
HAL Id: hal-01987712
https://hal.laas.fr/hal-01987712

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path coordination for multiple mobile robots: a
resolution-complete algorithm

Thierry Simeon, Stéphane Leroy, Jean-Paul Laumond

To cite this version:
Thierry Simeon, Stéphane Leroy, Jean-Paul Laumond. Path coordination for multiple mobile robots: a
resolution-complete algorithm. IEEE Transactions on Robotics and Automation, Institute of Electrical
and Electronics Engineers (IEEE), 2002, 18 (1), pp.42-49. �hal-01987712�

https://hal.laas.fr/hal-01987712
https://hal.archives-ouvertes.fr

Path Coordination for Multiple Mobile Robots:
A Resolution-Complete Algorithm
Thierry Siméon, Stéphane Leroy, and Jean-Paul Laumond, Member, IEEE

Abstract—This paper1 presents a geometry-based approach for
multiple mobile robot motion coordination. The problem is to co-
ordinate the motions of several robots moving along fixed inde-
pendent paths to avoid mutual collisions. The proposed algorithm
is based on a bounding box representation of the obstacles in the
so-called coordination diagram. The algorithm is resolution-com-
plete but it is shown to be complete for a large class of inputs. De-
spite the exponential dependency of the coordination problem, the
algorithm efficiently solves problems involving up to ten robots in
worst-case situations and more than 100 robots in practical ones.

Index Terms—Coordination diagram, mobile robots, multiple
robots, path coordination.

I. INTRODUCTION

T HIS paper addresses the following problem: consider
mobile robots sharing the same workspace and planning

their paths independently; givensuch paths, we want to devise
an algorithm deciding whether coordinated motions exist for the
mobile robots along their own paths, so that each robot can reach
its own goal without colliding with the other ones. The problem
is known as the multiple robot path coordination problem [12].

A. Path Coordination Versus Path Planning

Multiple robot path coordination and path planning are two
related issues in robot motion planning. In multiple robot path
planning, the robot paths are not computed a priori. A solution
to the multiple robot path planning problem is a collision-free
path in the Cartesian product of the configuration spaces of all
the robots. A solution to the problem exists iff the start and
goal configurations belong to the same connected component
of the global collision-free configuration space. Searching such
a space is a combinatorially difficult problem [8]. Complete
and exact centralized algorithms are therefore limited to simple
problem settings involving two or three simple robots (e.g.,
[21]). Potential field techniques (e.g., [22]) have been proposed
for more complex problems. In [2], a randomized search is
combined with potential fields to centrally plan the motions of
several translating robots.

To face this complexity, several authors have investigated de-
coupled schemes. The decoupled approach was introduced in

T. Siméon and J.-P. Laumond are with LAAS-CNRS, 31077 Toulouse, Cedex
4, France. (e-mail: nic@laas.fr; jpl@laas.fr).

S. Leroy is with the Rational Software Corporation, BP 10-31312 Labége
Cedex, France (e-mail: sleroy@rational.com.)

1This paper is built upon work published separately in [19] and [15].

[9] to solve problems with multiple moving objects: the method
first plans a path among the stationary obstacles and then tunes
the velocity along the path to avoid collisions with the moving
obstacles. Such a decoupled approach has been further revis-
ited: the prioritized planning scheme proposed in [7] assigns
priorities to each robot and sequentially computes paths in a
time-varying configuration space, given the paths computed for
the higher priority robots. In [23], prioritization is combined
with potential fields to resolve possible conflicts. Issues for se-
lecting priorities are discussed in [4]. Some prioritized scheme
is also used in the decentralized approach proposed in [1] for
controlling the execution of a large fleet of autonomous mobile
robots.

The path coordination problem as such was addressed in [17]
where the notion of coordination diagram was first introduced
for two robots. This diagram represents placements along each
robot path at which mutual collisions might occur. The coordi-
nation space for two manipulators is analyzed in [3] and [6]. An
algorithm based on dynamic programming was proposed more
recently in [10] to find optimal strategies for three robots. This
paper also introduced the idea of roadmap coordination that im-
poses weaker constraints than path coordination on the robot
motions. A probabilistically complete planner based onto this
roadmap coordination scheme [20] was applied to problems in-
volving up to five robots.

