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Path Control: A Method for Patient-Cooperative
Robot-Aided Gait Rehabilitation

Alexander Duschau-Wicke, Graduate Student Member, IEEE,
Joachim von Zitzewitz, Graduate Student Member, IEEE, Andrea Caprez, Lars Lünenburger, Member, IEEE,

and Robert Riener, Member, IEEE

Abstract—Gait rehabilitation robots are of increasing impor-
tance in neurorehabilitation. Conventional devices are often
criticized because they are limited to reproducing predefined
movement patterns. Research on patient-cooperative control
strategies aims at improving robotic behavior. Robots should
support patients only as much as needed and stimulate them
to produce maximal voluntary efforts. This paper presents a
patient-cooperative strategy that allows patients to influence the
timing of their leg movements along a physiologically meaningful
path. In this “path control” strategy, compliant virtual walls keep
the patient’s legs within a “tunnel” around the desired spatial
path. Additional supportive torques enable patients to move along
the path with reduced effort. Graphical feedback provides visual
training instructions. The path control strategy was evaluated with
10 healthy subjects and 15 subjects with incomplete spinal cord
injury. The spatio-temporal characteristics of recorded kinematic
data showed that subjects walked with larger temporal variability
with the new strategy. Electromyographic data indicated that
subjects were training more actively. A majority of iSCI subjects
was able to actively control their gait timing. Thus, the strategy
allows patients to train walking while being helped rather than
controlled by the robot.

Index Terms—Control, gait rehabilitation, patient-cooperative,
rehabilitation robotics.

I. INTRODUCTION

F
UNCTIONAL, task-oriented training plays an impor-

tant role in neurorehabilitation today. In particular,

body-weight supported treadmill training is successfully ap-
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plied to the rehabilitation of patients with neurological gait

disorders after stroke [1] or incomplete spinal cord injury

(iSCI) [2].

However, this kind of training is strenuous and physically de-

manding for therapists; thus, it is usually limited by personnel

shortage and fatigue of the therapist. Therefore, several robotic

devices have been developed to overcome these deficiencies.

The first generation of these devices has been in clinical use for

several years: the Lokomat (Hocoma AG, Switzerland) [3], the

ReoAmbulator (Motorika, USA), and the Gait Trainer (Reha-

Stim, Germany) [4].

Originally, these devices only moved the patient along prede-

fined, fixed trajectories and did not adapt their movements to the

activity of the patient. This kind of position-controlled training

is well suited for patients who are in the early phase of rehabili-

tation or severely affected. However, the strong guidance of the

robot does not provide an ideal training ground for patients ca-

pable of (some) voluntary motor control. If patients are allowed

to remain completely passive, they tend to train with reduced

activity of muscles and metabolism [5]. On the other hand, if

patients are motivated to walk actively, they work against the

resistance of the device, which results in abnormal muscle ac-

tivity patterns [6].

To resolve these shortcomings, patient-cooperative control

strategies are being developed by numerous research groups

[7]–[16]. These strategies aim at empowering patients to influ-

ence their movements, while still providing sufficient guidance

and support to ensure successful walking. When patients can

move more freely, changes in muscle activation are reflected

in the walking pattern. This experience can cause a consistent

feeling of success, which is hypothesized to increase motivation.

Variations in muscle activation would be directly causing con-

sistent afferent feedback variations that retrain the neural net-

works in brain and spinal cord. This feedback can challenge the

nervous system and lead to favorable training effects in iSCI and

hemiparetic patients [17], [18].

First efforts towards patient-cooperativeness concentrated on

adding compliance to the devices. For example, the Lokomat

was augmented with impedance control and adaptive control al-

gorithms [9]. Moreover, new devices with inherently more com-

pliant features have been developed, such as the pneumatic PAM

and POGO devices of University of California, Irvine [19], or

the LOPES exoskeleton of Universiteit Twente [20].

The prevailing paradigm for supporting patients is the con-

cept of “assist as needed” (AAN) [8], [10]. In order to stimu-

late maximal voluntary contribution of the patient, robotic de-

vices are supposed to reduce their supportive actions to a min-

1534-4320/$26.00 © 2010 IEEE
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imum. This minimal support needs to be sufficient to allow

patients to complete the desired task in a physiologically cor-

rect way. However, all approaches using classical impedance

control share the disadvantage of imposing a defined timing

of movements on the patient. As spatial and temporal correc-

tions are coupled in these control strategies, it is not possible to

achieve freedom in timing without losing guidance in space. If

the impedance setting is too stiff, patients feel passively moved;

if it is too soft, patients are not corrected in space and might

move in undesired patterns.

