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Abstract
We consider the problem of clustering with the longest-leg path distance (LLPD)
metric, which is informative for elongated and irregularly shaped clusters. We prove
finite-sample guarantees on the performance of clustering with respect to this met-
ric when random samples are drawn from multiple intrinsically low-dimensional
clusters in high-dimensional space, in the presence of a large number of high-
dimensional outliers. By combining these results with spectral clustering with
respect to LLPD, we provide conditions under which the Laplacian eigengap statis-
tic correctly determines the number of clusters for a large class of data sets, and
prove guarantees on the labeling accuracy of the proposed algorithm. Our methods
are quite general and provide performance guarantees for spectral clustering with
any ultrametric. We also introduce an efficient, easy to implement approximation
algorithm for the LLPD based on a multiscale analysis of adjacency graphs, which
allows for the runtime of LLPD spectral clustering to be quasilinear in the number
of data points.

Keywords: unsupervised learning, spectral clustering, manifold learning, fast al-
gorithms, shortest path distance

1. Introduction

Clustering is a fundamental unsupervised problem in machine learning, seeking to de-
tect group structures in data without any references or labeled training data. Deter-
mining clusters can become harder as the dimension of the data increases: one of the
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manifestations of the curse of dimension is that points drawn from high-dimensional
distributions are far from their nearest neighbors, which can make noise and outliers
challenging to address (Hughes, 1968; Györfi et al., 2006; Bellman, 2015). However,
many clustering problems for real data involve data that exhibit low dimensional
structure, which can be exploited to circumvent the curse of dimensionality. Var-
ious assumptions are imposed on the data to model low-dimensional structure, in-
cluding requiring that the clusters be drawn from affine subspaces (Parsons et al.,
2004; Chen and Lerman, 2009a,b; Vidal, 2011; Zhang et al., 2012; Elhamifar and
Vidal, 2013; Wang et al., 2014; Soltanolkotabi et al., 2014) or more generally from
low-dimensional mixture models (McLachlan and Basford, 1988; Arias-Castro, 2011;
Arias-Castro et al., 2011, 2017).
When the shape of clusters is unknown or deviates from both linear structures (Vi-
dal, 2011; Soltanolkotabi and Candès, 2012) or well-separated approximately spherical
structures (for which K-means performs well (Mixon et al., 2017)), spectral cluster-
ing (Ng et al., 2002; Von Luxburg, 2007) is a very popular approach, often robust
with respect to the geometry of the clusters and of noise and outliers (Arias-Castro,
2011; Arias-Castro et al., 2011). Spectral clustering requires an initial distance or
similarity measure, as it operates on a graph constructed between near neighbors
measured and weighted based on such distance. In this article, we propose to an-
alyze low-dimensional clusters when spectral clustering is based on the longest-leg
path distance (LLPD) metric, in which the distance between points x, y is the min-
imum over all paths between x, y of the longest edge in the path. Distances in this
metric exhibit stark phase transitions between within-cluster distances and between-
cluster distances. We are interested in performance guarantees with this metric which
will explain this phase transition. We prove theoretical guarantees on the perfor-
mance of LLPD as a discriminatory metric, under the assumption that data is drawn
randomly from distributions supported near low-dimensional sets, together with a
possibly very large number of outliers sampled from a distribution in the high dimen-
sional ambient space. Moreover, we show that LLPD spectral clustering correctly
determines the number of clusters and achieves high classification accuracy for data
drawn from certain non-parametric mixture models. The existing state-of-the-art for
spectral clustering struggles in the highly noisy setting, in the case when clusters are
highly elongated—which leads to large within-cluster variance for traditional distance
metrics—and also in the case when clusters have disparate volumes. In contrast, our
method can tolerate a large amount of noise, even in its natural non-parametric set-
ting, and it is essentially invariant to geometry of the clusters.
In order to efficiently analyze large data sets, a fast algorithm for computing LLPD is
required. Fast nearest neighbor searches have been developed for Euclidean distance
on intrinsically low-dimensional sets (and other doubling spaces) using cover trees
(Beygelzimer et al., 2006), among other popular algorithms (e.g. k-d trees (Bentley,
1975)), and have been successfully employed in fast clustering algorithms. These
algorithms compute the O(1) nearest neighbors for all points in O(n log(n)), where
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n is the number of points, and are hence crucial to the scalability of many machine
learning algorithms. LLPD seems to require the computation of a minimizer over a
large set of paths. We introduce here an algorithm for LLPD, efficient and easy to
implement, with the same quasilinear computational complexity as the algorithms
above: this makes LLPD nearest neighbor searches scalable to large data sets. We
moreover present a fast eigensolver for the (dense) LLPD graph Laplacian that allows
for the computation of the approximate eigenvectors of this operator in essentially
linear time.

1.1. Summary of Results

The major contributions of the present work are threefold.
First, we analyze the finite sample behavior of LLPD for points drawn according to a
flexible probabilistic data model, with points drawn from low dimensional structures
contaminated by a large number of high dimensional outliers. We derive bounds for
maximal within-cluster LLPD and minimal between-cluster LLPD that hold with
high probability, and also derive a lower bound for the minimal LLPD to a point’s
knse nearest neighbor in the LLPD metric. These results rely on a combination of
techniques from manifold learning and percolation theory, and may be of independent
interest.
Second, we deploy these finite sample results to prove that, under our data model,
the eigengap statistic for LLPD-based Laplacians correctly determines the number of
clusters. While the eigengap heuristic is often used in practice, existing theoretical
analyses of spectral clustering fail to provide a rich class of data for which this esti-
mate is provably accurate. Our results regarding the eigengap are quite general and
can be applied to give state-of-the-art performance guarantees for spectral clustering
with any ultrametric, not just the LLPD. Moreover, we prove that the LLPD-based
spectral embedding learned by our method is clustered correctly by K-means with high
probability, with misclassification rate improving over the existing state-of-the-art for
Euclidean spectral clustering.
Finally, we present a fast and easy to implement approximation algorithm for LLPD,
based on a multiscale decomposition of adjacency graphs. Let kℓℓ be the number
of LLPD nearest neighbors sought. Our approach generates approximate kℓℓ-nearest
neighbors in the LLPD at a cost of O(n(kEucCNN + m(kEuc ∨ log(n)) + kℓℓ)), where
n is the number of data points, kEuc is the number of nearest neighbors used to
construct an initial adjacency graph on the data, CNN is the cost of a Euclidean
nearest neighbor query, m is related to the approximation scheme, and ∨ denotes
the maximum. Under the realistic assumption kEuc, kℓℓ,m ≪ log(n), this algorithm
is O(n log2(n)) for data with low intrinsic dimension. If kEuc, kℓℓ,m = O(1) with
respect to n, this reduces to O(n log(n)). We quantify the resulting approximation
error, which can be uniformly bounded independent of the data. We moreover develop
a fast eigensolver to compute the K principal eigenfunctions of the dense approximate
LLPD Laplacian in O(n(kEucCNN+m(kEuc∨log(n)∨K2))) time. If kEuc, K,m = O(1)
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with respect to n, this reduces to O(n log(n)). This allows for the fast computation of
the eigenvectors without resorting to constructing a sparse Laplacian. The proposed
method is demonstrated on a variety of synthetic and real data sets, with performance
consistently with our theoretical results.
Article outline. In Section 2, we present an overview of clustering methods, with
an emphasis on those most closely related to the one we propose. A summary of our
data model and main results, together with motivating examples, are in Section 3.
In Section 4, we analyze the LLPD for non-parametric mixture models. In Section
5, performance guarantees for spectral clustering with LLPD are derived, including
guarantees on when the eigengap is informative and on the accuracy of clustering the
spectral embedding obtained from the LLPD graph Laplacian. Section 6 proposes an
efficient approximation algorithm for LLPD yielding faster nearest neighbor searches
and computation of the eigenvectors of the LLPD Laplacian. Numerical experiments
on representative data sets appear in Section 7. We conclude and discuss new research
directions in Section 8.

1.2. Notation

In Table 1, we introduce notation we will use throughout the article.

2. Background

The process of determining groupings within data and assigning labels to data points
according to these groupings without supervision is called clustering (Hastie et al.,
2009). It is a fundamental problem in machine learning, with many approaches known
to perform well in certain circumstances, but not in others. In order to provide per-
formance guarantees, analytic, geometric, or statistical assumptions are placed on
the data. Perhaps the most popular clustering scheme is K-means (Steinhaus, 1957;
Friedman et al., 2001; Hastie et al., 2009), together with its variants (Ostrovsky
et al., 2006; Arthur and Vassilvitskii, 2007; Park and Jun, 2009), which are used in
conjunction with feature extraction methods. This approach partitions the data into
a user-specified number K groups, where the partition is chosen to minimize within-
cluster dissimilarity: C∗ = argminC={Ck}Kk=1

∑K
k=1

∑

x∈Ck
‖x− x̄k‖22. Here, {Ck}Kk=1 is

a partition of the points, Ck is the set of points in the kth cluster and x̄k denotes the
mean of the kth cluster. Unfortunately, the K-means algorithm and its refinements
perform poorly for data sets that are not the union of well-separated, spherical clus-
ters, and are very sensitive to outliers. In general, density-based methods such as
density-based spatial clustering of applications with noise (DBSCAN) and variants
(Ester et al., 1996; Xu et al., 1998) or spectral methods (Shi and Malik, 2000; Ng
et al., 2002) are required to handle irregularly shaped clusters.
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X = {xi}ni=1 ⊂ R
D Data points to cluster
d Intrinsic dimension of cluster sets
K Number of clusters

{Xl}Kl=1 Discrete data clusters

X̃ Discrete noise data
XN Denoised data; XN ⊆ X
N Number of points remaining after denoising

nmin Smallest number of points in a cluster
kEuc Number of nearest neighbors in construction of initial NN-graph
kℓℓ Number of nearest neighbors for LLPD
knse Number of nearest neighbors for LLPD denoising
CNN Complexity of computing a Euclidean NN
W Weight matrix

LSYM Symmetric normalized Laplacian
σ Scaling parameter in construction of weight matrix

{(φi, λi)}ni=1 Eigenvectors and eigenvalues of an n× n LSYM

ǫin Maximum within cluster LLPD; see (3.7)
ǫnse Minimum LLPD of noise points to knse nearest neighbor; see (3.7)
ǫbtw Minimum between cluster LLPD; see (3.7)
ǫsep Minimum between cluster LLPD after denoising; see (5.3)
δ Minimum Euclidean distance between clusters; see Definition 3.2
θ Denoising parameter; see Definition 3.8

ζn, ζθ LDLN data cluster balance parameters; see (3.6)
ζN Empirical cluster balance parameter after denoising; see Assumption 1
ρ Arbitrary metric

ρℓℓ LLPD metric; see Definition 2.1
Hd d-dimensional Hausdorff measure

Bǫ(x) D-dimensional ball of radius ǫ centered at x
B1 Unit ball, with dimension clear from context

a ∨ b, a ∧ b Maximum, minimum of a and b
a . b, a & b a ≤ Cb , a ≥ Cb for some absolute constant C > 0

Table 1: Notation used throughout the article.

2.1. Hierarchical Clustering

Hierarchical clustering algorithms build a family of clusters at distinct hierarchical
levels. Their results are readily presented as a dendrogram (see Figure 1). Hierarchical
clustering algorithms can be agglomerative, where individual points start as their own
clusters and are iteratively merged, or divisive, where the full data set is iteratively
split until some stopping criterion is reached. It is often challenging to infer a global
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partition of the data from hierarchical algorithms, as it is unclear where to cut the
dendrogram.
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Figure 1: Four two-dimensional clusters together with noise (Zelnik-Manor and Perona, 2004) appear
in (a). In (b) is the corresponding single-linkage dendrogram. Each point begins as its own cluster,
and at each level of the dendrogram, the two nearest clusters are merged. It is hard to distinguish
between the noise and cluster points from the single linkage dendrogram, as it is not obvious where
the four clusters are.

For agglomerative methods, it must be determined which clusters ought to be merged
at a given iteration. This is done by a cluster dissimilarity metric ρc. For two clusters
Ci, Cj, ρc(Ci, Cj) small means the clusters are candidates for merger. Let ρX be a
metric defined on all the data points in X. Standard ρc, and the corresponding
clustering methods, include:

· ρSL(Ci, Cj) = minxi∈Ci,xj∈Cj
ρX(xi, xj): single linkage clustering.

· ρCL(Ci, Cj) = maxxi∈Ci,xj∈Cj
ρX(xi, xj): complete linkage clustering.

· ρGA(Ci, Cj) =
1

|Ci‖Cj |
∑

xi∈Ci

∑

xj∈Cj
ρX(xi, xj): group average clustering.

In Section 6 we make theoretical and practical connections between the proposed
method and single linkage clustering.

2.2. Spectral Clustering

Spectral clustering methods (Shi and Malik, 2000; Meila and Shi, 2001; Ng et al.,
2002; Von Luxburg, 2007) use a spectral decomposition of an adjacency or Laplacian
matrix to define an embedding of the data, and then cluster the embedded data using
a standard algorithm, commonly K-means. The basic idea is to construct a weighted
graph on the data that represents local relationships. The graph has low edge weights
for points far apart from each other and high edge weights for points close together.
This graph is then partitioned into clusters so that there are large edge weights within
each cluster, and small edge weights between each cluster. Spectral clustering in fact
relaxes an NP-hard graph partition problem (Chung, 1997; Shi and Malik, 2000).
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We now introduce notation related to spectral clustering that will be used throughout
this work. Let fσ : R → [0, 1] denote a kernel function with scale parameter σ. Given
a metric ρ : R

D × R
D → [0,∞) and some discrete set X = {xi}ni=1 ⊂ R

D, let
Wij = fσ(ρ(xi, xj)) be the corresponding weight matrix. Let di =

∑n
j=1 Wij denote

the degree of point xi, and define the diagonal degree matrix Dii = di, Dij = 0 for
i 6= j. The graph Laplacian is then defined by L = D−W, which is often normalized to
obtain the symmetric Laplacian LSYM = I −D− 1

2WD− 1
2 or random walk Laplacian

LRW = I − D−1W. Using the eigenvectors of L to define an embedding leads to
unnormalized spectral clustering, whereas using the eigenvectors of LSYM or LRW leads
to normalized spectral clustering. While both normalized and unnormalized spectral
clustering minimize between-cluster similarity, only normalized spectral clustering
maximizes within-cluster similarity, and is thus preferred in practice (Von Luxburg,
2007).
In this article we consider spectral clustering with LSYM and construct the spectral
embedding defined according to the popular algorithm of Ng et al. (2002). When
appropriate, we will use LSYM(X, ρ, fσ) to denote the matrix LSYM computed on the
data set X using metric ρ and kernel fσ. We denote the eigenvalues of LSYM (which
are identical to those of LRW) by λ1 ≤ . . . ≤ λn, and the corresponding eigenvectors by
φ1, . . . , φn. To cluster the data into K groups according to Ng et al. (2002), one first
forms an n×K matrix Φ whose columns are given by {φi}Ki=1; these K eigenvectors
are called the K principal eigenvectors. The rows of Φ are then normalized to obtain
the matrix V , that is Vij = Φij/(

∑

j Φ
2
ij)

1/2. Let {vi}ni=1 ∈ R
K denote the rows of V .

Note that if we let g : RD → R
K denote the spectral embedding, vi = g(xi). Finally,

K-means is applied to cluster the {vi}ni=1 into K groups, which defines a partition of
our data points {xi}ni=1. One can use LRW similarly (Shi and Malik, 2000).
Choosing K is an important aspect of spectral clustering, and various spectral-based
mechanisms have been proposed in the literature (Azran and Ghahramani, 2006b,a;
Zelnik-Manor and Perona, 2004; Sanguinetti et al., 2005). The eigenvalues of LSYM

have often been used to heuristically estimate the number of clusters as the largest
empirical eigengap K̂ = argmaxi λi+1 − λi, although there are many data sets for
which this heuristic is known to fail (Von Luxburg, 2007); this estimate is called the
eigengap statistic. We remark that sometimes in the literature it is required that not
only should λK̂+1 − λK̂ be maximal, but also that λi should be close to 0 for i ≤ K̂;

we shall not make this additional assumption on λi, i ≤ K̂, though we find in practice
it is usually satisfied when the eigengap is accurate.
A description of the spectral clustering algorithm of Ng et al. (2002) in the case that
K is not known a priori appears in Algorithm 1; the algorithm can be modified in the
obvious way if K is known and does not need to be estimated, or when using a sparse
Laplacian, for example when W is defined by a sparse nearest neighbors graph.
In addition to determining K, performance guarantees for K-means (or other clus-
tering methods) on the spectral embedding is a topic of active research (Schiebinger

7



Little, Maggioni, Murphy

Algorithm 1 Spectral clustering with metric ρ

Input: {xi}ni=1 (data) , σ > 0 (scaling parameter), fσ (kernel function)
Output: Y (Labels)

1: Compute the weight matrix W ∈ R
n×n with Wij = fσ(ρ(xi, xj)).

2: Compute the diagonal degree matrix D ∈ R
n×n with Dii =

∑n
j=1 Wij.

3: Form the symmetric normalized Laplacian LSYM = I −D− 1
2WD− 1

2 .
4: Compute the eigendecomposition {(φk, λk)}nk=1, sorted so that 0 = λ1 ≤ λ2 ≤

· · · ≤ λn.
5: Estimate the number of clusters K as K̂ = argmaxk λk+1 − λk.
6: For 1 ≤ i ≤ n, let vi = (φ1(xi), φ2(xi), . . . , φK̂(xi))/||(φ1(xi), φ2(xi), . . . , φK̂(xi))||2

define the (row normalized) spectral embedding.
7: Compute labels Y by runningK-means on the data {vi}ni=1 using K̂ as the number

of clusters.

et al., 2015; Arias-Castro et al., 2017). However, spectral clustering typically has poor
performance in the presence of noise and highly elongated clusters.

2.3. Background on LLPD

Many clustering and machine learning algorithms make use of Euclidean distances
to compare points. While universal and popular, this distance is data-independent,
not adapted to the geometry of the data. Many data-dependent metrics have been
developed, for example diffusion distances (Coifman et al., 2005; Coifman and Lafon,
2006), which are induced by diffusion processes on a data set, and path-based dis-
tances (Fischer and Buhmann, 2003; Chang and Yeung, 2008). We shall consider a
path-based distance for undirected graphs.

Definition 2.1 For X = {xi}ni=1 ⊂ R
D, let G be the complete graph on X with edges

weighted by Euclidean distance between points. For xi, xj ∈ X, let P(xi, xj) denote
the set of all paths connecting xi, xj in G. The longest-leg path distance (LLPD) is:

ρℓℓ(xi, xj) = min
{yl}Ll=1∈P(xi,xj)

max
l=1,2,...,L−1

‖yl+1 − yl‖2.

In this article we use LLPD with respect to the Euclidean distance, but our results
very easily generalize to other base distances. Our goal is to analyze the effects of
transforming an original metric through the min-max distance along paths in the
definition of LLPD above. We note that the LLPD is an ultrametric, i.e.

∀x, y, z ∈ X ρℓℓ(x, y) ≤ max{ρℓℓ(x, z), ρℓℓ(y, z)} . (2.2)

This property is central to the proofs of Sections 4 and 5. Figure 2 illustrates how
LLPD successfully differentiates elongated clusters, whereas Euclidean distance does
not.
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Figure 2: In this example, LLPD is compared with Euclidean distance. The distance from the red
circled source point is shown in each subfigure. Notice that the LLPD has a phase transition that
separates the clusters clearly, and that all distances within-cluster are comparable.

2.3.1. Probabilistic Analysis of LLPD

Existing theoretical analysis of LLPD is based on studying the uniform distribution
on certain geometric sets. The degree and connectivity properties of near-neighbor
graphs defined on points sampled uniformly from [0, 1]d and their connections with
percolation have been studied extensively (Appel and Russo, 1997a,b, 2002; Penrose,
1997, 1999). Related results in the case of points drawn from low-dimensional struc-
tures were studied by Arias-Castro (2011). These results motivate some of the ideas
in this article; detailed references are given below when appropriate.

2.3.2. Spectral Clustering with LLPD

Spectral clustering with LLPD has been shown to enjoy good empirical performance
(Fischer et al., 2001; Fischer and Buhmann, 2003; Fischer et al., 2004) and is made
more robust by incorporating outlier removal (Chang and Yeung, 2008). The method
and its variants generally perform well for non-convex and highly elongated clusters,
even in the presence of noise. However, no theoretical guarantees seem to be available.
Moreover, numerical implementation of LLPD spectral clustering appears underde-
veloped, and existing methods have been evaluated mainly on small, low-dimensional
data data setsets. This article derives theoretical guarantees on performance of LLPD
spectral clustering which confirms empirical insights, and also provides a fast imple-
mentation of the method suitable for large data sets.