From another point of view, cooperation-oriented approaches
are based on local information (potential methods) (see, for in-
stance, [18] and [5] for a recent overview). Path coordination is
out of the scope of these methods.

B. Objective, Approach, and Contribution

Our objective is to solve practical problems involving a large
fleet of mobile robots. Fig. 1 shows a coordination problem with
150 robots solved by the algorithms described in the paper. The
proposed technique consists of searching an-dimensional co-
ordination diagram. The main contribution is an efficient al-
gorithm that we propose to explore the coordination diagram
without computing the exact shape of the obstacles. With re-
spect to the previous works above, we do not use any regular
grid representation. We propose instead an implicit model of the
diagram obstacles by an adequate approximation of two-dimen-
sional (2-D) diagrams represented by a set of bounding boxes.
The algorithm is resolution–complete but it is shown to be com-
plete for a large class of inputs. Despite the exponential depen-
dency of the coordination problem on the number of robots, the
model we propose allows us to efficiently solve problems in-
volving up to ten robots in complex situations where most of
the robots interfere. Such efficacy combined with partitioning

Fig. 1. A case with 150 robots.

techniques allows us to solve practical problems involving a
much higher number of robots in practical situations where each
robot interferes locally with a subgroup of other robots. The al-
gorithm inherits from the efficiency of simple geometric opera-
tions giving rise to an exact collision-checker dedicated to mo-
bile robot coordination and described in Section II. After having
introduced a cell decomposition of the coordination diagram for
the case of two robots (Section III), we extend the algorithm to
the general case (Section IV).

II. PATHS AND GEOMETRIC TOOLS

A. Paths

The geometric tools presented in this section originate
in [19]. They are based on the following assumption: we
considerconvexpolygonal robots moving along paths defined
by sequences of straight line segments (S) and arcs of a circle
(A). Such sequences are denoted by. This assumption is
supported by both theoretical and practical considerations.
First of all, it has been proved that a collision-free admissible
path exists iff there exists a collision-free admissible path of
type [13]. Moreover, most of the existing complete motion
planners for mobile robots provide solution paths of the type

(e.g.,[14], [11], [20], [16]). Finally geometric algorithms
like Boolean operations or swept volume computations are
simple and computationally efficient when dealing with arcs of
circles and straight line segments.

B. Traces

A mobile robot path being given, atraceis the volume swept
by the robot when moving along the path. Assuming that the
robot is a polygon, the trace of a path of type is a generalized
polygon whose boundary is a sequence of straight line segments
and arcs of a circle. In [19], we show how to compute such traces
efficiently [Fig. 2(a)].

C. Coordination Configurations

To coordinate the motions of two robots along their path, it is
necessary to compute the intersection of their traces. The bold
subpath [] (respectively []) of Fig. 2(b) gathers the

Fig. 2. Two intersecting robot traces. (a) Two intersecting robot traces. (b) The
coordination configurations.

configurations at which the first (respectively second) robot in-
tersects the trace of the other one. The endpoints of such col-
lision subpaths are calledcoordination configurations. We de-
scribe below a geometric algorithm for the exact computation of
the coordination configurations when the convex robots move
along paths.

D. Computation of the Coordination Configurations

Given two paths and , we want to compute the coordi-
nation configurations for the first robot moving along, with
respect to the trace swept by the second robot moving along
(i.e., the configurations where the first robot enters or exits the
trace of the second one).

Path is a sequence of straight line segments and arcs of a
circle. For each element of the sequence, elementary collision
subpaths are computed by considering each edge of the polyg-
onal robot2 against the trace of the second robot. Each applica-
tion of the algorithm produces collision subpaths along. The
union of all collision subpaths provides the coordination config-
urations along .

The inputs of the basic geometric algorithm are therefore: an
edge moving along a path (straight-line segment
or circular arc) and a generalized polygonPG.