A solution to this problem was first proposed for the upper

extremity robot MIT-MANUS [21]. The controller of the robot

simulated a virtual tunnel in space. Patients could autonomously

move their hands through this tunnel. If they did not move for-

ward as desired, the moving “back wall” of this tunnel carried

their hand along after a certain amount of time. Cai et al. [11]

applied two similar concepts to spinalized mice using a minia-

ture rehabilitation robot. Firstly, they created a virtual tunnel

similar to the approach for the MIT-MANUS, but without a

moving “back wall.” The mice could move their hind limb freely

within this tunnel while walking on a treadmill. Secondly, they

trained the mice with a “moving window” that allowed some

freedom, but kept them synchronized to the treadmill. Mice

trained with the “moving window” approach improved faster

than those trained with a classical position control strategy. Ba-

nala et al. [13] implemented the virtual tunnel approach of Cai et

al. [11] for their “Active Leg Exoskeleton” (ALEX) and tested

the approach with healthy and stroke subjects.

Likewise motivated by the work of Cai et al. [11], we de-

veloped a similar approach for the Lokomat [12]. However, to

focus more on leg postures than on end-effector position, we

designed a torque field tunnel in joint space rather than a force

field in Cartesian space. Pilot studies indicated that training of

iSCI subjects requires more control over the amount of freedom

provided by the controller than training of healthy subjects. The

iSCI subjects could not cope with the freedom of timing that was

possible in a plain virtual tunnel. Consequently, we superposed

the “moving window” approach and the virtual tunnel from Cai

et al. [11] to one control strategy. The moving window restricts

the domain of possible leg postures to a region within the vir-

tual tunnel. The window size determines how much freedom in

timing the subjects experience within the tunnel.

As our algorithm allows subjects to move actively along the

spatial path of a defined walking pattern, it is referred to as “path

control.” The additional freedom provided by this patient-co-

operative control strategy is combined with a training task, in

which patients have to autonomously control their legs within

the given freedom. A visual display shows both the patients’

movements and the reference movements, which the patients are

supposed to track (Fig. 1).

We evaluated the patient-cooperative strategy with respect

to the following research questions. 1) Does the path control

strategy allow subjects to influence the timing of their move-

ments? 2) Does training with the path control strategy result in

more active participation of subjects? 3) Can we modulate how

actively subjects participate in the training by adjusting the sup-

port? 4) Are iSCI subjects able to perform gait training with the

path control strategy?

Fig. 1. Healthy subject training in the Lokomat with the path control strategy.

II. MATERIALS AND METHODS

A. Gait Training Robot

Experiments were performed with the gait rehabilitation

robot Lokomat. The robot automates body weight-supported

treadmill training of patients with locomotor dysfunctions in

the lower extremities such as spinal cord injury and hemiplegia

after stroke [3]. It comprises two actuated leg orthoses that

are attached to the patient’s legs. Each orthosis has one linear

drive in the hip joint and one in the knee joint to induce flexion

and extension movements of hip and knee in the sagittal plane.

Knee and hip joint torques can be determined from force

sensors between actuators and orthosis. Passive foot lifters can

be added to induce ankle dorsiflexion during swing phase. A

body weight support system relieves patients from a definable

amount of their body weight via a harness.

B. Path Control Algorithm

Existing position and impedance control algorithms of the

Lokomat [9] define a reference trajectory for each leg.1

The variable denotes the relative position in the gait cycle,

which is normalized to the interval [0, 1). Two subsequent heel

strikes of the same foot define the beginning and end

of a step. is calculated by applying the modulo

operation with respect to 1 (mod 1) to the product of the time

and the desired replay speed

(1)

The reference trajectory has been recorded from healthy

subjects [3] and is used as set point for the impedance controller.

The replay speed is a function of the treadmill speed

chosen by the therapist

(2)

1The following notation is used throughout this paper: all vectors of joint
angles and torques consist of two elements, the first one for the hip joint and the
second one for the knee joint, e.g., � � �� � � � � �� � � � . The
control algorithms discussed in this paper are always defined for a single leg.
The second leg is controlled by an independent second instance of the respective
control algorithm.
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Fig. 2. Block diagram of path control strategy. The “Set Point Generation” block determines the relative position � in the gait cycle [(3), (13), and (14)]. The
“Gravity + Friction Compensation” block computes the torques ��� based on a model of the Lokomat [9]. The corrective torques ��� of the “Impedance” block
keep the subject’s leg within the tunnel [(9)]. The “Support” block computes the supportive torques ��� [(10) and (11)]. The “torque-controlled drives” apply the
desired torques to the Lokomat exoskeleton (“Exo”). These torques are measured as ��� . Together with the patient’s torques ��� , they move the exoskeleton
and determine the actual angles � .

