3 provide the proportion renewed, and the proportion dropping

out, by age, averaged over the cohorts for which these statistics were observed;

while figure 4 provides the mean of the renewal fee schedules used in the analysis.

Figure 1 makes it clear that there is a distinct difference between the age—path

of the proportion renewed in Germany, and those in the other two countries. This

difference is magnified in figure 2. In Germany the proportion dropping Out is

much lower in the early ages, subsequently overtakes and then stays larger than

the proportion dropping out in the other two countries. The lower drop out

probabilities in the early ages in Germany could reflect the success of the

German patent office in weeding out the patents which have high probabilities of

not being profitably developed; especially since the renewal fees in the early

ages in Germany are relatively small and comparable to those in the other countries

(see figure 4). After age five, however, these fees are increasing at a much

faster pace in Germany, and this should, all else equal, generate larger drop

out probabilities in the later ages in Germany.



-2
3—

 

FI
G

U
R

E
 

2 
A

V
E

R
A

G
E

 
PR

O
PO

R
T

IO
N

 R
E

N
E

W
T

!)
 

1.
0-

 
I 

* 
0 

0.
 

0 
* 

0.
8-

 
0 

* 

0.
7-

 
* 

P
 

R
 

0.
6-

 
0 

I 

p o 
0.

5-
 

* 
R

 I I 
0.

4-
 

a 
N

 

0.
3-

 
a 

0.
2-

 
* 

0 
0 

a 
o 

o 

0.
1-

 
4 

. 
--

 
...

 
2 

3 
4 

5 
6 

7 
8 

9 
10

 
11

 
12

 
13

 
14

 
15

 
16

 
17

 
18

 
19

 
20

 

A
G

E
 

0 
F

R
A

N
C

E
 

0 
U

N
IT

E
D

 
K

IN
G

D
O

M
 

G
E

R
M

A
N

Y
 



F
I
G
U
R
E
 
3
:
 

-2
4-

 

A
V

E
R

A
G

E
 
D
R
O
P
 
O
U
T
 
P
R
O
P
O
R
T
I
O
N
 

* 
F

R
A

N
C

E
 

O
 U

N
IT

E
D

 K
I
N
G
D
O
M
 

G
E
R
M
A
N
Y
 

\ 
/ 

• 0.
 0
8
-
 

•
 

0.
 0
6
-
 

0
.
 
0
5
-
 

0
.
 
0
4
-
 

0
.
 
0
3
—
 

0
.
 
0
2
-
 

0
.
0
1
-
 

0
.
 
0
0
-
 

P
 

R
 0 P
 0 R
 I I 0
 
N
 

/ / 

N
 

/ / 

N
 

/ 

N
J 

/ 
0
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

g
 

1
0
 

1
1
 

1
2
 

1
3
 

1
4
 

1
5
 

1
6
 

1
7
 

1
8
 

i
g
 

2
0
 

1 
I 

i 

A
G

E
 



-2
5-

 

FI
G

U
R

E
 4

: 
A

V
E

R
A

G
E

 R
E

N
E

W
A

L
 F

E
E

 S
C

H
E

D
U

L
E

S 

S 

17
50

1 
* 

15
00

- 

* 

12
50

- 

* 

1o
oo

- 
0 

75
0-

 

50
0-

a 

* 
a 

S
 

• 
25

0—
 • 

* 
• 

a 

0 
a 

a 
0 

0 

1!
 I 11

11
11

1 r,
rn

 I T
T

T
U

11
 1 
flT

T
lfl

'I 1 
ri

 rr
flf

ll,
-1

-r
-T

 m
lT

T
fT

1-
1r

ly
rT

y 
( ru

 
U

i IT
*1

1T
T

fl r
rI

t1
T

flT
T

'I,
 , 

I-
irT

T
T

T
tp

tlt
1T

rT
lrI

 1J
-r

T
T

rT
9T

Y
T

IT
IT

T
T

pT
T

1U
T

T
1 

Ji
T

ru
vi

m
 r"

1 
' 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

11
 

12
 

13
 

14
 

15
 

16
 

17
 

18
 

19
 

20
 

* 
F

R
A

N
C

E
 

A
G

E
 

0 
U

N
IT

E
D

 K
IN

G
D

O
M

 

* 
G

E
R

M
A

N
Y

 



—26—

Figure 2 also illustrates that there are, in fact, substantial differences

in the proportion dropping Out both between different ages for a given country,

and between countries for a given age (the drop out proportion for age five in

the U.K. is not illustrated but equals .305). This understates the total

variance in the drop out proportions since there is variance between cohorts

at a given age in each country. Most of this latter variance is concentrated

in the early ages. Finally, note that in all countries (though to a varying

extent) the drop out probabiliites do not decline at as fast a pace in the last

few ages as in the ages immediately preceeding them. This is what we would

expect from a stochastic model of renewal behaviour, since as the age of the

patent approaches L, the option value of holding the patent goes to zero.

Turning to figure 3 note that the average cost of renewal schedules are

nondecreasing in age. This is also true for the renewal fee schedules of each

year and underlies the form of the solution to the agents decision problem

provided in Corollary 1. The renewal fees are quite small in all countries in

the early years, and increase significantly faster in Germany thereafter.
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Section 5. The Empirical Results

Table 2 provides the parameter estimates, different dimensions of the data,

and some summary statistics, for each country. It was decided at the outset to

set the discount factor () equal to .9 in all runs; and the results presented

in the table are conditional on •96

The parameter estimates in Germany and France are all positive and highly

significant. Recall that the dimension in which parameter estimates converge to

their true values is the total number of patents or NPAT. The extremely large

values of NPAT (row B.2) explain the relatively low estimated standard errors in

France and Germany. On the other hand the estimated information matrix for the

U.K. was singular (see footnote b to the table). As will become clear presently,

this occurs because the estimates imply that in order to distinguish between

different possible values of the parameter vector we require independent

information on events which occur during the early ages; and in the U.K. we do

not have such information until age 6.

To get an indication of the fit of the model the difference between the

estimated and acutual it's was squared and averaged over the NCI-IRTAGE (row B.4)

distinct cohort—age cells for which these proportions are observed. The

resulting numbers appear as MSE{ir] in row C.1 of the table. Comparing them to

the variance in the actual ii's (i.e., to V[x;data} in row C.3), it is clear that

in France and Germany only a small fraction of the variance in the acutal x's is

not accounted for by the model (1.4% in France, and .6% in Germany), while in

the U.K. this fraction is somewhat larger (6.4 %). To see whether there was any

indication of cohort specific differences in the fit of the model, the differences

between the estimated and actual x's were also used to calculate a pseudo

6 This decision, and the decision to make only one run for each country,
were taken, in part, to minimize on computer time. The CPU time for each run
increases more than proportionately to the number of parameters estimated.
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Table 2. Parameter Estimates8

Country

France

5467(6 .09)

6919(10.29)

.4383(2.1 7x103)

.8102(1 .81x103)

1 .525(3 .04x103)

5.4 25(2 .55x103)

Ge rm a fly

c. summary Stat1stic

C.1 MSE[n]

C.2 PDW[IT]

C.3 yin; data]

5.42x104 6.91x104

1.65 2.24

1 .48x104

1 .85

A. Parameter

a

I

p

0

7460 (19.72)5689 (8.24)

9162 (13.67)

.5084 (5 .66

.8475 (2.62

1.579 (2.92

4.705 (2.75

.0990 (6.36

x 10k)

x 1O)

JQ3)

io)

x i0)

8687

.4896

.8861

1.158

6.7 18

.08 55

(17.09)

(1 .16x103)

(2 .48x104)

(2.36x103)

(3 .7 Ox 10)

(2 .46x103)

B. DitnensionC

B.1 NPAT 1,069,095 983,471 446,741

B .2 NSIM 20,000 20,000 20 ,000

B.3 Age:f/L 2/20 5/16 3/18

B.4 NCHRT 29 26 21

B.5 NCHRTAGE 238 272

3.9Ox1O2 1.07x102 2.65x102
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Notes to Table 2

apatents are assigned to cohorts by year of application. Numbers in

parenthesis beside parameter estimates are their estimated standard errors.