The output is the set ofcollision subpathsfor which the
moving edge collides withPG. Let be the curve
length along path and let be the edge placed at position

along . The collision subpaths are represented by the
ordered set ofcollision intervals defined by the -values at
which the collision either begins or stops between and
PG.

1) Case of a Segment Subpath (S):Let us illustrate the al-
gorithm on the canonical example of Fig. 3. The figure shows
the collision subpaths that should be produced by the algorithm.
The bold curves ofPG’s contour represent the only curves that
need to be considered for this computation.

Decomposition of PG’s contour:Let us consider the
points resulting from the intersection ofPG’s contour with
the two lines and swept by the edge’s endpoints along

. Let be the domain lying between the two lines and

2This assumes that the trace of the second robot is not small enough to be
included into the first robot at any point of ! . . .

Fig. 3. Collision subpaths with a generalized polygon.

Fig. 4. The three elementary cases.

. The contour ofPG can be decomposed into elementary
parts (i.e., sequences of curves) connecting two such points.
Obviously, we only need to consider the parts that are interior
to the domain . Also note that these parts have to be treated
differently according to their intersection with and .
Some parts define a start point (e.g.,c2,c6), an end point (e.g.,
c5, c7) or both endpoints (e.g.,c1, c8) of a collision subpath,
while others do not produce any endpoint (e.g.,c3,c4).

Labeling the events:Fig. 4 shows how a part resulting
from PG’s decomposition can be classified according to the la-
bels of its start/end points. Each intersection point is labeled as
follows: whenPG’s contour (oriented clockwise) enters into the
domain , the point is labeled or according to its loca-
tion onto or . Labels or are similarly assigned to
the points at which the contour exits domain. Consider now
for example a part starting at a point labeled. This part ei-
ther ends at a point (type 1) or at a point (type 2a and
2b). In the first case, the part corresponds to the beginning of a
collision subpath. The end of the collision subpath will be given
by the next part (type 3) encountered while following
the contour. In the second case, both endpoints belong toand
the part possibly generates a complete collision subpath when
the start is located to the left of the exit endpoint (type
2a). In the other case (type 2b), the part does not need to be con-
sidered since the corresponding collision subpath is necessarily
included into a larger one obtained from other parts of the con-
tour.

Computing the events:since each part corresponds to a
connected sequence of segments and circular arcs, the endpoints
of the collision subpaths only occur at some points of the se-
quence: a vertex or a tangency point between a circular
arc and the edge(see Fig. 5). Let be the -value along
at which such a point belongs to . A start (end) point is
obtained by considering the minimal (maximal) value of all the

computed along the part.
Algorithm: The algorithm is first initialized by following

PG’s contour (from any starting point), until a first intersection
with or is found. Then the algorithm continues to loop

over the curves ofPG until the next intersection . Between

Fig. 5. Two type of events: vertices ofPG and tangency points.

Fig. 6. The two cases of arc subpaths.

and , it iteratively records the extremal values of the
computed at the encountered vertices or tangent points. When

is found, the collision subpath of the part is obtained from
extremal values, according to the labels ofand . The algo-
rithm next considers the part starting at pointand continues
until PG’s contour has been completely scanned. At the end,
some of the produced collision intervals may intersect. Then, an
additional step is required to compute their union. The algorithm
returns the ordered set of nonoverlapping intervals included into
the interval [0, 1] (i.e., the collision subpaths of).

2) Case of an Arc Subpath (A):The principle of the algo-
rithm remains similar to the one described above for the case of
segment subpaths. However, two situations possibly occur when
considering the trace swept by the edgealong an arc of a circle

with radius and centered at. As illustrated by Fig. 6, thetype
of situation depends on the relative position betweenand .

When the orthogonal projection of onto the line sup-
porting does not belong to the edge (case 1), the domain
is limited by an inner circle and an outer circle , both
centered at and going through one of both edge’s endpoints.
When belongs to edge(case 2), the inner circle corresponds
to the circle that is tangent to the edge, and the outer circle
remains . The figure also shows for each case the relevant
parts ofPG’s contour. These parts are limited by the intersec-
tions with domain and are labeled as explained above for the
case of segment subpaths.