2.3.3. Computing LLPD

The problem of computing this distance is referred to by many names in the litera-
ture, including the maximum capacity path problem, the widest path problem, and
the bottleneck edge query problem (Pollack, 1960; Hu, 1961; Camerini, 1978; Gabow
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and Tarjan, 1988). A naive computation of LLPD distances is expensive, since the
search space P(x, y) is potentially very large. However, for a fixed pair of points
x, y connected in a graph G = G(V,E), ρℓℓ(x, y) can be computed in O(|E|) (Pun-
nen, 1991). There has also been significant work on the related problem of finding
bottleneck spanning trees. For a fixed root vertex s ∈ V , the minimal bottleneck
spanning tree rooted at s is the spanning tree whose maximal edge length is minimal.
The bottleneck spanning tree can be computed in O(min{n log(n) + |E|, |E| log(n)})
(Camerini, 1978; Gabow and Tarjan, 1988).
Computing all LLPDs for all points is the all points path distance (APPD) problem.
Naively applying the bottleneck spanning tree construction to each point gives an
APPD runtime of O(min{n2 log(n)+n|E|, n|E| log(n)}). However the APPD distance
matrix can be computed in O(n2), for example with a modified SLINK algorithm
(Sibson, 1973), or with Cartesian trees (Alon and Schieber, 1987; Demaine et al., 2009,
2014). We propose to approximate LLPD and implement LLPD spectral clustering
with an algorithm near-linear in n, which enables the analysis of very large data sets
(see Section 6).

3. Major Contributions

In this section we present a simplified version of our main theoretical result. More
general versions of these results, with detailed constants, will follow in Sections 4 and
5. We first discuss a motivating example and outline our data model and assumptions,
which will be referred to throughout the article.

3.1. Motivating Examples

In this subsection we illustrate in which regimes LLPD spectral clustering advances
the state-of-art for clustering. As will be explicitly described in Subsection 3.2, we
model clusters as connected, high-density regions, and we model noise as a low-density
region separating the clusters. Our method easily handles highly elongated and irreg-
ularly shaped clusters, where traditional K-means and even spectral clustering fail.
For example, consider the four elongated clusters in R

2 illustrated in Figure 3. After
denoising the data with nearest neighbor thresholding (see Section 5.2.1 for a de-
scription of the denoising procedure and Section 5.2.4 for a discussion of how to tune
the thresholding parameter), both K-means and Euclidean spectral clustering split
one or more of the most elongated clusters, whereas the LLPD spectral embedding
perfectly separates them. Moreover, the eigenvalues of the LLPD Laplacian correctly
infer there are 4 clusters, unlike the Euclidean Laplacian.
There are naturally situations where LLPD spectral clustering will not perform well,
such as for certain types of structured noise. For example, consider the dumbbell
shown in Figure 4. When there is a high-density bridge connecting the dumbbell,
LLPD will not be able to distinguish the two balls. However, it is worth noting that
this property is precisely what allows for robust performance with elongated clusters,
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means. The data has been denoised
based on thresholding with LLPD.
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(e) Spectral clustering results with
Euclidean distances.
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(f) Spectral clustering results with
LLPD.

Figure 3: The data set consists of four elongated clusters in R
2, together with ambient noise. The

labels given by K-means are quite inaccurate, as are those given by regular spectral clustering.
The labels given by LLPD spectral clustering are perfect. Note that Φi denotes the ith principal
eigenvector of LSYM. For both variants of spectral clustering, the K-means algorithm was run in
the 4 dimensional embedding space given by the first 4 principal eigenvectors of LSYM.

and that if the bridge has a lower density than the clusters, LLPD spectral clustering
performs very well.

3.2. Low Dimensional Large Noise (LDLN) Data Model and Assumptions

We first define the low dimensional, large noise (LDLN) data model, and then estab-
lish notation and assumptions for the LLPD metric and denoising procedure on data
drawn from this model.
We consider a collection of K disjoint, connected, approximately d-dimensional sets
X 1, . . . ,XK embedded in a measurable, D-dimensional ambient set X ⊂ R

D. We
recall the definition of d-dimensional Hausdorff measure as follows (Benedetto and
Czaja, 2010). For A ⊂ R

D, let diam(A) = supx,y∈A ‖x − y‖2. Fix δ > 0 and for any

11
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(a) Two clusters connected by a bridge of roughly the
same empirical density.
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(b) Two clusters connected by a bridge of lower empir-
ical density.

Figure 4: In (a), two spherical clusters are connected with a bridge of approximately the same
density; LLPD spectral clustering fails to distinguish between theses two clusters. Despite the fact
that the bridge consists of a very small number of points relative to the entire data set, it is quite
adversarial for the purposes of LLPD separation. This is a limitation of the proposed method: it
is robust to large amounts of diffuse noise, but not to a potentially small amount of concentrated,
adversarial noise. Conversely, if the bridge is of lower density, as in (b), then the proposed method
will succeed.

A ⊂ R
D, let

Hd
δ(A) = inf

{ ∞∑

i=1

diam(Ui)
d | A ⊂

∞⋃

i=1

Ui, diam(Ui) < δ

}

.

The d-dimensional Hausdorff measure of A is Hd(A) = limδ→0+ Hd
δ(A). Note that

HD(A) is simply a rescaling of the Lebesgue measure in R
D.

Definition 3.1 A set S ⊂ R
D is an element of Sd(κ, ǫ0) for some κ ≥ 1 and ǫ0 > 0

if it has finite d-dimensional Hausdorff measure, is connected, and:

∀x ∈ S, ∀ǫ ∈ (0, ǫ0), κ−1ǫd ≤ Hd(S ∩ Bǫ(x))

Hd(B1)
≤ κǫd .

Note that Sd(κ, ǫ0) includes d-dimensional smooth compact manifolds (which have
finite positive reach (Federer, 1959)). With some abuse of notation, we denote by
Unif(S) the probability measure Hd/Hd(S). For a set A and τ ≥ 0, we define

B(A, τ) := {x ∈ R
D : ∃y ∈ A with ‖x− y‖2 ≤ τ}.

Clearly B(A, 0) = A.

Definition 3.2 (LDLN model) The Low-Dimensional Large Noise (LDLN) model
consists of a D-dimensional ambient set X ⊂ R

D and K cluster regions X 1, . . . ,XK ⊂
X and noise set X̃ ⊂ R

D such that:

(i) 0 < HD(X ) < ∞;

(ii) X l = B(Sl, τ) for Sl ∈ Sd(κ, ǫ0), l = 1, . . . , K, τ ≥ 0 fixed;

12
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(iii) X̃ = X \(X 1 ∪ . . . ∪ XK);

(iv) the minimal Euclidean distance δ between two cluster regions satisfies

δ := min
l 6=s

dist(X l,X s) = min
l 6=s

min
x∈X l,y∈X s

‖x− y‖2 > 0.

Condition (i) says that the ambient set X is nontrivial and has boundedD-dimensional
volume; condition (ii) says that the cluster regions behave like tubes of radius τ around
well-behaved d-dimensional sets; condition (iii) defines the noise as consisting of the
high-dimensional ambient region minus any cluster region; condition (iv) states that
the cluster regions are well-separated.

Definition 3.3 (LDLN data) Given a LDLN model, LDLN data consists of sets
Xl, each consisting of nl i.i.d. draws from Unif(X l), for 1 ≤ l ≤ K, and X̃ consisting
of ñ i.i.d. draws from Unif(X̃ ). We let X = X1 ∪ · · · ∪XK ∪ X̃, n := n1+ . . .+nK +
ñ, nmin := min1≤l≤K nl.

Remark 3.4 Although our model assumes sampling from a uniform distribution on
the cluster regions, our results easily extend to any probability measure µl on X l such
that there exist constants 0 < C1 ≤ C2 < ∞ so that C1Hd(S)/Hd(X l) ≤ µl(S) ≤
C2Hd(S)/Hd(X l) for any measurable subset S ⊂ X l, and the same generalization
holds for sampling from the noise set X̃ . The constants in our results change but
nothing else; thus for ease of exposition we assume uniform sampling.

Remark 3.5 We could also consider a fully probabilistic model with the data con-
sisting of n i.i.d samples from a mixture model

∑K
l=1 ql Unif(X l) + q̃Unif(X̃ ), with

suitable mixture weights q1, . . . , qK , q̃ summing to 1. Then with high probability we
would have ni (now a random variable) close to qin and ñ close to q̃n, falling back to
the above case. We will use the model above in order to keep the notation simple.

We define two cluster balance parameters for the LDLN data model:

ζn :=

∑K
l=1 nl

nmin

, ζθ :=

∑K
l=1, pl,θ
pmin,θ

(3.6)

where pl,θ := HD(B(X l, θ) \ X l)/HD(X̃ ), pmin,θ := min1≤l≤K pl,θ, and θ is related to
the denoising procedure (see Definition 3.8). The parameter ζn measures the balance
of cluster sample size and the parameter ζθ depends on the balance in surface area
of the cluster sets X l. When all ni are equal and the cluster sets have the same
geometry, ζn = ζθ = K.
Let ρℓℓ refer to LLPD in the full set X. For A ⊂ X, let ρAℓℓ refer to LLPD when paths
are restricted to being contained in the set A. For x ∈ X, let βknse(x,A) denote the
LLPD from x to its knse

th LLPD-nearest neighbor when paths are restricted to the set
A:

13
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βknse(x,A) := min
B⊂A\{x},|B|=knse

max
y∈B

ρAℓℓ(x, y).

Let ǫin be the maximal within-cluster LLPD, ǫnse the minimal distance of noise points
to their knse

th LLPD-nearest neighbor in the absence of cluster points, and ǫbtw the
minimal between-cluster LLPD:

ǫin := max
1≤l≤K

max
x6=y∈Xl

ρℓℓ(x, y), ǫnse := min
x∈X̃

βknse(x, X̃), ǫbtw := min
l 6=l′

min
x∈X l,y∈X l′

ρℓℓ(x, y) .

(3.7)

Definition 3.8 (Denoised LDLN data) We preprocess LDLN data (denoising) by
removing any points that have a large LLPD to their knse

th LLPD-nearest neighbor, i.e.
by removing all points x ∈ X which satisfy βknse(x,X) > θ for some thresholding
parameter θ. We let N ≤ n denote the number of points which survive thresholding,
and XN ⊂ X be the corresponding subset of points.

A discussion of how to tune θ in practice appears in Section 5.2.4.

3.3. Overview of Main Results

This article investigates geometric conditions implying ǫin ≪ ǫnse with high prob-
ability. In this context higher density sets are separated by lower density regions;
the points in these lower density regions will be referred to as noise and outliers
interchangeably. In this regime, noise points are identified and removed with high
probability, leading to well-separated clusters that are internally coherent in the sense
of having uniformly small within-cluster distances. The proposed clustering method
is shown to be highly robust to the choice of scale parameter in the kernel function,
and to produce accurate clustering results even in the context of very large amounts
of noise and highly nonlinear or elongated clusters. Theorem 3.10 simplifies two ma-
jor results of the present article, Theorem 5.12 and Corollary 5.14, which establish
conditions guaranteeing two desirable properties of LLPD spectral clustering. First,
that the Kth eigengap of LSYM is the largest gap with high probability, so that the
eigengap statistic correctly estimates the number of clusters. Second, that embedding
the data according to the principal eigenvectors of the LLPD Laplacian LSYM followed
by a simple clustering algorithm correctly labels all points. Throughout the theoret-
ical portions of this article, we will define the accuracy of a clustering algorithm as
follows. Let {yi}ni=1 be ground truth labels taking values in [K ] = {1, . . . , K}, and let
{ŷi}ni=1 ∈ [K] be the labels learned from running a clustering algorithm. Following
Abbe (2018), we define the agreement function between y and ŷ as

A(y, ŷ) = max
π∈ΠK

1

n

n∑

i=1

✶(π(ŷi) = yi), (3.9)

14
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where the maximum is taken over all permutations of the label set ΠK , and the
accuracy of a clustering algorithm as the value of the resulting agreement function.
The agreement function can be computed numerically using the Hungarian algorithm
(Munkres, 1957). If ground truth labels are only available on a data subset (as for
LDLN data where noise points are unlabeled), then the accuracy is computed by
restricting to the labeled data points. In Section 7, additional notions of accuracy
will be introduced for the empirical evaluation of LLPD spectral clustering.

Theorem 3.10 Under the LDLN data model and assumptions, suppose that the car-
dinality ñ of the noise set and the tube radius τ are such that

ñ ≤
(
C2

C1

) knseD
knse+1

n
D

d+1(
knse

knse+1)
min

, τ <
C1

8
n
−(d+1)
min

∧ ǫ0
5
.

Let fσ(x) = e−x2/σ2
be the Gaussian kernel and assume knse = O(1). If nmin is large

enough and θ, σ satisfy

C1n
− 1

d+1

min
≤ θ ≤ C2ñ

−( knse+1
knse

) 1
D (3.11)

C3(ζn + ζθ)θ ≤ σ ≤ C4δ(log(ζn + ζθ))
−1/2 (3.12)

then with high probability the denoised LDLN data XN satisfies:

(i) the largest gap in the eigenvalues of LSYM(XN , ρ
XN

ℓℓ , fσ) is λK+1 − λK.

(ii) spectral clustering with LLPD with K principal eigenvectors achieves perfect
accuracy on XN .

The constants {Ci}4i=1 depend on the geometric quantities K, d,D, κ, τ, {Hd(Sl)}Kl=1,HD(X̃ ),
but do not depend on n1, . . . , nK , ñ, θ, σ.

Section 4 verifies that with high probability a point’s distance to its knse
th nearest neigh-

bor (in LLPD) scales like n
−(d+1)
min for cluster points and ñ−( knse+1

knse
) 1
D for noise points;

thus when the denoising parameter θ satisfies (3.11), we successfully distinguish the
cluster points from the noise points, and this range is large when the number of noise

points ñ is small relative to n
D

d+1(
knse

knse+1)
min . Thus, Theorem 3.10 illustrates that when

clusters are (intrinsically) low-dimensional, a number of noise points exponentially
(in D/d) larger than nmin may be tolerated. If the data is denoised at an appropriate
threshold level, the maximal eigengap heuristic correctly identifies the number of clus-
ters and spectral clustering achieves high accuracy for any kernel scale σ satisfying
(3.12). This range for σ is large whenever the cluster separation δ is large relative
to the denoising parameter θ. Section 7 discusses how to empirically select σ; (7.1)
in particular suggests an automated procedure for doing so. We note that the case
when knse is not O(1) is discussed in Section 5.2.4.
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In the noiseless case (ñ = 0) when clusters are approximately balanced (ζn, ζθ = O(1)),
Theorem 3.10 can be further simplified as stated in the following corollary. Note that
no denoising is necessary in this case; one simply needs the kernel scale σ to be not
small relative to the maximal within cluster distance (which is upper bounded by

n
−(d+1)
min ) and not large relative to the distance between clusters δ.

Corollary 3.13 (Noiseless, Balanced Case) Under the LDLN data model and
assumptions, further assume the cardinality of the noise set ñ = 0 and the tube
radius τ satisfies τ < C1

8
n
−(d+1)
min

∧ ǫ0
5
. Let fσ(x) = e−x2/σ2

be the Gaussian kernel and
assume knse, K, ζn = O(1). If nmin is large enough and σ satisfies

C1n
− 1

d+1

min
≤ σ ≤ C4δ

for constants C1, C4 not depending on n1, . . . , nK , σ, then with high probability the
LDLN data X satisfies:

(i) the largest gap in the eigenvalues of LSYM(X, ρXℓℓ , fσ) is λK+1 − λK.

(ii) spectral clustering with LLPD with K principal eigenvectors achieves perfect
accuracy on X.

Remark 3.14 If one extends the LDLN model to allow the Sl sets to have different
dimensions dl and X l to have different tube widths τl, that is, Sl ∈ Sdl(κ, ǫ0) and

X l = B(Sl, τl), Theorem 3.10 still holds with maxl τl replacing τ and maxl n
−1/(dl+1)
l

replacing n
−1/(d+1)
min

. Alternatively, σ can be set in a manner that adapts to local density
(Zelnik-Manor and Perona, 2004).

Remark 3.15 The constants in Theorem 3.10 and Corollary 3.13 have the following
dimensional dependencies.

1. C1 . minl(κHd(Sl)/Hd(B1))
1
d for τ = 0. Letting rad(M) denote the geodesic

radius of a manifold M, if Sl is a complete Riemannian manifold with non-
negative Ricci curvature, then by the Bishop-Gromov inequality (Bishop and

Crittenden, 2011), (Hd(Sl)/Hd(B1))
1
d ≤ rad(Sl); noting that κ is at worst ex-

ponential in d, it follows that C1 is then dimension independent for τ = 0. For
τ > 0, C1 is upper bounded by an exponential in D/d.

2. C2 . (HD(X̃ )/HD(B1))
1
D . Assume HD(X̃ ) & HD(X ): if X is the unit D-

dimensional ball, then C2 is dimension independent; if X is the unit cube, then
C2 scales like

√
D. This illustrates that when X is not elongated in any direction,

we expect C2 to scale like rad(X ).

3. C3, C4 are independent of d and D.
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4. Finite Sample Analysis of LLPD

In this section we derive high probability bounds for the maximal within-cluster LLPD
and the minimal between-cluster LLPD, and also derive a bound for the minimal knse

th

LLPD-nearest neighbor distance. From these results we infer a sampling regime where
LLPD is able to effectively differentiate between clusters and noise.

4.1. Upper-Bounding Within-Cluster LLPD

For bounding the within-cluster LLPD, we seek a uniform upper bound on ρℓℓ that
holds with high probability. The following two results are essentially Lemma 1 and
Theorem 1 in Arias-Castro (2011) with all constants explicitly computed; the proofs
are in Appendix A.

Lemma 4.1 Let S ∈ Sd(κ, ǫ0), and let ǫ, τ > 0 with ǫ < 2ǫ0
5
. Then ∀x ∈ B(S, τ),

C1ǫ
d(τ ∧ ǫ)D−d ≤ HD(B(S, τ) ∩ Bǫ(x))/HD(B1) ≤ C2ǫ

d(τ ∧ ǫ)D−d, (4.2)

for constants C1 = κ−22−2D−d, C2 = κ222D+2d independent of ǫ.

Theorem 4.3 Let S ∈ Sd(κ, ǫ0) and let τ > 0, ǫ < ǫ0. Let x1, . . . , xn
i.i.d.∼Unif(B(S, τ))

and C = κ222D+d. Then

n ≥ CHD(B(S, τ))
(
ǫ
4

)d
(τ ∧ ǫ

4)
D−dHD(B1)

log
CHD(B(S, τ))

(
ǫ
8

)d
(τ ∧ ǫ

8)
D−dHD(B1)t

=⇒ P(max
i,j

ρℓℓ(xi, xj) < ǫ) ≥ 1−t .

When τ is sufficiently small and ignoring constants, the sampling complexity sug-
gested in Theorem 4.3 depends only on d. The following corollary uses the above
result to bound ǫin in the LDLN data model; the proof also is given in Appendix A.

Corollary 4.4 Assume the LDLN data model and assumptions, and let 0 < τ <
ǫ
8
∧ ǫ0

5
, ǫ < ǫ0, and C = κ524D+5d. Then

nl ≥
CHd(Sl)
(
ǫ
4

)d Hd(B1)
log

CHd(Sl)K
(
ǫ
8

)d Hd(B1)t
∀l = 1, . . . , K =⇒ P(ǫin < ǫ) ≥ 1− t . (4.5)

The case τ = 0 corresponds to cluster regions being elements of Sd(κ, ǫ0), and is
proved similarly to Theorem 4.3 (the proof is omitted):

Theorem 4.6 Let S ∈ Sd(κ, ǫ0), τ = 0, and let ǫ ∈ (0, ǫ0). Suppose x1, . . . , xn
i.i.d.∼

Unif(S). Then

n ≥ κHd(S)
(
ǫ
4

)d Hd(B1)
log

κHd(S)
(
ǫ
8

)d Hd(B1)t
=⇒ P(max

i,j
ρℓℓ(xi, xj) < ǫ) ≥ 1− t.

Thus, up to geometric constants, for τ = 0 the uniform bound on LLPD depends
only on the intrinsic dimension, d, not the ambient dimension, D. When d ≪ D, this
leads to a huge gain in sampling complexity, compared to sampling in the ambient
dimension.
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4.1.1. Comparison with Existing Asymptotic Estimates

To put Theorem 4.6 in context, we remark on known asymptotic results for LLPD in
the case S = [0, 1]d (Appel and Russo, 1997a,b, 2002; Penrose, 1997, 1999). Note that
this assumes τ = 0, that is, the cluster is truly intrinsically d-dimensional. Let Gd

n

denote a random graph with n vertices, with edge weights Wij = ‖xi − xj‖∞, where

x1, . . . , xn
i.i.d.∼ Unif([0, 1]d). For ǫ > 0, let Gd

n(ǫ) be the thresholded version of Gd
n,

where edges with Wij greater than ǫ are deleted. Define the random variable cn,d =
inf{ǫ > 0 : Gd

n(ǫ) is connected}. It is known (Penrose, 1999) that maxi,j ρℓℓ(xi, xj) =
cn,d for a fixed realization of the points {xi}ni=1. Moreover, Appel and Russo (2002)
showed cn,d has an almost sure limit in n:

lim
n→∞

(cn,d)
d n

log(n)
=

{

1 d = 1,
1
2d

d ≥ 2.

