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Path Decomposition of Ruinous Behaviour for a

General Lévy Insurance Risk Process

Philip S. Griffin and Ross A. Maller∗

Syracuse University and Australian National University

June 30, 2011

Abstract

We analyse the general Lévy insurance risk process for Lévy measures in the

convolution equivalence class S(α), α > 0, via a new kind of path decomposition.

This yields a very general functional limit theorem as the initial reserve level u → ∞,

and a host of new results for functionals of interest in insurance risk. Particular

emphasis is placed on the time to ruin, which is shown to have a proper limiting

distribution, as u → ∞, conditional on ruin occurring, under our assumptions.

Existing asymptotic results under the S(α) assumption are synthesised and extended,

and proofs are much simplified, by comparison with previous methods specific to

the convolution equivalence analyses. Additionally, limiting expressions for penalty

functions of the type introduced into actuarial mathematics by Gerber and Shiu,

are derived as straightforward applications of our main results.

Keywords: Lévy insurance risk process, convolution equivalence, time to ruin, overshoot,
expected discounted penalty function
AMS 2010 Subject Classifications: 60G51; 60F17; 91B30; 62P05.

1 Introduction

Let X = {Xt : t ≥ 0}, X0 = 0, be a Lévy process defined on (Ω,F , P ), with triplet
(γ, σ2,ΠX), ΠX being the Lévy measure of X . Thus the characteristic function of X is
given by the Lévy-Khintchine representation, EeiθXt = etΨX(θ), where

ΨX(θ) = iθγ − σ2θ2/2 +

∫

R\{0}

(eiθx − 1− iθx1{|x|<1})ΠX(dx), for θ ∈ R.

We will be concerned with the case where Xt → −∞ a.s. We have in mind an
insurance risk model with premiums and other income producing a downward drift in X ,

∗Research partially supported by ARC Grant DP1092502
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while claims are represented by positive jumps. Thus the process X , called the claim

surplus process, represents the excess in claims over premium. We think of an insurance
company starting with an initial positive reserve u, and ruin occurring if this level is
exceeded by X . We will refer to this as the General Lévy Insurance Risk Model. It
is a generalisation of the classical Cramér-Lundberg model, which arises when the claim
surplus process is taken to be

Xt =
Nt∑

1

Ui − rt (1.1)

where Nt is a Poisson process, Ui > 0 form an independent i.i.d. sequence and r > 0.
Here r represents the rate of premium inflow and Ui the size of the ith claim. The general
model allows for income other than through premium inflow and a more realistic claims
structure; see Section 2.7.1 of Kyprianou [19]. The assumption Xt → −∞ a.s. is a
reflection of premiums being set to avoid almost certain ruin for finite u.

The primary focus of this paper is on when and how ruin occurs for large reserve
levels, that is as u → ∞. Introduce

X t = sup
0≤s≤t

Xs, Gt = sup{0 ≤ s ≤ t : Xs = Xs} (1.2)

and
τ(u) = inf{t ≥ 0 : Xt > u}. (1.3)

(In cases where possible confusion might arise, we will indicate the dependence on the
process under consideration by a superscript, as in GX

t .) These variables play a central
rôle in fluctuation theory for Lévy processes, and give rise to the main variables of interest
in insurance risk:

• Ruin Time : τ(u),

• Shortfall at Ruin (Overshoot): Xτ(u) − u,

• Surplus Immediately Prior to Ruin (Undershoot): u−Xτ(u)−,

• Minimum Surplus Prior to Ruin: u−Xτ(u)−,

• Time of Minimum Surplus Prior to Ruin: Gτ(u)−,

• Time Remaining to Ruin from the Time of Minimum Surplus: τ(u)−Gτ(u)−.

Our main interest is in the behaviour of the process when ruin occurs, that is when
τ(u) < ∞. Crucial questions, for example, are “how long does it take for ruin to occur?”
and “what do the paths look like leading up to ruin?” We pay particular attention to
these issues. We will exclude the trivial case that X is the negative of a subordinator,
so P (τ(u) < ∞) > 0 for finite u (cf. (2.16) below). On the other hand, the assumption
Xt → −∞ a.s. implies P (τ(u) < ∞) → 0 as the initial level u → ∞. Consequently it is
convenient to introduce, by elementary means, a new probability measure P (u) given by

P (u)( · ) = P ( · |τ(u) < ∞),

and to state our results as limit theorems conditional on τ(u) < ∞, that is under P (u).
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Some further background is useful to place our results in context. The original work
on the Cramér-Lundberg model was done under the Cramér-Lundberg condition

EeαX1 = 1 for some α > 0, (1.4)

which among other things implies Xt → −∞ a.s. Embrechts, Klüppelberg and Mikosch
[14] call (1.4) the small claims condition. The major results in this area include a large
deviation estimate for the probability of ruin:

eαuP (τ(u) < ∞) → C, (1.5)

where C is a constant which can be identified, and C > 0 if

EX1e
αX1 < ∞. (1.6)

In addition, the asymptotic behavior under P (u) of several of the variables listed above
is known; see, e.g., [1] or [14]. The ruin estimate (1.5) was extended to general Lévy
insurance risk processes satisfying (1.4) by Bertoin and Doney [5].

A second regime under which the Cramér-Lundberg model has been studied is the
subexponential or large claims case; see Asmussen and Klüppelberg [3]. In this scenario,
the claim size distribution is subexponential, and, roughly speaking, ruin occurs solely
due to the realisation of one extremely large claim.