For a given part, Fig. 7 shows that different sets of points
have to be considered: the vertices (black points onto the
figure) and the tangency points. Moreover, case 2 requires us
to consider additional points resulting from the intersection
between and the part.

The tangency points between the moving edgeand a
circular arc are obtained by computing the common tangents
between circle and the support circle of the arc (see Fig. 8).
Points are the tangent points of which also belong to the
arc and to the domain swept by the edge.

Fig. 7. Relevant points considered by the algorithm.

Fig. 8. Tangent points between the moving edgee and a circular arc.

3) Complexity of the Algorithm:The algorithm takes
to loop over the curves ofPG’s contour and to compute its
decomposition into parts connecting the intersections with
domain . At most, one collision interval is computed for each
part. Then, (possibly) overlapping intervals are produced
at the end of the loop. The algorithm then computes the sorted
union of these intervals; its overall complexity is therefore

.

III. COORDINATION FORTWO ROBOTS

A. Coordination Diagram

Coordinating the motion of two robots along two given paths
is a classical problem. Its solution consists of exploring the
so-calledcoordination diagram[17]. Let us consider the two
paths and in Fig. 9(a). Both coordinates and

are assumed to vary from 0 to 1. Fig. 9(b) shows the corre-
sponding coordination diagram (): the black domains rep-
resent the set of configuration pairs () such that the robots
collide when they are at configurations and , re-
spectively. Black domains are obstacles to avoid. A coordinated
motion exists iff there is a collision-free path in the diagram
linking the point (0,0) (the robots are both at the beginning of
their own path) to the point (1,1) (the robots are both at the end
of their path).

B. A Bounding Box Representation

Our contribution is to propose an algorithm to explore the di-
agram without computing the exact shape of the obstacles.3 We
use a bounding box representation based on the following prop-
erty: the (minimal) box bounding an obstacle in a coordination

3The obstacles in Fig. 9(b) have been computed with a brute force discrete
approach used only for display purpose.

Fig. 9. (a) TwoSA paths. (b) The coordination diagram. (c) The partition
of the diagram induced by the path decomposition. (d) The bounding box
representation of the obstacles and a solution path.

diagram is a rectangle whose endpoint coordinates are the co-
ordination configurations.4 Let us consider the case in Fig. 2.
The coordinates of four points defining the rectangle in the coor-
dination diagram are respectively (), (), (), and
(). The computation of the boxes is then done by com-
puting the coordination configurations (see above).

C. Path Decomposition

Let us now consider two paths and . Instead of ap-
plying the bounding box representation directly in the coordina-
tion diagram of and , we first apply a path decomposition.
Each path is decomposed into its elementary pieces consisting
of either straight line segments or arcs of a circle. Let () and
() denote the pieces sequences of pathsand . The co-
ordination diagram for and then appear as the union of
the coordination diagrams of the various pairs (). For
instance, both paths in Fig. 9(a) consist of four arcs of a circle.
Then, the coordination diagram appears as the union of 16 el-
ementary coordination diagrams [Fig. 9(c)]. Then, for each el-
ementary coordination diagram, we compute a bounding box
representation of the obstacles. Fig. 9(d) shows the bounding
box representation of the diagram in Fig. 9(b).

D. Search

Such a representation induces a cell decomposition of the co-
ordination diagram into rectangles. Any classical search algo-
rithm may be used to compute a collision-free path from the
origin (0,0) to the goal (1,1). Fig. 9(d) shows a solution path. For
this example, note that the widest robot (corresponding to
the vertical coordinate in the diagram) shouldnecessarilymove
forward, backward, and then forward along the first two pieces
of its path.

4In our context, the coordinate of a configuration on a path is its curvilinear
abscissas on .

Fig. 10. This case cannot appear when at least one robot moves along a straight
line segment.

Fig. 11. AkA special case: bounding boxes would fill the space.