Therefore maxi,j ρℓℓ(xi, xj) ∼ (log(n)/n)
1
d , almost surely as n → ∞. Since the ℓ2 and

ℓ∞ norms are equivalent up to a
√
d factor, a similar result holds in the case of ℓ2

norm being used for edge weights. To compare this asymptotic limit with our results,

let ǫ∗ = maxi,j ρℓℓ(xi, xj). By Theorem 4.3, ǫ−d
∗ log(ǫ−d

∗ ) & n. Since ǫ∗ ∼ (log n/n)
1
d ,

ǫ−d
∗ log(ǫ−d

∗ ) ∼ (n/log n) log(n/log n) ∼ n as n → ∞. This shows that our lower
bound for ǫ−d

∗ log(ǫ−d
∗ ) matches the one given by the asymptotic limit and is thus

sharp.

4.2. Lower-Bounding Between-Cluster Distances and kNN LLPD

Having shown conditions guaranteeing that all points within a cluster are close to-
gether in the LLPD, we now derive conditions guaranteeing that points in different
clusters are far apart in LLPD. Points in the noise region may generate short paths be-
tween the clusters: we will upper-bound the number of between-clusters noise points
that can be tolerated. Our approach is related to percolation theory (Gilbert, 1961;
Roberts and Storey, 1968; Stauffer and Aharony, 1994) and analysis of single linkage
clustering (Hartigan, 1981). The following theorem is in fact inspired by Lemma 2 in
Hartigan (1981).

Theorem 4.7 Under the LDLN data model and assumptions, with ǫbtw as in (3.7),
for ǫ > 0

ñ ≤ t⌊
δ
ǫ
⌋−1HD(X̃ )

ǫDHD(B1)
=⇒ P (ǫbtw > ǫ) ≥ 1− t .

Proof We say that the ordered set of points xi1 , . . . , xiknse
forms an ǫ-chain of length

knse if ‖xij − xij+1
‖2 ≤ ǫ for 1 ≤ j ≤ knse − 1. The probability that an ordered set of

knse points forms an ǫ-chain is bounded above by
(

HD(Bǫ)

HD(X̃ )

)knse−1

. There are ñ!
(ñ−knse)!
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ordered sets of knse points. Letting Aknse be the event that there exist knse points
forming an ǫ-chain of length knse, we have

P(Aknse) ≤
ñ!

(ñ− knse)!

(HD(Bǫ)

HD(X̃ )

)knse−1

≤ ñ

(HD(B1)

HD(X̃ )
ñǫD

)knse−1

.

Note that Aknse+1 ⊂ Aknse . In order for there to be a path between X i and X j (for

some i 6= j) with all legs bounded by ǫ, there must be at least ⌊δ/ǫ⌋ − 1 points in X̃
forming an ǫ-chain. Thus recalling ǫbtw = minl 6=s minx∈X l,y∈X s

ρℓℓ(x, y), we have:

P (ǫbtw ≤ ǫ) ≤ P






∞⋃

knse=⌊ δ
ǫ
⌋−1

Aknse




 = P

(

A⌊ δ
ǫ
⌋−1

)

≤ ñ

(HD(B1)

HD(X̃ )
ñǫD

)⌊ δ
ǫ
⌋−2

≤ t

as long as log t ≥ log ñ+ (⌊δ/ǫ⌋ − 2)(log ñ+ log ǫD + logHD(B1)/HD(X̃ )). A simple
calculation proves the claim.

Remark 4.8 The above bound is independent of the number of clusters K, as the
argument is completely based on the minimal distance that must be crossed between-
clusters.

Combining Theorem 4.7 with Theorem 4.3 or 4.6 allows one to derive conditions
guaranteeing the maximal within cluster LLPD is smaller than the minimal between
cluster LLPD with high probability, which in turn can be used to derive performance
guarantees for spectral clustering on the cluster points. Since however it is not known
a priori which points are cluster points, one must robustly distinguish the clusters
from the noise. We propose removing any point whose LLPD to its knse

th LLPD-
nearest neighbor is sufficiently large (denoised LDLN data). The following theorem
guarantees that, under certain conditions, all noise points that are not close to a
cluster region will be removed by this procedure. The argument is similar to that in
Theorem 4.7, although we replace the notion of an ǫ-chain of length knse with that of
an ǫ-group of size knse.

Theorem 4.9 Under the LDLN data model and assumptions, with ǫnse as in (3.7),
for ǫ > 0

ñ ≤ 2t
1

knse+1

(knse + 1)

(

HD(X̃ )

HD(B1)

) knse
knse+1

ǫ−D knse
knse+1 =⇒ P (ǫnse > ǫ) ≥ 1− t .

Proof Let {xi}ñi=1 denote the points in X̃. Let Aknse,ǫ be the event that there exists
an ǫ-group of size knse, that is, there exist knse points such that the LLPD between
all pairs is at most ǫ. Note that Aknse,ǫ can also be described as the event that there
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exists an ordered set of knse points xπ1 , . . . , xπknse
such that xπi

∈
⋃i−1

j=1 Bǫ(xπj
) for all

2 ≤ i ≤ knse. Let Cπ,i denote the event that xπi
∈ ⋃i−1

j=1 Bǫ(xπj
). For a fixed ordered

set of points associated with the ordered index set π, we have

P

(

xπi
∈

i−1⋃

j=1

Bǫ(xπj
) for 2 ≤ i ≤ knse

)

= P(Cπ,2)P(Cπ,3|Cπ,2) . . .P

(

Cπ,knse |
knse−1⋂

j=2

Cπ,j

)

≤ HD(Bǫ)

HD(X̃ )

(

2
HD(Bǫ)

HD(X̃ )

)

. . .

(

(knse − 1)
HD(Bǫ)

HD(X̃ )

)

= (knse − 1)!

(HD(Bǫ)

HD(X̃ )

)knse−1

.

There are ñ!
(ñ−knse)!

ordered sets of knse points, so that

P(Aknse,ǫ) ≤
ñ!

(ñ− knse)!
(knse − 1)!

(HD(Bǫ)

HD(X̃ )

)knse−1

≤ ñ(knse − 1)!

(HD(B1)

HD(X̃ )
ñǫD

)knse−1

≤ t

as long as ñ(knse−1)!
(

HD(B1)

HD(X̃ )
ñǫD

)knse−1

≤ t, which occurs if ñ ≤ 2t
1

knse HD(X̃ )
knse−1
knse

knseHD(B1)
knse−1
knse ǫ

D(knse−1)
knse

for knse ≥ 2. Since P(ǫnse > ǫ) = P(minx∈X̃ βknse(x, X̃) > ǫ) = 1 − P(Aknse+1,ǫ), the
theorem holds for knse ≥ 1.

Remark 4.10 The theorem guarantees ǫnse ≥
(

2HD(X̃ )(2t)
1

knse

HD(B1)((knse+1)ñ)
knse+1
knse

) 1
D

with proba-

bility at least 1 − t. The lower bound for ǫnse is maximized at the unique maximizer

in knse > 0 of f(knse) = (2t)
1

knse ((knse + 1)ñ)−
knse+1
knse , which occurs at the positive root

knse∗ of knse− log(knse+1) = log ñ− log(2t). Notice that knse∗ = O(log ñ), so we may,
and will, restrict our attention to knse ≤ knse∗ = O(log ñ).

4.3. Robust Denoising with LLPD

Combining Corollary 4.4 (τ > 0 but small) or Theorem 4.6 (τ = 0) with Theorem
4.9 determines how many noise points can be tolerated while within-cluster LLPD
remain small relative to knse

th nearest neighbor LLPD of noise points. Any C ≥ 1
in the following theorem guarantees ǫin < ǫnse; when C ≫ 1, ǫin ≪ ǫnse, and LLPD
easily differentiates the clusters from the noise. The proof is given in Appendix A. A
similar result for the set-up of Theorem 4.3 is omitted for brevity.

Theorem 4.11 Assume the LDLN data model and assumptions, and define

τ∗ := max
l=1,...,k

(
κ524D+5dHd(Sl)

nlHd(B1)
log

(

2dnl
2K

t

)) 1
d

.

Let 0 ≤ τ < τ∗
8
∧ ǫ0

5
and let ǫin, ǫnse as in (3.7). For any C > 0,

ñ <

(
t
2

) 1
knse+1

knse + 1

(

HD(X̃ )

HD(B1)

) knse
knse+1 (

1

Cτ∗

)D knse
knse+1

=⇒ P(Cǫin < ǫnse) ≥ 1− t .
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Ignoring log terms and geometric constants, the number of noise points ñ can be

taken as large as minl n
D
d (

knse
knse+1)

l . Hence if d ≪ D, an enormous amount of noise
points are tolerated while ǫin is still small relative to ǫnse. This result is deployed to
prove LLPD spectral clustering is robust to large amounts of noise in Theorem 5.12
and Corollary 5.14, and is in particular relevant to condition (5.15), which articulates
the range of denoising parameters for which LLPD spectral clustering will perform
well.

4.4. Phase Transition in LLPD

In this section, we numerically validate our denoising scheme on simple data. The
data is a mixture of five uniform distributions: four from non-adjacent edges of
[0, 1] × [0, 1

2
] × [0, 1

2
], and one from the interior of [0, 1] × [0, 1

2
] × [0, 1

2
]. Each dis-

tribution contributed 3000 sample points. Figure 5a shows the data and Figure 5b
all sorted LLPDs. The sharp phase transition is explained mathematically by Theo-
rems 4.6 and 4.7. Indeed, d = 1, D = 3 in this example, so Theorem 4.6 guarantees
that with high probability, the maximum within cluster LLPD, call it ǫin, scales as
ǫ−1
in log(ǫ−1

in ) & n while Theorem 4.7 guarantees that with high probability, the mini-

mum between cluster LLPD, call it ǫbtw, scales as ǫbtw & n− 1
3 . The empirical estimates

can be compared with the theoretical guarantees, which are shown on the plot. The
guarantees require a confidence level, parametrized by t; this parameter was chosen
to be t = .01 for this example. The solid red line denotes the maximum within cluster
LLPD guaranteed with probability exceeding 1 − t = .99, and the dashed red line
denotes the minimum between cluster LLPD, guaranteed with probability exceeding
1 − t. It is clear from Figure 5 that the theoretical lower lower bound on ǫbtw is
rather sharp, while the theoretical upper bound on ǫin is looser. Despite the lack of
sharpness in estimating ǫin, the theoretical bounds are quite sufficient to separate the
within-cluster and between cluster LLPD. When d ≪ D, the difference between these
theoretical bounds becomes much larger.

5. Performance Guarantees for Ultrametric and LLPD
Spectral Clustering

In this section we first derive performance guarantees for spectral clustering with
any ultrametric. We show that when the data consists of cluster cores surrounded
by noise, the weight matrix W used in spectral clustering is, for a certain range
of scales σ, approximately block diagonal with constant blocks. In this range of
σ, the number of clusters can be inferred from the maximal eigengap of LSYM, and
spectral clustering achieves high labeling accuracy. On the other hand, for Euclidean
spectral clustering it is hard to choose a scale parameter that is simultaneously large
enough to guarantee a strong connection between every pair of points in the same
cluster and small enough to produce weak connections between clusters (and even
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(c) Corresponding pairwise ℓ2 dis-
tances, sorted.

Figure 5: (a) The clusters are on edges of the rectangular prism so that the pairwise LLPDs
between the clusters is at least 1. The interior is filled with noise points. Each cluster has 3000
points, as does the interior noise region. (b) The sorted ρℓℓ plot shows within-cluster LLPDs in
green, between-cluster LLPDs in blue, and LLPDs involving noise points in yellow. There is a clear
phase transition between the within-cluster and between-cluster LLPDs. This empirical observation
can be compared with the theoretical guarantees of Theorems 4.6 and 4.7. Setting t = .01 in those
theorems yield corresponding maximum within-cluster LLPD (shown with the solid red line) and
minimum between-cluster distance (shown with the dashed red line). The empirical results confirm
our theoretical guarantees. Notice moreover that there is no clear separation between the Euclidean
distances, which are shown in (c). This illustrates the challenges faced by classical spectral clustering,
compared to LLPD spectral clustering, for this data set.

when possible the shape (e.g. elongation) of clusters affects the ability to identify the
correct clusters). The resulting Euclidean weight matrix is not approximately block
diagonal for any choice of σ, and the eigengap of LSYM becomes uninformative and
the labeling accuracy potentially poor. Moreover, using an ultrametric for spectral
clustering leads to direct lower bounds on the degree of noise points, since if a noise
point is close to any cluster point, it is close to all points in the given cluster. It is
well-known that spectral clustering is unreliable for points of low degree and in this
case LSYM may have arbitrarily many small eigenvalues (Von Luxburg, 2007).
After proving results for general ultrametrics, we derive specific performance guar-
antees for LLPD spectral clustering on the LDLN data model. We remove low den-
sity points by considering each point’s LLPD-nearest neighbor distances, then derive
bounds on the eigengap and labeling accuracy which hold even in the presence of noise
points with weak connections to the clusters. We prove there is a large range of values
of both the thresholding and scale parameter for which we correctly recover the clus-
ters, illustrating that LLPD spectral clustering is robust to the choice of parameters
and presence of noise. In particular, when the clusters have a very low-dimensional
structure and the noise is very high-dimensional, that is, when d ≪ D, an enormous
amount of noise points can be tolerated. Throughout this section, we use the notation
established in Subsection 2.2.
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5.1. Ultrametric Spectral Clustering

Let ρ : RD × R
D → [0,∞) be an ultrametric; see (2.2). We analyze LSYM under

the assumptions of the following cluster model. As will be seen in Subsection 5.2,
this cluster model holds for data drawn from the LDLN data model with the LLPD
ultrametric, but it may be of interest in other regimes and for other ultrametrics.
The model assumes there are K sets forming cluster cores and each cluster core has a
halo of noise points surrounding it; for 1 ≤ l ≤ K, Al denotes the cluster core and Cl

the associated halo of noise points. For LDLN data, the parameter ǫsep corresponds
to the minimal between cluster distance after denoising.

Assumption 1 (Ultrametric Cluster Model) For 1 ≤ l ≤ K, assume Al and Cl

are disjoint finite sets, and let Ãl = Al ∪Cl. Let N = | ∪l Ãl|. Assume that for some
ǫin ≤ θ < ǫsep:

ρ(xl
i, x

l
j) ≤ ǫin ∀xl

i, x
l
j ∈ Al, 1 ≤ l ≤ K, (5.1)

ǫin < ρ(xl
i, x

l
j) ≤ θ ∀xl

i ∈ Al, x
l
j ∈ Cl, 1 ≤ l ≤ K, (5.2)

ρ(xl
i, x

s
j) ≥ ǫsep ∀xl

i ∈ Ãl, x
s
j ∈ Ãs, 1 ≤ l 6= s ≤ K. (5.3)

Moreover, let ζN = max1≤l≤K
N

|Ãl|
.

Theorem 5.5 shows that under Assumption 1, the maximal eigengap of LSYM corre-
sponds to the number of clusters K and spectral clustering with K principal eigen-
vectors achieves perfect labeling accuracy. The label accuracy result is obtained by
showing the spectral embedding with K principal eigenvectors is a perfect represen-
tation of the sets Ãl, as defined in Vu (2018).

Definition 5.4 (Perfect Representation) A clustering representation is perfect if
there exists an r > 0 such that

· Vertices in the same cluster have distance at most r.

· Vertices from different clusters have distance at least 4r from each other.

There are multiple clustering algorithms which are guaranteed to perfectly recover
the labels of Ãl from a perfect representation, including K-means with furthest point
initialization and single linkage clustering. Again following the terminology in Vu
(2018), we will refer to all such clustering algorithms as clustering by distances. The
proof of Theorem 5.5 is in Appendix B.

Theorem 5.5 Assume the ultrametric cluster model. Then λK+1 − λK is the largest
gap in the eigenvalues of LSYM(∪lÃl, ρ, fσ) provided

1

2
≥ 5(1− fσ(ǫin))

︸ ︷︷ ︸

Cluster Coherence

+ 6ζNfσ(ǫsep)
︸ ︷︷ ︸

Cluster Separation

+ 4(1− fσ(θ))
︸ ︷︷ ︸

Noise

+ β , (5.6)
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where β = O((1− fσ(ǫin))
2 + ζ2Nfσ(ǫsep)

2 + (1− fσ(θ))
2) denotes higher-order terms.

Moreover, if

C

K3ζ2N
≥ (1− fσ(ǫin)) + ζNfσ(ǫsep) + (1− fσ(θ)) + β , (5.7)

where C is an absolute constant, then clustering by distances on the K principal
eigenvectors of LSYM(∪lÃl, ρ, fσ) perfectly recovers the cluster labels.

For condition (5.6) to hold, the following three terms must all be small:

• Cluster Coherence: This term is minimized by choosing σ large so that
fσ(ǫin) ≈ 1; the larger the scale parameter, the stronger the within-cluster
connections.

• Cluster Separation: This term is minimized by choosing σ small so that
fσ(ǫsep) ≈ 0; the smaller the scale parameter, the weaker the between-cluster
connections. Note ζN is minimized when clusters are balanced, in which case
ζN = K.

• Noise: This term is minimized by choosing σ large, so that once again fσ(θ) ≈
1. When the scale parameter is large, noise points around the cluster will be
well connected to their designated cluster.

• Higher Order Terms: This term consists of terms that are quadratic in
(1− fσ(ǫin)), fσ(ǫsep), (1− fσ(θ)), which are small in our regime of interest.

Solving for the scale parameter σ will yield a range of σ values where the eigengap
statistic is informative; this is done in Corollary 5.14 for LLPD spectral clustering on
the LDLN data model.
Condition (5.7) guarantees that clustering the LLPD spectral embedding results in
perfect label accuracy, and requires a stronger scaling with respect to K than Con-
dition (5.6), as when ζN = O(K) there is an additional factor of K−5 on the left
hand side of the inequality. Determining whether this scaling in K is optimal is a
topic of ongoing research, though the present article is more concerned with scaling
in n, d, and D. Condition (5.7) in fact guarantees perfect accuracy for clustering by
distances on the spectral embedding regardless of whether the K principal eigenvec-
tors of LSYM are row-normalized or not. Row normalization is proposed in Ng et al.
(2002) and generally results in better clustering results when some points have small
degree (Von Luxburg, 2007); however it is not needed here because the properties of
LLPD cause all points to have similar degree.
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Remark 5.8 One can also derive a label accuracy result by applying Theorem 2 from
Ng et al. (2002), restated in Arias-Castro (2011), to show the spectral embedding
satisfies the so-called orthogonal cone property (OCP) (Schiebinger et al., 2015).
Indeed, let {φk}Kk=1 be the principal eigenvectors of LSYM. The OCP guarantees that
in the representation x 7→ {φk(x)}Kk=1, distinct clusters localize in nearly orthogonal
directions, not too far from the origin. Proposition 1 from Schiebinger et al. (2015)
can then be applied to conclude K-means on the spectral embedding achieves high
accuracy. Specifically, if (5.6) is satisfied, then with probability at least 1 − t, K-
means on the K principal eigenvectors of LSYM(∪lÃl, ρ, fσ) achieves accuracy at least

1− cK9ζ3N (fσ(ǫsep)2+β)

t
where c is an absolute constant and β denotes higher order terms.

This approach results in a less restrictive scaling for 1 − fσ(ǫin), fσ(ǫsep) in terms of
K, ζN than given in Condition (5.7), but does not guarantee perfect accuracy, and also
requires row normalization of the spectral embedding as proposed in Ng et al. (2002).
The argument using this approach to proving cluster accuracy is not discussed in this
article, for reasons of space and as to not introduce additional excessive notation.

5.2. LLPD Spectral Clustering with kNN LLPD Thresholding

We now return to the LDLN data model defined in Subsection 3.2 and show that it
gives rise to the ultrametric cluster model described in Assumption 1 when combined
with the LLPD metric. Theorem 5.5 can thus be applied to derive performance
guarantees for LLPD spectral clustering on the LDLN data model. All of the notation
and assumptions established in Subsection 3.2 hold throughout Subsection 5.2.