*

bLetting [j*] be the estimated information matrix, then, for the U.K.

= 0. The standard errors of this column were obtained by inverting a six by

:i: ::
consisting of i for r,s * 0. They are, therefore, conditional on

CSee also the notes to Table 1 • NPAT = the total number of patents covered by

the data. NSIM = the number of random draws used to evaluate the simulated

frequencies in the final iteration of the maximization subroutine and in the

estimation of the information matrix (see Section 4). NCHRT = number of cohorts

covered by the data. NCHRTAGE = the number of cohort—age cells covered by the

data.

dLet ea . be the difference between the estimated and the actual n(a,j) for

2
acA., j=1,...,J. Then MSE [n} = (NCHRTAGE) E Ee . and

j1 acA.a,j

Jl.—1
2 2

PDW() = (e . - e .) I.E (1. - f.)]/ [E E e ./.E (1 - f. + 1)].
j=l af. a+1 ,j a ,j jl j j 1 af a ,j jl j j

V[7l; datal is the sample variance of n(a,j).
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Durbin—Watson statistic for each country (see note d to Table 2). These are

provided in row C.2 of the table, and seem to distribute about two. I return to

further comments on the fit of the model after a brief description of some of

the implications of the parameter estimates; particularly those relating to the

characteristics of the learning process. Since it is these characteristics that

the data in the U.K. are not rich enough to determine, I shall concentrate on

the estimates for France and Germany.

The parameters whose estimates exhibit substantial intercountry differences

are u, °R' and a. The estimates of ji and °R imply that a substantial fraction

of the patents in the French data started out with low, almost negligible, initial

returns; while the higher mean and the lower coefficient of variation in Germany

imply that this phenomena was not nearly as pronounced among German patents (the

mode of the estimated distribution of initial returns is under ten dollars in

France but is over two hundred dollars in Germany; and the parameter estimates

indicated that about thirty percent of the French patents had initial returns

under fifty dollars, while under one percent of the German patents do). The

larger a in Germany implies that, on average, the holders of the patents

included in the German data had a higher probability of discovering uses which

increased the returns to their patented ideas. Recall that the German data

includes only patents granted while the French data includes all patents applied

for; and that the granting criteria seem to be particularly stringent in Germany

(Table 1). It seems, then, that the German patent office was, on the whole,

successful in weeding Out patents with low initial returns and a smaller

probability of increasing those returns over time.

The estimates of 0, 6, , and y do not vary much between the two countries.

The low estimates of 4> (about .5) implies that the learning process is

concentrated in the early ages. Table 3 illustrates this point. The descriptive
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Table 3. The Evolution of Implicit Revenues in the Early Ages*a

Country

France Germany

Charact ens tic

E(r) [r1 r1 > 0] 380.43 1608.57

Pr (Downside); Pr (Upside) .0637; .1807 .0004; .2705
it (2; , .0637 (no required renewal)

E(r) Er2 r2 > 0] 1414.72 3400.98

Pr (Downside); Pr (Upside) .0387; .0331 .0006; .0584
it (3; , ) .0907 .0013

E(r) Er3 r3 > 0] 1432.24 3224.56

Pr (Downside); Pr (Upside) .0118; .0012 .0005; .0039

it (4; , ) .0792 .0121

E(r) ft4 r4 > 0] 1339.05 2899.41

Pr (Downside); Pr (Upside) .0048; 0.00 .0003; 0.0
it (5; .0381 .0277

E(r) Er5 ( r5 > 0] 1192.70 2641.40

NPAT 36.865 21,273
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NOTES TO TABLE 3

'The estimates were based on a simulation run with 20,000 draws using the

estimates of w given in Table 2 and the mean of the renewal fee schedules.

Pr (Downside) is the average probability of discovering that the patented ideas

will never by profitably exploited (of drawing the absorbing state); averaged

over the patents still in force. Pr (Upside) is the average probability of

discovering a use which enables the agent to increase returns in the following

year (of z > 6r); averaged over the patents still in force.

E[r r > 0] = the mean of r for patents still in force.

n(a; C, w) the proportion of patents who drop out at the ath renewal.
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statistics provided in this and in subsequent tables were obtained from a

simulation run of 20,000 draws based on the mean of the renewal fee schedules

and the parameter estimates of Table 2. Consider first the column of figures for

France. The mean of the initial distribution of returns was 380 dollars.

During the initial year just under twenty percent of the French patent holders

discovered a use which enabled them to increase subsequent returns, while

over six percent discovered that their patented ideas could never be profitably

exploited. These six percent were the only patents whose renewal fees were not

paid in the second year. The holders of the remaining patents paid the renewal

fee and maintained the option of patent protection on the results of the second

year's experiments. The substantial learning that occurred over the first year

caused a sharp increase in the average returns of the patents still in force in

the second year. During the second year nuch less learning occured than occurred

during the first year. An additional nine percent of the patent holders stopped

paying the renewal fee at the third age. Of these, about five percent were owned

by agents who, after doing experiments for two years, had decided that it was

not worthwhile to pay the renewal fee in order to have the option of patent

protection on the results of subsequent experiments. Average learning probabilities

decreased further over the next two ages. They were just about sufficient to

keep the mean of the current returns earned on the patents still in force

constant. There was essentially no learning after the fifth age, and the effect

of the obsolescence process clearly dominates the learning processes when

comparing the means of the patents still in force in the fifth, to those still in

force in the fourth, ages. The major qualitative difference between the German

and the French columns in this table arises from the fact, noted earlier, that

the German parameter estimates imply that a much smaller proportion of the

patents in the German data started out with negligible returns. As a result

most of the patents included in the German data were known to be worth something
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at the outset, and more of the German patent holders who did not discover a more

profitable use over time had current returns which induced them to pay the

renewal fee until the ages in which those fees started rising sharply (which was

after age five, see figire 4)!