The parameter synchronizes Lokomat and treadmill. It can

either be set manually by the therapist or automatically by an

iterative learning algorithm [22].

For the path control algorithm, is not calculated as a func-

tion of time, but as a function of the actual joint angles

(Fig. 2). A dynamic set point generation algorithm chooses

such that the Euclidean distance between and is

minimized

(3)

An adjustable dead band of width creates a virtual

tunnel around the reference trajectory. The width of the dead

band has been designed heuristically based on the experience

from pretrials. It was shaped in a way that allows more spatial

variation during late swing and early stance phase to account

for the large variability of knee flexion at heels strike of our

test subjects. Additionally, the reference trajectory has been

adapted to a less pronounced loading response and more knee

flexion during swing phase so that the desired dead band spreads

symmetrically around the reference. This way, a common tunnel

was obtained that could be used for all subjects (Fig. 3). Within

the tunnel, the controller is in so called “free-run” mode, i.e.,

the output of the impedance is zero, and gravity and fric-

tion torques of the robot are compensated (Fig. 2). Therefore,

subjects can move freely and with their own timing as long as

they stay within the tunnel. Leg postures outside the tunnel are

corrected by the impedance controller. The spring constant

of the virtual impedance is chosen as a function of the distance

to the tunnel wall

(4)

(5)

(6)

(7)

(8)

where are constants which were determined by trial and

error, such that the wall of the tunnel felt comfortably soft for

subjects ( , ).

The stiffness was chosen to be nonlinear to allow for a com-

promise between soft contact with the wall and strong correc-

tions for larger deviations. The constants are the ele-

ment-wise upper limits for ( ,

), which prevent the controller from becoming too

stiff for large angular deviations . An additional damping

constant is in turn determined as a function of such that

the system is critically damped ( ,

) as for the Lokomat impedance controller described

in [9].

The output of the virtual impedance is calculated as

(9)
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Fig. 3. Virtual tunnel around the reference path in joint space. The light grey
line shows the original Lokomat reference pattern as used for the POS condi-
tion. The black line displays the adapted reference trajectory � ��� as it was
applied for the path control strategy. The dark grey area displays the extent of
the virtual tunnel, as defined by � . The virtual tunnel has been designed to
allow increased spatial variation during late swing and early stance phase.

Adjustable supportive torques can be superimposed to the

controller output. To determine the direction of support, a torque

vector is calculated by differentiating the reference trajectory

with respect to the relative position in the gait cycle .

Thus, the direction of the torque vector is tangential to the move-

ment path in joint space

(10)

To avoid interferences between the torques and the sup-

portive torques, we scale the support as a linear function of the

distance to the center of the path. The actual supportive torques

are

(11)

where is a scalar factor that determines the amount of sup-

port, and

(12)

is the relative distance to the center of the path. Thus, supportive

torques are only provided within the tunnel, i.e., when

.

The supportive torques are not only important for helping a

patient to overcome weaknesses. They also reduce the effect of

the uncompensated inertia of the robot. In preliminary experi-

ments, a support gain of 5–7 Nm was required by healthy

subjects for comfortable walking. The support gain can be ad-

justed by the therapist during the training.

An optional “moving window” limits free movements to a

region of the tunnel. The window moves with , which

is determined according to (2). The synchronization factor

is adjusted automatically as described in [22]. During stance

phase, the velocity of the treadmill and the progression speed

of the patient’s leg always match, because the patient’s leg is

propelled by the treadmill. However, during swing phase, the

patient can move faster or slower than . If he or she moves

constantly faster than , the patient will finally approach

the compliant “front wall” of the window. Consequently, he or

she will be slowed down to . If the patient moves slower

than , he or she will reach the compliant “back wall” and

will be pushed forward by the robot. In case of an active moving

window, (3) is augmented with these inequality constraints for

(13)

(14)

where is the definable width from the window center

to its back and front walls. Thus, the back and front walls of the

moving window are rendered by the virtual impedance in the

same way as the tunnel wall according to (9).

C. Training Task

A visual display presents both task instructions and perfor-

mance feedback to the patient. This visual feedback provides a

so-called “virtual mirror” [23] comprising a 3-D, virtual repre-

sentation (avatar) of the patient on a 3 2 m projection screen

(Fig. 1). The movements of this avatar represent the movements

of the patient. A second pair of semi-transparent legs (“ghost

legs”) indicates the reference movements. The reference move-

ments are based on the reference trajectory ,

where refers to calculated according to (1).

Patients are instructed to match the movements of their

“mirror legs” with the movements of the “ghost legs.” The

timing error is defined as follows:

(15)

where is the value of calculated by (3) at time .