5.2.1. Thresholding

Before applying spectral clustering, we denoise the data by removing any points
having sufficiently large LLPD to their knse

th LLPD-nearest neighbor. Motivated by
the sharp phase transition illustrated in Subsection 4.4, we choose a threshold θ and
discard a point x ∈ X if βknse(x,X) > θ. Note that the definition of ǫnse guarantees
that we can never have a group of more than knse noise points where all pairwise
LLPD are smaller than ǫnse, because if we did there would be a point x ∈ X̃ with
βknse(x, X̃) < ǫnse. Thus if ǫin ≤ θ < ǫnse then, after thresholding, the data will consist
of the cluster cores Xl with θ-groups of at most knse noise points emanating from the
cluster cores, where a θ-group denotes a set of points where the LLPD between all
pairs of points in the group is at most θ.
We assume LLPD is re-computed on the denoised data set XN , whose cardinality
we define to be N , and let ρXN

ℓℓ denote the corresponding LLPD metric. The points
remaining after thresholding consist of the sets Ãl, where

Al= {xi ∈ Xl} ∪ {xi ∈ X̃ | ρℓℓ(xi, xj) ≤ ǫin for some xj ∈ Xl},
Cl = {xi ∈ X̃ | ǫin < ρℓℓ(xi, xj) ≤ θ for some xj ∈ Xl},
Ãl = Al ∪ Cl = {xi ∈ Xl} ∪ {xi ∈ X̃ | ρℓℓ(xi, xj) ≤ θ for some xj ∈ Xl}.

(5.9)
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The cluster core Al consists of the points Xl plus any noise points in X̃ that are
indistinguishable from Xl, being within the maximal within-cluster LLPD of Xl. The
set Cl consists of the noise points in X̃ that are θ-close to Xl in LLPD.

5.2.2. Supporting Lemmata

The following two lemmata are needed to prove Theorem 5.12, the main result of this
subsection. The first one guarantees that the sets defined in (5.9) describe exactly
the points which survive thresholding, that is XN = ∪lÃl.

Lemma 5.10 Assume the LDLN data model and assumptions, and let Ãl be as in
(5.9). If knse < nmin, ǫin ≤ θ < ǫnse, then βknse(x,X) ≤ θ if and only if x ∈ Ãl for
some 1 ≤ l ≤ K.

Proof Assume βknse(x,X) ≤ θ. If x ∈ ∪lXl, then clearly x ∈ ∪lÃl, so assume x ∈ X̃.
We claim there exists some y ∈ ∪lXl such that ρℓℓ(x, y) ≤ θ. Suppose not; then there
exist knse points {xi}knsei=1 in X̃ distinct from x with ρℓℓ(x, xi) ≤ θ; thus ǫnse ≤ θ, a
contradiction. Hence, there exists y ∈ Xl such that ρℓℓ(x, y) ≤ θ and x ∈ Ãl.
Now assume x ∈ Ãl for some 1 ≤ l ≤ K. Then clearly there exists y ∈ ∪lXl with
ρℓℓ(x, y) ≤ θ. Since ǫin < θ, x is within LLPD θ of all points in Xl, and since
knse < nmin, βknse(x,X) ≤ βnmin

(x,X) ≤ θ.

Next we show that when there is sufficient separation between the cluster cores, the
LLPD between any two points in distinct clusters is bounded by δ/2, and thus the
assumptions of Theorem 5.5 will be satisfied with ǫsep = δ/2.

Lemma 5.11 Assume the LDLN data model and assumptions, and assume ǫin ≤ θ <
ǫnse ∧ δ/(4knse), Al, Cl, Ãl as defined in (5.9), and knse < nmin. Then Assumption 1 is
satisfied with ρ = ρXN

ℓℓ , ǫsep = δ/2.

Proof First note that if x ∈ Al, then ρℓℓ(x, y) ≤ ǫin for all y ∈ Xl, and thus x /∈ Cl,
so Al and Cl are disjoint.
Let xl

i, x
l
j ∈ Al. Then there exists yi, yj ∈ Xl with ρℓℓ(x

l
i, yi) ≤ ǫin and ρℓℓ(x

l
j, yj) ≤ ǫin,

so ρℓℓ(x
l
i, x

l
j) ≤ ρℓℓ(x

l
i, yi) ∨ ρℓℓ(yi, yj) ∨ ρℓℓ(yj, x

l
j) ≤ ǫin. Since xl

i, x
l
j were arbitrary,

ρℓℓ(x
l
i, x

l
j) ≤ ǫin for all xl

i, x
l
j ∈ Al. We now show that in fact ρXN

ℓℓ (xl
i, x

l
j) ≤ ǫin.

Suppose not. Since ρℓℓ(x
l
i, x

l
j) ≤ ǫin, there exists a path in X from xl

i to x
l
j with all legs

bounded by ǫin. Since ρXN

ℓℓ (xl
i, x

l
j) > ǫin, one of the points along this path must have

been removed by thresholding, i.e. there exists y on the path with βknse(y,X) > θ.
But then for all xl ∈ Al, ρℓℓ(y, x

l) ≤ ρℓℓ(y, x
l
i) ∨ ρℓℓ(x

l
i, x

l) ≤ ǫin, so βknse(y,X) ≤ ǫin
since knse < nmin; contradiction.
Let xl

i ∈ Al, x
l
j ∈ Cl. Then there exist points yi, yj ∈ Xl such that ρℓℓ(x

l
i, yi) ≤ ǫin

and ǫin < ρℓℓ(x
l
j, yj) ≤ θ. Thus ρℓℓ(x

l
i, x

l
j) ≤ ρℓℓ(x

l
i, yi) ∨ ρℓℓ(yi, yj) ∨ ρℓℓ(yj, x

l
j) ≤

ǫin ∨ ǫin ∨ θ = θ.
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Now suppose ρℓℓ(x
l
i, x

l
j) ≤ ǫin. Then ρℓℓ(x

l
j, yi) ≤ ρℓℓ(x

l
j, x

l
i) ∨ ρℓℓ(x

l
i, yi) ≤ ǫin so

that xl
j ∈ Al since yi ∈ Xl; this is a contradiction since xl

j ∈ Cl and Al and Cl

are disjoint. We thus conclude ǫin < ρℓℓ(x
l
i, x

l
j) ≤ θ. Since xl

i, x
l
j were arbitrary,

ǫin < ρℓℓ(x
l
i, x

l
j) ≤ θ for all xl

i ∈ Al, x
l
j ∈ Cl. We now show in fact ǫin < ρXN

ℓℓ (xl
i, x

l
j) ≤

θ. Clearly, ǫin < ρℓℓ(x
l
i, x

l
j) ≤ ρXN

ℓℓ (xl
i, x

l
j). Now suppose ρXN

ℓℓ (xl
i, x

l
j) > θ. Since

ρℓℓ(x
l
i, x

l
j) ≤ θ, there exists a path in X from xl

i to xl
j with all legs bounded by θ.

Since ρXN

ℓℓ (xl
i, x

l
j) > θ, one of the points along this path must have been removed by

thresholding, i.e. there exists y on the path with βknse(y,X) > θ. But then for all
xl ∈ Ãl, ρℓℓ(y, x

l) ≤ ρℓℓ(y, x
l
i) ∨ ρℓℓ(x

l
i, x

l) ≤ θ, so βknse(y,X) ≤ θ since knse < nmin,
which is a contradiction.
Finally, we show we can choose ǫsep = δ/2, that is, ρXN

ℓℓ (xl
i, x

s
j) ≥ δ/2 for all xl

i ∈
Ãl, x

s
j ∈ Ãs, l 6= s. We first verify that every point in Ãl is within Euclidean dis-

tance θknse of a point in Xl. Let x ∈ Ãl and assume x ∈ X̃ (otherwise there
is nothing to show). Then there exists a point y ∈ Xl with ρℓℓ(x, y) ≤ θ, i.e.
there exists a path of points from x to y with the length of all legs bounded by
θ. Note there can be at most knse consecutive noise points along this path, since
otherwise we would have a z ∈ X̃ with βknse(z, X̃) ≤ θ which contradicts ǫnse > θ.
Let y∗ be the last point in Xl on this path. Since θ < δ/(4knse) < δ/(2knse + 1),
dist(Xl, Xs) ≥ δ > 2θknse + θ, and the path cannot contain any points in Xs, l 6= s;
thus the path from y∗ to x consists of at most knse points in X̃, so ‖x− y∗‖2 ≤ knseθ.
Thus: min1≤l 6=s≤K dist(Ãl, Ãs) ≥ min1≤l 6=s≤K dist(Xl, Xs)− 2θknse ≥ δ − 2θknse > δ/2
since θ < δ/(4knse). Now by Lemma 5.10, there are no points outside of ∪lÃl which
survive thresholding, so we conclude ρXN

ℓℓ (xl
i, x

s
j) ≥ δ/2 for all xl

i ∈ Ãl, x
s
j ∈ Ãs.

5.2.3. Main Result

We now state our main result for LLPD spectral clustering with kNN LLPD thresh-
olding.

Theorem 5.12 Assume the LDLN data model and assumptions. For a chosen θ and
knse, perform thresholding at level θ as above to obtain XN , and assume knse < nmin,
ǫin ≤ θ < ǫnse ∧ δ/(4knse). Then λK+1 − λK is the largest gap in the eigenvalues of
LSYM(XN , ρ

XN

ℓℓ , fσ) provided that

1

2
≥ 5(1− fσ(ǫin)) + 6ζNfσ(δ/2) + 4(1− fσ(θ)) + β , (5.13)

and clustering by distances on the K principal eigenvectors of LSYM(XN , ρ
XN

ℓℓ , fσ)
perfectly recovers the cluster labels provided that

C

K3ζ2N
≥ (1− fσ(ǫin)) + ζNfσ(δ/2) + (1− fσ(θ)) + β ,
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where β = O ((1− fσ(ǫin)
2 + ζ2Nfσ(δ/2)

2 + (1− fσ(θ))
2) denotes higher-order terms

and C is an absolute constant. In addition, for nmin large enough with probability at
least 1 − O(n−1

min), ζN ≤ 2ζn + 3knseζθ for the LDLN data model balance parameters
ζn, ζθ.

Proof Define the sets Al, Cl, Ãl as in (5.9). By Lemma 5.10, removing all points
satisfying βknse(x,X) > θ leaves us with exactly XN = ∪lÃl. By Lemma 5.11, all
assumptions of Theorem 5.5 are satisfied for ultrametric ρXN

ℓℓ and we can apply The-
orem 5.5 with ǫin, ǫnse as defined in Subsection 3.2 and ǫsep = δ/2. All that remains
is to verify the bound on ζN .
Recall Ãl = Xl ∪{xi ∈ X̃ | ρℓℓ(xi, xj) ≤ θ for some xj ∈ Xl}; let ml denote the cardi-

nality of {xi ∈ X̃ | ρℓℓ(xi, xj) ≤ θ for some xj ∈ Xl} so that ζN = max1≤l≤K

∑K
i=1 ni+mi

nl+ml
.

For 1 ≤ l ≤ K, let ωl =
∑

x∈X̃ ✶x∈B(X l,θ)\X l
denote the number of noise points that

fall within a tube of width θ around the cluster region X l. Note that ωl ∼Bin(ñ, pl,θ)
where pl,θ = HD(B(X l, θ) \ X l)/HD(X̃ ) is as defined in Section 3.2. The assump-
tions of Theorem 5.12 guarantee that ml ≤ knseωl, since ωl is the number of groups
attaching to X l, and each group consists of at most knse noise points. To obtain a
lower bound for ml, note that ml ≥

∑

x∈X̃ ✶x∈B(Xl,θ)\X l
, where B(Xl, θ) ⊂ B(X l, θ)

is formed from the discrete sample points Xl. Since B(Xl, θ) → B(X l, θ) as nl → ∞,
for nmin large enough HD(B(Xl, θ) \ X l) ≥ 1

2
HD(B(X l, θ) \ X l), and ml ≥ ωl,2 where

ωl,2 ∼ Bin(ñ, pl,θ/2).

We first consider the high noise case ñpmin,θ ≥ nmin, and define ζl =
∑K

i=1 ni+mi

nl+ml
. We

have

ζl ≤
∑K

i=1 ni

nl

+

∑K
i=1 mi

ml

≤
∑K

i=1 ni

nl

+ knse

∑K
i=1 ωi

ωl,2

.

Amultiplicative Chernoff bound (Hagerup and Rüb, 1990) gives P(ωi ≥ (1+δ1)ñpi,θ) ≤
exp(−δ21ñpi,θ/3) ≤ exp(−δ21nmin/3) for any 0 ≤ δ1 ≤ 1. Choosing δ1 =

√

3 log(Knmin)/nmin

and taking a union bound gives ωi ≤ (1 + δ1)ñpi,θ for all 1 ≤ i ≤ K with probabil-
ity at least 1 − n−1

min. A lower Chernoff bound also gives P(ωi,2 ≤ (1 − δ2)ñpi,θ/2) ≤
exp(−δ22ñpi,θ/4) ≤ exp(−δ22nmin/4) for any 0 ≤ δ2 ≤ 1 and choosing δ2 =

√

4 log(Knmin)/nmin

gives ωi,2 ≥ (1− δ2)ñpi,θ/2 for all 1 ≤ i ≤ K with probability at least 1− n−1
min. Thus

with probability at least 1−O(n−1
min), one has

∑K
i=1 ωi

ω2,l

≤
∑K

i=1 2(1 + δ1)ñpi,θ
(1− δ2)ñpl,θ

≤ 3

∑K
i=1 pi,θ
pl,θ

for all 1 ≤ l ≤ K for nmin large enough, giving ζN = max1≤l≤K ζl ≤ ζn + 3ζθ.
We next consider the small noise case ñpmin,θ ≤ nmin. A Chernoff bound gives
P(ωi ≥ (1 + (δi ∨

√
δi)ñpi,θ) ≤ exp(−δ2i ñpi,θ/3) for any δi ≥ 0. We choose δi =

3 log(Knmin)/(ñpi,θ), so that with probability at least 1 − n−1
min we have

ωi ≤ (1 + (δi ∨
√

δi)ñpi,θ) ≤ 2ñpi,θ + 6 log(Knmin)
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for all 1 ≤ i ≤ K and we obtain for nmin large enough

ζN ≤
∑K

i=1 ni + knseωi

nmin

≤
∑K

i=1 ni + knse(2ñpi,θ + 6 log(Knmin))

nmin

≤
∑K

i=1 2ni + 2knseñpi,θ
nmin

≤
∑K

i=1 2ni + 2knsenminpi,θ/pmin,θ

nmin

= 2ζn + 2knseζθ.

Combining the two cases ζN ≤ 2ζn+3knseζθ that with probability at least 1−O(n−1
min).

Theorem 5.13 illustrates that after thresholding, the number of clusters can be reliably
estimated by the maximal eigengap for the range of σ values where (5.13) holds. The
following corollary combines what we know about the behavior of ǫin and ǫnse for the
LDLN data model (as analyzed in Section 4) with the derived performance guarantees
for spectral clustering to give the range of θ, σ values where λK+1 − λK is the largest
gap with high probability. We remind the reader that although the LDLN data model
assumes uniform sampling, Theorem 5.13 and Corollary 5.14 can easily be extended
to a more general sampling model.

Corollary 5.14 Assume the notation of Theorem 5.12 holds. Then for nmin large
enough, for any τ < C1

8
n
−(d+1)
min

∧ ǫ0
5
and any

C1n
− 1

d+1

min
≤ θ ≤

[

C2ñ
−( knse+1

knse
) 1
D

]

∧ δ(4knse)
−1, (5.15)

we have that λK+1 − λK is the largest gap in the eigenvalues of LSYM with high
probability, provided that

C3θ ≤ σ ≤ C4δ

f−1
1 (C5(ζn + knseζθ)−1)

(5.16)

where all Ci are constants independent of n1, . . . , nK , ñ, θ, σ.

Proof
By Corollary 4.4, for nmin large enough, ǫin satisfies nmin . ǫ−d

in log(ǫ−d
in ) ≤ ǫ

−(d+1)
in , i.e.

ǫin ≤ C1n
− 1

d+1

min with high probability, as long as τ < C1

8
n
− 1

d+1

min ∧ ǫ0
5
. By Theorem 4.9,

with high probability ǫnse ≥ C2ñ
− knse+1

knseD . We now apply Theorem 5.12. Note that for
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an appropriate choice of constants, the assumptions of Corollary 5.14 guarantee ǫin ≤
θ < ǫnse∧δ/(4knse) with high probability. There exist constants C6, C7, C8 independent
of n1, . . . , nK , ñ, θ, σ, such that inequality (5.13) is guaranteed as long as fσ(ǫin) ≥ C6,

ζNfσ(δ/2) ≤ C7, and fσ(θ) ≥ C8. Solving for σ, we obtain
(

ǫin
f−1
1 (C6)

∨ θ
f−1
1 (C8)

)

≤ σ ≤
δ

2f−1
1 (C7ζ

−1
N

)
. Combining with our bound for ǫin and recalling ζN ≤ 2ζn + 3knseζθ with

high probability by Theorem 5.12, this is implied by (5.15) and (5.16) and for an
appropriate choice of relabelled constants.

This corollary illustrates that when ñ is small relative to n
D

d+1(
knse

knse+1)
min , we obtain a

large range of values of both the thresholding parameter θ and scale parameter σ
where the maximal eigengap heuristic correctly identifies the number of clusters, i.e.
LLPD spectral clustering is robust with respect to both of these parameters.

5.2.4. Parameter Selection

In terms of implementation, only the parameters knse and θ must be chosen, and then
LSYM can be computed for a range of σ values. Ideally knse is chosen to maximize the

upper bound in (5.15), since ñ−( knse+1
knse

) 1
D is increasing in knse while δ/knse is decreasing

in knse. Numerical experiments indicate robustness with respect to this parameter
choice, and knse = 20 was used for all experiments reported in Section 7.
Regarding the thresholding parameter θ, ideally θ = ǫin, since this guarantees that all
cluster points will be kept and the maximal number of noise points will be removed,
i.e. we have perfectly denoised the data. However, ǫin is not known explicitly and must
be estimated from the data. In practice the thresholding can be done by computing
βknse(x,X) for all data points and clustering the data points into groups based on these
values, or by choosing θ to correspond to the elbow in a graph of the sorted nearest
neighbor distances as illustrated in Section 7. This latter approach for estimating θ is
very similar to the proposal in Ester et al. (1996) for estimating the scale parameter
in DBSCAN, although we use LLPD instead of Euclidean nearest neighbor distances.
Note the thresholding procedure precedes the application of the spectral clustering
kernel; it can be done once and then LSYM computed for various σ values.

5.3. Comparison with Related Methods

We now theoretically compare the proposed method with related methods. LLPD
spectral clustering combines spectral graph methods with a notion of distance that
incorporates density, so we naturally focus on comparisons to spectral clustering and
density-based methods.
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5.3.1. Comparison with Theoretical Guarantees for Spectral

Clustering

Our results on the eigengap and misclassification rate for LLPD spectral clustering
are naturally comparable to existing results for Euclidean spectral clustering. Arias-
Castro (2011); Arias-Castro et al. (2011, 2017) made a series of contributions to the
theory of spectral clustering performance guarantees. We focus on the results in
Arias-Castro (2011), where the author proves performance guarantees on spectral
clustering by considering the same data model as the one proposed in the present
article, and proceeds by analyzing the corresponding Euclidean weight matrix.
Our primary result, Theorem 5.12, is most comparable to Proposition 4 in Arias-
Castro (2011), which estimates λK ≤ Cn−3, λK+1 ≥ Cn−2 for some constant C.
From the theoretical point of view, this does not necessarily mean λK+1 − λK ≥
λl+1 − λl, l 6= K. Compared to that result, Theorem 5.12 enjoys a much stronger
conclusion for guaranteeing the significance of the eigengap. From a practical point
of view, it is noted in Arias-Castro (2011) that Proposition 4 is not a useful condition
for actual data. Our method is shown to correctly estimate the eigengap in both
high-dimensional and noisy settings, where the eigengap with Euclidean distance is
uninformative; see Section 7.
Theorem 5.12 also provides conditions guaranteeing LLPD spectral clustering achieves
perfect labeling accuracy. The proposed conditions are sufficient to guarantee the rep-
resentation of the data in the coordinates of the principal eigenvectors of the LLPD
Laplacian is a perfect representation. An alternative approach to ensuring spectral
clustering accuracy is presented in Schiebinger et al. (2015), which develops the no-
tion of the orthogonal cone property (OCP). The OCP characterizes low-dimensional
embeddings that represent points in distinct clusters in nearly orthogonal directions.
Such embeddings are then easily clustered with, for example, K-means. The two
crucial parameters in the approach of Schiebinger et al. (2015) measure how well-
separated each cluster is from the others, and how internally well-connected each
distinct cluster is. The results of Section 4 prove that under the LDLN data model,
points in the same cluster are very close together in LLPD, while points in distinct
clusters are far apart in LLPD. In this sense, the results of Schiebinger et al. (2015)
suggest that LLPD spectral clustering ought to perform well in the LDLN regime.
Indeed, the LLPD is nearly invariant to cluster geometry, unlike Euclidean distance.
As clusters become more anisotropic, the within-cluster distances stay almost the
same when using LLPD, but increase when using Euclidean distances. In particu-
lar, the framework of Schiebinger et al. (2015) implies that performance of LLPD
spectral clustering will degrade slowly as clusters are stretched, while performance of
Euclidean spectral clustering will degrade rapidly. We remark that the OCP frame-
work has been generalized to continuum setting for the analysis of mixture models
(Garcia Trillos et al., 2019b).
This observation may also be formulated in terms of the spectrum of the Laplacian.
For the (continuous) Laplacian ∆ on a domain M ⊂ R

D, Szegö (1954); Weinberger
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(1956) prove that among unit-volume domains, the second Neumann eigenvalue λ2(∆)
is minimal when the underlying M is the ball. One can show that as the ball becomes
more elliptical in an area-preserving way, the second eigenvalue of the Laplacian
decreases. Passing to the discrete setting (Garcia Trillos et al., 2019a), this implies
that as clusters become more elongated and less compact, the second eigenvalues on
the individual clusters (ignoring between-cluster interactions, as proposed in Maggioni
and Murphy (2019)) decreases. Spectral clustering performance results are highly
dependent on these second eigenvalues of the Laplacian when localized on individual
clusters (Arias-Castro, 2011; Schiebinger et al., 2015), and in particular performance
guarantees weaken dramatically as they become closer to 0. In this sense, Euclidean
spectral clustering is not robust to elongating clusters. LLPD spectral clustering,
however, uses a distance that is nearly invariant to this kind of geometric distortion,
so that the second eigenvalues of the LLPD Laplacian localized on distinct clusters
stay far from 0 even in the case of highly elongated clusters. In this sense, LLPD
spectral clustering is more robust than Euclidean spectral clustering for elongated
clusters.
The same phenomenon is observed from the perspective of graph-cuts. It is well-
known (Shi and Malik, 2000) that spectral clustering on the graph with weight matrix
W approximates the minimization of the multiway normalized cut functional

Ncut(C1, C2, . . . , CK) = argmin
(C1,C2,...,CK)

K∑

k=1

W (Ck, X \ Ck)

vol(Ck)
,

where
W (Ck, X \ Ck) =

∑

xi∈Ck

∑

xj /∈Ck

Wij, vol(Ck) =
∑

xi∈Ck

∑

xj∈X
Wij.