I now return briefly to the issue of the fit of the model. Figure 5 provides

the proportion renewed, by age, averaged over the cohorts for which this

proportion was observed. The thick lines provide the proportions in the data,

the thin lines those estimated by our model, and, for comparison, we also provide

the proportions estimated from a model which does not allow for learning,

(the broken lines). The no learning model is a model in which patents are

endowed with an initial distribution of returns which decay determiriistically

thereafter. It is obtained by changing the probability statement in equation

(6) to read; r+l with probability one.8 In this figure it is hard to

distinguish the curve estimated by the model with learning, from the data. On

the other hand the model without learning predicts too few renewals in the early

ages (i.e., too many drop Outs), too many renewals in the middle ages, and too

few again in the later ages. Recall that the renewal fees are close to constant

over the initial ages. As a result, the model without learning cannot accommodate

both the small number of drop Outs fl the initial age, and the sharp increase

in the number of drop Outs over the next few ages. This point is magnified

The parameter estimates for the U.K. presented in Table 2 imply a learning
process which is similar to those described for France and Germany. The problem
with the U.K. estimates was that without independent information on the drop
Outs over the first few ages, the likelihood function could not distinguish
between different values for the learning parameters, particularly S and 4. As a
result of this fact the maximization algorithm also had much more difficulty in
finding the estimates for the U.K.

8
As one would expect from the large size of our samples (NPAT) the likeli-

hood ratio test statistic for the null hypothesis that there was no learning was
inordinately large; over 20,000 for Germany and over 60,000 for France.
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in figure 6 which provides the proportion dropping Out, by age, averaged over

the cohorts for which this proportion is observed. The model with learning

accounts for the combination of the low initial drop outs and the increase

in the number of drop Outs over the next few ages by estimates which imply

that the option value of patents which start out with low returns is initially

Iigh, but then declines rather rapidly. As will be shown presently, this model

accounts for the spread of those who do drop Out over the later ages by a

somewhat skewed distribution of initial returns, and, more importantly, by a

learning process which increases the skew in the distribution of returns

substantially over the next few ages.

In figure 6 we can actually see the differences between the estimates from

the model with learning, and the data. These differences are concentrated in

the middle ages. The age—specific average drop out probabilities in the French

data have two local maxima (at ages three and seven). The estimates from the

model for France also have two local maxima (and at the same ages), but the

model's estimates of these maxima are somewhat too high, and its estimate of the

trough between them is too low. In Germany the data provide a rather flat age

distribution of average drop out probabilities between ages eight and eleven.

The model's estimates replace this with two local maxima and a minimum; though

neither the maxima nor the minimum are nearly as pronounced as those estimated

for the earlier ages in France. In addition, the model's estimate of the

average drop out probabilities in the later ages are a bit too high in France,

and a bit too low in Germany.

The proportions which actually enter the likelihood function (the n's) are

a combination of the renewal proportions (for the last age for each cohort, and

the first where there was left censoring) and the drop out proportions (for all

other cohort—age combinations). These are also the proportions which underly
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the mean square error measures provided in row C.2 of Table 2. Though figures 5

and 6 indicate why the nan square error measures are low relative to the

variance of u in the data; they also point Out that there are still some aspects

of the data that the model does not account for, and this should be kept in

mind when considering the implications of the parameter estimates.9

Figures 7 and 8 provide the distribution of current returns at age one,

age three, and age five, in France, and in Germany, respectively. Part A of

these figures contain the first 99.5 percentiles of these distributions, while

part B narrows in on the lowest 75 percentiles. Two
points come out clearly

from the figures. First the distributions, particularly those for the later

ages, are extremely skewed. As a result it is hard to
distinguish any interage

differences in the lower 75 percentiles of the distribution from part A of the

figures. Second, there is a distinct pattern to the evolution of these distri-

bution functions over age. Between the first and the third ages there is a

substantial increase in the dispersion of the distribution functions. This is

easiest to see in part B of the figures. It occurs because of two implications

of the parameter estimates. First between these ages the experiments of a

It is worth noting that the intercohort differences in the drop out pro-
portions for a given age and country were fit quite well by the data. As noted
in section 4 most of this variance was concentrated in the early ages. This
was also what the model predicted since the last age at which the option value
of patents with low returns induced payment of renewal fees depended on the
precise age at which the renewal fees began to rise. Even given this point,
however, it is still undoubtedly the case that the extremely large values of
NPAT and NSIM in table 2 imply that the

MSE(n) statistics provided in that table
are too large to be rationalized in terms of binomial sampling error in the
empirical and estimated frequencies. Though this problem (which is called the
problem of extra binomial sampling variance

by Williams, 1982; see also the
review by Haseman and Kupper, 1979) occurs frequently when analyzing the
determinants of proportions, I do not know of any logically consistent way of
accounting for it when the model has a sequential dimension. It is also worth
restating here the related problem noted in the introduction; that is, the
complexity of the estimation procedure in discrete choice optimal stochastic
control problems such as ours makes it difficult to determine the robustness of
the conclusions to the particular distributional

assumptions made (for a
discussion of related issues, see Beckman and Singer, forthcoming). This is one
reason for examining (in some detail) the consistency of our empirical results
with known intercountry differences in patenting procedures.
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large portion of the patent holders had enabled them to increase their returns,

and the effect of this was to thicken the tall of the distribution function and

push it to the right. On the other hand, many of the holders of patents which

had negligible initial returns, and recall that such patents were a much larger

fraction of the French data, had discovered by age three that their patented

ideas were not likely to enable them to increase their returns in the future,

and have consequently dropped out. By age three, then, the distribution developed

a mass at zero. A comparison of the percentiles for age five to those of age

three reveals the onset of the obsolescence process; that is the percentiles

from the age five distribution are below (strictly speaking, never above) the

same percentiles from the distribution at age three.

The skew in the distribution of initial returns combined with the substantial

increase in this skew over the early ages, lead to a highly skewed distribution

of realized patent values. Table 4 provides percentiles and lorenz curve

coefficients from the distribution of realized patent values; where the realized

value of a patent is defined as the discounted sum of net returns (current

returns minus renewal fees) from age one to the last age the given patent is

kept in force. Again I begin by considering the column of figures for France.

Twenty—five percent of the patents in the French data had realized values of

seventy—five dollars or less.'° These patents contributed about a half of one

percent to the total value of the patents in a cohort, while the patents in the

lower half of the distribution contributed less than two percent of the total

value of a cohort. The median of the distribution of realized values ($534) was

10
Of course some of these patents had negative (though small in absolute

value) realized values, as they were patents who paid early renewals for options
which did not materialize. If, for example, we had defined the realized values
as the discounted sum of net returns from age two, rather than from age one (as
in the table), the lorenz curve coefficient corresponding to p = .25 would have
been negative, though close to zero.
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Table 4. Percentiles (p1) and Lorenz Curve Coefficients (ic)

From the Distribution of Realized Patent Valuesa

Country

*
T1 (T—1) *8

The realized value for patent I is (r.
T
— ), where T1 = the

T1
last age at which patent i was kept in force. The distribution of values was

estimated from a simulation run of 20,000 draws using the estimates of w provided

in Table 2 and the mean of the renewal fee schedules.