By matching the shown reference movements, the patient mini-

mizes . Thus, can be used as a measure of the patient’s

performance in the training task.

D. Experimental Design

Two experiments were conducted to evaluate the path con-

trol strategy. In a first experiment, the possibility to influence

the timing of walking and the effects of different levels of sup-

port on muscle activity were assessed on healthy subjects. In a

second experiment, iSCI subjects performed the training task to

judge its feasibility. All experimental procedures were approved

by the Ethics Committee of the Canton of Zurich, Switzerland,

and all participants provided informed consent before the exper-

iments.

1) Experiment With Healthy Subjects: Ten healthy young

adults (7 male, 3 female; mean age 26.3 years, range 19–34

years) volunteered for the experiment.

Prior to the experiment, surface EMG electrodes were at-

tached to the subjects’ gastrocnemius medialis (GM), tibialis

anterior (TA), vastus medialis (VM), rectus femoris (RF), and

biceps femoris (BF) muscles of the left leg. The electrodes were

placed according to the SENIAM guidelines [24]. Custom-built

foot-switches were taped under the heel of the left foot of the

subjects to determine heel strikes.
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TABLE I
PATIENT CHARACTERISTICS

iSCI subjects were classified according to the ASIA Impairment Scale (AIS)

[25]. The capabilities of the iSCI subjects were assessed with the mobility

subscore of the SCIM III questionnaire [26], which can range from 0 to 30,

and with the WISCI II score [27], which can range from 0 to 20. For both

scores, higher values indicate better mobility.

Subjects walked with the Lokomat under five different

conditions: 1) POS: position control with the Lokomat con-

troller set to maximum stiffness ( ,

), replaying , 2)

PATHLOW: path control with low support ,

3) PATHMEDIUM: path control with medium support

, 4) PATHHIGH: path control with high support

, and 5) ZEROIMP: zero impedance control

with gravity and friction torques of the Lokomat compensated.

Under all path control conditions, was set to 20% of

the gait cycle. The visual feedback was always presented to the

subjects, who were instructed to walk actively and match the

shown movements. However, under condition POS, the task was

trivial, as the position controller of the Lokomat ensured near to

perfect tracking. The order of the conditions was randomized.

Subjects were unloaded with 30% of their body weight to

obtain similar conditions as in typical training of iSCI subjects.

Under each condition, data was recorded for one minute

after an acclimation phase of two minutes. In addition to the

EMG signals, joint angles from the left hip and knee joints

were recorded by sensors at the joint axes of the Lokomat.

2) Experiment With iSCI Subjects: 15 chronic iSCI sub-

jects (Table I) walked with the Lokomat under three different

conditions: 1) position control, 2) impedance control with the

Lokomat controller set to 40% of the maximum stiffness, and

3) path control with set to 20% of the gait cycle and

the support gain adjusted individually for each patient

(Table I). The therapist was instructed to adjust to the min-

imal value that enabled the patient to walk in the path control

mode. Again, visual feedback was presented to the subjects

under all conditions, and the subjects were instructed to match

the displayed movements of the “ghost legs.” The order of

the conditions was randomized. Subjects were unloaded with

30%–50% of their body weight.

During walking under the path control condition, the timing

error was recorded as a quantitative measure how well

the subjects could accomplish the training task.

E. Data Analysis

1) Experiment With Healthy Subjects: To quantify the

amount of temporal and spatial variations in the gait patterns

during walking in the different conditions, we computed the

spatio-temporal characteristics of the recorded trajectories

according to the procedure described by Ilg et al.[28].

The recorded joint angles of each condition were cut into

single strides triggered by the heel strike signal of the foot

switches. The single strides were normalized in time to the

interval [0, 1]. The trajectory of the th normalized stride is

referred to as , and the number of recorded strides is

denoted . The average trajectory was determined as

a reference for the spatio-temporal analysis

(16)

Each trajectory was mapped to the reference trajectory

by a spatial shift function and a time shift func-

tion

(17)

The values of the shift functions and were de-

termined by optimization as described in [29]. The weighting

factor for the optimization was determined according to the rules

for human movement data suggested in [28].

Finally, the spatial variability and the temporal vari-

ability as defined in [28] were computed using the fol-

lowing equations:

(18)

(19)

The resulting spatial and temporal variability were compared

by a Kruskal–Wallis nonparametric ANOVA at the 5% signifi-

cance level [30]. Multiple comparisons were accounted for by

the Tukey–Kramer adjustment.

To better understand the interactions between robot and sub-

ject, the interaction torques in the joints of the robot have been

calculated. The robot’s force sensors are located between drives

and exoskeleton and not directly at the interaction points with

the human, such that a model of the exoskeleton’s dynamics has

to be used

(20)

with being the mass matrix capturing the inertia of the

Lokomat exoskeleton and subsuming the Gravitational,

friction, and Coriolis torques of the exoskeleton.