The small and large claims models each have their various strengths and weaknesses. A
third, intermediate, regime was introduced recently in the general model by Klüppelberg,
Kyprianou and Maller [18]. To motivate this model, observe that in the small claims case
(1.4) holds, while in the large claims (subexponential) case

EeαX1 = ∞ for all α > 0. (1.7)

Thus to obtain a new model we must either consider processes whose distributions satisfy
(1.7) and which are not subexponential, or processes which satisfy EeαX1 < ∞ for some
α > 0 but for which (1.4) fails. It is the latter alternative that we will focus on. Since
Xt → −∞ a.s., it is easy to see that such processes must satisfy that, for some α > 0,

EeαX1 < 1 and Ee(α+ε)X1 = ∞ for all ε > 0. (1.8)

For example, those with distribution tails of the form

P (X1 > x) ∼
e−αx

xp
for p > 1 (1.9)

satisfy (1.8). A natural class of distributions which include those of the form (1.9) is the
class of convolution equivalent distributions of index α, which we now briefly describe.
As in [18], we will restrict ourselves to the nonlattice case, with the understanding that
the alternative can be handled by obvious modifications. A distribution F on [0,∞) with
tail F = 1− F belongs to the class S(α), α > 0, if F (u) > 0 for all u > 0,

lim
u→∞

F (u+ x)

F (u)
= e−αx, for x ∈ (−∞,∞), (1.10)
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and

lim
u→∞

F 2∗(u)

F (u)
exists and is finite, (1.11)

where F 2∗ = F ∗ F . Distributions in S(α) are called convolution equivalent with index α.
When F ∈ S(α), the limit in (1.11) must be of the form 2δFα , where δFα :=

∫
[0,∞)

eαxF (dx)

is finite. Much is known about the properties of such distributions. In particular, the
class is closed under tail equivalence, that is, if F ∈ S(α) and G is a distribution function
for which

lim
u→∞

G(u)

F (u)
= c for some c ∈ (0,∞),

then G ∈ S(α).
Although the exponential distribution with parameter α is not in S(α), distributions

in S(α) are “near to exponential”; for example, distributions with tails comparable to
x−pe−αx, where p > 1, are in S(α). The inverse Gaussian distributions, with appropriate
choices of parameters, form an important class of distributions which are convolution
equivalent. These in turn are a special case of the tempered stable distributions, which
have been the subject of considerable recent activity. For further examples and more on
convolution equivalence see [9], [12], [17], [20] and [21].

We can take the tail of any Lévy measure, assumed nonzero on some interval (x0,∞),
x0 > 0, to be the tail of a distribution function on [0,∞), after renormalisation. With
this convention, we say then that the measure (or its tail) is in S(α) if this is true for
the distribution with the corresponding (renormalised) tail. The convolution equivalent
model introduced in [18] is then one in which

Π
+

X ∈ S(α) and EeαX1 < 1, for some α > 0, (1.12)

where Π+
X is the restriction of ΠX to (0,∞), and Π

+
(x) = ΠX ((x,∞)), x > 0. The

condition EeαX1 < 1 implies eαXt is a nonnegative supermartingale, from which it follows
immediately that Xt → −∞ a.s. (This is also true when EeαX1 = 1.)

By way of comparison with the small claims model, consider a one parameter family
of Cramér-Lundberg models (1.1), in which the claim size distribution U ∈ S(α). Let

X
(r)
t =

Nt∑

1

Ui − rt, r ≥ 0,

and set

rL =
ln(EeαX

(0)
1 )

α
.

Then EeαX
(r)
1 = 1 if r = rL and EeαX

(r)
1 < 1 if r > rL. Thus the convolution equivalent

models correspond to larger premium rates (faster drift of X to −∞, lower probability
of ruin), than under the small claims condition (1.4). In general, for any convolution
equivalent model, there is an associated model in which (1.4) holds, obtained by adding
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an appropriate positive drift, which corresponds to decreasing the premium rate. However
this change in premium rate leads to quite different behavior in the two models.

Conditional on ruin occurring, the qualitative behavior of the claims surplus process is
very different in the convolution equivalent model as opposed to either the small or large
claims models. In these latter two cases, the time to ruin, τ(u), is of order u as u → ∞.
In the small claims case, under mild assumptions, there is a constant b > 0 such that

τ(u)

u
→ b−1 in P (u) probability

and

sup
t∈[0,1]

∣∣∣∣
X(tτ(u))

τ(u)
− bt

∣∣∣∣ → 0 in P (u) probability ,

indicating that ruin occurs owing to the build up of small claims which tend to cause X
to behave as though it had positive drift; see [1] or [14]. In the subexponential case, the
ruin time is again of order u (in distribution). However in this case the process evolves
quite normally, that is, like a sample path for which ruin does not occur, until a very large

claim suddenly causes ruin. This claim is so large that the shortfall Xτ(u) − u
P (u)

−→∞; see
[3] or [14].

An obvious shortcoming of the small claims model is that it does not allow for disasters,
that is large jumps, which are observed in real insurance data. On the other hand the
subexponential model is very extreme and uninformative in the sense that paths leading
to ruin look quite normal until suddenly a large claim occurs, which results in ruin with
an arbitrarily large shortfall.

By contrast, the convolution equivalent model allows for disasters to occur, but they
are not so ruinous as to be disproportionate in size relative to the reserve level. We will
show that, in this model, asymptotically, ruin occurs in finite time (in distribution), and
for ruin to occur, the claims surplus process must take a large jump from a neighbour-
hood of the origin to a neighbourhood of u. This jump may result in ruin, but if not, the
process X − u subsequently behaves like X conditioned to hit (0,∞). In either case, the
shortfall at ruin converges in distribution to a finite random variable as u → ∞. These
results will follow from a path decomposition and asymptotic analysis of the distribution
of X , conditional on ruin, in a way described below. The idea of studying ruin through
a description of the entire path leading up to ruin, seems to have first appeared in As-
mussen [1], where the small claims case for random walk is investigated. For work in the
subexponential case, see Asmussen and Klüppelberg [3] .

2 Skorohod Space and Notation

Fix ∆ /∈ R and let E = R ∪ {∆}. Define a metric d on E by

d(x, y) =





|x− y| ∧ 1, x, y ∈ R

1, x ∈ R, y = ∆

0 x = y = ∆.
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Thus ∆ is an isolated point, which will act as a cemetery state, and for x, y ∈ R, |x−y| → 0
if and only if d(x, y) → 0. Let D be the Skorohod space of functions on [0,∞), taking
values in the metric space E, and which are right continuous with left limits. It is
often convenient to assume that X is given as the coordinate process on D. We will
interchangeably write X or w depending on which seems clearer in the context. The
usual right continuous completion of the filtration generated by the coordinate maps will
be denoted by {Ft}t≥0. Pz denotes the probability measure induced on F = ∨t≥0Ft by the
Lévy process starting at z ∈ R. We sometimes write just P for P0. The shift operators
θt : D → D, t ≥ 0, are defined by (θt(w))s = w(t+ s).