France U.K. Germany

Percent

p pl($) ic () pl($) lc (%) pl($) ic ()
.25 75.23 .544 355.55 .554 1,999.60 2.249
.50 533.96 1.833 1,516.84 3.247 6,252.93 7.341
.75 3,731.35 8.087 7,947 .55 16.369 19,576.26 25 .288

.85 10,292.06 19.575 15,357.09 31.721 32,428.14 41.001

.90 17,423.11 31.261 22,206.21 44.257 44,241.87 52.672

.95 31,609.59 52.461 34,740.07 62.960 65,753.61 69.223

.97 42,905.78 65.514 43,889.95 73.640 78,299.01 78.348

.98 51,215.84 73.729 51,277.22 80.072 94,842.63 83.800

.99 66,515,40 84.011 65,075.08 87.858 118,354.78 90.330

maximum 259,829.27 —
374,028.70 419,217.55 —

mean 5,631.03 — 7,357.05 16,169.48

NPAT 36 ,865 37 .826 21,273



—43—

less than one tenth its mean ($5,631); and the five percent of the distribution

with the highest realized values contribute about half of the total value of a

cohort. The German distribution of realized values was somewhat less skewed

than the distribution in France; though even the German distribution was

extremely skewed. The difference between the two distributions was7 as might

have been expected from the fact that in Germany the data refers to grants

rather than applications, most pronounced at the lowest percentiles. In Germany

these percentiles were non—negligible, albeit, quite small. Still only about

7 percent of the patents in Germany had realized values in excess of $5OOOO; in

France only two and a half percent had values this large. Given the size of the
cohorts this implies that, on average, about a thousand patents which had
realized values in excess of $50,000 were applied for annually in France, and

about fifteen hundred such patents were granted annually in Germany.

One other point is worthy of note here. The estimate of the ratio of the

average realized value in a cohort of patents applied for in France, to that

value in a cohort of patents granted in Germany, is .35, which is just equal to

the average of the ratios of grants to applications in the German cohorts (see

table 1). The estimates seem to imply, then, that the mean of the realized

values of the patents applied for in the two countries was similar. On the other

hand, there were a significantly larger number of patents applied for per year

in Germany than in France [about 60,780 in Germany, versus 36,865 in France); so

that, on average, the total value of a cohort of patents in Germany was larger

than the value of a French cohort.

The patent stock held in a country at a given point in time consists of the

patents from the cohorts applied for over the previous L years which are

still in force at that time. Table 6 provides the annual net returns earned by

the patents of each age contained in a stock which is
constructed by assuming
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that each of the previous L cohorts began with the average number of patents per

cohorts and faced the mean of the renewal fee schedules. The entries in this

table are in thousands of 1980 U.S. dollars. The net annual returns earned from

holding the patent stocks in these countries is estimated at; .315 billion

dollars in France, .386 billion dollars in the U.K., and .512 billion dollars in

Germany. The next section considers likely implications of this, and the other

results provided in this section.
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Table 5. Estimates of the Annual Flow of Returns from Holding
the Patent Stocks of European Countries

(Entries in Thousands of 1980 U.S. Dollars)8

Count r
France U.K. Germany

Age
1

2

3
4

5
6

7

8

9

10
11

12
13
14
15
16

Total to Age 16

17
18

Total to Age 18

19
20

Total to Age 20

13,948.77 ,998.5
43,886.0
37,1 16.1

31 ,258.2

26 ,060.7
21 ,814.2
18 ,223.8
151169 •9
12 ,595.6
10 .2 20 .6
8 ,318.6
6,902.4
5,599.6
41523.1
3,475.7

307 ,111.8

2,735.4
2,113.9

311 ,961.1

1,606.5
1,194.3

314 ,761 .9

27 ,067 .4
75,287.4
64,487.3
52,290.0
39 ,8 32 .3

31,633.7
24,771.9
19,283.3
14 ,842 .0
11,210.4
8,335.2
6,112.9
4,094 .4
3,013.6
2,027.4
1,261.7

385 ',7 30 .9

385,7 30.9

385 ,730.9

34,031.0
72,321.4
67 ,332 .2
59,696.3
52,045.4
44,938.5
38,452.2
32,321.6
27 ,348.7
22 ,283 .2

17,709.1
13,647.8
10,275.4
7,432.6
5,159.3
3,469.6

508 ,464.3

2,204.3
1,351.5

512,020.1

512 ,020.1

a
The estimates assume that all cohorts currently in force began with

NPAT patents, and faced the mean of the renewal fee schedules. The entry for

age a is calculated as (r18 — ca), where the summation extends over all

patents still in force at that age. The estimates of the distribution of

r18 (a = 1, ...', L) are obtained from a simulation run of 20,000 draws using

the parameter estimates of Table 2.
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Section 6. More General Aspects of the Empirical Results

Many of the detailed implications of the parameter estimates were presented

in the last section. This final section provides a brief discussion of their

relationship to a few7 more general, issues in the economics of technological

change. I focus primarily on; the estimated characteristics of the learning

process (Table 3 and Figures 5 and 6), the estimated skew in the distribution of

the value of holding patents (Table 4) , and on the estimates of the annual

returns earned from holding the patent stocks of the alternative countries (the

last row of Table 5).

To get an indication of the importance of the incentives created by the

patent laws we would like to compare the estimates provided in Table 5 to

either, the total returns that accrued to the patented ideas, or to the

expenditures that went into developing them. Neither of these two figures are

available, but the OECD (1975; Tables III and IV) does provide estimates of the

R & D expenditures funded by the business enterprises in these countries in 1963

(which is the inidcohort in our data). The estimates of the annual returns from

holding the patent stocks were respectively, 15.56%, 11.03%, and 13.83% of the R

& D expenditures of the business enterprises in France, the U.K. and Germany;

and the sum of these returns across countries was 13.14% of the sum of their

R & D expenditures. Since there may be returns earned as a result of patenting

per se, regardless of whether the patents were ever renewed, and since our

estimates only pertain to the returns earned by renewing (or holding) patents

already in force, the numerator of this ratio may slightly understate the annual

monetary value of the incentives created by the patent system. Moreover, the

ratio suffers from the fact that we have not netted out various balance of trade

effects (business enterprises in these countries also own patents in force

elsewhere, and foreign business enterprises own patents in force in these

countries; while not all the business sector's R & D expenditures are directed
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towards patentable innovations, and not all patentees are business enterprises).

The ratio does, however, suggest that the proprietary rights resulting from the

patent laws create annual returns which are non—negligible in comparison to

privately funded R & D activity.

The returns earned from holding patents may, of course, be only a small

fraction of the returns that accrue to patented ideas. Nevertheless the general

similarity between the shape of the estimated distributions of the value of

holding patents on the one hand (see Table 4) , and currently available evidence

on the distribution of the values of patented ideas on the other, is quite

striking. In particular the evidence available from disaggregated case studies

indicates an extremely skewed distribution of the values of patented ideas (see

Sanders, Rossnian, and Harris, 1958; and Gabrowski and Vernon, 1983). Scherer

(1965, plo98), for example, notes that the data provided in Sanders, Rossman,

and Harris (1958) suggests a Paraeto—Levy distribution with an infinite mean for

the distribution of profits from patented ideas; while Garbrowski and Vernon

(1983) summarize their studies on the profitability of new pharmaceutical entities

with the statement,

"In effect, these results indicate that pharmaceutical firms are heavily

dependent on obtaining an occasional 'big winner' to cover their R & D costs

and generate profits [Gabrowski and Vernon, 1983, p.11]

Larger sample econometric studies have focused on the relationship between the

number of patents applied for and alternative measures of the outputs and the

inputs into inventive activity [see the articles in Griliches (ed.), forthcoming].