EMG signals were band-pass filtered between 15 and 300

Hz, rectified, and cut into single strides triggered by the heel
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Fig. 4. Resulting kinematic and kinetic data. Trajectories in joint space for one exemplary healthy subject (female, 170 cm, 59 kg) under the different conditions
POS (a), PATHHIGH (b), PATHLOW (c), ZEROIMP (d). Box plots of spatial variability ��� (e) and temporal variability ��� (f) of healthy subjects. Hip (g) and knee
(h) interaction torques ��� computed according to (20) and averaged over healthy subjects �� � ���.

strike signal of the foot switches. The single strides were nor-

malized in time to 1001 samples each. All strides of a subject

under a given condition were then averaged. Next, the average

strides were broken up into seven phases (initial loading, mid-

stance, terminal stance, preswing, initial swing, midswing, ter-

minal swing) according to Perry [31]. The root mean square

(rms) of the EMG signals was calculated for each muscle within

each of these phases.

The rms values of the EMG signals showed high inter-subject

variability, and the repeated measurements for a single subject

were not independent of each other. Linear mixed models [32]

are a statistical tool that can account for such circumstances.

In these models, random variables can capture the covariance

of multiple data values originating from different individual

sources. The remaining, subject-independent effects can be

described as the linear influence of fixed factors.

To investigate the influence of the different conditions on

muscle activity, we fitted a separate linear mixed model to the

logarithm of the rms values of the EMG signals of each muscle.

For a given muscle, we define the logarithmized rms for an ob-

servation in a subject as . An observation is a com-

bination of one of the four conditions and one of the seven

gait phases. Hence, there were observations

per subject. We included the factors “condi-

tion” and “gait phase” as fixed effects. Thus, the value of

for a given observation on the th subject was modeled as

(21)

The indicator variables to were set to

one, if the observation belonged to the respective condition

or gait phase, otherwise to zero. To account for the correlation

of repeated measurements within a subject , a random intercept

was assumed for each subject. The residual captures the

difference between the measured value and the predic-

tion of the model.

In order to compare the different conditions, we computed the

estimated marginal means for each condition by averaging the

model predictions across the different gait phases. These esti-

mated marginal means were then compared with post-hoc tests

at the 5% significance level. In these tests, multiple comparisons

were accounted for by the Bonferroni adjustment. A similar sta-

tistical analysis of EMG data can be found in [33].

2) Experiment With iSCI Subjects: To assess how well sub-

jects could walk with the path control strategy, the last 60 s of the

timing error during walking under the path control condi-

tion were analyzed. The moving window limited the maximum

of the timing error to 20% of the gait cycle. We considered sub-

jects whose median timing error lay closer to 0 (perfect perfor-

mance) than to the window border (worst possible performance)

as “performing well.” Subjects whose median timing error lay

closer to the window border than to 0 were considered as “per-

forming with difficulties.” Healthy subjects were generally able

to achieve “performing well” status when concentrating on the

task in a pretrial.

III. RESULTS

A. Healthy Subjects

The results obtained under the condition PATHMEDIUM were

always within the range between PATHLOW and PATHHIGH.

However, due to the large amount of variation in the data,

the evaluation of this condition does not contain additional in

formation and is left out in the following sections for clarity

of presentation. No noticeable asymmetries in the gait of the
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Fig. 5. Muscle activity of TA (Tibialis anterior), RF (Rectus femoris), and BF (Biceps femoris) muscles as predicted by the linear mixed models (a)–(c). Com-
parison of mean muscle activity for GM (Gastrocnemius medialis), TA, RF, BF, and VM (Vastus medialis) muscles (d)–(h). (a) Modeled TA activity; (b) modeled
RF activity; (c) modeled BF activity; (d) comparison of GM activity; (e) comparison of TA activity; (f) comparison of RF activity; (g) comparison of BF activity;
(h) comparison of VM activity.

Fig. 6. Histograms of timing error ����� of two iSCI subjects and boxplot of timing errors of all iSCI subjects who were able to train with the path control
strategy. Positive values indicate that the patient is lagging behind the desired movements; negative values indicate that the patient is moving too fast. (a) Timing
error of iSCI subject P12; (b) timing error of iSCI subject P14; (c) timing errors of iSCI subjects.

subjects were observed. Hence, the data obtained for the left leg

is considered as representative for both legs in the subsequent

analysis.