For a given function w = (wt)t≥0 ∈ D, and r ≥ 0, let w[0,r) = (w[0,r)(t))t≥0 ∈ D denote
the killed path

w[0,r)(t) =

{
wt, 0 ≤ t < r

∆ t ≥ r.

For any ρ : D → [0,∞] we then have the corresponding element w[0,ρ) ∈ D defined by
w[0,ρ) = w[0,ρ(w)). For x ∈ E, let cx ∈ D be the constant path cxt = x for all t ≥ 0. If
w,w′ ∈ D, w − w′ denotes the path in D given by

(w − w′)t =

{
wt − w′

t, if t < τ∆(w) ∧ τ∆(w
′)

∆ otherwise.

Let
τz = τz(w) = inf{t > 0 : wt > z}, τ∆ = τ∆(w) = inf{t > 0 : wt = ∆}

For notational convenience we will interchangeably write wt and w(t), τz and τ(z) etc.
Observe that for any t ≥ 0 and w ∈ D

τ∆(w[0,t)) = t if τ∆(w) ≥ t. (2.1)

We adopt the following notation from [16] which is very standard in the area (cf. [4],
[10] and [19]). Let (Ls)s≥0 denote the local time ofX at its maximum, and (L−1

s , Hs)s≥0 the
weakly ascending bivariate ladder process. When Xt → −∞ a.s., L∞ has an exponential
distribution with some parameter q > 0, and the defective process (L−1, H) may be
obtained from a nondefective process (L−1,H) by independent exponential killing at rate
q > 0. Thus (

(L−1
s , Hs) : s < L∞

) D
=

(
(L−1

s ,Hs) : s < e(q)
)

(2.2)

where e(q) is independent of (L−1,H) and has exponential distribution with parameter q.
We denote the bivariate Lévy measure of (L−1,H) by ΠL−1,H(·, ·). The Laplace expo-

nent κ(a, b) of (L−1, H), defined by

e−κ(a,b) = E(e−aL−1
1 −bH1 ;L∞ > 1) = e−qEe−aL−1

1 −bH1 (2.3)

for values of a, b ∈ R for which the expectation is finite, may be written

κ(a, b) = q + dL−1a + dHb+

∫

t≥0

∫

x≥0

(
1− e−at−bx

)
ΠL−1,H(dt, dx), (2.4)
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where dL−1 ≥ 0 and dH ≥ 0 are drift constants. The bivariate renewal function of (L−1, H)
is

V (t, x) =

∫ ∞

0

e−qsP (L−1
s ≤ t,Hs ≤ x)ds. (2.5)

Its Laplace transform is given by

∫

t≥0

∫

x≥0

e−at−bxV (dt, dx) =

∫

s≥0

e−qsE(e−aL−1
s −bHs)ds =

1

κ(a, b)
(2.6)

provided κ(a, b) > 0. We will also frequently consider the renewal function of H , defined
on R by

V (x) =

∫ ∞

0

e−qsP (Hs ≤ x)ds = lim
t→∞

V (t, x). (2.7)

Observe that V (x) = 0 for x < 0, while V (0) > 0 iff H is compound Poisson. Also

V (∞) := lim
x→∞

V (x) = q−1. (2.8)

Let X̂t = −Xt, t ≥ 0 denote the dual process, and (L̂−1, Ĥ) the corresponding strictly

ascending bivariate ladder processes of X̂ . This is the same as the weakly ascending
process if X̂ is not compound Poisson. All quantities relating to X̂ will be denoted in the
obvious way, for example ΠL̂−1,Ĥ , κ̂ and V̂ . The reason for this choice of (L̂−1, Ĥ) is that

we may then, for any Lévy process, choose the normalisation of the local times L and L̂
so that the Wiener-Hopf factorisation takes the form

κ(a,−ib)κ̂(a, ib) = a−ΨX(b), a ≥ 0, b ∈ R. (2.9)

Throughout the paper our principal assumption will be (1.12). In that case, by Propo-
sition 5.1 of [18],

κ(a,−α) > 0 for a ≥ 0. (2.10)

Furthermore, by analytic extension, it follows from (2.9) that

κ(a,−z)κ̂(a, z) = a−ΨX(−iz) for a ≥ 0, 0 ≤ ℜz ≤ α. (2.11)

Set

β1 = − lnEeαX1 = −ΨX(−iα) = κ(0,−α)κ̂(0, α), β2 =
κ(0,−α)

q
, β = β1β2. (2.12)

Note that β1, β2 ∈ (0,∞) under (1.12). These constants appear in several formulas
throughout the paper. For future reference we also note that

β1

∫ ∞

0

EeαXt dt = β1

∫ ∞

0

(EeαX1)t dt = 1, (2.13)
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and, letting V (z) = V (∞)− V (z), z ∈ R, we have by (2.6) and (2.8)

β2

∫

z

αe−αzqV (−z) dz = β2

(
1 +

∫

z≥0

αeαzqV (z) dz

)

= β2q

∫

z≥0

eαzV (dz)

=
β2q

κ(0,−α)
= 1.

(2.14)

The following important asymptotic estimate can be found in [18]. Assuming (1.12),

lim
u→∞

Π
+

X(u)

qV (u)
= β. (2.15)

This provides information about the probability of eventual ruin through the Pollacek-

Khintchine formula:
P (τ(u) < ∞) = qV (u). (2.16)

A further useful estimate from [18], holding under (1.12), is

lim
u→∞

Π
+

X(u)

ΠH(u)
= κ̂(0, α) ∈ (0,∞), (2.17)

where ΠH is the Lévy measure of H , and ΠH is its tail. In particular, this implies

ΠH ∈ S(α), (2.18)

since S(α) is closed under tail equivalence; see Theorem 2.7 of [12].