E. Completeness

The algorithm is complete iff it is complete when applied
to the elementary diagrams corresponding respectively to three
cases: SS, S A, and A A.

For the first two cases, the algorithm is complete. The only
way for the bounding box approach to lose a solution is if there
exist one verticaland one horizontal line intersecting two ob-
stacles (Fig. 10). This is, however, not possible since at least
one robot moves along a straight line segment: indeed, the robot
moving along the straight line cannot intersecttwice the other
(convex) robot remaining at afixedposition. Thus, the bounding
box approximation does not affect the completeness of the al-
gorithm for these first two cases.

Completeness is not necessarily guaranteed in the third case
A A: we may find counterexamples where the bounding box
approximation of the obstacles may split the free space into two
connected components. Fig. 11 shows an example where the
bounding box transforms the full space into an obstacle. How-
ever, such cases can be solved by the following resolution-com-
plete procedure: both arcs of a circle are recursively split into
smaller arcs and each pair of the new elementary pieces is pro-
cessed with the bounding box approach. Moreover, such cases
are easily identified in the path decomposition step above. This
means that, according to the inputs, the algorithm may activate
the recursive subdivision. The activation condition is a function
dedicated to the case AA and is checking the existence of a
collision-free vertical or horizontal line in the diagram. The ac-
tivation cases are seldom seen. For instance, they never appear
in the examples displayed in Figs. 13, 15, and 1.

Finally, one may note that, for concave robots, a similar re-
cursive subdivision applied to the two first cases allows to main-
tain the resolution completeness of the algorithm. Therefore, the
method also works for concave robots; the only critical point
concerns the extension of the algorithm used for the exact trace

Fig. 12. Cylindrical structure of the coordination diagram.

computation (Section II-B), currently limited to convex poly-
gons.

IV. COORDINATION FOR ROBOTS

A. Generalized Coordination Diagram (GCD)

Let us now consider robot paths . The generalized
coordination diagramis an -dimensional cube defined by the
Cartesian product of thesets of parameter valuesthat place
each robot along its path. The -cube can be subdivided into
free and obstacle regions that reflect the possible interferences
between robots: a point () belongs to an obstacle iff
at least two robots collide; otherwise it is free point. A solu-
tion to the coordination problem is a collision-free path between
() to (). This notion of obstacle induces a cylin-
drical structure of the coordination diagram.5 Each obstacle is
a cylinder defined by the Cartesian product of the forbidden re-
gion on some face of the -cube with the remaining axis
(see Fig. 12). As a consequence, the topology of the generalized
coordination diagram is fully characterized by the topology of
the elementary () coordination diagrams. The
algorithm presented below for coordinating the motions of
robots exploits this property to avoid the explicit computation
of the -dimensional obstacles. The cell decomposition of the

-cube is implicitly derived from the 2-D diagrams computed
for each pair of robots. Fig. 13(b) shows the 10 elementary dia-
grams computed for the path coordination problem of Fig. 13(a).

B. GCD Modeling and Searching

We have seen that the bounding box representation of the
coordination diagram for two robots induces a decomposition
of the diagram into rectangles. Let us consider three paths,

, and . The cell decomposition of () coordination di-
agram induces a partition of the axis. Then the cell decom-
position of the () diagram is refined according to this par-
tition. More generally, the cell decomposition of a () di-
agram induces a refinement of the cell decompositions of the

diagrams () and () (see Fig. 14). We denote
by ()-cell a cell of the () diagram after refinement. The
cells of the -cube are denoted by-cells. The 2-D ()-cells
of all the () diagrams induce the cell decomposition of the

-cube into -cells. The main advantage of this modeling is
that it does not require the explicit representation of the-cube.

5This property has been already noticed in [10]

Fig. 13. The 10 elementary diagrams (b) of the generalized coordination
diagram of 5 paths (a).

Fig. 14. The cell decomposition of a diagram refines the cell decomposition
of other diagrams.