As clusters become more elongated, cluster-splitting cuts measured in Euclidean dis-
tance become cheaper and the optimal graph cut shifts from one that separates the
clusters to one that splits them. On the other hand, when using the LLPD a cluster-
splitting cut only becomes marginally cheaper as the cluster stretches, so that the
optimal graph cut preserves the clusters rather than splits them.
A somewhat different approach to analyzing the performance of spectral clustering is
developed in Balakrishnan et al. (2011), which proposes as a model for spectral clus-
tering noisy hierarchical block matrices (noisy HBM) of the form W = A+R for ideal
A and a noisy perturbation R. The ideal A is characterized by on and off-diagonal
block values that are constrained to fall in certain ranges, which models concentra-
tion of within-cluster and between-cluster distances. The noisy perturbation R is
a random, mean 0 matrix having rows with independent, subgaussian entries, char-
acterized by a variance parameter σnoise. The authors propose a modified spectral
clustering algorithm (using the K-centering algorithm) which, under certain assump-
tions on the idealized within-cluster and between-cluster distances, learns all clusters
above a certain size for a range of σnoise levels. The proposed theoretical analysis of
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LLPD in Section 4 shows that under the LDLN data model and for n sufficiently
large, the Laplacian matrix (and weight matrix) is nearly block constant with large
separation between clusters. Our Theorems 4.3, 4.7, 4.9, 4.11 may be interpreted
as showing that the (LLPD-denoised) weight matrix associated to data generated
from the LDLN model may fit the idealized model suggested by Balakrishnan et al.
(2011). In particular, when R = 0, the results for this noisy HBM are comparable
with, for example, Theorem 5.12. However, the proposed method does not consider
hierarchical clustering, but instead shows localization properties of the eigenvectors of
LSYM. In particular, the proposed method is shown to correctly learn the number of
clusters K through the eigengap, assuming the LDLN model, which is not considered
in Balakrishnan et al. (2011).

5.3.2. Comparison with Density-Based Methods

The DBSCAN algorithm labels points as cluster or noise based on density to nearby
points, then creates clusters as maximally connected regions of cluster points. While
popular, DBSCAN is extremely sensitive to the selection of parameters to distinguish
between cluster and noise points, and often performs poorly in practice. The DB-
SCAN parameter for noise detection is comparable to the denoising parameter θ used
in LLPD spectral clustering, though LLPD spectral clustering is quite robust to θ
in theory and practice. Moreover, DBSCAN does not enjoy the robust theoretical
guarantees provided in this article for LLPD spectral clustering on the LDLN data
model, although some results are known for techniques related to DBSCAN (Rinaldo
and Wasserman, 2010; Sriperumbudur and Steinwart, 2012).
In order to address the shortcomings of DBSCAN, the fast search and find of den-
sity peaks clustering (FSFDPC) algorithm was proposed (Rodriguez and Laio, 2014).
This method first learns modes in the data as points of high density far (in Euclidean
distance) from other points of high density, then associates each point to a nearby
mode in an iterative fashion. While more robust than DBSCAN, FSFDPC cannot
learn clusters that are highly nonlinear or elongated. Maggioni and Murphy (2019)
proposed a modification to FSFDPC called learning by unsupervised nonlinear diffu-
sion (LUND) which uses diffusion distances instead of Euclidean distances to learn
the modes and make label assignments, allowing for the clustering of a wide range of
data, both theoretically and empirically. While LUND enjoys theoretical guarantees
and strong empirical performance (Murphy and Maggioni, 2018, 2019), it does not
perform as robustly on the proposed LDLN model for estimation of K or for labeling
accuracy. In particular, the eigenvalues of the diffusion process which underlies dif-
fusion distances (and thus LUND) do not exhibit the same sharp cutoff phenomenon
as those of the LLPD Laplacian under the LDLN data model.
Cluster trees are a related density-based method that produces a multiscale hierar-
chy of clusterings, in a manner related to single linkage clustering. Indeed, for data
sampled from some density µ on a Euclidean domain X, a cluster tree is the family of
clusterings T = {Cr}∞r=0, where Cr are the connected regions of the set {x | µ(x) ≥ r}.
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Chaudhuri and Dasgupta (2010) studied cluster trees where X ⊂ R
D is a subset of

Euclidean space, showing that if sufficiently many samples are drawn from µ, depend-
ing on D, then the clusters in the empirical cluster tree closely match the population
level clusters given by thresholding µ. Balakrishnan et al. (2013) generalized this
work to the case when the underlying distribution is supported on an intrinsically
d-dimensional set, showing that the performance guarantees depend only on d, not
D.
The cluster tree itself is related to the LLPD as ρℓℓ(xi, xj) is equal to the smallest
r such that xi, xj are in the same connected component of a complete Euclidean
distance graph with edges of length ≥ r removed. Furthermore, the model of Bal-
akrishnan et al. (2013) assumes the support of the density is near a low-dimensional
manifold, which is comparable to the LDLN model of assuming the clusters are τ -
close to low-dimensional elements of Sd(κ, ǫ0). The notion of separation in Chaudhuri
and Dasgupta (2010); Balakrishnan et al. (2013) is also comparable to the notion of
between-cluster separation in the present manuscript. On the other hand, the pro-
posed method considers a more narrow data model (LDLN versus arbitrary density
µ), and proves strong results for LLPD spectral clustering including inference of K,
labeling accuracy, and robustness to noise and choice of parameters. The proof tech-
niques are also rather different for the two methods, as the LDLN data model provides
simplifying assumptions which do not hold for a general probability density function.
Indeed, the approach presented in this article achieves precise finite sample estimates
for the LLPD using percolation theory and the chain arguments of Theorems 4.7 and
4.9, in contrast to the general consistency results on cluster trees derived from a wide
class of probability distributions (Chaudhuri and Dasgupta, 2010; Balakrishnan et al.,
2013).

6. Numerical Implementations of LLPD

We first demonstrate how LLPD can be accurately approximated from a sequence
of m multiscale graphs in Section 6.1. Section 6.2 discusses how this approach can
be used for fast LLPD-nearest neighbor queries. When the data has low intrinsic
dimension d and m = O(1), the LLPD nearest neighbors of all points can be com-
puted in O(DCdn log(n)) for a constant C independent of n, d,D. Although there
are theoretical methods for obtaining the exact LLPD (Demaine et al., 2009, 2014;
McKenzie and Damelin, 2019) with the same computational complexity, they are not
practical for real data. The method proposed here is an efficient alternative, whose
accuracy can be controlled by choice of m.
The proposed LLPD approximation procedure can also be leveraged to define a fast
eigensolver for LLPD spectral clustering, which is discussed in Section 6.3. The
ultrametric structure of the weight matrix allows for fast matrix-vector multiplication,
so that LSYMx (and thus the eigenvectors of LSYM) can be computed with complexity
O(mn) for a dense LSYM defined using LLPD. When the number of scales m ≪ n,
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this is a vast improvement over the typical O(n2) needed for a dense Laplacian. Once
again when the data has low intrinsic dimension and K,m = O(1), LLPD spectral
clustering can be implemented in O(DCdn log(n)).
Connections with single linkage clustering are discussed in Section 6.4, as the LLPD
approximation procedure gives a pruned single linkage dendrogram. Matlab code
implementing both the fast LLPD nearest neighbor searches and LLPD spectral clus-
tering is publicly available at https://bitbucket.org/annavlittle/llpd_code/

branch/v2.1. The software auto-selects both the number of clusters K and kernel
scale σ.

6.1. Approximate LLPD from a Sequence of Thresholded Graphs

The notion of nearest neighbor graph is important for the formal analysis which fol-
lows.

Definition 6.1 Let (X, ρ) be a metric space. The (symmetric) k-nearest neighbors
graph on X with respect to ρ is the graph with nodes X and an edge between xi, xj

of weight ρ(xi, xj) if xj is among the k points with smallest ρ-distance to xi or if xi

is among the k points with smallest ρ-distance to xj.

Let X = {xi}ni=1 ⊂ R
D and G be some graph defined on X. Let Dℓℓ

G denote the matrix
of exact LLPDs obtained from all paths in the graph G; note this is a generalization of
Definition 2.1, which considers G to be a complete graph. We define an approximation
D̂ℓℓ

G of Dℓℓ
G based on a sequence of thresholded graphs. Let E-nearest neighbor denote

a nearest neighbor in the Euclidean metric, and LLPD-nearest neighbor denote a
nearest neighbor in the LLPD metric.

Definition 6.2 Let X be given and let kEuc be a positive integer. Let G(∞) denote the
complete graph on X, with edge weights defined by Euclidean distance, and GkEuc

(∞)
the kEuc E-nearest neighbors graph on X as in Definition 6.1. For a threshold t > 0, let
G(t), GkEuc

(t) be the graphs obtained from G(∞), GkEuc
(∞), respectively, by discarding

all edges of magnitude greater than t.

We approximate ρℓℓ(xi, xj) = (Dℓℓ
G(∞))ij as follows. Given a sequence of thresholds

t1 < t2 < · · · < tm, compute GkEuc
(∞) and {GkEuc

(ts)}ms=1. Then this sequence of
graphs may be used to approximate ρℓℓ by finding the smallest threshold ts for which
two path-connected components C1, C2 merge: for x ∈ C1, y ∈ C2, we have ρℓℓ(x, y) ≈
ts. We thus approximate ρℓℓ(xi, xj) by (D̂ℓℓ

Gij
)ij = infs{ts | xi ∼ xj in Gij(ts)}, where

xi ∼ xj denotes that the two points are path connected. We let D = {Cts}ms=1

denote the dendrogram which arises from this procedure. More specifically, Cts =
{C1

ts , . . . C
νs
ts } are the connected components of GkEuc

(ts), so that νs is the number of
connected components at scale ts.
The error incurred in this estimation of ρℓℓ is a result of two approximations: (a)
approximating LLPD in G(∞) by LLPD in GkEuc

(∞); (b) approximating LLPD in
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GkEuc
(∞) from the sequence of thresholded graphs {GkEuc

(ts)}ms=1. Since the optimal
paths which determine ρℓℓ are always paths in a minimal spanning tree (MST) of
G(∞) (Hu, 1961), we do not incur any error from (a) whenever an MST of G(∞)
is a subgraph of GkEuc

(∞). González-Barrios and Quiroz (2003) show that when
sampling a compact, connected manifold with sufficiently smooth boundary, the MST
is a subgraph of GkEuc

(∞) with high probability for kEuc = O(log(n)). Thus for
kEuc = O(log(n)), we do not incur any error from (a) in within-cluster LLPD, as the
nearest neighbor graph for each cluster will contain the MST for the given cluster.
When the clusters are well-separated, we generally will incur some error from (a) in
the between-cluster LLPD, but this is precisely the regime where a high amount of
error can be tolerated. The following proposition controls the error incurred by (b).

Proposition 6.3 Let G be a graph on X and xi, xj ∈ X such that (D̂ℓℓ
G)ij = ts. Then

(Dℓℓ
G)ij ≤ (D̂ℓℓ

G)ij ≤ ts/(ts−1)(D
ℓℓ
G)ij.

Proof There is a path in G connecting xi, xj with every leg of length ≤ ts, since

(D̂ℓℓ
G)ij = ts. Hence, (Dℓℓ

G)ij ≤ ts = (D̂ℓℓ
G)ij. Moreover, ts−1 ≤ (Dℓℓ

G)ij, since no
path in G with all legs ≤ ts−1 connects xi, xj. It follows that ts ≤ ts

ts−1
(Dℓℓ

G)ij, hence

(D̂ℓℓ
G)ij ≤ ts

ts−1
(Dℓℓ

G)ij.

Thus if {ts}ms=1 grows exponentially at rate (1+ǫ), the ratio ts
ts−1

is bounded uniformly

by (1 + ǫ), and a uniform bound on the relative error is: (Dℓℓ
G)ij ≤ (D̂ℓℓ

G)ij ≤ (1 +
ǫ)(Dℓℓ

G)ij. Alternatively, one can choose the {ts}ms=1 to be fixed percentiles in the
distribution of edge magnitudes of G.
Algorithm 2 summarizes the multiscale construction which is used to approximate
LLPD. At each scale ts, the connected components of GkEuc

(ts) are computed; the
component identities are then stored in an n×m matrix, and the rows of the matrix
are then sorted to obtain a hierarchical clustering structure. This sorted matrix
of connected components (denoted CCsorted in Algorithm 2) can be used to quickly
obtain the LLPD-nearest neighbors of each point, as discussed in Section 6.2. Note
that if GkEuc

(∞) is disconnected, one can add additional edges to obtain a connected
graph.

6.2. LLPD Nearest Neighbor Algorithm

We next describe how to perform fast LLPD nearest neighbor queries using the multi-
scale graphs introduced in Section 6.1. Algorithm 3 gives pseudocode for the approx-
imation of each point’s kℓℓ LLPD-nearest neighbors, with the approximation based
on the multiscale construction in Algorithm 2.
Figure 6a illustrates how Algorithm 3 works on a data set consisting of 11 points
and 4 scales. Letting π denote the ordering of the points in CCsorted as produced
by Algorithm 2, CCsorted is queried to find xπ(6)’s 8 LLPD-nearest neighbors (nearest
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Algorithm 2 Approximate LLPD

Input: X, {ts}ms=1, kEuc
Output: D = {Cts}ms=1, point order π(i), CCsorted

1: Form a kEuc E-nearest neighbors graph on X; call it GkEuc
(∞).

2: Sort the edges of GkEuc
(∞) into the bins defined by the thresholds {ts}ms=1.

3: for s = 1 : m do
4: Form GkEuc

(ts) and compute its connected components Cts = {C1
ts , . . . C

νs
ts }.

5: end for
6: Create an n × m matrix CC storing each point’s connected component at each

scale.
7: Sort the rows of CC based on Ctm (the last column).
8: for s = m : 2 do
9: for i = 1 : νs do
10: Sort the rows of CC corresponding to C i

ts according to Cts−1 .
11: end for
12: end for
13: Let CCsorted denote the n×m matrix containing the final sorted version of CC.
14: Let π(i) denote the point order encoded by CCsorted.

neighbors are shown in bold). Starting in the first column of CCsorted which corre-
sponds to the finest scale (s = 1), points in the same connected component as the
base point are added to the nearest neighbor set, and the LLPD to these points is
recorded as t1. Assuming the nearest neighbors set does not yet contain kℓℓ points,
one then adds to it any points not yet in the nearest neighbor set which are in the
same connected component as the base point at the second finest scale, and records
the LLPD to these neighbors as t2 (see the second column of Figure 6a which illus-
trates s = 2 in the pseudocode). One continues in this manner until kℓℓ neighbors are
found.

Remark 6.4 For a fixed x, there might be many points of equal LLPD to x. This is
in contrast to the case for Euclidean distance, where such phenomena typically occur
only for highly structured data, for example, for data consisting of points lying on a
sphere and x the center of the sphere. In the case that kℓℓ LLPD nearest neighbors for
x are sought and there are more than kℓℓ points at the same LLPD from x, Algorithm
3 returns a sample of these LLPD-equidistant points in O(m+kℓℓ) by simply returning
the first kℓℓ neighbors encountered in a fixed ordering of the data; a random sample
could be returned for an additional cost.

Figure 6b shows a plot of the empirical runtime of the proposed algorithm against
number of points in log scale, suggesting nearly linear runtime. This is confirmed
theoretically as follows.

Theorem 6.5 Algorithm 3 has complexity O(n(kEucCNN +m(kEuc ∨ log(n)) + kℓℓ)).
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Algorithm 3 Fast LLPD nearest neighbor queries

Input: X, {ts}ms=1, kEuc, kℓℓ
Output: n×n sparse matrix D̂ℓℓ

GkEuc
giving approximate kℓℓ LLPD-nearest neighbors

1: Use Algorithm 2 to obtain π(i) and CCsorted.
2: for i = 1 : n do
3: D̂ℓℓ

π(i),π(i) = t1
4: NN = 1 % Number of nearest neighbors found
5: iup = 1
6: idown = 1
7: for s = 1 : m do
8: while CCsorted(iup, s) = CCsorted(iup − 1, s) and NN < kℓℓ and iup > 1 do
9: iup = iup − 1

10: D̂ℓℓ
π(i),π(iup)

= ts
11: NN = NN+ 1
12: end while
13: while CCsorted(idown, s) = CCsorted(idown + 1, s) and NN < kℓℓ and idown < n

do
14: idown = idown + 1
15: D̂ℓℓ

π(i),π(idown)
= ts

16: NN = NN+ 1
17: end while
18: end for
19: end for
20: return D̂ℓℓ

GkEuc

Proof
The major steps of Algorithm 3 (which includes running Algorithm 2) are:

• Generating the kEuc E-nearest neighbors graph GkEuc
(∞): O(kEucnCNN), where

CNN is the cost of an E-nearest neighbor query. For high-dimensional data
CNN = O(nD). When the data has low intrinsic dimension d < D cover trees
(Beygelzimer et al., 2006) allows CNN = O(DCd log(n)), after a pre-processing
step with cost O(CdDn log(n)).

• Binning the edges of GkEuc
(∞) : O(kEucn(m ∧ log(kEucn))). Binning without

sorting isO(kEucnm); if the edges are sorted first, the cost is O(kEucn log(kEucn)).

• Forming GkEuc
(ts), for s = 1, . . . ,m, and computing its connected components:

O(kEucmn).

• Sorting the connected components matrix to create CCsorted: O(mn log(n)).

• Finding each point’s kℓℓ LLPD-nearest neighbors by querying CCsorted: O(n(m+
kℓℓ)).
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t1 t2 t3 t4
1 2 1 1 xπ(1)

↑
1 2 1 1 xπ(2)

↑
1 2 1 1 xπ(3)

↑ ↑
4 3 → 1 1 xπ(4)

↑
4 3 1 1 xπ(5)

↑ ↑
5 → 3 1 1 xπ(6)

↓
5 → 3 → 1 → 1 xπ(7)

↓ ↓ ↓ ↓
2 1 2 1 xπ(8)

↓
2 1 2 1 xπ(9)

3 1 2 1 xπ(10)









































(a) Illustration of Algorithm 3
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(b) Complexity plots for Algorithm 3

Figure 6: Algorithm 3 is demonstrated on a simple example in (a). The figure illustrates how
CCsorted is queried to return xπ(6)’s 8 LLPD-nearest neighbors. Nearest neighbors are shown in
bold, and ρ̂ℓℓ(xπ(6), xπ(7)) = t1, ρ̂ℓℓ(xπ(6), xπ(5)) = t2, etc. Note each upward or downward arrow
represents a comparison which checks whether two points are in the same connected component at
the given scale. In (b), the runtime of Algorithm 3 on uniform data in [0, 1]2 is plotted against
number of points in log scale. The slope of the line is approximately 1, indicating that the algorithm
is essentially quasilinear in the number of points. Here, kEuc = 20, kℓℓ = 10, D = 2, and the
thresholds {ts}ms=1 correspond to fixed percentiles of edge magnitudes in GkEuc

(∞). The top plot
has m = 10 and the bottom plot m = 100.