3 Main Results

We next introduce the basic components of the limiting process, namely, processes W
and Z, and a random variable ρ. These three random elements are independent. The
distribution of W is given by

P (W ∈ dw) = β2

∫

z∈R

αe−αzqV (−z)dz Pz(X ∈ dw|τ(0) < ∞), w ∈ D. (3.1)

(Recall that V (y)) = q−1 for y < 0.) Thus W has the law of X conditioned on τ(0) < ∞
and started with initial distribution

P (W0 ∈ dz) = β2αe
−αzqV (−z) dz, z ∈ R. (3.2)

Observe that (3.2) is indeed a probability distribution, by (2.14). Let Z be the Esscher
transform of X , defined by

P ({Zt : 0 ≤ t ≤ s} ∈ Bs, Zs ∈ dx) =
eαxP ({Xt : 0 ≤ t ≤ s} ∈ Bs, Xs ∈ dx)

EeαXs

= eβ1seαxP ({Xt : 0 ≤ t ≤ s} ∈ Bs, Xs ∈ dx)
(3.3)
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where Bs is a Borel in R
[0,s] and x ∈ R. Finally let

ρ be exponentially distributed with parameter β1. (3.4)

Let H : D ⊗D → R be measurable with respect to the product σ-algebra and set

G(w, z) = Ez[H(w,X); τ(0) < ∞], w ∈ D, z ∈ R. (3.5)

We denote by H the class of such functions H which satisfy

H(w,w′)eθwτ(∆)−I(wτ(∆)−≤0) is bounded for some θ ∈ [0, α); (3.6)

G(w, ·) is continuous a.e. on (−∞,∞) for every w ∈ D. (3.7)

For example, if H is bounded and continuous in the product Skorohod topology on D⊗D,
these conditions hold with θ = 0. More general conditions on H , which ensure that (3.7)
holds, will be discussed below. Taking θ > 0 in (3.6) allows for certain unbounded
functions H , which will be used in Section 8.

Here is our main theorem:

Theorem 3.1 (Path Decomposition) Assume (1.12). Then for any H ∈ H

lim
x→∞

lim
u→∞

E(u)H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu) = EH(Z[0,ρ),W ). (3.8)

The reason for introducing x and taking the limit, is to capture the difference in behaviour
of the conditioned process before and after entering a neighbourhood of u. The heuristic
meaning of the result is that the conditioned process, for large u, can be approximated as
follows;

• run the process Z for times 0 ≤ t < ρ;

• then, run the process u+W from time ρ on, that is, at time ρ+ t the value of the
process is u+Wt.

Thus the process behaves like Z up until an independent exponential time ρ, at which
time it makes a large jump from a neighbourhood of 0 to a neighborhood of u. Its position
immediately prior to the jump is Zρ− and its position after the jump is u+W0. If W0 > 0
the process X−u behaves like X started at W0. If W0 ≤ 0, the process X−u behaves like
X started at W0 and conditioned on τ(0) < ∞. This behavior is significantly different
from the Cramér and subexponential cases discussed earlier.

It is apparent that many asymptotic results will flow from Theorem 3.1. We develop
some of these in Sections 5-8. The literature to date has focused on deficit at ruin
(overshoot) and surplus prior to ruin (undershoot). We use Theorem 3.1 to derive these
and related results in Section 7. Of perhaps greater importance in insurance risk theory,
though, is the probability of ruin occurring in finite time. So far this has been neglected
in studies of this type (except, see the paper of Braverman [8] discussed below). We use
Theorem 3.1 to give a completely explicit representation of the asymptotic distribution
of the ruin time, in:

9



Theorem 3.2 (Asymptotic Distribution of Ruin Time) Assume (1.12). Then for

t ≥ 0
lim
u→∞

P (u)(τ(u) ≤ t) = P (ρ+ τW (0) ≤ t)

= β2E(eαXt−ρ ; ρ ≤ t),
(3.9)

where ρ is independent of X and W , and has exponential distribution with parameter β1.

We can compare this result with those of Braverman [8]. He assumes, as we do, that

Π
+

X(x) ∈ S(α) for an α > 0, and his Theorem 2.1 can be used to deduce that

lim
u→∞

P (τ(u) ≤ t)

Π
+

X(u)

exists for each t > 0, and hence, via (2.15), that limu→∞ P (u)(τ(u) ≤ t) also exists.
However, the expressions thus obtained for these limits are highly inexplicit, and it is not
at all clear from them whether or not the limiting distribution is proper (total mass 1).
Theorem 3.2 gives a much simpler expression for the limiting distribution and establishes
that it is indeed proper, being the convolution of two proper probability distributions.

4 Proof of Path Decomposition

Let B denote the Borel sets on R, B([0,∞)) the Borel sets on [0,∞) and set D = D ⊗
[0,∞) ⊗ (−∞,∞). For K ∈ (−∞,∞] and x ∈ [0,∞], define measures µK and νx on
F ⊗ B([0,∞))⊗ B by

µK(dw, dt, dφ) = β1I(φ < K)eαφP (X[0,t) ∈ dw;Xt− ∈ dφ) dt (4.1)

and
νx(dw

′, dr, dz) = β2I(z > −x)αe−αzdz Pz(X ∈ dw′; τ(0) ∈ dr). (4.2)

We will write µ and ν for µ∞ and ν∞ respectively. These are finite measures and indeed
µ and ν are probability measures on D since by (2.13)

µ(D) = β1

∫ ∞

0

EeαXt dt = 1, (4.3)

and by (2.14) and (2.16)

ν(D) = β2

(
1 +

∫

z≤0

αe−αz Pz(τ(0) < ∞) dz

)

= β2

(
1 +

∫

z≥0

αeαz P (τ(z) < ∞) dz

)

= β2

(
1 +

∫

z≥0

αeαzqV (z) dz

)
= 1.

(4.4)
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In a slight abuse of notation we will denote the marginal measures in the obvious way.
Thus for example

µK(dw, dφ) = β1

∫ ∞

0

I(φ < K)eαφP (X[0,t) ∈ dw;Xt− ∈ dφ) dt

νx(dw
′) = β2

∫

z>−x

αe−αzdz Pz(X ∈ dw′; τ(0) < ∞).

(4.5)

From (4.3) and (4.4), µ(dw) and ν(dw′) define probability measures on D. From (2.16)
and (3.1), it is clear that ν(dw′) = P (W ∈ dw′). The following result identifies µ as the
distribution of Z[0,ρ), where Z and ρ are given by (3.3) and (3.4) respectively.