Fakes, (1981) provides a detailed time—series cross—section analysis of the

reduced form relationship between patent applications, R & D expenditures,

and changes in the stock market value of firms, that allows for dynamic error

components to intercede between these variables. That article concludes
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that changes in the number of patents applied for by firms are a very noisy

measure of the changes in stock market value of their R & D related output, but

that, on average, increases in patent applications are associated with large

increases in the firm's value; just what we would expect from a highly skewed

distribution of the value of patented ideas. In addition, a strong simultaneous

relationship between the factors driving R & D expenditures and those driving

patents was found; suggesting that a significant search for uses and improvements

to the patented ideas continues at least during the early years of a patent's

life.

There is an explanation of the patenting process which is at least

consistent with both the empirical results found in this paper, and with those

cited above. Patents are applied for at an early stage in the inventive process,

a stage in which there is still substantial uncertainty concerning both

the returns that will be earned from holding the patents, and the returns that

will accrue to the patented ideas. Gradually the patentors uncover the true

value of their patents. Most turn out to be of little value, but the rare

"winner" justifies the investments that were made in developing them, If this

explanation captures the nature of the patenting process we would not expect to

find a very stable relationship between profits and current and past patents, or

between profits and the current and past R & D expenditures which lead to their;

except possibly for very large aggregates. For individual economic units we

would expect most increases in patents not to lead to any increase in profits,

and for there to be an occasional jump in profits which is not necessarily

preceeded by any increase in patenting. Similar statements can be made

concerning the relationship between profits and the R & D expenditures that

lead to the development of the patented ideas. Growth through discovery will

occur in spurts, and these spurts will be probabilistically related to the

Investments which preceeded them. Traditional production function approaches to
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obtaining estimates of either the rate of return to the investments which

produced the patents, or the determinants of the quantity of resources invested

in their development, are not likely to be very precise. Nor will they provide

much evidence on the characteristics of the distribution of possible outcomes;

features of the problem that are likely to be particularly important in

analyzing the rich set of issues determining the evolution of firm and industry

structure. An alternative, pointed Out by Nelson and Winter (1982), and Telser

(1982), is to be more careful in the econometric modelling of the inventive

process itself; employing, perhaps, controlled search processes in which investment

expenditures affect the distribution of possible outcomes.''

Disaggregated patent renewal data from over fifty national and regional

patent offices containing both the technical field of the patent, and the patentor,

with coverage, in most cases, dating back at least to 1973, is currently

available from Il\TADOC (see references). A more disaggregate patent renewal

study which estimates the return to patent protection by technical field, and by

nationality and type of patentor (e.g., individuals, small business enterprises,

large corporate entities) is likely to prove extremely valuable. Issues related

to which sectors in a particular country, and which countries, derive dispropor-

tionate returns from the patent laws lie at the heart of much of the discussion

of the social costs and benefits of alternative patent systems (see Scherer 1979

chapter 16, and the literature cited there). Moreover, a more disagrregated

study would provide information on both, differences in the characteristics of

the learning process and in the distribution of possible outcomes, and differences

in the relationship between patent statistics and alternative measures of

inventive inputs and outputs, between different industries. Policy, as well as

empirical and theoretical ana'ysis would benefit considerably from such

information.

A step in this direction has been made by Ericson and Fakes, 1983.
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Accompanying Appendix to: "Patents as Options: Some Estimates of the Value of
Holding European Patent Stocks"

by Ariel Pakes

AFpendix 1. Proposition 1 and Corollary 1

Proposition 1. B(a,r) — r is : (i) uniformly contiriouous and nondecreasing in r;

and, (ii) nonincreasing in a; for r c R+ and a = 1,..,L.

Proof: The proof of both (i) and (ii) is obtained by induction on a. I begin

with part (i) and show that the assumption that B(a + 1,r) — r is uniformly con-

tinuous and nondecreasing in r, implies that B(a,r) — r is also. Note that

equations (2) and (7) in the text imply that

B(a,r) — r = — exp (—Or)}D(a,r), (A1.1)

where D(a,r) = Q 1(Sr)V(a+1,iSr) + rV(a4-1,y)dQ Now recall that
a 5r a

V(a-f-1.r) = max {O, B(a+1,r) — C+1}, so that the assumed continuity and

monotonicity of B(a+1 ,r) — r implies that V(a+1 ,r) is uniformly continuous and

nondecreasing in r. Clearly then for r' r

tSr'
—

V(a+1,'5r')[Q1(tSr')
— Qa+i1J Sr1 V(a+1,y)dQ1(y)

— V(a+l
,'Sr) a+i(tSr') —Q1(r5r)}. (Al .2)

The monoticity of B(a,r) — r follows directly from (Al.l) and the first ine-

quality in (Al.2) as they imply that

tSr'

D(a,r') — D(a,r) Q 1(6r')V(a+l ,tSr') — Q + (tSr)V(a+l ,tSr) — f V(a+1 ,y)dQ 1(y)a a I
tSr a

Qa+i(tS1 [V(a+1 rtSr' ) — V(a+1 ,t5r)J > 0, (Al .3).
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To prove uniform continuity of D(a,r) [which implies the uniform continuity

of B(a,r) — r, see (Al.1)} we must show that for every c > 0 there exists an

h(c) such that

D(a,r) — D(a,r) c provided r — r h(c), (A1.4).

From the definition of D(a,r) the second inequality in (A1..2) and the fact that

< 1

D(a,r) — D(a,r) V(a+1,6r) — V(a+l,6)l , (A1.5).

Since the hypothesis of the inductive argument implies that V(a+1,r) is uni—
*

formly continuous in r, there exists an h (c) such that

V(a+1 ,ór) — V(a+1 ,6) c provided
f

6 I
r — h(c), (Al .6).

(A1.5) and (Al.6) imply (A1.4) with h(E) = (6 ( h*(E).

We have shown that B(a,r) r is uniformly continuous and nondecreasing in

r provided B(a+l,r) — r is. To complete the inductive argument we need only

note that B(L,r) — r = 0, which is clearly uniformly continuous and

nondecreasing in r.

To prove part (ii) first assume that B(a+1,r) — r ) B(a+2,r) — r and note

that this implies that

B(a,r) — r =
R V(a+l,y)dG÷1(ylr) R f V(a+2,y)dG1(ylr)

R V(a+2,y)dC2(y r) B(a+1,r) — r,
where; the first inequality follows from the fact that, since c+2 > C+1
B(a+2,r) B(a+l,r) implies V(a+2,r) V(a+l,r); and the second inequality

follows from the monoticity of V(a+l,r) in r and the fact that

G2 (y1 '2 > G8+1(y1 y2) for all y1,y2 c R [see equation (7)). We have

shown that if B(a+l ,r) — r B(a+2 ,r) — r then B(a ,r) — r > B(a+l ,r) — r. To

complete the inductive argument we need only note that

B(L — l,r) — r = 8
CU

(y —
cL)dGL(Y

r) 0 = B(L,r) — r.
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Corollary 1: For each age there exists a unique r [Otcal such that it is

optimal to renew the patent if and only if ra > r. Moreover, the sequence

— L
{ ra}a.l is nondecreasing in a.