1) Kinematic and Kinetic Data: Under the POS condition,

subjects were forced by the robot to track the defined trajectory

[Fig. 4(a)]. Under the PATHLOW and PATHHIGH conditions, the

movements of the subjects were constrained to the virtual tunnel

in joint space [Fig. 4(b) and (c)]. Subjects moved with large

fluctuations under the ZEROIMP condition [Fig. 4(d)].

The spatial variability was significantly different be-

tween POS and PATHHIGH, between PATHLOW and ZEROIMP,

and between POS and ZEROIMP [Fig. 4(e)]. The temporal

variability under the conditions PATHLOW, PATHHIGH,

and ZEROIMP was significantly increased compared to POS

[Fig. 4(f)]. There were no other significant differences between

conditions.

The interaction torques between robot and subject were

lowest under condition ZEROIMP, highest during condition

POS and at intermediate values for conditions PATHLOW and

PATHHIGH [Fig. 4(g) and (h)].

2) Muscle Activity: The linear mixed models could be suc-

cessfully fitted to the EMG data of all muscles. The fixed effects

“condition” and “gait phase” both contributed significantly to

the models. The residuals were normally distributed.

Post-hoc comparisons between the different conditions showed

several significant differences [Fig. 5(e)–(g)]. In all muscles,

the activity under the PATHLOW condition was significantly

higher than the activity under the POS condition. In RF and

BF, the activity under the PATHLOW condition was additionally

significantly higher than the activity under the ZEROIMP condi-

tion. In GM, VM, RF, and BF, the activity under the PATHHIGH

condition was significantly reduced compared to the PATHLOW

condition.

B. iSCI Subjects

All iSCI subjects were able to understand the training task. No

subject showed any problems under the position control condi-

tion. Two subjects (P1 and P2) had minor difficulties to walk

under the impedance control condition. The same two subjects
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were not able to train successfully under the path control con-

dition. All other subjects managed to get synchronized with the

“ghost legs” and match the shown movements, both under the

impedance control and the path control condition.

The analysis of the performance of the remaining subjects

under the path control condition showed that five subjects

had median timing errors which were closer to the back wall

than to the center of the moving window [median above upper

dashed–dotted line in Fig. 6(c)]. These subjects were classified

as “performing with difficulties.” Subject P12 is an example

for such a performance [Fig. 6(a)]. Eight subjects had median

timing errors which were closer to the center of the moving

window than to its walls [median between upper and lower

dashed–dotted line in Fig. 6(c)]. These subjects were classified

as “performing well”. The close to bell-shaped distribution of

the timing error of P14 [Fig. 6(b)] illustrates this high level

of performance, which matches the performance of healthy

subjects. No subjects had median timing errors closer to the

front wall of the moving window than to its center.

IV. DISCUSSION

A. Influence on the Timing of Movements

The path control strategy was designed to let patients influ-

ence the timing of their movements during robot assisted gait

training. Moreover, we wanted to allow some flexibility in the

spatial pattern of the movement, while assuring that movements

would still be physiologically correct. Our first research ques-

tion aimed at validating the successful implementation of this

design: Does the path control strategy allow subjects to influ-

ence the timing of their movements?

We compared the spatio-temporal characteristics of gait pat-

terns recorded under the different conditions. The POS condition

served as a benchmark for a completely predetermined type of

robotic training [Fig. 4(a)]. The ZEROIMP condition, on the other

hand, served as a benchmark for a robotic training that allowed

as much influence as possible [Fig. 4(d)]. It should be noted that

under all tested conditions, subjects were instructed to imitate

the movements of a reference presented to them by graphical

feedback. Therefore, spatial and temporal variability are caused

by movement errors the subjects made with respect to the task

instructions. However, the possibility to make errors also im-

plies the possibility to try correcting them, i.e., general influence

on the spatial and temporal characteristics of the movements.

The temporal variability of subjects walking in path control

mode was close to the temporal variability in zero impedance

mode [Fig. 4(f)]. Thus, subjects experienced freedom of timing

in path control mode which was close to the experience under

the ZEROIMP condition. For the spatial variability, three distinct

levels could be identified. As expected, only small spatial vari-

ability occurred under the POS condition. Large spatial vari-

ability occurred under the unconstrained ZEROIMP condition.

Under both path control conditions, subjects showed medium

spatial variability in their gait pattern [Fig. 4(f)]. This spatial

variability was possible within the range of the virtual tunnel

around the reference trajectory (Fig. 3).

These findings indicate that with our implementation of the

path control strategy, subjects can influence the timing of their

movements. Spatial variability of movements is possible within

a controllable range.

B. Active Participation

Increased activity of patients during training is a general goal

of patient-cooperative control strategies [9]. Therefore, we in-

vestigated if training with the path control strategy causes sub-

jects to participate more actively.