Proposition 4.1 Let Z̃ have law given by P (Z̃ ∈ dw) = µ(dw), and set τZ̃ = τ∆(Z̃) =
inf{t > 0 : Z̃t = ∆}. Then with ρ and Z as above,

{Z̃t : t < τZ̃}
d
= {Zt : t < ρ}. (4.6)

Proof of Proposition 4.1. For any Bs ∈ B([0, s])

P ({Z̃t : 0 ≤ t ≤ s} ∈ Bs, Z̃s ∈ dx, s < τZ̃)

= β1

∫

r>s

∫

φ

eαφP ({Xt : 0 ≤ t ≤ s} ∈ Bs, Xs ∈ dx,Xr− ∈ dφ) dr

= β1P ({Xt : 0 ≤ t ≤ s} ∈ Bs, Xs ∈ dx)

∫

r>0

∫

φ

eαφP (Xr− ∈ dφ− x) dr

= eαxP ({Xt : 0 ≤ t ≤ s} ∈ Bs, Xs ∈ dx) (by (2.13))

= P ({Zt : 0 ≤ t ≤ s} ∈ Bs, Zs ∈ dx)e−β1s (by (3.3))

= P ({Zt : 0 ≤ t ≤ s} ∈ Bs, Zs ∈ dx, s < ρ).

Integrating out x completes the proof. ⊔⊓

Lemma 4.1 Fix x ∈ [0,∞), u > x, A ⊂ (−∞, u− x] and B ⊂ (u−x,∞). Then for any

H ∈ H which is nonnegative,

E[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu) : Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B, τ(u) < ∞] =∫ ∞

0

dt

∫

w∈D

∫

φ∈A

∫

z∈B−u

G(w, z)Π+
X(u− φ+ dz)P (X[0,t) ∈ dw,Xt− ∈ dφ, τ(u− x) ≥ t),

(4.7)
where G is defined by (3.5).

Proof of Lemma 4.1. By the strong Markov property

E[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu) : Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B, τ(u) < ∞] =

E[G(X[0,τ(u−x)), Xτ(u−x) − u) : Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B, τ(u− x) < ∞].

11



Since AB = ∅, ∆Xτ(u−x) > 0 on {Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B}. Thus by the compensation
formula (see [4], p.7)

E[G(X[0,τ(u−x)), Xτ(u−x) − u) : Xτ(u−x)− ∈ A,Xτ(u−x) ∈ B, τ(u− x) < ∞] =

E
∑

t

G(X[0,t), Xt− +∆Xt − u)I(Xt− ∈ A, τ(u− x) ≥ t)I(Xt− +∆Xt ∈ B) =

E

∫ ∞

0

dt

∫

ξ

G(X[0,t), Xt− + ξ − u)I(Xt− ∈ A, τ(u− x) ≥ t)I(Xt− + ξ ∈ B)Π+
X(dξ) =

∫ ∞

0

dt

∫

w∈D

∫

φ∈A

∫

ξ+φ∈B

G(w, φ+ ξ − u)Π+
X(dξ)P (X[0,t) ∈ dw,Xt− ∈ dφ, τ(u− x) ≥ t),

and this is (4.7). ⊔⊓

In conjunction with Lemma 4.1 it is useful to note that, for u > x ≥ 0,

P (Xτ(u−x)− < u− x,Xτ(u−x) = u− x, τ(u − x) < ∞) = 0; (4.8)

see for example Lemma 5.1 of [16].
We need two further observations before we come to the proof of Theorem 3.1. From

(3.6) and (3.7), it follows immediately that for any K

G(w, z)eθwτ(∆)−I(wτ(∆)−<K) (4.9)

is bounded as a function of (w, z) and continuous a.e. in z for every w ∈ D.
Referring to (1.10), an important global bound on convolution equivalent distributions

is obtained by applying Theorem 1.5.6(ii) of [7], to the function

l(r) = (r ∨ e)αF (ln(r ∨ e))

which is slowly varying as r → ∞. This yields the following version of Potter’s bounds for
regularly varying functions. Assume (1.10); then for every ε > 0 there exists an A = Aε

such that
F (u+ x)

F (u)
≤ A[e−(α−ε)x ∨ e−(α+ε)x] for all u ≥ 1, x ≥ 1− u. (4.10)

Clearly this estimate also applies to Π
+

X since we may take F (x) = Π
+

X(x)/Π
+

X(1) for
x ≥ 1. Similarly for ΠH , since recall ΠH ∈ S(α) from (2.18).

The key step in the proof of Theorem 3.1 is the following result:

Theorem 4.1 Assume (1.12), and fix x ∈ [0,∞) and K ∈ (−∞,∞). Then for any

H ∈ H
lim
u→∞

E(u)[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu);Xτ(u−x)− < K]

=

∫

w∈D

∫

w′∈D

H(w,w′)µK(dw)νx(dw
′).

(4.11)
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Proof of Theorem 4.1. We first show that the expression for the limit is finite. By
Proposition 4.1, and independence of Z[0,ρ) and W,

P (Z[0,ρ) ∈ dw,W ∈ dw′) = µ(dw)⊗ ν(dw′). (4.12)

Hence using (4.5)

∫

w∈D

∫

w′∈D

|H(w,w′)|µK(dw)νx(dw
′) ≤

∫

w∈D

∫

w′∈D

|H(w,w′)|µ(dw)ν(dw′)

= E|H(Z[0,ρ),W )| < ∞,

(4.13)

where to verify that the final expectation is finite, it suffices by (3.6) to show that
Ee−θZρ−I(Zρ−≤0) < ∞. But by (3.3)

Ee−θZρ− =

∫ ∞

0

Ee−θZsP (ρ ∈ ds) = β1

∫ ∞

0

Ee(α−θ)Xsds < ∞

if 0 ≤ θ < α.
We now prove convergence. Take u large enough thatK < u−x, and set A = (−∞, K)

and B = (u− x,∞) in (4.7). Then, recalling (4.8), we have

E[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu) : Xτ(u−x)− < K, τ(u) < ∞] =∫ ∞

0

dt

∫

w∈D

∫

φ<K

∫

z>−x

G(w, z)Π+
X(u− φ+ dz)P (X[0,t) ∈ dw,Xt− ∈ dφ, τ(u− x) ≥ t).