Observe that O(CNN) always dominates O(m ∧ log(kEucn)). Hence, the overall com-
plexity is O(n(kEucCNN +m(kEuc ∨ log(n)) + kℓℓ)).

Corollary 6.6 If kEuc, kℓℓ,m = O(1) with respect to n and the data has low intrinsic
dimension so that CNN = O(DCd log(n)), Algorithm 3 has complexity O(DCdn log(n)).

If kℓℓ = O(n) or the data has high intrinsic dimension, the complexity is O(n2).
Hence, d,m, kEuc, and kℓℓ are all important parameters affecting the computational
complexity.
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Remark 6.7 One can also incorporate a minimal spanning tree (MST) into the con-
struction, i.e. replace GkEuc

(∞) with its MST. This will reduce the number of edges
which must be binned to give a total computational complexity of O(n(kEucCNN +
m log(n)+ kℓℓ)). Computing the LLPD with and without the MST has the same com-
plexity when kEuc ≤ O(log(n)), so for simplicity we do not incorporate MSTs in our
implementation.

6.3. A Fast Eigensolver for LLPD Laplacian

In this section we describe an algorithm for computing the eigenvectors of a dense
Laplacian defined using approximate LLPD with complexity O(mn). The ultrametric
property of the LLPD makes LSYM highly compressible, which can be exploited for
fast eigenvector computations. Assume LLPD is approximated using m scales {ts}ms=1

and the corresponding thresholded graphs GkEuc
(ts) as described in Algorithm 2. Let

ni = |C i
t1
| for 1 ≤ i ≤ ν1 denote the cardinalities of the connected components of

GkEuc
(t1), and V =

∑m
k=1 νk the total number of connected components across all

scales.
In order to develop a fast algorithm for computing the eigenvectors of the LLPD
Laplacian LSYM = I−D− 1

2WD− 1
2 , it suffices to describe a fast method for computing

the matrix-vector multiplication x 7→ LSYMx, where LSYM is defined using Wij =
e−ρℓℓ(xi,xj)

2/σ2
(Trefethen and Bau, 1997). Assume without loss of generality that

we order the entries of both x and W according to the point order π defined in
Algorithm 2. Note because LSYM is block constant with ν2

1 blocks, any eigenvector
will also be block constant with ν1 blocks, and it suffices to develop a fast multiplier for
x 7→ LSYMx when x ∈ R

n has the form: x = [x11n1 x21n2 . . . xν11ν1 ] where 1ni
∈ R

ni

is the all one’s vector. Assuming LLPD’s have been precomputed using Algorithm
2, Algorithm 4 gives pseudocode for computing Wx with complexity O(mn). Since
LSYMx = x−D−1/2WD−1/2x, W (D−1/2x) is computable via Algorithm 4, and D−1/2

is diagonal, a straight forward generalization of Algorithm 4 gives LSYMx in O(mn).
Since the matrix-vector multiplication has reduced complexity O(mn), the decompo-
sition of the principal K eigenvectors can be done with complexity O(K2mn) (Tre-
fethen and Bau, 1997), which in the practical case K,m = O(1), is essentially linear
in n. Thus the total complexity of implementing LLPD spectral clustering including
the LLPD approximation discussed in Section 6.1 becomes O(n(kEucCNN +m(kEuc ∨
log(n) ∨ K2))). We defer timing studies and theoretical analysis of the fast eigen-
solver algorithm to a subsequent article, in the interest of space. We remark that
the strategy proposed for computing the eigenvectors of the LLPD Laplacian could
in principal be used for Laplacians derived from other distances. However, without
the compressible ultrametric structure, the approximation using only m ≪ n scales
is likely to be poor, leading to inaccurate approximate eigenvectors.
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Algorithm 4 Fast LLPD matrix-vector multiplication
Input: {ts}ms=1, D = {Cts}ms=1, fσ(t), x
Output: Wx

1: Enumerate all connected components at all scales: C = [C1
t1 . . . C

ν1
t1

. . . C1
tm . . . Cνm

tm ].
2: Let V be the collection of V nodes corresponding to the elements of C.
3: For i = 1, . . . , V , let C(i) be the set of direct children of node i in dendrogram D.
4: For i = 1, . . . , V , let P(i) be the direct parent of node i in dendrogram D.

5: for i = 1 : ν1 do

6: Σ(i) = nixi
7: end for

8: for i = (ν1 + 1) : V do

9: Σ(i) =
∑

j∈C(i)Σ(j)
10: end for

11: for i = 1 : ν1 do

12: αi(1) = i

13: for j = 2 : m do

14: αi(j) = P(αi(j − 1))
15: end for

16: end for

17: Let K = [fσ(t1) fσ(t2) · · · fσ(tm)] be a vector of kernel evaluations at each scale.

18: for i = 1 : ν1 do

19: ξi(j) = Σ(αi(j))
20: dξi(1) = ξi(1)
21: for j = 2 : m do

22: dξi(j) = ξi(j + 1)− ξi(j)
23: end for

24: Let Ii be the index set corresponding to Ci
t1 .

25: (Wx)Ii =
∑m

s=1 dξi(s)K(s)
26: end for

6.4. LLPD as Approximate Single Linkage Clustering

The algorithmic implementation giving D̂ℓℓ
GkEuc

approximates the true LLPD ρℓℓ by

merging path connected components at various scales. In this sense, our approach is
reminiscent of single linkage clustering (Hastie et al., 2009). Indeed, the connected
component structure defined in Algorithm 2 can be viewed as an approximate single
linkage dendrogram.
Single linkage clustering generates, from X = {xi}ni=1, a dendrogram DSL = {Ck}n−1

k=0 ,
whereCk : {1, 2, . . . , n} → {C1

k , C
2
k , . . . , C

n−k
k } assigns xi to its cluster at level k of the

dendrogram (C0 assigns each point to a singleton cluster). Let dk be the Euclidean
distance between the clusters merged at level k: dk = mini 6=j minx∈Ck−1

i ,y∈Ck−1
j

‖x−y‖2.
Note that {dk}n−1

k=1 is non-decreasing, and when strictly increasing, the clusters pro-
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duced by single linkage clustering at the kth level are the path connected components
of G(dk). In the more general case, the path connected components of G(dk) may
correspond to multiple levels of the single linkage hierarchy. Let {ts}ms=1 be the thresh-
olds used in Algorithm 2, and assume that GkEuc

(∞) contains an MST of G(∞) as a
subgraph. Let D = {Cts}ms=1 be the path-connected components with edges ≤ ts. D

is a compressed dendrogram, obtained from the full dendrogram DSL by pruning at
certain levels. Let τs = inf{k | dk ≥ ts, dk < dk+1}, and define the pruned dendrogram
as P (DSL) = {Cτs}ms=1. In this case, the dendrogram obtained from the approximate
LLPD is a pruning of an exact single linkage dendrogram. We omit the proof of the
following in the interest of space.

Proposition 6.8 If GkEuc
(∞) contains an MST of G(∞) as a subgraph, P (DSL) = D.

Note that the approximate LLPD algorithm also offers an inexpensive approximation
of single linkage clustering. A naive implementation of single linkage clustering is
O(n3), while the SLINK algorithm (Sibson, 1973) improves this to O(n2). Thus to
generate D by first performing exact single linkage clustering, then pruning, is O(n2),
whereas to approximate D directly via approximate LLPD is O(n log(n)); see Figure
7.

D

X D̃

PruningSLC

LLPD

D

X D̃

O(mn)O(n2)

O(n log(n))

Figure 7: The cost of constructing the full single linkage dendrogram with SLINK is O(n2), and
the cost of pruning is O(mn), where m is the number of pruning cuts, so that acquiring D in
this manner has overall complexity O(n2). The proposed method, in contrast, computes D with
complexity O(n log(n)).

7. Numerical Experiments

In this section we illustrate LLPD spectral clustering on four synthetic data sets
and five real data sets. LLPD was approximated using Algorithm 2, and data sets
were denoised by removing all points whose knse

th nearest neighbor LLPD exceeded θ.
Algorithm 4 was then used to compute approximate eigenpairs of the LLPD Laplacian
for a range of σ values. The parameters K̂, σ̂ were then estimated from the multiscale
spectral decompositions via

K̂ = argmax
i

max
σ

(λi+1(σ)− λi(σ)) , σ̂ = argmax
σ

(
λK̂+1(σ)− λK̂(σ)

)
, (7.1)

and a final clustering was obtained by running K-means on the spectral embedding
defined by the principal K eigenvectors of LSYM(σ̂). For each data set, we investigate
(1) whether K̂ = K and (2) the labeling accuracy of LLPD spectral clustering given
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K. We compare the results of (1) and (2) with those obtained from Euclidean spectral
clustering, where K̂, σ̂ are estimated using an identical procedure, and also compare
the results of (2) with the labeling accuracy obtained by applying K-means directly.
To make results as comparable as possible, Euclidean spectral clustering and K-means
were run on the LLPD denoised data sets. All results are reported in Table 2.
Labeling accuracy was evaluated using three statistics: overall accuracy (OA), average
accuracy (AA), and Cohen’s κ. OA is the metric used in the theoretical analysis,
namely the proportion of correctly labeled points after clusters are aligned, as defined
by the agreement function (3.9). AA computes the overall accuracy on each cluster
separately, then averages the results, in order to give small clusters equal weight
to large ones. Cohen’s κ measures agreement between two labelings, corrected for
random agreement (Banerjee et al., 1999). Note that AA and κ are computed using
the alignment that is optimal for OA. We note that accuracy is computed only on the
points with ground truth labels, and in particular, any noise points remaining after
denoising are ignored in the accuracy computations. For the synthetic data, where
it is known which points are noise and which are from the clusters, one can assign
labels to noise points according to Euclidean distance to the nearest cluster. For all
synthetic data sets considered, the empirical results observed changed only trivially,
and we do not report these results.
Parameters were set consistently across all examples, unless otherwise noted. The
initial E-nearest neighbor graph was constructed using kEuc = 20. The scales {ts}ms=1

for approximation were chosen to increase exponentially while requiring m = 20.
Nearest neighbor denoising was performed using knse = 20. The denoising threshold
θ was chosen by estimating the elbow in a graph of sorted nearest neighbor distances.
For each data set, LSYM was computed for 20 σ values equally spaced in an interval.
All code and scripts to reproduce the results in this article are publicly available1.

7.1. Synthetic Data

The four synthetic data sets considered are:

• Four Lines This data set consists of four highly elongated clusters in R
2 with

uniform two-dimensional noise added; see Figure 8a. The longer clusters have
ni = 40000 points, the smaller ones ni = 8000, with ñ = 20000 noise points.
This data set is too large to cluster with a dense Euclidean Laplacian.

• Nine Gaussians Each of the nine clusters consist of ni = 50 random sam-
ples from a two-dimensional Gaussian distribution; see Figure 8c. All of the
Gaussians have distinct means. Five have covariance matrix 0.01I while four
have covariance matrix 0.04I, resulting in clusters of unequal density. The noise
consists of ñ = 50 uniformly sampled points.

1. https://bitbucket.org/annavlittle/llpd_code/branch/v2.1
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• Concentric Spheres Letting S
d
r ⊂ R

d+1 denote the d-dimensional sphere of
radius r centered at the origin, the clusters consist of points uniformly sampled
from three concentric 2-dimensional spheres embedded in R

1000: n1 = 250 points
from S

2
1, n2 = 563 points from S

2
1.5, and n3 = 1000 points from S

2
2, so that the

cluster densities are constant. The noise consists of an additional ñ = 2000
points uniformly sampled from [−2, 2]1000.

• Parallel Planes Five d = 5 dimensional planes are embedded in [0, 1]25 by
setting the last D − d = 20 coordinates to a distinct constant for each plane;
we sample uniformly ni = 1000, 1 ≤ i ≤ 5 points from each plane and add
ñ = 200000 noise points uniformly sampled from [0, 1]25. Only 2 of the last 20
coordinates contribute to the separability of the planes, so that the Euclidean
distance between consecutive parallel planes is approximately 0.35. We note
that for this data set, it is possible to run Euclidean spectral clustering after
denoising with the LLPD.

(a) Four Lines
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(b) LLPD spectral cluster-
ing on denoised Four Lines
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(d) LLPD spectral cluster-
ing on denoised Nine Gaus-
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Figure 8: Two dimensional synthetic data sets and LLPD spectral clustering results for the denoised
data sets. In Figures 8b and 8d, color corresponds to the label returned by LLPD spectral clustering.

Figure 9 illustrates the denoising procedure. Sorted LLPD-nearest neighbor distances
are shown in blue, and the denoising threshold θ (selected by choosing the graph
elbow) is shown in red. All plots exhibit an elbow pattern, which is shallow when
D/d is small (Figure 9b) and sharp when D/d is large (Figure 9c; the sharpness is due
to the drastic difference in nearest neighbor distances for cluster and noise points).
Figure 10 shows the multiscale eigenvalue plots for the synthetic data sets. For
the four lines data, Euclidean spectral clustering is run with n = 1160 since it is
prohibitively slow for n = 116000; however all relevant proportions such as ñ/ni are
the same. LLPD spectral clustering correctly infers K for all synthetic data sets;
Euclidean spectral clustering fails to correctly infers K except for the nine Gaussians
example. See Table 2 for all K̂ values and empirical accuracies. Although accuracy
is reported on the cluster points only, we remark that labels can be extended to any
noise points which survive denoising by considering the label of the closest cluster
set, and the empirical accuracies reported in Table 2 remain essentially unchanged.
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Figure 9: LLPD to knse
th LLPD-nearest neighbor (blue) and threshold θ used for denoising the data

(red).

In addition to learning the number of clusters K, the multiscale eigenvalue plots can
also be used to infer a good scale σ for LLPD spectral clustering as σ̂ = argmaxσ

(
λK̂+1(σ)− λK̂(σ)

)
.

For the two dimensional examples, the right panel of Figure 8 shows the results of
LLPD spectral clustering with K̂, σ̂ inferred from the maximal eigengap with LLPD.
Robustly estimating K and σ makes LLPD spectral clustering essentially parameter
free, and thus highly desirable for the analysis of real data.
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(d) Parallel Planes

Figure 10: Multiscale eigenvalues of LSYM for synthetic data sets using Euclidean distance (top)
and LLPD (bottom).

7.2. Real Data

We apply our method on the following real data sets:
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(a) Skins data (b) DrivFace Representative
Faces

(c) COIL objects (d) COIL 16 objects

Figure 11: Representative objects from (a) Skins, (b) DrivFace, (c) COIL, and (d) COIL 16 data
sets.

• Skins This large data set consists of RGB values corresponding to pixels sam-
pled from two classes: human skin and other2. The human skin samples are
widely sampled with respect to age, gender, and skin color; see Bhatt et al.
(2009) for details on the construction of the data set. This data set consists
of 245057 data points in D = 3 dimensions, corresponding to the RGB values.
Note LLPD was approximated from scales {ts}ms=1 defined by 10 percentiles, as
opposed to the default exponential scaling. See Figure 11a.

• DrivFace The DrivFace data set is publicly available3 from the UCI Machine
Learning Repository (Lichman, 2013). This data set consists of 606 80 × 80
pixel images of the faces of four drivers, 2 male and 2 female. See Figure 11b

• COIL The COIL (Columbia University Image Library) data set4 consists of
images of 20 different objects captured at varying angles (Nene et al., 1996).
There are 1440 different data points, each of which is a 32× 32 image, thought
of as a D = 1024 dimensional point cloud. See Figure 11c.

• COIL 16 To ease the problem slightly, we consider a 16 class subset of the full
COIL data, shown in Figure 11d.

• Pen Digits This data set5 consists of 3779 spatially resampled digital signals
of hand-written digits in 16 dimensions (Alimoglu and Alpaydin, 1996). We
consider a subset consisting of five digits: {0, 2, 3, 4, 6}.

• Landsat The landsat satellite data we consider consists of pixels in 3×3 neigh-
borhoods in a multispectral camera with four spectral bands6. This leads to
a total ambient dimension of D = 36. The data considered consists of K = 4

2. https://archive.ics.uci.edu/ml/datasets/skin+segmentation
3. https://archive.ics.uci.edu/ml/datasets/DrivFace
4. http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
5. https://archive.ics.uci.edu/ml/datasets/Pen-Based+Recognition+of+Handwritten+

Digits

6. https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
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classes, consisting of pixels of different physical materials: red soil, cotton, damp
soil, and soil with vegetable stubble.
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(e) Landsat

Figure 12: Multiscale eigenvalues of LSYM for real data sets using Euclidean distance (top, (b)-(e),
does not appear for (a)) and LLPD (bottom (a)-(e)).

Labeling accuracy results as well as the K̂ values returned by our algorithm are
given in Table 2. LLPD spectral clustering correctly estimates K for all data sets
except the full COIL data set and Landsat. Euclidean spectral clustering fails to
correctly detect K on all real data sets. Figure 12 shows both the Euclidean and
LLPD eigenvalues for Skins, DrivFace, COIL 16, Pen Digits, and Landsat. Euclidean
spectral clustering results for Skins are omitted because Euclidean spectral clustering
with a dense Laplacian is computationally intractable with such a large sample size.
At least 90% of data points were retained during the denoising procedure with the
exception of Skins (88.0% retained) and Landsat (67.2% retained). After denoising,
LLPD spectral clustering achieved an overall accuracy exceeding 98.6% on all real
data sets except COIL 20 (90.5%). Euclidean spectral clustering performed well on
DrivFaces (OA 94.1%) and Pen Digits (OA 98.1%), but poorly on the remaining
data sets, where the overall accuracy ranged from 68.9% − 76.8%. K-means also
performed well on DrivFaces (OA 87.5%) and Pen Digits (OA 97.6%) but poorly on
the remaining data sets, where the overall accuracy ranged from 54.7%− 78.5%.