Hence, while the size of the-cube grows exponentially with
the number of robots, the complexity of our implicit mod-
eling remains much lower. Let denote the average number of
intersections for a given pair of paths (i.e., number of obstacle
boxes of a () diagram). Each of the diagrams ini-
tially contains cells. After the refinement step, each axis
of the -cube is partitioned into intervals, which means
that refinement of each elementary diagram () produces

-cells. Therefore, the-cube is implicitly mod-
eled by 2-D cells.

The search is performed by an algorithm with a heuristic
function based onto the shortest Euclidean path to the goal point

of the -cube. At each iteration during the search, the
algorithm has to generate the-neighbors6 (for some)
of the current cell. In our implementation, we use in

6In an n-dimensional space, the number of 1-neighbors, 2-neighbors,
. . . ; n-neighbors are, respectively,2n, 2n ; . . . ; and3 � 1.

Fig. 15. A case with 32 robots: (a) the robots traces and (b) the 496 elementary
diagrams. The partition into the eight robot subgroups is illustrated by the eight
bold triangles.

order to limit the size of the neighborhood. Thus, each step of
the search generates only cells adjacent to the current-cell
through an ()-dimensional hyper-plane. This means that
the coordination solution returned after the search corresponds
to Manhattan paths where only one robot moves at once.

Let us consider an -cell cell, adjacent to the current colli-
sion-free -cell and corresponding to an elementary motion of
robot . Due to the cylindrical shape of the obstacles, testing if
the cell is collision-free is easily performed: each of the ()
projections of cell onto the elementary () diagrams has to
be a collision-free ()-cell.

Despite the important size of the-cube, a very small subset
of -cells has to be explored in most cases before a coordination
solution is found. However, a problem admitting no solution

TABLE I

may require most of the free cells to be developed before the
algorithm terminates.

As noted above, the algorithm generates Manhattan paths
(only one robot moves at once). Allowing simultaneous robot
motion generally reduces the total path length. This can be
achieved with a postprocessing step using classical smoothing
techniques as in [20] to combine sequences of simple robot
motions into simultaneous ones. This step produces diagonal
paths, as illustrated in the inset of Fig. 15(b).

C. Completeness

Due to the cylindrical shape of the obstacles in the gener-
alized coordination diagram, the algorithm above inherits from
the completeness property of the coordination procedure for two
robots presented in Section III.

D. Interaction Graph

The final extension we propose is supported by a practical
assumption. When a high number of robots plan their paths in-
dependently, the path coordination problems are in general lo-
calized in different domains of the environment and only con-
cern robotsubsets. To reduce the combinatorial complexity of
the global problem in practice, we first identify which robot
traces intersect another trace. We then build aninteraction graph
whose nodes are the robots; two robot-nodes are adjacent iff
both corresponding traces intersect. A simple decomposition of
the graph into connected components identifies automatically
the various subgroups of robots requiring motion coordination.
We then apply the coordination algorithm to each subgroup.

E. Results

Fig. 15(a) shows an example of 32 mobile robots paths (in-
cluding the traces). The eight connected components of the in-
teraction graph have been computed automatically. The global
coordination diagram of Fig. 15(b) clearly shows the structure
induced by the eight connected components. It also shows a de-
tailed view of the coordination diagram involving a subgroup of
five robots with a display of the computed solution path for this
group.

Table I presents the computation times (Sparc Ultra-1, 170
MHz) of the main steps of the algorithm for the examples7 of
Figs. 15 and 1. For the second example that involves 150 robots,
the interaction graph contains 37 connected components con-
taining up to 8 robots.

We should note that the performance depends on the decom-
position of the interaction graph into connected components.
The worst case appears when the interaction graph has only one

7The motion planner computing an admissible collision-free path for each
robot is based on the algorithm presented in [14].

component (e.g., when the trace of some robot intersectsall the
other traces). In fact, the complexity of the approach is domi-
nated by the highest dimension of the considered-cubes. In
practice, the algorithm may efficiently explore-cubes of di-
mension up to ten (i.e., involving ten robots). We just argue
that this limitation is not critical in practice. Moreover, we do
not know any alternative approach allowing to solve the case of
Fig. 1.