Using that K and x are fixed, and that as u → ∞, I(τ(u− x) ≥ t) → 1 and

Π+
X(u− φ+ dz)

Π
+

X(u)
→ eαφαe−αz dz (4.14)

in the sense of weak convergence on (−x,∞), we will show

∫ ∞

0

dt

∫

w∈D

∫

φ<K

∫

z>−x

G(w, z)
Π+

X(u− φ+ dz)

Π
+

X(u)
P (X[0,t) ∈ dw,Xt− ∈ dφ, τ(u− x) ≥ t)

→ β−1

∫

w′∈D

∫

w∈D

H(w,w′)µK(dw)νx(dw
′).

(4.15)
By (2.15) and (2.16), this will complete the proof.

Let

Λu(w, φ) =

∫

z>−x

G(w, z)
Π+

X(u− φ+ dz)

Π
+

X(u)
.

For fixed w, G(w, ·) is bounded and continuous a.e. by (4.9). Thus by (4.14), for fixed
(w, φ)

Λu(w, φ) →

∫

z>−x

G(w, z)αeα(φ−z) dz =: Λ(w, φ).
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Next write
Π+

X(u− φ+ dz)

Π
+

X(u)
=

Π+
X(u− φ+ dz)

Π
+

X(u− φ− x)

Π
+

X(u− φ− x)

Π
+

X(u)
.

The first term is a probability measure on (−x,∞). For the second term, fix ε > 0 so
that θ + 2ε < α. By (4.10), there exists an A so that

Π
+

X(u− φ− x)

Π
+

X(u)
≤ A[e(α−ε)(φ+x) ∨ e(α+ε)(φ+x)] (4.16)

if u ≥ 1 and φ+ x ≤ u− 1. Now for φ < K,

e(α−ε)φ ∨ e(α+ε)φ ≤ e(α−ε)φI(φ < 0) + e(α+ε)Ke(α−ε)φI(0 ≤ φ < K) ≤ e(α+ε)|K|e(α−ε)φ.

Thus if u0 =: (K + x+ 1) ∨ 1, then for some constant C depending on H,K and x,

sup
u≥u0

|Λu(w, φ)| ≤ Ce(α−ε)φe−θwτ(∆)−I(wτ(∆)−<K), all w ∈ D, φ < K. (4.17)

In particular, since α− ε− θ > ε, for every t ≥ 0

sup
u≥u0

|Λu(X[0,t), Xt−)|I(Xt− < K) ≤ Ce(α−ε−θ)Xt−I(Xt− < K)

≤ C1e
εXt−I(Xt− < K),

(4.18)

where C1 = Ce(α−ε−θ)|K|. Next observe that

Φu(t) =:

∫

w∈D

∫

φ<K

Λu(w, φ)P (X[0,t) ∈ dw,Xt− ∈ dφ; τ(u− x) ≥ t)

= E[Λu(X[0,t), Xt−);Xt− < K, τ(u− x) ≥ t]

→ E[Λ(X[0,t), Xt−);Xt− < K] =: Φ(t)

as u → ∞, by bounded convergence using (4.18). Further, again by (4.18), for any t ≥ 0

sup
u≥u0

|Φu(t)| ≤ C1E[eεXt−;Xt− < K] ≤ C1

(
EeαXt

)ε/α
= C1

(
EeαX1

)εt/α
,

where recall EeαX1 < 1 by (1.12). Thus dominated convergence gives

∫ ∞

0

Φu(t) dt →

∫ ∞

0

Φ(t) dt. (4.19)

This is equivalent to (4.15) since the limit, which is expressed in (4.19) as an iterated
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integral, may be rewritten as
∫ ∞

0

Φ(t) dt =

∫

t

dt

∫

w∈D

∫

φ<K

∫

z>−x

G(w, z)αeα(φ−z) dzP (X[0,t) ∈ dw,Xt− ∈ dφ)

=

∫

t

dt

∫

w∈D

∫

φ<K

∫

z>−x

Ez[H(w,X); τ(0) < ∞]αeα(φ−z) dzP (X[0,t) ∈ dw,Xt− ∈ dφ)

= β−1
2

∫

t

dt

∫

w∈D

∫

φ<K

eαφP (X[0,t) ∈ dw,Xt− ∈ dφ)

∫

w′∈D

H(w,w′)νx(dw
′)

= (β1β2)
−1

∫

w∈D

∫

w′∈D

H(w,w′)µK(dw)νx(dw
′).

(4.20)
This calculation is justified by absolute convergence of the final integral, proved earlier in
(4.13). ⊔⊓

Proof of Theorem 3.1. Assume (1.12). Then using (4.5) and dominated convergence,
which is justified by (4.13), we have

lim
K,x→∞

∫

w∈D

∫

w′∈D

H(w,w′)µK(dw)νx(dw
′) =

∫

w∈D

∫

w′∈D

H(w,w′)µ(dw)ν(dw′).

Thus by (4.11) and (4.12),

lim
K,x→∞

lim
u→∞

E(u)[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu);Xτ(u−x)− < K] = EH(Z[0,ρ),W ). (4.21)

Taking H ≡ 1 in (4.21) gives

lim
K,x→∞

lim
u→∞

P (u)(Xτ(u−x)− < K) = 1. (4.22)

Since H is bounded on {wτ(∆)− ≥ K} by (3.6), it follows that

lim
K,x→∞

lim
u→∞

E(u)[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu);Xτ(u−x)− ≥ K] = 0. (4.23)

Combining (4.21) and (4.23) then proves (3.8). ⊔⊓

Remark 4.1 The limiting operations in this section are simpler than those in [18], not
requiring the splitting of integrals over subdomains and associated delicate estimations.
Further, many of the calculations do not require the full force of the S(α) condition. In
particular the proof of (4.15) only uses (1.10) prior to equation (4.19). At this point the
additional condition EeαX1 < 1 is needed to ensure that dominated convergence applies.
Thus the proof actually shows that under (1.10), if H ∈ H is such that (4.19) holds, then
for any x ≥ 0 and K ∈ (−∞,∞)

lim
u→∞

E[H(X[0,τ(u−x)), X ◦ θτ(u−x) − cu);Xτ(u−x)− < K, τ(u) < ∞]