Proof: Recall that V(a,r) = max O,B(a,r) — ca}, and note that B(a,O) = 0,

while B(a,c) > Ca The fact that B(a,r) —
Ca

has a unique zero at an

rc[o,c] now follows directly from part (1) of proposition 1 as it implies that

B(a,r) is continuous and strictly increasing in r. Since B() is nonincreasing

in a, B(a,r+1) B(a+1r÷1) C÷1 Ca = B(a,ra), for all a. The second

statement in the corollary follows from this inequality and the fact the B(a,r)

is nondecreasing in r, for rc R+ and a1...L.
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Appendix 2. Properties of the Maximum Likelihood Estimator

The properties of the maximum likelihood estimator used in the text are

stated in proposition 2. This proposition follows directly from a theorem due

to Rao [1973, section 5.e.2] provided the following regularity conditions are

satisfied:

A. The functions i(a; c, w) [a c A.; j 1, . .. , J} admit first order partials

which are Continuous at w = w0.

B. For every w c T, such that w n (a; c., w) (a; c w°) for at least

one couple (a, j) [a E A.; j = 1, ..., JI.
C. The information matrix, [iJ

, is non—singular at w =

As noted in the text, the benefit function from the model of section one

[equation (2)] has points with discontinuous first partials. As a result it is

not immediately obvious that condition A is satisfied, and a formal proof of

1this condition is provided below. Given this proof, I simply assume conditions

B and C. They will be satisfied provided there is sufficient variation in the

cost schedules and the ages covered by the data.

Proof of Condition A. From the definition of ii [equation 5J and Bayes Law

Pr {r , r > } = Pr {r ' j r > }[i — ria a a a—I a—i a a a—i a—i a—i
i <a

(A2.1)

for a1, ..., L; where the index j has been omitted for convenience, and it is

understood both that; r = E 'it = 0, so that 'it = Pr {r r > o}; and0 <i—i 1 1 1 0

that all functions depend also on w. The proof of the continuity of the first

To see why condition A can be satisfied despite the fact that B(a,r) is
not differentiable everywhere, note that the sequence {(a;ç,cj)}1 depends on
the benefit function only through the cutoffs (see equation 5); i.e. through the
solution ra=r(a,ca,w) to the equations B(a,ra;ca,) —

Ca 0 for a=I ,... ,L.
Though not differentiable in r everywhere, B(a,r) is differentiable in r in an
interval containing ra; see equations A3.2 and A3.3 of Appendix 3 (this is also
illustrated in Figure 1 of section 1).
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partials of na( is by induction on a. The first step of the inductive argu—

inert is to show that n(w) has continuous first partials with respect to w at w

= w° provided ir1(c), ,.., n1(w) do. The second step is to show that 111(w) has

continuous first partials at w = Equation (A2.l) makes it clear that if we

establish that each element of the sequence {Pr (r r r > )}L hasa a a—I a—I a1

continuous first partials with respect to w at w = we will have completed

both steps of the inductive argument.

Let = Pr {r = U r1 = z} , and 2a(2 = Pr {o < ra a ral = z}

for a = 1, •.. L. Then, from the definition of F1(.) in equation (3), and

equation (6)

Pr {r ral > a-1 a1 )dF1(z) +J)2(Z)dF1(z) (A2.2)

where it is understood that the point r1 is excluded from the limit of

integration, for a=1, ..., L. Lemma 1 below shows that {r(w)}11 admit con-

tinuous first partials at w°; while lemma 2 shows that Fai(Z) has a density

which is both continuous in z at z ra_i(°), and admits continuous first

partials with respect to w at w0 everywhere for z c a—1' Thus, to

prove the desired result, it suffices to show that p() and are both

Continuous in z at z rai(ci°), and have continuous first partials with respect

to w at w = almost everywhere with respect to the Lebesgue measure (a.e.)

for z c (r1, ). Since
ip1(z)

exp (—Oz), it obviously satisfies these

conditions. Equation (6) implies that

f
0 if z > tS

(z) =

1 [1 — exp (—Oz)JQ1(r) if 0 < a iS

for a2, ... , L. Note that r1(w°) < r(w°)/tS° (from corollary I and the fact

that 6<1). Clearly then 412(2) is both continuous in z at z = ral 0), and has

continuous first partials with respect to at w w° everywhere except at the

point z = r (w°) / 50 which is a set of Lebesgue measure zero (for a = 1, ..., L).
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Lemma 1. Each element of the sequence of functions {r(w)}L1 admits first par—

tials which are continuous at w = w0.

Proof. The proof is by (this time backwards) induction on a. Since
rLcL,

the initial condition of the inductive argument is satisfied trivially, and it

suffices to show that r(w) admits continuous first partials with respect to

w at w = w0 provided 'a+r& [T=1, 2, .... L—a} do. Corollary 1 and equation (6)

imply that r() is defined by the implicit function

= a + [1-exp(O )JJV1(z)dQ (z) - Ca
= (A2.3)

a+1

Clearly u() possesses a continuous, strictly positive, partial derivative with

respect to r. The implicit function theorem therefore implies the lemma pro-

vided p(') admits continuous first partials with respect tow at w w0. The

hypothesis of the inductive argument implies that r1(w) has continuous first

partials; and Q(z) is an exponential distribution which has a density which

possesses continuous first partials with respect to w everywhere for z c R+. It

will, therefore, suffice to show that V+i(z) has continuous first partials with

respect tow at w = w0 a.e. for z e (r+1, a'), provided that a+T [for

T=1 , ... L—a] has continuous first partials at w = w0. A second inductive

argument suffices to prove this point.

First, assume Va+2(Z) has continuous first partials with respect to w a.e.

for z (1a+2 c) provided that r+(w)[T=2. ..., L—a} have continuous first

partials at w = w0. To see that this Implies that V+1(.) has the required

properties, note that

v11(z) = z - c1 + [1 — exp(—Oz)J 5 \'a+2(5)dQa+l(5)
r2 — —1—

if z c ft , r 1;
V (z)

a+1 a+2
(A2.4)

a+1

v21(z) ZCa+l + [1_exp(_Oz)]Qa+i(óz)Va+2(z) +5 V
2(s)dQ÷1(s)}

if z C (5 r+2, o).



Civer the hypothesis of the inductive argument, it is clear that v'+i(z) has

continuous first partials with respect tow at w = w0 for every z c [r+i, .