V. CONCLUSION

We have presented an efficient approach to multiple robot
coordination. The power of the approach comes from an im-
plicit model of the -dimensional coordination space exploiting
the cylindrical structure of the diagram obstacles. The proposed
model is derived from a bounding-box representation of the ob-
stacles in the elementary 2-D diagrams. The method is resolu-
tion complete and the simulation results show its efficacy to co-
ordinate large fleets of robots.

The algorithm was originally designed for mobile robotics
applications. For such systems, the paper also describes efficient
geometric tools for the exact characterization of the coordina-
tion configurations. However, it is important to note that the co-
ordination approach is general and might be applied to other sys-
tems, provided dedicated geometric tools to compute the config-
urations at which two given paths interfere. Also, there remains
other possible extensions. For example, when the coordination
problem admits no solution, the analysis of the elementary dia-
grams might help to determine groups of few robots that cause
the deadlock; a centralized planner could then be used to re-
solve the local conflicts. Some applications might also require
the incremental update of the coordination problem each time a
new robot is inserted or removed. Updating the coordination di-
agram could be efficiently performed due to the implicit model
that mostly requires one to build (or delete) theelementary
diagrams associated with this robot.

REFERENCES

[1] R. Alami, F. Robert, F. F. Ingrand, and S. Suzuki, “Multi-robot coopera-
tion through incremental plan-merging,” inIEEE Int. Conf. on Robotics
and Automation, Nagoya, Japan, 1995, pp. 2573–2578.

[2] J. Barraquand and J. C. Latombe, “Robot motion planning: A distributed
representation approach,”Int. J. Robot. Res., vol. 10, no. 6, pp. 628–649,
1991.

[3] Z. Bien and J. Lee, “A Minimum-time trajectory planning method for
two robots,” IEEE Trans. Robot. Automat., vol. 8, pp. 414–418, June
1992.

[4] S. J. Buckley, “Fast motion planning for multiple moving robots,” in
IEEE Int. Conf. on Robotics and Automation, Scottsdale, AZ, 1989, pp.
322–326.

[5] Y. Cao, A. S. Fukunaga, and A. B. Kahng, “Cooperative mobile
robotics: Antecedents and directions,”Autonomous Robots, vol. 4, pp.
7–27, 1997.

[6] C. Chang, M. J. Chung, and B. H. Lee, “Collision avoidance of two robot
manipulators by minimum delay time,”IEEE Trans. Syst., Man Cybern.,
vol. 24, no. 3, pp. 517–522, 1994.

[7] M. Erdmann and T. Lozano-Pérez, “On multiple moving objects,” in
Proc. IEEE Int. Conf. on Robotics and Automation, San-Francisco, CA,
1986, pp. 1419–1424.

[8] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of mo-
tion planning for multiple independant objects: PSPACE-hardness of the
Warehouseman’s Problem,”Int. J. Robot. Res., vol. 3, no. 4, pp. 76–88,
1984.

[9] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The
path-velocity decomposition,”Int. J. Robot. Res., vol. 5, no. 3, pp.
72–89, 1986.

[10] S. La Valle and S. Hutchinson, “Optimal motion planning for multiple
robots having independants goals,” inProc. IEEE Int. Conf. on Robotics
and Automation, Minneapolis, MN, 1996, pp. 1847–1852.

[11] J. C. Latombe, “A fast path planner for a car-like indoor mobile robot,”
in 9th Nat. Conf. on Artificial Intelligence, AAAI, Anaheim, CA, 1991,
pp. 659–665.

[12] , Robot Motion Planning. Boston, MA: Kluwer, 1991.
[13] J. P. Laumond, “Feasible trajectories for mobile robots with kinematic

and environment constraints,” inInt. Conf. on Intelligent Autonomous
Systems, Amsterdam, The Netherlands, 1986.

[14] J. P. Laumond, P. Jacobs, M. Taïx, and R. Murray, “A motion planner for
non holonomic mobile robots,”IEEE Trans. Robot. Automat., vol. 10,
pp. 577–593, Aug. 1994.