Π
+

X(u)
=

∫ ∞

0

Φ(t)dt.
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This is the case if, for example, Φu are dominated by an integrable function on [0,∞). If
in addition ∫

w∈D

∫

w′∈D

|H(w,w′)|µ̃K(dw)ν̃x(dw
′) < ∞,

where
µ̃K(dw, dt, dφ) = I(φ < K)eαφP (X[0,t) ∈ dw;Xt− ∈ dφ) dt (4.24)

and
ν̃x(dw

′, dr, dz) = I(z > −x)αe−αzdz Pz(X ∈ dw′; τ(0) ∈ dr), (4.25)

then the limit may be rewritten as
∫ ∞

0

Φ(t)dt =

∫

w∈D

∫

w′∈D

H(w,w′)µ̃K(dw)ν̃x(dw
′)

as demonstrated in (4.20). Comparing (4.24) and (4.25) with (4.1) and (4.2), note that
the constants β1 and β2 must be excluded since they no longer need be finite and non-zero.

We briefly address conditions on H , beyond measurability, which ensure that (3.7)
holds. It is natural that such conditions should relate to some type of continuity of H .
We will assume that for each w ∈ D, H(w, ·) is continuous from below on {τ0(w

′) < ∞}
a.s. Pz for every z, that is

lim
ε↓0

H(w,w′ − cε) = H(w,w′) a.s. Pz on {τ0(w
′) < ∞}, for all w ∈ D, z ∈ R. (4.26)

This condition clearly holds if, for every ω ∈ D, H(w, ·) is continuous in the uniform
topology on D, and so in particular if H(w, ·) is continuous in any of the usual Skorohod
topologies. Several examples of functionals of interest that satisfy (4.26) are given in
Lemma 5.1. For a detailed discussion of the various topologies on Skorohod space, see
[26].

Proposition 4.2 If H is measurable and satisfies (3.6) and (4.26), then (3.7) holds.

Proof of Proposition 4.2. For y < z, we have

G(w, y) = Ey[H(w,X); τ0(X) < ∞] = Ez[H(w,X − cz−y); τz−y(X) < ∞].

Next, by right continuity, τε(w
′) ↓ τ0(w

′) as ε ↓ 0 for any w′ ∈ D with τ0(w
′) < ∞. Thus

by (4.26), as y ↑ z

H(w,X − cz−y)I(τz−y(X) < ∞) → H(w,X)I(τ0(X) < ∞) a.s Pz. (4.27)

Hence by bounded convergence, for each w ∈ D

G(w, y) → G(w, z)

as y ↑ z. Thus G(w, ·) is left continuous and consequently continuous except at countably
many points. ⊔⊓

16



Remark 4.2 Condition (4.26) can be weakened by requiring it to hold except for a
discrete set of z. This would result in G(w, ·) being left continuous except on a discrete
set which again implies continuity except at countably many points.

One technical point should be mentioned. In order that the expression in (3.7) make
sense, H(w, ·) must be measurable. If H(w, ·) is continuous in the uniform topology this
need not be the case since there are open sets in the uniform topology which are not in
the σ-algebra generated by the coordinate maps {w′

t : t ≥ 0}. This is why we impose the
blanket condition that H be measurable with respect to the product σ-algebra on D⊗D.

For later reference we note that H(w,w′) = e−θwτ(∆)− trivially satisfies (4.26), and if
θ ∈ [0, α), then H also satisfies (3.6). Thus by Proposition 4.2, H ∈ H. Hence by taking
x = K = 0 in Theorem 4.1, it follows that

lim sup
u→∞

E(u)e−θXτ(u)− < ∞ for every θ ∈ [0, α). (4.28)

We will later show that the limit exists and evaluate it; see Proposition 8.2.

5 General Marginal Convergence Results

In this section we provide a recipe for constructing conditional limit theorems for the
fluctuation variables, by specialising Theorem 3.1. This gives, in Theorem 5.1, joint
convergence of the main variables of interest in insurance risk. Again we need some
preliminary results.

By convention we set w′
0− = w′

0 and G0−(w
′) = 0. Also we define w′

t = sup0≤s≤tw
′
s.

Lemma 5.1 Each of the following functions is continuous from below on {τ0(w
′) < ∞}

a.s. Pz, for all z:
w′

0, τ0(w
′), Gτ(0)−(w

′), w′
τ(0)−, w

′
τ(0)−, w

′
τ(0)

Proof of Lemma 5.1. Clearly w′
0 is continuous from below without any extra conditions.

Now assume that τ0(w
′) < ∞. Let ε > 0 be sufficiently small that τε(w

′) < ∞. Then

τ0(w
′ − cε) = τε(w

′). (5.1)

Thus by right continuity
τ0(w

′ − cε) ↓ τ0(w
′) as ε ↓ 0, (5.2)

which proves τ0(w
′) is continuous from below on {τ0(w

′) < ∞}. Next, from (5.1) we have

(w′ − cε)τ0(w′−cε)∧· = w′
τε(w′)∧· − ε. (5.3)

If w′
τ(0) > 0, then τε(w

′) = τ0(w
′) for all ε ∈ (0, w′

τ(0)), so the result for the remaining

functionals follows immediately from (5.3). Thus we assume w′
τ(0) = 0, in which case

τε(w
′) > τ0(w

′) for all ε > 0. Now Pz(w
′
τ(0) = 0) = 0 if z > 0 so we only need consider
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z ≤ 0. If z < 0, then by Lemma 5.1 of [16], w′
τ0(w′)− = w′

τ0(w′), and consequently also

Gτ0(w′)−(w
′) = τ0(w

′), a.s. Pz. This continues to hold for z = 0, since applying the strong
Markov property at time τ0(w

′), shows τ0(w
′) = 0 a.s. P0 when w′

τ(0) = 0. Thus by right
continuity, we have Pz a.s.