Generally, subjects walked with more activity of all recorded

muscles in path control mode compared to position control

mode (Fig. 5). More specifically, the subject-independent

models of muscle activity reveal features in the activity pat-

terns congruent with the findings of Hidler and Wall [6].

The RF muscle is unphysiologically activated during swing

phase [Fig. 5(b)], and the BF muscle shows an unusual peak

at preswing [Fig. 5(c)]. These features are conserved in zero

impedance and path control mode. Hidler and Wall hypoth-

esized that these alterations may be due to the restriction of

movements to the sagittal plane in the Lokomat. To ensure

foot clearance during swing phase, subjects exert excessive

activity in muscles in the unrestricted degrees of freedom, as

they cannot rely on pelvis and abduction movements. This

hypothesis is supported by the fact that in RF and BF muscles,

activity in path control mode was even higher than in zero

impedance mode [Fig. 5(f) and (g)]. In path control mode,

subjects had to actively follow the defined spatial reference

which required exaggerated knee flexion (to prevent toes from

catching on the treadmill). In zero-impedance mode, subjects

could choose a more “energy-optimal” pattern that sacrificed

some foot clearance for less excessive muscle contractions.

Thus, subjects participated more actively in path control

mode, showing activity patterns consistent with those reported

for walking restricted to the sagittal plane.

C. Modulation of Muscle Activity

We implemented supportive torques tangential to the desired

movement path in joint space, which aimed at empowering sub-

jects to move their legs with less effort, i.e., with less muscle

activity. To understand the effects of this kind of support, we

tried to modulate how actively subjects have to participate in

the training by adjusting the support.

In all muscles except the TA, we observed a reduction of ac-

tivity when the support was increased (Fig. 5). This means that

the feed forward supportive torques effectively reduced the

effort of walking. The TA muscle, which is mainly active to in-

duce ankle dorsiflexion is not modulated by the support, as the

Lokomat does not actuate the ankle joint. Furthermore, the in-

creased supportive torques particularly compensated the effect

of the shape of the path (increased knee flexion during swing

phase and pronounced knee extension at heel strike, cf. Sec-

tion IV-B). The activity of the RF and BF muscles was reduced

to the level of the zero impedance mode.

Thus, the level of active participation was successfully mod-

ulated by the supportive torques.

D. Feasibility of Training With iSCI Subjects

For the clinical relevance of the developed patient-coop-

erative controller, it is crucial whether iSCI subjects are able
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to perform gait training with it. The evaluation with healthy

subjects shows that the path control strategy provides the

desired freedom of timing, and—within the borders of the

virtual tunnel—also more influence on the spatial path of the

movements. As a next step, we tested if iSCI subjects were

able to move synchronously with a visual reference. If they

managed to “perform well,” they were not pushed forward by

the back wall of the moving window and, thus, autonomously

controlling the timing of their leg movements. The size of the

moving window ( 20% of the gait cycle) was chosen such

that it was not possible to “accidentially perform well” by

means of passive fluctuations in the moving window. Passive

behavior resulted in fluctuations close to the back wall of the

moving window, as seen in subjects P3, P8, P11, and P12. With

a smaller window, similar but less distinct differences between

the single subjects could be expected.

Thirteen out of 15 tested iSCI subjects were able to train with

the path control strategy, eight of them performed well in the

training task. No relations between training performance and

Asia Impairment Scale, SCIM III mobility score, or WISCI II

score were observed. It is striking that just the first two (P1 and

P2) of all subjects were not able to train with the Path Control

strategy, even though no changes to controller or protocol were

made after these subjects. To rule out that this result was caused

by a lack of routine of the therapist, subject P2 was retested at a

later stage but was still not able to perform the training.

The two subjects that could not train with the path control

strategy had very weak control over their extensor muscles.

Hence, they were not able to induce sufficient knee extension

at the end of swing phase to move along the desired path. It

was not possible to compensate for this “local” weakness with

the “global” support parameter . An automatic adaptation

algorithm that identifies the individual deficits of a patient

as implemented for the upper extremity by Wolbrecht et al.

[34] could possibly enable these subjects to train with the path

control strategy. Such an approach may also enable the five

patients who did not perform well but rather relied on the back

wall of the moving window to also progress into the middle

area of the moving window where they could train with more

freedom of timing.

Moreover, some iSCI subjects showed slacking behavior by

completely relying on the help of the tunnel wall to keep their

legs extended during stance phase. “Leaning” on the tunnel wall,

they did not properly transfer their body weight to the other leg

during double support stance phase. As soon as the virtual tunnel

permitted them more knee flexion to initiate swing phase, they

tended to “fall” into swing phase instead of starting to lift their

foot from the ground. This problem may be caused because the

path control strategy is limited to the sagittal plane with inde-

pendent controllers for each leg. In future work, we will evaluate

a path in higher dimensional space, involving both legs as well

as additional degrees of freedom for movements of the pelvis.