8. Conclusions and Future Directions

This article developed finite sample estimates on the behavior of the LLPD metric,
derived theoretical guarantees for spectral clustering with the LLPD, and introduced
fast approximate algorithms for computing the LLPD and LLPD spectral cluster-
ing. The theoretical guarantees on the eigengap provide mathematical rigor for the
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Data Set Accuracy Statistic K-means Euclidean SC LLPD SC
Four Lines

(n = 116000, ñ = 20000, N = 97361, D = 2, d =
1, K = 4, ζN = 12.0239, θ = .01, σ̂ = 0.2057, δ =

.9001)

OA .4951 .6838 1.000
AA .4944 .6995 1.000
κ .3275 .5821 1.000

K̂ - 6 4

Nine Gaussians
(n = 500, ñ = 0, N = 428, D = 2, d = 2, K =
9, ζN = 10.7, θ = .13, σ̂ = 0.1000, δ = .1094)

OA .9930 .9930 .9930
AA .9920 .9920 .9920
κ .9921 .9921 .9921

K̂ - 9 9

Concentric Spheres
(n = 3813, ñ = 2000, N = 1813, D = 1000, d =
2, K = 3, ζN = 7.2520, θ = 2, σ̂ = 0.1463, δ = .5)

OA .3464 .3519 .9989
AA .3463 .3438 .9988
κ .0094 .0155 .9981

K̂ - 4 3

Parallel Planes
(n = 205000, ñ = 200000, N = 5000, D = 30, d =
10, K = 5, ζN = 5, θ = .45, σ̂ = 0.0942, δ = .3553)

OA .5594 .3964 .9990
AA .5594 .3964 .9990
κ .4493 .2455 .9987

K̂ - 2 5

Skins
(n = 245057, N = 215694, D = 3, K = 2, ζN =

4.5343, θ = 2, σ̂ = 50, δ̂ = 0)

OA .5473 - .9962
AA .4051 - .9970
κ -.1683 - .9890

K̂ - - 2

DrivFaces
(n = 612, N = 574, D = 6400, K = 4, ζN =
6.4494, θ = 10, σ̂ = 4.9474, δ̂ = 9.5976)

OA .8746 .9408 1.000
AA .8882 .9476 1.000
κ .9198 .9198 1.000

K̂ - 2 4

COIL 20
(n = 1440, N = 1351, D = 1024, K = 20, ζN =

27.5714, θ = 4.5, σ̂ = 1.9211, δ̂ = 3.3706)

OA .6555 .6890 .9055
AA .6290 .6726 .8833
κ .6368 .6724 .9004

K̂ - 3 17

COIL 16
(n = 1152, N = 1088, D = 1024, K = 16, ζN =

22.1837, θ = 3.9, σ̂ = 2.3316, δ̂ = 5.4350)

OA .7500 .7330 1.000
AA .7311 .6782 1.000
κ .7330 .6864 1.000

K̂ - 3 16

Pen Digits
(n = 3779, N = 3750, D = 16, K = 5, ζN =
5.2228, θ = 60, σ̂ = 16.8421, δ̂ = 11.3137)

OA .9760 .9813 .9949
AA .9764 .9816 .9949
κ .9700 .9767 .9937

K̂ - 6 5

Landsat
(n = 1136, N = 763, D = 36, K = 4, ζN =
8.4778, θ = 32, σ̂ = 51.5789, δ̂ = 28.2489)

OA .7851 .7680 .9869
AA .8619 .8532 .9722
κ .6953 .6722 .9802

K̂ - 2 2

Table 2: In all examples, LLPD spectral clustering performs at least as well as K-means and
Euclidean spectral clustering, and it typically outperforms both. Best results for each method
and performance metric are bolded. For each data set, we include parameters that determine the
theoretical results. For both real and synthetic data sets, n (the total number of data points), N
(the number of data points after denoising), D (the ambient dimension of the data), K (the number
of clusters in the data), ζN (cluster balance parameter on the denoised data), θ (LLPD denoising
threshold), and σ̂ (learned scaling parameter in LLPD weight matrix) are given. For the synthetic
data, ñ (number of noise points), d (intrinsic dimension of the data), and δ (minimal Euclidean
distance between clusters) are given, since these are known or can be computed exactly. For the real

data, δ̂ (the minimal Euclidean distanced between clusters, after denoising) is provided. We remark
that for the Skins data set, a very small number of points (which are integer triples in R

3) appear

in both classes, so that δ̂ = 0. Naturally these points are not classified correctly, which leads to a
slightly imperfect accuracy for LLPD spectral clustering.
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heuristic claim that the eigengap determines the number of clusters, and theoretical
guarantees on labeling accuracy improve on the state of the art in the LDLN data
model. Moreover, the proposed approximation scheme enables efficient LLPD spectral
clustering on large, high-dimensional data sets. Our theoretical results are verified
numerically, and it is shown that LLPD spectral clustering determines the number
of clusters and labels points with high accuracy in many cases where Euclidean spec-
tral clustering fails. In a sense, the method proposed in this article combines two
different clustering techniques: density techniques like DBSCAN and single linkage
clustering, and spectral clustering. The combination allows for improved robustness
and performance guarantees compared to either set of techniques alone.
It is of interest to generalize and improve the results in this article. Our theoretical
results involved two components. First, we proved estimates on distances between
points under the LLPD metric, under the assumption that data fits the LDLN model.
Second, we proved that the weight matrix corresponding to these distances enjoys a
structure which guarantees that the eigengap in the normalized graph Laplacian is
informative. The first part of this program is generalizable to other distance metrics
and data drawn from different distributions. Indeed, one can interpret the LLPD as a
minimum over the ℓ∞ norm of paths between points. Norms other than the ℓ∞ norm
may correspond to interesting metrics for data drawn from some class of distribu-
tions, for example, the geodesic distance with respect to some metric on a manifold.
Moreover, introducing a comparison of tangent-planes into the spectral clustering
distance metric has been shown to be effective in the Euclidean setting (Arias-Castro
et al., 2017), and allows one to distinguish between intersecting clusters in many
cases. Introducing tangent plane comparisons into the LLPD construction would
perhaps allow the results in this article to generalize to data drawn from intersecting
distributions.
An additional problem not addressed in the present article is the consistency of LLPD
spectral clustering. It is of interest to consider the behavior as n → ∞ and determine
if LLPD spectral clustering converges in the large sample limit to a continuum partial
differential equation. This line of work has been fruitfully developed in recent years for
spectral clustering with Euclidean distances (Garcia Trillos et al., 2016; Garcia Trillos
and Slepcev, 2016a,b).
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Appendix A. Proofs from Section 4

A.1. Proof of Lemma 4.1

Let y ∈ S satisfy ‖x− y‖2 ≤ τ . Suppose τ ≥ ǫ/4. For the upper bound, we have:

HD(B(S, τ) ∩ Bǫ(x)) ≤ HD(Bǫ(x)) = HD(B1)ǫ
D ≤ HD(B1)ǫ

d4D−d (τ ∧ ǫ)D−d .

For the lower bound, set z = (1 − α)x + αy, α = ǫ
4τ
. Then ‖z − x‖2 ≤ ǫ/4 and

‖z − y‖2 ≤ τ − ǫ/4, so Bǫ/4(z) ⊂ B(S, τ) ∩ Bǫ(x), and

4−DHD(B1)ǫ
d(ǫ ∧ τ)D−d ≤ 4−DHD(B1)ǫ

D = HD(Bǫ/4(z)) ≤ HD(B(S, τ) ∩ Bǫ(x)).

This shows that (4.2) holds in the case τ ≥ ǫ/4.
Now suppose τ < ǫ/4. We consider two cases, with the second to be reduced to the
first one.
Case 1: x = y ∈ S. Let {yi}ni=1 be a τ -packing of S ∩ Bǫ−τ (y), i.e.: S ∩ Bǫ−τ (y) ⊂⋃n

i=1 Bτ (yi), and ‖yi − yj‖2 > τ, i 6= j. We show this implies that B(S, τ) ∩ B ǫ
2
(y) ⊂

⋃n
i=1 B2τ (yi). Indeed, let x0 ∈ B(S, τ) ∩ B ǫ

2
(y). Then there is some x∗ ∈ S such

that ‖x0 − x∗‖2 ≤ τ , and so ‖x∗ − y‖2 ≤ ‖x∗ − x0‖2 + ‖x0 − y‖2 ≤ τ + ǫ/2 < ǫ − τ
(since τ < ǫ/4), and hence x∗ ∈ S ∩Bǫ−τ (y). Thus there exists y

∗
i in the τ -packing of

S∩Bǫ−τ (y) such that x∗ ∈ Bτ (y
∗
i ), so that ‖x0−y∗i ‖2 ≤ ‖x0−x∗‖2+‖x∗−y∗i ‖2 ≤ 2τ ,

and x0 ∈ B2τ (y
∗
i ). Hence,

HD(B(S, τ) ∩ B ǫ
2
(y)) ≤

n∑

i=1

HD(B2τ (yi)) = nHD(B1)2
DτD. (A.1)

Similarly, it is straight-forward to verify that
⋃n

i=1 B τ
2
(yi) ⊂ B(S, τ) ∩ Bǫ(y), and

since the {B τ
2
(yi)}ni=1 are pairwise disjoint, it follows that

nHD(B1)2
−DτD = HD

(
∪n
i=1B τ

2
(yi)
)
≤ HD(B(S, τ) ∩Bǫ(y)). (A.2)

We now estimate n. Indeed, S ∩ B ǫ
2
(y) ⊂ S ∩ Bǫ−τ (y) ⊂

⋃n
i=1 S ∩ Bτ (yi), so that by

assumption S ∈ Sd(κ, ǫ0) and ǫ ∈ (0, 2ǫ0
5
) ⊂ (0, ǫ0),

2−dǫdκ−1Hd(B1) ≤ Hd(S ∩B ǫ
2
(y)) ≤

n∑

i=1

Hd(S ∩ Bτ (yi)) ≤ κτ dnHd(B1).

It follows that
2−d (ǫ/τ)d κ−2 ≤ n. (A.3)

Similarly,
⋃n

i=1 S ∩B τ
2
(yi) ⊂ S ∩ Bǫ(y) yields

nκ−1τ d2−dHd(B1) ≤
n∑

i=1

Hd(S ∩ B τ
2
(yi)) ≤ Hd(S ∩Bǫ(y)) ≤ κǫdHd(B1),
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so that
n ≤ 2dκ2 (ǫ/τ)d . (A.4)

By combining (A.2) and (A.3), we obtain

HD(B1)2
−(d+D)κ−2τD (ǫ/τ)d ≤ HD(B(S, τ) ∩ Bǫ(y)) (A.5)

and by combining (A.1) and (A.4), we obtain

HD(B(S, τ) ∩ B ǫ
2
(y)) ≤ HD(B1)2

d+Dκ2τD (ǫ/τ)d , (A.6)

which are valid for any ǫ < ǫ0, τ < ǫ/4. Replacing ǫ/2 and τ with ǫ and 2τ , respec-
tively, in (A.6), and combining with (A.5), we obtain, for ǫ < ǫ0/2, τ < ǫ/4,

HD(B1)2
−(d+D)κ−2τD (ǫ/τ)d ≤ HD(B(S, τ) ∩ Bǫ(y)) ≤ HD(B1)2

d+2Dκ2τD (ǫ/τ)d .

Case 2: x /∈ S. Notice that ‖x− y‖2 ≤ τ ≤ ǫ/4, so B 3ǫ
4
(y) ⊂ Bǫ(x) ⊂ B 5ǫ

4
(y). Thus:

HD(B(S, τ)∩Bǫ(x)) ≤ HD(B(S, τ)∩B 5ǫ
4
(y)) ≤ HD(B1)2

2D+2dκ2τD (ǫ/τ)d , so as long

as ǫ < 2ǫ0
5

we have

HD(B(S, τ) ∩ Bǫ(x)) ≥ HD(B(S, 3τ/4) ∩B3ǫ/4(y)) ≥ HD(B1)2
−(2D+d)κ−2τD (ǫ/τ)d .

We thus obtain the statement in Lemma 4.1.

A.2. Proof of Theorem 4.3

Cover B(S, τ) with an ǫ/4-packing {yi}Ni=1, such that B(S, τ) ⊂ ⋃N
i=1 Bǫ/4(yi), and

‖yi−yj‖2 > ǫ/4, ∀i 6= j. {Bǫ/8(yi)}Ni=1 are thus pairwise disjoint, so that
∑N

i=1 HD(Bǫ/8(yi)∩
B(S, τ)) ≤ HD(B(S, τ)). By Lemma 4.1, we may bound C1 (ǫ/8)

d (ǫ/8 ∧ τ)D−d ≤
HD(Bǫ/8(yi)∩B(S, τ)), where C1 = κ−22−(2D+d)HD(B1).Hence, NC1 (ǫ/8)

d (ǫ/8 ∧ τ)D−d ≤
HD(B(S, τ)), so that

N ≤ CHD(B(S, τ)) (ǫ/8)−d (ǫ/8 ∧ τ)−(D−d) , C = κ222D+d(HD(B1))
−1.

So, CHD(B(S, τ)) (ǫ/8)−d (ǫ/8 ∧ τ)−(D−d) balls of radius ǫ/4 are needed to cover
B(S, τ). We now determine how many samples n must be taken so that each ball
contains at least one sample with probability exceeding 1 − t. If this occurs, then
each pair of points is connected by a path with all edges of length at most ǫ. No-
tice that the distribution of the number of points ωi in the set Bǫ/4(yi) ∩ B(S, τ) is
ωi ∼ Bin(n, pi), where

pi =
HD(B(S, τ) ∩Bǫ/4(yi))

HD(B(S, τ))
≥ C−1 (ǫ/4)d (ǫ/4 ∧ τ)D−d

HD(B(S, τ))
:= p.

Since P(∃i : ωi = 0) ≤ N(1− p)n ≤ Ne−pn ≤ t as long as n ≥ 1/p logN/t, it suffices

for n to satisfy n ≥ CHD(B(S,τ))

(ǫ/4)d(τ∧ǫ/4)D−d
log CHD(B(S,τ))

(ǫ/8)d(τ∧ǫ/8)D−dt
.
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A.3. Proof of Corollary 4.4

For a fixed l, choose a τ packing of Sl, i.e. let y1, . . . , ym ∈ Sl such that Sl ⊂ ∪iBτ (yi)
and ‖yi − yj‖2 > τ for i 6= j. Then B(Sl, τ) ⊂ B2τ (yi). Now we control the size of
m. Since the B τ

2
(yi) are disjoint and Sl ∈ S(κ, ǫ0), Hd(Sl) ≥

∑m
i=1 Hd(Sl ∩B τ

2
(yi)) ≥

mκ−1Hd(B1)
(
τ
2

)d
, so that m ≤ κ Hd(Sl)

Hd(B1)

(
τ
2

)−d
. Furthermore, since 2

5
ǫ0 > 2τ we have

by Lemma 4.1:

HD(B(Sl, τ))

HD(B1)
≤

m∑

i=1

HD(B(Sl, τ) ∩B2τ (yi))

HD(B1)
≤ mκ22(2D+2d) (2τ)d τD−d ≤ κ32(2D+4d) Hd(Sl)

Hd(B1)
τD−d.

Combining the above with (4.5) implies

nl ≥
CHD(B(Sl, τ))

(ǫ/4)d τD−dHD(B1)
log

CHD(B(Sl, τ))

(ǫ/8)d τD−dHD(B1)t

for C = κ222D+d. Thus by Theorem 4.3, P(maxx6=y∈Xl
ρℓℓ(x, y) < ǫ) ≥ 1 − t

K
.

Repeating the above argument for each Sl and letting El denote the event that
maxx6=y∈Xl

ρℓℓ(x, y) ≥ ǫ, we obtain P(ǫin ≥ ǫ) = P(max1≤l≤K maxx6=y∈Xl
ρℓℓ(x, y) ≥

ǫ) = P(∪lEl) ≤
∑

l P(El) ≤ K( t
K
) = t.

A.4. Proof of Theorem 4.11

Re-writing the inequality assumed in the theorem, we are guaranteed that

C

(

max
l=1,...,K

4dκ524D+5dHd(Sl)

nlHd(B1)
log

(

2dnl
2K

t

)) 1
d

<





(
t
2

) 1
knse

((knse + 1)ñ)
knse+1
knse

HD(X̃)

HD(B1)





1
D

.

Let Cǫ∗1 denote the left hand side of the above inequality and ǫ∗2 the right hand side.

Then for all 1 ≤ l ≤ K, nl ≥ κ524D+5dHd(Sl)

(ǫ∗1/4)
dHd(B1)

(
log
(
2dnl

2K
t

))
, and since log

(
2dnl

2K
t

)
≥ 1,

clearly nl ≥ κ524D+5dHd(Sl)

(ǫ∗1/4)
dHd(B1)

, and we obtain nl ≥
(

κ524D+5dHd(Sl)

(ǫ∗1/4)
dHd(B1)

log

(

κ524D+5dHd(Sl)

(ǫ∗1/8)
dHd(B1)

2K
t

))

.

Since τ <
ǫ∗1
8
∧ ǫ0

5
by assumption, Corollary 4.4 yields P (ǫin < ǫ∗1) ≥ 1 − t

2
. Also by

Theorem 4.9, P(ǫnse > ǫ∗2) ≥ 1− t
2
. Since we are assuming Cǫ∗1 < ǫ∗2, P(Cǫin < ǫnse) ≥

P((ǫin < ǫ∗1) ∩ (ǫnse > ǫ∗2)) ≥ 1− t.

Appendix B. Proof of Theorem 5.5

Let nl = |Al| and ml = |Cl| denote the cardinality of the sets in Assumption 1, and
let η1 := 1− fσ(ǫin), ηθ := 1− fσ(θ), η2 := fσ(ǫnse).

B.1. Bounding Entries of Weight Matrix W and Degrees

The following Lemma guarantees that the weight matrix will have a convenient struc-
ture.
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Lemma B.1 For 1 ≤ l ≤ K, let Al, Cl, Ãl be as in Assumption 1. Then:

1. For each fixed xl
i ∈ Cl, x

l
i is equidistant from all points in Al; more precisely:

ρ(xl
i, x

l
j) = min

xl∈Al

ρ(xl
i, x

l) =: ρli, ∀xl
i ∈ Cl, x

l
j ∈ Al, 1 ≤ l ≤ K.

2. The distance between any point in Ãl and Ãs is constant for l 6= s, that is:

ρ(xl
i, x

s
j) = min

xl∈Ãl,xs∈Ãs

ρ(xl, xs) =: ρl,s ∀xl
i ∈ Ãl, x

s
j ∈ Ãs, 1 ≤ l 6= s ≤ K.

Proof To prove (1), let xl
i ∈ Cl and xl

j ∈ Al. Since ρli is the minimum distance
between xl

i and a point in Al, clearly ρ(xl
i, x

l
j) ≥ ρli. Let x

l
∗ denote the point in Al such

that ρli = ρ(xl
i, x

l
∗). Then ρ(xl

i, x
l
j) ≤ ρ(xl

i, x
l
∗)∨ρ(xl

∗, x
l
j) ≤ ρ(xl

i, x
l
∗)∨ǫin = ρli∨ǫin = ρli.

Thus ρ(xl
i, x

l
j) = ρli.

To prove (2), let xl
i ∈ Ãl and xs

j ∈ Ãs for l 6= s. Clearly, ρ(xl
i, x

s
j) ≥ ρl,s. Now let

xl
∗ ∈ Ãl, x

s
∗ ∈ Ãs be the points that achieve the minimum, i.e. ρl,s = ρ(xl

∗, x
s
∗). Note

that ρ(xl
i, x

l
∗) ≤ θ and similarly for ρ(xs

j , x
s
∗) (if x

l
i, x

l
∗ are both in Cl, pick any point

z ∈ Al to obtain ρ(xl
i, x

l
∗) ≤ ρ(xl

i, z) ∨ ρ(z, xl
∗) ≤ θ). Thus:

ρ(xl
i, x

s
j) ≤ ρ(xl

i, x
l
∗) ∨ ρ(xl

∗, x
s
∗) ∨ ρ(xs

∗, x
s
j) ≤ θ ∨ ρl,s ∨ θ = ρl,s,

since ρl,s ≥ ǫnse > θ. Thus ρ(xl
i, x

s
j) = ρl,s.

We now proceed with the proof of Theorem 5.5. By Lemma B.1, the off-diagonal
blocks of W are constant, and so letting wl,s = WÃl,Ãs

denote this constant, W has
form

W =








WÃ1,Ã1
w1,2 . . . w1,K

w2,1 WÃ2,Ã2
. . . w2,K

...
...

wK,1 wK,2 . . . WÃK ,ÃK







,

and wl,s ≤ fσ(ǫnse) for 1 ≤ l 6= s ≤ K by (5.3).
We now consider an arbitrary diagonal block WÃl,Ãl

. For convenience let xl
i, 1 ≤ i ≤

nl +ml denote the points in Ãl, ordered so that xl
i ∈ Al for i = 1, . . . , nl and xl

i ∈ Cl

for i = nl+1, . . . , nl+ml. For every xl
i+nl

∈ Cl, let ρ
l
i+nl

denote the minimal distance
to Al, i.e. ρli+nl

= minxl∈Al
ρ(xl

i+nl
, xl), wl

i = fσ(ρ
l
i+nl

) for all 1 ≤ l ≤ K, 1 ≤ i ≤ ml.
Then by Lemma B.1, any point in Cl is equidistant from all points in Al, so that
(WÃl,Ãl

)ij = wl
i−nl

for all xl
i ∈ Cl, x

l
j ∈ Al, and by (5.2), fσ(ǫin) > wl

i−nl
≥ fσ(θ)

for nl + 1 ≤ i ≤ nl + ml. Note if xl
i, x

l
j ∈ Cl, then pick any xl

∗ ∈ Al, and one has
ρ(xl

i, x
l
j) ≤ ρ(xl

i, x
l
∗) ∨ ρ(xl

∗, x
l
j) ≤ θ by (5.2).
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Thus the diagonal blocks of W have the following form:

WÃl,Ãl
=
















[fσ(ǫin), 1] [fσ(ǫin), 1] . . . [fσ(ǫin), 1] wl
1 wl

2 . . . wl
ml

[fσ(ǫin), 1] [fσ(ǫin), 1] . . . [fσ(ǫin), 1] wl
1 wl

2 . . . wl
ml

...
...

...
...

...
[fσ(ǫin), 1] [fσ(ǫin), 1] · · · [fσ(ǫin), 1] wl

1 wl
2 wl

ml

wl
1 wl

1 · · · wl
1 [fσ(θ), 1] [fσ(θ), 1] · · · [fσ(θ), 1]

wl
2 wl

2 · · · wl
2 [fσ(θ), 1] [fσ(θ), 1] · · · [fσ(θ), 1]

...
...

...
...

wl
ml

wl
ml

· · · wl
ml

[fσ(θ), 1] [fσ(θ), 1] · · · [fσ(θ), 1]
















.

The entries labeled [fσ(ǫin), 1] or [fσ(θ), 1] indicate entries falling in the interval. So
we have the following bounds on the entries of W :

fσ(ǫin) ≤ (WÃl,Ãl
)ij ≤ 1 for xl

i, x
l
j ∈ Al,

fσ(θ) ≤ (WÃl,Ãl
)ij < fσ(ǫin) for xl

i ∈ Al, x
l
j ∈ Cl,

fσ(θ) ≤ (WÃl,Ãl
)ij ≤ 1 for xl

i, x
l
j ∈ Cl,

0 ≤ (WÃl,Ãs
)ij ≤ fσ(ǫnse) for xl

i ∈ Ãl, x
s
j ∈ Ãs, l 6= s.

Let degli denote the degree of x
l
i, and let wl =

∑ml

j=1 w
l
j, o

l =
∑

s6=l(ns+ms)w
l,s. Note

that regarding the degrees:

nlfσ(ǫin) + wl + ol ≤ degli ≤ nl + wl + ol for xl
i ∈ Al,

(nl +ml)fσ(θ) + ol ≤ degli ≤ nl +ml + ol for xl
i ∈ Cl.

where mlfσ(θ) ≤ wl ≤ mlfσ(ǫin) ≤ ml.