For z £ (6'r÷2, ) the points of discontinuity of the first partials of

v2+1(z) are the points of discontinuity of the first partials V+2(1z). Thus,

if S÷1[S÷2] is the set of points in (r1, ')
'a+2'°° where Va+i(Z)

[V+2(Z)l has discontinuous first partials with respect to w at w = O then

m(S1) < ni(S) + m(ra+26 o) = rn(S2) = 0,

where m(.) provide the Lebesgue measure of alternative sets, and the last

equality follows from the hypothesis of the inductive argument.

Thus V+i(Z) has continuous first partials with respect to w at w = a.e.

for z c a+1' provided V+2(.) has the required property. To complete the

inductive argument then, we need only note that VL(z) = max0,z —
cL} a func-

tion that has continuous first partials at = O everywhere for z c (rL =

Lemma 2. Fa(Z) has a density which is both continuous in z at z = r(w°) and

admits continuous first partials with respect to w at w = w everywhere for

z C (r, c) (and a = 1, ..., L).

Proof. The proof is by forward induction on a. First assume F1(.) has a

density with the required properties and denote that density by f1(.). Then

equation (6) and corollary 1 imply that

Pr{z > r i } = f Pr{z r s} f (s)ds, (A2.5)a a — a a a—i
r
a—i

where

[1 — exp(—Os)]Q 1(z), if > s > r81

Pr{z > r a' = (A2.6)

0 , if s > 1z,
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and Oai(z) denotes the exponential distribution evaluated at z. Substituting

(A2.6) into (A2.5) we have

—1
— 6 z

Pr{z > r r} = a—i1' —
exp(—Os)}f81(s)ds. (A2.7)

The density, fa(z) for z c (r, ), can be derived directly by differentiation

of (A2.7). The fact that it Is Continuous fl z at z = r(w°) and possesses

continuous first partials with respect to w at w = w0 everywhere for zE(r, oo)

follows from the same properties of; the exponential distribution and its

density, of f1(z) everywhere for z c [r / O co) [which follows from the

hypothesis of the inductive argument since r / > r1 from Corollary 1]

and from the continuity of the first partial of r1(w) at w = w0 [lemma 1].

To complete the inductive argument then we need only show that F2(z) has a

density with continuous first partials at w = w0 everywhere for z (r2, .

This follows from the same argument used above (substituting a = 2) and the fact

that f1(z) is the density of the lognormal distribution [equation (7)] which

clearly has continuous first partials with respect to o at w = w0 everywhere for

z e Rt



Appendix 3. A Solution for the Sequence {r}L1

I begin by outlining the form of the solution used here. To find ral =

r(a—1; c, w) we require properties of the function E[V . The model

[equations (2) and (6) and assumptions Al and A2] implies that the distribution

of V conditional on can be written as
a a—i

0 with probability exp(—0r1)
V
a

maxtO, max(6r — z) — c
a—l

a 1 a
with probability [l_exP(_Orai)]

+ g [rnax(6r , z)J}a a—i

where Pr {z y} = Q(y), and g(y) = E[V1 y].

It follows from corollary 1 that if ra the agent will let the patent

lapse, and V 0. Now consider a patent with r1 a With probability

exp(—0r81), r 0. With probability fl_exP(_era J, the current return the

patent would earn were it to be renewed is max(6r , z). If z ' a' then

niax(t5r , z) ( r , and V 0. If z > r , then max(5r , z) = z and V =a—i a a a a—i a
Z — Ca + g8(z), Formally then, A3.i and corollary 1 imply that

E[Va ral, ral
— e(_Orai)J { fEz —

ca + g(z)J dQ(z)}

0
a

(A3.2)

E1—exp(—0r1)} ha_i

where h° is independent of r
a—i a—i

Substituting (A3.2) into equation (2),

Vaj(ra_i ral, ral
= max{0, ra_i — Ca_i + 8{1—e(-er8_1)Jh1} (A3.3)

Now note from corollary I that ral ' ra < 1ra. Clearly then (A3.3) implies

that is the unique solution to,

ral — Ca_i + [l—exp(—e 1)}h01
= 0 (A3.4)
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for a = 1, ..., L. Equation A3.4 provides a solution for {r}L1 in terms of

{hO}L . Below I find functions B' () and (•) such thata a=i a+i a+1

L—a—1 L—a—2
h0 = Bv+i(ri, w) + Uvl(ri, w)h01 (A3.5)

v=O v=O

for a=l, ..., L—i (h = 0). Together (A3.4) and (A3.5) provide a system of

2L—l equations which can be solved recursively for {r}L1.

To solve for h0 we require E[V r I for r c R+. We now introduce aa a+1 a a
sequence of elementary functions which are used to construct EEVa+i re]. To

begin partition R into the L—a+l intervals, {iP}; where i0 =

(0, &+i}; I = _(P+1)a+p+i]r for p=i, ... L—a-i; and

°). From corollary 1, E[V1 r, r ral = 0; while from equation

(A3.2), E[V÷1 r, ra < ra c I] = [l_exp(_Ora)}h. To complete the specification

of the function E[V r I , definea+1 a

h(ra) = El_exp(_era)Y'{E[Va÷i ra, r 1J — E[V1 r, r c I ]}

for v—i,..., L—a; so that

p
r, ra c IJ [1_exp(_Ora)][ Z h'7 (r)J (A3!6)

v=O

for p=l , ... , L—a, and a1 , ... , L—1. These equations and the definition of

Va(ra) [equation (2)1 imply the graph of V(r) provided in Figure A3. This

graph is now used to illustrate how the sequence {hV can be derived

from the sequence {h"(.)}0. The functional recursion that results from this

derivation uniquely determines the sequences {h"(.)}' for a=i, ... L—1. The

first element of each of these sequences is them used in conjunction with (A3.4)

to solve for {_ }L
aa=i
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Figure A3: Graph of V(r)
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0

[h0+h1(r)1

(÷____'l___÷J (÷----I÷ (÷1q I

— l —2-- —(ci—l)— ——r 6 r 6r 6 r 6 r 6 ra a+l a+2 a+(o—l) a+q a+q+l

Er Ia



—Al 2—

Recall that V (r ) = max{0, r — c + E[V r }}. Considera—i a—i a—I a—i a a—i

first the case in which r < r 10 . In this case the agent will let thea—i a—I a—i

patent lapse in the next period if either the absorbing state is drawn or if z Z

Thus the only states in which Va > 0 are those in which the absorbing

state does not occur and z > r • For each such state one obtains V (r =z) by

substituting z for ra in Figur: A3. To obtain E[V rail ra_i < r1 i°J we

simply intergrate these values over their measure, or

E[V r1, ia-i < r e Iü} = [i_exp(_Oraj)] [j(z_ca)dQa(z)

L-a
+ E f_v_1i_e(_0z)11'7(z)dQa(z)J (A3.7)

v=0 r a

a+v

[i—exp(—0r1) }h1,

which defines h° • To find h1 () in terms of {hv(.)}L consider
a—i a—i a v0

Ely r r c I ] , and recall that if r e 1' then tSr ca a—i a—i a—i a—i a—i a—i

(r ,6 } • If the absorbing state does not occur and z < tSr thena a+i a—I

V (r ) = V (r = tSr C TO); while if the absorbing state does not occur anda a a a a—i a

z ) tSr81, Va(ra) = Va(r=z). Taking these values of V8(.) from the graph and

integrating them over their measure

E[V1r1, r81 c I] = [i—exp(—0r81)} ara_i)1a_ia0a_ifl
L-a

+ 5 [z_ca+h[1_exp(_Bz)]JdQ(z) +
tSr v1a—i

x
• v r Vwhere here, and in the discussion below, H(x) = 5 l[1—exp(—ez)]h (z)}dQ (z).