Such a path would guide patients through the weight transfer

from one leg to the other. Subsequent studies will be performed

to clarify if involving these additional degrees of freedom can

prevent the observed slacking behavior or if further interven-

tions like perturbations in support will be necessary to increase

the activity of the subjects in these situations.

Despite these occasional difficulties, training with the path

control strategy was feasible for 85% of the tested iSCI subjects.

E. Related Work

Banala et al. [13] implemented the virtual tunnel approach

of Cai et al. [11] for their “Active Leg Exoskeleton” (ALEX).

In a pilot study with two stroke survivors [35], subjects adapted

their spatial movement path to the reference with the help of

additional visual feedback. After 15 days of training, the sub-

jects covered a larger range of motion and had increased their

walking speeds on the treadmill.

Though developed independently, the implementation of the

virtual tunnel of Banala et al. is similar to the implementation

of our path control strategy. One difference between both ap-

proaches is the moving window that allows more fine-grained

control over the amount of freedom in our path control strategy.

Furthermore, Banala et al. focus on controlling the foot po-

sition in Cartesian space, whereas we focus on the leg posture

in joint space. We did not want to explicitly train subjects to

modify their gait pattern. Instead, we aimed at providing a safe

and supporting environment, where they could train on their

own. Therefore, the tunnel width in our setup was much larger

than in the experiments of Banala et al. [35], who used tunnel

width settings of 1–2 cm. Our tunnel width settings (when trans-

formed from joint space to Cartesian space) varied from about

5 mm during midstance, over 3 cm during swing phase to about

10 cm around heel strike.

The implementation of our set point generation algorithm (cf.

Section II-B) is similar to the timing control algorithm for the

PAM/POGO devices by Aoyagi et al. [19]. In fact, increasing

the gain in Aoyagi’s timing control algorithm to enable it to

change timing more rapidly and introducing an additional dead

band around the reference trajectory would yield a path control

algorithm for the PAM/POGO devices.

F. Limitations

It should be noted that a constant treadmill speed was used

throughout the presented experiments. Thus, the temporal

freedom of both the path control and the zero impedance

mode were limited to swing phase. Nevertheless, a substantial

increase in temporal variability could be detected. To increase

patient interactivity during training, we will combine the path

control strategy with approaches which adapt the treadmill

speed according to the intention of subjects [15].

The constant treadmill speed was also the reason for imple-

menting separate controllers for the single legs rather than cou-

pling them directly. As the treadmill is controlling the propul-

sion of the stance leg, the swing leg would not be able to move

with free timing if there was a close coupling. A narrow moving

window can be used to couple the movements of the legs, as in

[11]. However, in our experiments, the moving window was so

large ( 20% of the gait cycle) that it only enforced coupling

if subjects were moving close to its back wall, which was only

true for the iSCI subjects who were rated as “performing with

difficulties.” Here, a higher dimensional tunnel may allow more

flexible coupling of the different degrees-of-freedom.

The fixed walking pattern that defines the spatial movement

path may not be ideal for every patient. As in position-controlled
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Lokomat training, the pattern can be adapted manually by the

therapist. However, it is not guaranteed that a pattern close to the

“healthy” pattern of an individual patient can be achieved. For

hemi-paretic patients, it would be possible to derive a desired

path for the affected leg from observing the unaffected leg, as

proposed by Vallery et al. [16]. For iSCI patients, an adaptive

reshaping of the path, similar to the approach by Jezernik et al.

[7], may improve the applicability of the path control strategy.

V. CONCLUSION

We have implemented and evaluated a strategy for patient-co-

operative robotic gait training. The strategy consists of a control

algorithm, which provides free timing of leg movements, and

a suitable training task with visual feedback. The subject can

be optionally supported in the direction of desired movements.

Furthermore, temporal freedom can be limited to a “moving

window” that proceeds along the movement path.

Experiments with healthy subjects showed that they can suc-

cessfully influence the timing of their movements, while the

possible spatial variability is defined by the robot. Increased

support resulted in reduced muscle activity. Healthy subjects

trained more actively in the new strategy than in a noncooper-

ative training mode. Further tests showed that training with the

new strategy was feasible also for iSCI subjects.

Future research should investigate the effects of the path con-

trol strategy on patients more comprehensively. If these effects

are similar to those on healthy subjects found in this study, a

controlled clinical trial will be performed, which will assess

whether the training with the path control strategy can actually

improve rehabilitation outcome.
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