B.2. Bounding Entries of Normalized Weight Matrix D− 1
2WD− 1

2

We thus obtain the following entrywise bounds for the diagonal block D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
:

fσ(ǫin)

nl + wl + ol
≤ (D

− 1
2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
)ij ≤

1

nlfσ(ǫin) + wl + ol
for xl

i, x
l
j ∈ Al,

fσ(θ)

nl +ml + ol
≤ (D

− 1
2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
)ij ≤

1

(nl +ml)fσ(θ) + ol
for xl

i, x
l
j ∈ Cl.

For xl
i ∈ Al, x

l
j ∈ Cl, we have:

fσ(θ)
√

nl + wl + ol
√

nl +ml + ol
≤ (D

−

1

2

Ãl

WÃl,Ãl
D

−

1

2

Ãl

)ij <
fσ(ǫin)

√

nlfσ(ǫin) + wl + ol
√

(nl +ml)fσ(θ) + ol
.

Now consider the off-diagonal block D
− 1

2

Ãl
WÃl,Ãs

D
− 1

2

Ãs
for some l 6= s. Since degli ≥

fσ(θ)minl(nl +ml) = fσ(θ)ζ
−1
N N for all data points, we have:
∣
∣
∣D

− 1
2

Ãl
WÃl,Ãs

D
− 1

2

Ãs

∣
∣
∣ ≤ ζNfσ(ǫnse)

fσ(θ)N
.
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B.3. Perturbation to Obtain a Block Diagonal and Block Constant
Matrix

Consider the normalized weight matrix D− 1
2WD− 1

2 . This matrix consists of diagonal

blocks of the formD
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
and off diagonal blocks of the form D

− 1
2

Ãl
WÃl,Ãs

D
− 1

2

Ãs
,

some l 6= s. We will consider the spectral perturbations associated with (1) setting off-
diagonal blocks to 0 and (2) making the diagonal blocks essentially block constant.
More precisely, we consider the spectral perturbations associated with the matrix
perturbations P1,P2 given as:

D− 1
2WD− 1

2 =










D
− 1

2

Ã1
WÃ1,Ã1

D
− 1

2

Ã1
D

− 1
2

Ã1
WÃ1,Ã2

D
− 1

2

Ã2
. . . D

− 1
2

Ã1
WÃ1,ÃK

D
− 1

2

ÃK

D
− 1

2

Ã2
WÃ2,Ã1

D
− 1

2

Ã1
D

− 1
2

Ã2
WÃ2,Ã2

D
− 1

2

Ã2
. . . D

− 1
2

Ã2
WÃ2,ÃK

D
− 1

2

ÃK

...
...

D
− 1

2

ÃK
WÃK ,Ã1

D
− 1

2

Ã1
D

− 1
2

ÃK
WÃK ,Ã2

D
− 1

2

Ã2
. . . D

− 1
2

ÃK
WÃK ,ÃK

D
− 1

2

ÃK










P1−→










D
− 1

2

Ã1
WÃ1,Ã1

D
− 1

2

Ã1
0 . . . 0

0 D
− 1

2

Ã2
WÃ2,Ã2

D
− 1

2

Ã2
. . . 0

...
...

0 0 . . . D
− 1

2

ÃK
WÃK ,ÃK

D
− 1

2

ÃK










:= C

P2−→








B1 0 . . . 0
0 B2 . . . 0
...

...
0 0 . . . BK







:= B,

where Bl is defined by Bl =
fσ(ǫin)

nl+wl+ol
1nl+ml

. Throughout the proof 1N denotes the

N ×N matrix of all 1’s, IN the N ×N identity matrix, and ‖ · ‖2 the spectral norm.

B.4. Bounding P1 (Diagonalization)

We first consider the spectral perturbation due to P1. Using the bounds from B.2 for
an off-diagonal block, the perturbation in the eigenvalues due to P1 is bounded by:

‖D− 1
2WD− 1

2 − C‖2 ≤ N‖D− 1
2WD− 1

2 − C‖max ≤
ζNfσ(ǫnse)

fσ(θ)
= ζNη2 +O(ζNη2ηθ) := P1.

B.5. Bounding P2 (Constant Blocks)

We now consider the spectral perturbation due to P2. Because P2 acts on the blocks
of a block diagonal matrix, it is sufficient to bound the perturbation of each block.
For the lth block, let

D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
− Bl :=

[
Ql Rl

RT
l Sl

]
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where Q is nl×nl, R is nl×ml, and S is ml×ml, and RT
l denotes the transpose of Rl.

We will control the magnitude of each entry in Ql, Rl, Sl using the bounds computed
in B.2.
Bounding Ql: For xl

i, x
l
j ∈ Al, we have

(Bl)ij =
fσ(ǫin)

nl + wl + ol
≤
(

D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl

)

ij
≤ 1

nlfσ(ǫin) + wl + ol
,

so that (Ql)ij ≤ 1
nlfσ(ǫin)+wl+ol

− fσ(ǫin)
nl+wl+ol

≤
1

fσ(ǫin)

nl+wl+ol
− fσ(ǫin)

nl+wl+ol
=

2η1+O(η21)

nl+wl+ol
. Since

(Ql)ij ≥ 0, the above is in fact a bound for |(Ql)ij|, and we obtain:

|(Ql)ij| ≤
2η1 +O(η21)

(1− ηθ)(nl +ml)
=

2η1 +O(η21 + η2θ)

(nl +ml)
.

Bounding Rl: For xl
i ∈ Al and xl

j ∈ Cl, note that

(

D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl

)

ij
− (Bl)ij ≤

fσ(ǫin)
√

nlfσ(ǫin) + wl + ol
√

(nl +ml)fσ(θ) + ol
− fσ(ǫin)

nl + wl + ol

=

√
fσ(ǫin)√
fσ(θ)

− fσ(ǫin)
√
nl + wl + ol

√
nl +ml + ol

.

Similarly:

(

D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl

)

ij
− (Bl)ij ≥

fσ(θ)√
nl + wl + ol

√
nl +ml + ol

− fσ(ǫin)√
nl + wl + ol

√

nl +mlfσ(θ) + ol

=
fσ(θ)− fσ(ǫin)√

fσ(θ)√
nl + wl + ol

√
nl +ml + ol

so that |Rij| ≤

(√
fσ(ǫin)√
fσ(θ)

−fσ(ǫin)

)

∨
(

fσ(ǫin)√
fσ(θ)

−fσ(θ)

)

√
nl+wl+ol

√
nl+ml+ol

. Thus we obtain:

|Rij| ≤
[(√

fσ(ǫin)

fσ(θ)
− fσ(ǫin)
√

fσ(θ)

)

∨
(
fσ(ǫin)

fσ(θ)
−
√

fσ(θ)

)]

(nl +ml)
−1

≤
[(√

1− η1
1− ηθ

− 1− η1√
1− ηθ

)

∨
(
1− η1
1− ηθ

−
√

1− ηθ

)]

(nl +ml)
−1

≤
[(η1

2
+

ηθ
2

+O(η21 + η2θ)
)

∨
(
3ηθ
2

− η1 +O(η21 + η2θ)

)]

(nl +ml)
−1

≤
[
3ηθ
2

+O(η21 + η2θ)

]

(nl +ml)
−1.
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Bounding Sl: For xl
i, x

l
j ∈ Cl, note that

(

D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl

)

ij
− (Bl)ij ≤

1

(nl +ml)fσ(θ) + ol
− fσ(ǫin)

nl + wl + ol
≤ fσ(θ)

−1 − fσ(ǫin)

nl +ml + ol
.

Similarly:

(

D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl

)

ij
− (Bl)ij ≥

fσ(θ)

nlfσ(ǫin) +ml + ol
− fσ(ǫin)

nl + wl + ol

≥ fσ(θ)

nl +ml + ol
− fσ(ǫin)

nl +mlfσ(θ) + ol
=

fσ(θ)− fσ(ǫin)
fσ(θ)

nl +ml + ol
.

Thus we have: |Sij| ≤
( 1
fσ(θ)

−fσ(ǫin))∨
(

fσ(ǫin)

fσ(θ)
−fσ(θ)

)

nl+ml+ol
, so that

|Sij| ≤
[(

1

fσ(θ)
− fσ(ǫin)

)

∨
(
fσ(ǫin)

fσ(θ)
− fσ(θ)

)]

(nl +ml)
−1

=
[(
η1 + ηθ +O(η2θ)

)
∨
(
2ηθ − η1 +O(η21 + η2θ)

)]
(nl +ml)

−1

≤
[
2ηθ +O(η21 + η2θ)

]
(nl +ml)

−1.

Thus the norm of the spectral perturbation of D
− 1

2

Ãl
WÃl,Ãl

D
− 1

2

Ãl

P2−→ Bl is bounded by

‖D− 1
2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
− Bl‖2 ≤ (nl +ml)‖D

− 1
2

Ãl
WÃl,Ãl

D
− 1

2

Ãl
− Bl‖max

≤ (nl +ml) (‖Q‖max ∨ ‖R‖max ∨ ‖S‖max)

≤ 2η1 + 2ηθ +O(η21 + η2θ) := P l
2.

Defining P2 := maxl P
l
2, the perturbation of all eigenvalues due to P2 is bounded by

P2.

B.6. Bounding the Eigenvalues of LSYM

Since the eigenvalues of 1nl+ml
are

λi(1nl+ml
) =

{

0 i = 1, . . . , nl +ml − 1

nl +ml i = nl +ml

,

we have

λi(Bl) =

{

0 i = 1, . . . , nl +ml − 1
(nl+ml)fσ(ǫin)

nl+wl+ol
i = nl +ml.

Note that since the blocks Bl are orthogonal, the eigenvalues of B are simply the
union of the eigenvalues of the blocks, and the eigenvalues of I − B are obtained by
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subtracting the eigenvalues of B from 1. Thus:

λl
i(I − B) =

{

1− (nl+ml)fσ(ǫin)
nl+wl+ol

i = 1, 1 ≤ l ≤ K,

1 i = 2, . . . , nl +ml, 1 ≤ l ≤ K.

Since |λi(LSYM)− λi(I − B)| ≤ ‖B −D− 1
2WD− 1

2‖2 ≤ P1 + P2, and LSYM is positive
semi-definite, by the Hoffman-Wielandt Theorem (Stewart, 1990), the eigenvalues of
LSYM are:

λl
i(LSYM) =

(

1− (nl +ml)fσ(ǫin)

nl + wl + ol
± (P1 + P2)

)

∨ 0, i = 1, 1 ≤ l ≤ K, (B.2)

λl
i(LSYM) = 1± (P1 + P2), i = 2, . . . , nl +ml, 1 ≤ l ≤ K.

where:

P1 = ζNη2 +O(ζ2Nη
2
2 + η2θ) , P2 = 2η1 + 2ηθ +O(η21 + η2θ),

P1 + P2 = 2η1 + 2ηθ + ζNη2 +O(η21 + η2θ + ζ2Nη
2
2).

B.7. The Largest Spectral Gap of LSYM

For the remainder of the proof let {λi}Ni=1 denote the eigenvalues of LSYM sorted in
increasing order, and ∆i = λi+1 − λi for 1 ≤ i ≤ N − 1. Note the condition we
will derive to guarantee ∆K is the largest eigengap also ensures that the K smallest
eigenvalues are given by (B.2).
Recalling the definition of ζN from Theorem 5.5, for 1 ≤ i ≤ K, we have

0 ≤ λi ≤ 1− (nl +ml)fσ(ǫin)

nl + wl + ol
+ (P1 + P2)

≤ 1− (nl +ml)fσ(ǫin)

(nl +ml) +
∑

s6=l(ns +ms)fσ(ǫnse)
+ (P1 + P2)

≤ 1− (1− η1)

1 + ζNη2
+ (P1 + P2)

= 1− (1− η1)(1− ζNη2 +O(ζ2Nη
2
2)) + (P1 + P2)

= η1 + ζNη2 + (P1 + P2) +O(η21 + ζ2Nη
2
2)).

Thus for i < K, the gap is bounded by: ∆i ≤ λi+1 ≤ η1 + ζNη2 + (P1 + P2) +O(η21 +
ζ2Nη

2
2)). For i > K, we have ∆i ≤ 1+(P1+P2)− (1− (P1 + P2)) ≤ 2(P1+P2). Finally

for i = K:

∆K ≥ 1− (P1 + P2)− (η1 + ζNη2 + P1 + P2) +O(η21 + ζ2Nη
2
2))

≥ 1− η1 − ζNη2 − 2(P1 + P2) +O(η21 + ζ2Nη
2
2)).

Thus ∆K is the largest gap if 1
2
≥ η1 + ζNη2 + 2(P1 + P2) + O(η21 + ζ2Nη

2
2) = 5η1 +

4ηθ + 6ζNη2 +O(η21 + η2θ + ζ2Nη
2
2), which is the condition of Theorem 5.5.
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B.8. Bounding the Spectral Embedding and Labeling Accuracy

We apply Theorem 2 from Fan et al. (2018) to bound the eigenvector perturbation.
We let Φ = (φ1 . . . φK) denote the N by K matrix whose columns are the top K
eigenvectors of B (defined in B.3), ordered so that φl corresponds to the block Bl.

We let Φ̃ be the equivalent quantity for D− 1
2WD− 1

2 . Defining the coherence of Φ as
coh(Φ) = (N/K)maxi

∑K
j=1 Φ

2
ij, we note that

coh(Φ) ≤ N

K

(
‖φ1‖2∞ + · · ·+ ‖φK‖2∞

)
≤ N

K
· KζN

N
= ζN ,

i.e. Φ has low coherence since each eigenvector is constant on a cluster. Thus by
Theorem 2 from Fan et al. (2018), there exists a rotation R such that

‖Φ̃R− Φ‖max = O

(

K
5
2 ζ2N‖D− 1

2WD− 1
2 − B‖∞

λK(B)
√
N

)

.

We recall from Section B.6 that

λK(B) ≥ min
1≤l≤K

(nl +ml)(1− η1)

nl +ml +Nη2
=

1− η1
1 + ζNη2

= 1− η1 − ζNη2 +O(η21 + ζ2Nη
2
2).

Letting Cl denote the diagonal blocks of C and using the bounds computed in Sections
B.4 and B.5, we have:

‖D− 1
2WD− 1

2 − B‖∞ ≤ ‖D− 1
2WD− 1

2 − C‖∞ +max
l

‖Cl − Bl‖∞

≤ N‖D− 1
2WD− 1

2 − C‖max +max
l

(nl +ml)‖Cl − Bl‖max

≤ 2η1 + 2ηθ + ζNη2 +O(η21 + η2θ + ζ2Nη
2
2).

We conclude that

‖Φ̃R− Φ‖max ≤
cK

5
2 ζ2N√
N

[
η1 + ηθ + ζNη2 +O(η21 + η2θ + ζ2Nη

2
2)
]
:= P3.

for some absolute constant c. Letting {ri}Ni=1 denote the rows of Φ and {r̃i}Ni=1 denote
the rows of Φ̃R, we have ‖ri−r̃i‖2 ≤

√
K‖Φ̃R−Φ‖max ≤

√
KP3 for all i. Letting π(i) ∈

{1, . . . , K} denote the index of the set Ãl which contains the point corresponding to
the ith row, we have ri = [0 . . . (nπ(i) + mπ(i))

−1/2 . . . 0] for all i, where the non-zero
element occurs in the π(i)th column. Thus the spectral embedding maps all points
in Ãl inside a sphere in R

K centered at zl = [0 . . . (nl + ml)
−1/2 . . . 0] with radius√

KP3. When l 6= s, we have ‖zl − zs‖2 ≥
√

2
N
. Thus

√
2
N

> 10
√
KP3 is sufficient

to ensure that these spheres are well separated, i.e. the embedding is a perfect
representation (see Definition 5.4) of the clusters Ãl with r = 2

√
KP3. Simplifying

this condition, we thus obtain perfect label accuracy by clustering by distances on
the spectral embedding whenever

1

K3ζ2N
& η1 + ηθ + ζNη2 +O(η21 + η2θ + ζ2Nη

2
2).
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T. Hagerup and C. Rüb. A guided tour of Chernoff bounds. Information Processing
Letters, 33(6):305–308, 1990.

J.A. Hartigan. Consistency of single linkage for high-density clusters. Journal of the
American Statistical Society, 76(374):388–394, 1981.

T. Hastie, R. Tibshirani, and J. Friedman. Elements of Statistical Learning. Springer,
2009.

T.C. Hu. Letter to the editor: The maximum capacity route problem. Operations
Research, 9(6):898–900, 1961.

G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Transac-
tions on Information Theory, 14(1):55–63, 1968.

M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.

uci.edu/ml.

M. Maggioni and J.M. Murphy. Learning by unsupervised nonlinear diffusion. Journal
of Machine Learning Research, 20(160):1–56, 2019.

D. McKenzie and S. Damelin. Power weighted shortest paths for clustering Euclidean
data. Foundations of Data Science, 1(3):307, 2019.

G.J. McLachlan and K.E. Basford. Mixture models: Inference and applications to
clustering, volume 84. Marcel Dekker, 1988.

M. Meila and J. Shi. Learning segmentation by random walks. In NIPS, pages
873–879, 2001.

63

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


Little, Maggioni, Murphy

D.G. Mixon, S. Villar, and R. Ward. Clustering subgaussian mixtures by semidefinite
programming. Information and Inference: A Journal of the IMA, 6(4):389–415,
2017.

J. Munkres. Algorithms for the assignment and transportation problems. Journal of
the Society for Industrial and Applied Mathematics, 5(1):32–38, 1957.

J.M. Murphy and M. Maggioni. Diffusion geometric methods for fusion of remotely
sensed data. In Algorithms and Technologies for Multispectral, Hyperspectral, and
Ultraspectral Imagery XXIV, volume 10644, page 106440I. International Society for
Optics and Photonics, 2018.

J.M. Murphy and M. Maggioni. Unsupervised clustering and active learning of hy-
perspectral images with nonlinear diffusion. IEEE Transactions on Geoscience and
Remote Sensing, 57(3):1829–1845, 2019.

S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library (COIL-20).
1996.

A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algo-
rithm. In NIPS, pages 849–856, 2002.

R. Ostrovsky, Y. Rabani, L.J. Schulman, and C. Swamy. The effectiveness of Lloyd-
type methods for the k-means problem. In FOCS, pages 165–176. IEEE, 2006.

H.S. Park and C.-H. Jun. A simple and fast algorithm for k-medoids clustering.
Expert Systems with Applications, 36(2):3336–3341, 2009.

L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: a
review. ACM SIGKDD Explorations Newsletter, 6(1):90–105, 2004.

M. Penrose. The longest edge of the random minimal spanning tree. Annals of Applied
Probability, 7(2):340–361, 1997.

R. Penrose. A strong law for the longest edge of the minimal spanning tree. Annals
of Probability, 27(1):246–260, 1999.

M. Pollack. Letter to the editor: The maximum capacity through a network. Opera-
tions Research, 8(5):733–736, 1960.

A.P. Punnen. A linear time algorithm for the maximum capacity path problem.
European Journal of Operational Research, 53:402–404, 1991.

A. Rinaldo and L. Wasserman. Generalized density clustering. The Annals of Statis-
tics, 38(5):2678–2722, 2010.

64



Path-Based Spectral Clustering

F.D. Roberts and S.H. Storey. A three-dimensional cluster problem. Biometrika, 55
(1):258–260, 1968.

A. Rodriguez and A. Laio. Clustering by fast search and find of density peaks. Science,
344(6191):1492–1496, 2014.

G. Sanguinetti, J. Laidler, and N.D. Lawrence. Automatic determination of the
number of clusters using spectral algorithms. In MLSP, pages 55–60. IEEE, 2005.

G. Schiebinger, M.J. Wainwright, and B. Yu. The geometry of kernelized spectral
clustering. Annals of Statistics, 43(2):819–846, 2015.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

R. Sibson. SLINK: an optimally efficient algorithm for the single-link cluster method.
The Computer Journal, 16(1):30–34, 1973.

M. Soltanolkotabi and E.J. Candès. A geometric analysis of subspace clustering with
outliers. The Annals of Statistics, 40(4):2195–2238, 2012.

M. Soltanolkotabi, E. Elhamifar, and E.J. Candès. Robust subspace clustering. An-
nals of Statistics, 42(2):669–699, 2014.

B. Sriperumbudur and I. Steinwart. Consistency and rates for clustering with DB-
SCAN. In AISTATS, pages 1090–1098, 2012.

D. Stauffer and A. Aharony. Introduction to Percolation Theory. CRC Press, 1994.

H. Steinhaus. Sur la division des corps matériels en parties. Bull. Acad. Polon. Sci.,
4(12):801–804, 1957.

G.W Stewart. Matrix perturbation theory. Citeseer, 1990.
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