[15] S. Leroy, J. P. Laumond, and T. Siméon, “Multiple path coordination for
mobile robots: A geometric algorithm,” in16th Int. Joint Conf. Artificial
Intelligence, Stockholm, Sweden, 1999, pp. 1118–1123.

[16] B. Mirtich and J. Canny, “Using skeletons for nonholonomic motion
planning among obstacles,” inIEEE Int. Conf. on Robotics and Automa-
tion, Nice, France, 1992, pp. 2533–2540.

[17] P. O’Donnell and T. Lozano-Pérez, “Deadlock-free and collision-free
coordination of two robot manipulators,” inIEEE Int. Conf. on Robotics
and Automation, Scottsdale, AZ, 1989, pp. 484–489.

[18] J. Reif and H. Wang, “Social potential fields: A distributed behavioral
control for autonomous robots,” inIn Algorithmic Foundations of
Robotics, K. Goldberg, Ed: A. K. Peters, 1995, pp. 331–345.

[19] T. Siméon, S. Leroy, and J. P. Laumond, “A collision checker for car-like
robots coordination,” inIEEE Int. Conf. on Robotics and Automation,
Leuven, Belgium, 1998, pp. 46–51.

[20] P. Svestka and M. Overmars, “Coordinated motion planning for mul-
tiple car-like robots using probabilistic roadmaps,” inIEEE Int. Conf.
on Robotics and Automation, Nagoya, Japan, 1995, pp. 1631–1636.

[21] J. T. Schwartz and M. Sharir, “On the piano movers problem: III. Coor-
dinating the motions of several independant bodies,”Int. J. Robot. Res.,
vol. 2, no. 3, pp. 46–75, 1983.

[22] P. Tournassoud, “A strategy for obstacle avoidance and its application to
multi-robot systems,” inIEEE Int. Conf. on Robotics and Automation,
San-Francisco, CA, 1986, pp. 1224–1229.

[23] C. W. Warren, “Multiple robot path coordination using artificial potential
fields,” in IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH,
1990, pp. 500–505.

Thierry Siméon graduated from the Institut National
des Sciences Appliquées in 1985. He received the
Ph.D. degree in robotics and the Habilitation degree
from the University Paul Sabatier, Toulouse, France,
in 1989 and 1999, respectively.

After a year of post-doctoral work at the Uni-
versity of Pennsylvania, Philadelphia, he joined
LAAS-CNRS, Toulouse, in 1990 as Chargé de
Recherche. His research interests include robotics,
motion planning, geometric algorithms and mobile
robot navigation. He has been involved in several

European projects, in particular the Esprit 3 BRA project PROMotion (Planning
RObot Motion), the Eureka project I-ARES (Rover for Planetary Exploration).
He is currently coordinator of the Esprit 4 LTR project Molog (Motion for
Logistics, 1999–2002).

Stéphane Leroygraduated with a degree in com-
puter science from the University of Rennes, France,
in 1994. He received the DEA degree in computer
science from the Ecole Polytechnique at Palaiseau,
France, in 1995 and the Ph.D. degree in robotics
from the University Paul Sabatier,Toulouse, France,
in 1998.

His research interests include nonholonomic
mobile robots and multiple robots coordination. He
is currently with Rational Software Corporation,
Toulouse, France.

Jean-Paul Laumond(M’95) received the M.S. de-
gree in mathematics, the Ph.D. degree in robotics,
and the Habilitation degree from the University Paul
Sabatier, Toulouse, France in 1976, 1984, and 1989,
respectively.

He is Directeur de Recherche at LAAS-CNRS,
Toulouse. His research interests include mainly
robotics and algorithmic motion planning. He was
a member of the Comité National de la Recherche
Scientifique from 1991 to 1995. In 2001, he created
Kineo, Computer Aided Motion, a spin-off of

CNRS diffusing a software development kit dedicated to path planning toward
CAD-CAM, Graphics, games and 3-D web markets.