tSVr÷
a a

This equation together with (A3.6) and (A3.7) imply that

1 0
h1(r1) = Qa(tSra_l){tSra_ica+a[p(0tSrai}}

tSr
—i 0 (A3.8)

— a
{z—c+h [i_exp(—Oz)J}dQ(z).
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Finally, following an analogous procedure for v=1, ..., L—a--l, we have

h'(r1) 0a(6ra—i)__0a_i)1(a_i) — H'(r1). (A3.9)

Noting that f zdQ (z) = [y + °ahE1Qa(l? and that —c =a a

_h[1—exp(—Or)J. the system defined by (A3.7), (A3.8), and (A3.9) can be

simplified to read

L— a—i
h° = B° + U° h° + HV (x) (a)a a-fl a-fl a-fl a-flv=1

h11(z) = b1÷1(z) + u1÷(z) h°2 (b) (A3.JO)

and h"1(z) = 8Q82z)[1—Oz}h'j (5z) — R'(Sz), (c)

where B1 = °a+l EQa+i(ra+i)l; U1 = B1OOr)I(1+jO);
1 — 0 r 1 —

1 1

b1(z)
— r2 — B2 tl_exrIoa+2(Sz_ra+2))1; and u1(z) =

exP(_Ora+2){1_e[_O(z_+2)]}
—

U2{l—ex[—(o+2)(oz_2)J}; for v=2,...,

L—a—i; and a=i, •••, L—l.

Direct substitution shows that the system in (A3.i0) provides a solution

for the sequence {hO}L1 of the form given in (A3.5). Even for moderate L,

viL—a—l v L—a—2however, solving for the sequences {Bj0 (for a=1, ..., L—1) and {U0
(for a1, ..., L—2) manually would be both a painstaking and an error—prone task.

One advantage of the form given by (A3.10) is that it can be programnd into

Macsyma (1983; Macsyma is a computer program designed for symbolic mathematical

manipulations) which will (with some prodding) produce the exact form of the

required coefficients.1 The properties of the model [in particular the con-

tinuity of the value function, see proposition 1] together with the features of

The macsyma solution was obtained by Andrew Myers and myself. We are gra-
teful to the Mathlab Group at the MIT Laboratory for Comuputer Science for pro-
viding us with free access to Macsyma, and for guiding us through Out initial
queries. The Mathlab Group is supported, in part, by the U.S. Energy Research
and Development Administration under Contract No. E(11—1) 3070, and by the
National Aeronautics and Space Administration under Grant No. NSG 1323.
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Macsyma [its ability to distinguish an argzero of a function] allow a check of

the Macsyma solution for possible programming errors. Finally, for large L, it

is not necessary to solve for all of the coefficients {B"} and {U"}. This is

the second advantage of writing the solution in the for-tn of (A3.1O). It follows

from the fact that for each (v, a) there exist easily calculable functions of

the parameters of the model (B', V) and (U", uv), such that B' ( By By and—a a —a a —a a a
v vU U ( U • These boundary functions allow one to form the approximations =—a a a a

+ B) and = 1/2 (i + 1); each of which have a maximum possible approxima-

tion error equal to the value of the approximation itself. Both these functions

decline monotonically (and rather rapidly) in v; and have zero limits as

(which implies that L+°°). I now derive the boundary functions, and consider

their limiting rates of convergence. The researcher can use the exact approxi-

mations to calculate where the approximation error is within tolerable limits

for the problem at hand.

Note first that (A3.1O) and the fact that h'+÷j(Z) is nonnegative and

nondecreasing in z for zc[ r , °), implies that h+R+1(1Sz) is nonnegative

and nondecreasing in z for zE[ Vr , °). This fact allows us to show that

V 1
8H+i() is bounded by two simple functionals ha+v() The upper bound is found

by noting that (A3.lOc) implies that

h"1(z) < 8h" (5z) < < vlhl(5v_lZ)

for zc[61r+1+,o). Substituting this inequality into the definition of

< 8' f h (1z)dQ1(z), A(3.11).

6 r+1+
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To obtain the lower bound note that the monotonicity of hv(.) and the

definition of H+2(.) imply that

H1(6z) < e[l-exp(-6Oz)]h(6z){Q2(6z) Qa+2vra+l+v)}

for zc[6 °• Substituting this inequality into (A3.lOc), noting

that for zE [6 Vr co), [1 — exp(—O5z)] > [1 — exp(e6 V+la+v+i}

and repeating these operations recursively,

hV (z) > v—i, h1 (6V_lz) (A3.12)a+1 — v,a a+v

v—i
-.v+J

-
—v+J -where

Kva ji [1—exr(—86 r81)] a+i+j r14.), for v'l,...L—a—l,

and zc[6"ra+i+vøo). Substituting (A3.12) into the definition of 8R"4() we

have,

H1(co) .� ..vJ h+v(61z)dQa+iz) (A3.13)
6 r+l÷

where K =
[l—exp(—O6'+1÷ K' . From (A3.lOb) then

÷i+ tJ"h°1 - VHv() =
AV1 + Uv÷1 h01 < :+ :+ h°1 (A3.14)

where;

A:+1= v6vcy [iO(6_v_r )][(6/)V a+v+i a+v+i)]/[1 + (6/)VJ;

V —V V —vA K A ;U U ;and—a+l v,a a+i —a+i v,a a+i

:÷= V+l6Voa+i[l_Qa+l(ó_va+v+i)18exp(_Oa+v+l){E(6k)v

+(l+06v0)Q()1/(J÷06v0)(166v0÷ (5/)V}
and 4 = c1/o, for v=1 •... ,L—a—1; and a=i ,... ,L—l.

Recall that we are considering approximations for the
sequences {A"+1}

and {uV1} of the form +i = 1/2 (A1 ÷.:+} and {u'T1 l/2(UV
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Clearly the resulting approximation errors will be less than the values of the

sequences themselves and these can be obtained directly from (A3.14). To

consider their limiting properties as (which implies L-*cc) recall that < 1

and assume that the nondecreasirig sequence {c}1 has limit equal

to [this implies that lim(a+) r C]. Then A3.14 implies that,

for each age, both sequences {Av+l} and {Uv÷i}o converge to zero at the

limiting rate exp(—5 c/Y+i)• Since the lower bounds, and

decline faster then the upper bounds, so does the approximation error.

The following procedure was used to obtain the results reported in this

paper. For each (relevant) age an exact calculation of the first four elements

v iL—a—i r V iL—a—2for both sequences
and lTJa+iIv..0 was made using (A3.lO). After

checking that using the approximation for the fourth element instead of its

exact value did not have a perceptible effect on the cutoffs, that and

subsequent elements were replaced by the approximations for them.