(w′ − cε)τ0(w′−cε)− = w′
τε(w′)− − ε → w′

τ0(w′) = w′
τ0(w′)−

and
Gτ0(w′−cε)−(w

′ − cε) = Gτε(w′)−(w
′) ↓ Gτ0(w′)(w

′) = τ0(w
′) = Gτ0(w′)−(w

′).

The proofs for the remaining functionals are similar. ⊔⊓

Remark 5.1 The above result is false if we replace continuous from below with contin-
uous from above. For example if X is a Poisson process, then for any ε > 0

P0(τ0(w
′ + cε) = 0) = 1, P0(τ0(w

′) = 0) = 0.

It will be convenient to write

Y = X ◦ θτ(u−x) − cu if τ(u− x) < ∞. (5.4)

Thus Yt = Xt+τ(u−x) − u, t ≥ 0, and in particular Y0 = Xτ(u−x) − u, when τ(u− x) < ∞.
Of course Y = Y (u, x), but to simplify the notation, we suppress the dependence on u
and x. From Theorem 3.1 we have that Y converges to W under P (u), as x, u → ∞, in the
sense specified there. Likewise, X[0,τ(u−x)) converges to Z[0,ρ) in the sense of Theorem 3.1,
and in fact we have joint convergence. This provides us with a means for constructing
limit theorems for the fluctuation variables. The first step is in the next proposition.
Recall the definition of X in (1.2), and define W and Z analogously. Note that in (5.5)
we replace the variables on the lefthand side with those on the righthand side in the limit,
as just described. Since Z is a.s. continuous at ρ, one may further replace the subscripts
ρ− by ρ in (5.5), but we leave them in their present form to help emphasize the remark
in the previous sentence.

Proposition 5.1 Assume (1.12) and suppose f : R10 → R is bounded, measurable and

jointly continuous in the last six arguments. Let 0 ≤ θ < α and set

H(w,w′) = f(Gτ(∆)−(w), τ∆(w), wτ(∆)−, wτ(∆)−, w
′
0, Gτ(0)−(w

′), τ0(w
′), w′

τ(0)−, w
′
τ(0)−, w

′
τ(0))

× e−θwτ(∆)−I(wτ(∆)−≤0)I(τ∆(w) < ∞, τ0(w
′) < ∞).

Then H satisfies (4.26) and hence

lim
x→∞

lim
u→∞

E(u)f(Gτ(u−x)−, τ(u− x), Xτ(u−x)−, Xτ(u−x)−, Y0, G
Y
τ(0)−, τ

Y
0 , Y τ(0)−, Yτ(0)−, Yτ(0))

× e−θXτ(u−x)−I(Xτ(u−x)−≤0)

= Ef(GZ
ρ−, ρ, Zρ−, Zρ−,W0, G

W
τ(0)−, τ

W
0 ,W τ(0)−,Wτ(0)−,Wτ(0))e

−θZρ−I(Zρ−≤0).
(5.5)
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Proof of Proposition 5.1. H satisfies (4.26) by Lemma 5.1. Thus by Proposition 4.2
we may apply Theorem 3.1. Upon noting that τ∆(X[0,τ(u−x))) = τ(u− x), the result then
follows immediately. ⊔⊓

In what is essentially a special case of the description of the limiting process given after
Theorem 3.1, we can read off from Proposition 5.1 that the joint limiting distribution of
the time of, the position prior to, and the position relative to u after, the large jump is
(ρ, Zρ−,W0). To be precise: under (1.12) we have

lim
x→∞

lim
u→∞

P (u)(τ(u− x) ∈ dt, Xτ(u−x)− ∈ dφ,Xτ(u−x) − u ∈ dz)

= P (ρ ∈ dt, Zρ− ∈ dφ,W0 ∈ dz)

= β1e
αφP (Xt− ∈ dφ) dt β2αe

−αzqV (−z)dz,

(5.6)

where the last equality follows from (3.2), (3.3) and (3.4). The exact meaning of this
convergence is given by (3.8), which by (5.5), is stronger that the usual weak convergence.

Observe that on (0,∞), P (W0 ∈ dz) = β2αe
−αzdz is the limiting distribution of the

overshoot Xτ(u)−u when the overshoot is due to the large jump. The limiting probability
that the large jump results in an overshoot of u is P (W0 > 0) = β2. A further discussion
of the overshoot is given in Section 7. Note also that (5.6) describes the joint limiting
distribution of the ruin time, the claim surplus immediately prior to ruin and the shortfall
at ruin, when ruin is due to a large claim. This makes precise the “intuitively obvious”
asymptotic independence observed after Theorem 11 in [11], and extends it to also include
the ruin time.

The next step in our recipe is to transfer from the variables on the left hand side of
(5.5) to the fluctuation variables. The key point is to observe that if τ(u) < ∞ and x < u,
then

Gτ(u)− = Gτ(u−x)−I(Y0 > 0) + (τ(u− x) +GY
τ(0)−)I(Y0 ≤ 0),

τ(u)−Gτ(u)− = (τ(u− x)−Gτ(u−x)−)I(Y0 > 0) + (τY0 −GY
τ(0)−)I(Y0 ≤ 0),

Xτ(u) − u = Y0I(Y0 > 0) + Yτ(0)I(Y0 ≤ 0) = Yτ(0),

Xτ(u)− −Xτ(u)− = (Xτ(u−x)− −Xτ(u−x)−)I(Y0 > 0) + (Y τ(0)− − Yτ(0)−)I(Y0 ≤ 0),

Xτ(u)− = Xτ(u−x)−I(Y0 > 0) + (u+ Y τ(0)−)I(Y0 ≤ 0),

u−Xτ(u)− = (u−Xτ(u−x)−)I(Y0 > 0)− Y τ(0)−I(Y0 ≤ 0), and

Xτ(u)− = Xτ(u−x)−I(Y0 > 0) + (u+ Yτ(0)−)I(Y0 ≤ 0).

(5.7)

Since some limiting variables have mass at infinity, we will consider weak convergence
on R∪ {∞}. To be precise we will consider functions f : R4 ⊗ (R∪ {∞}) → R which are
jointly continuous in the sense that f(xn, yn) → f(x, y) as (xn, yn) → (x, y) for xn,x ∈ R

4

and yn, y ∈ (R ∪ {∞}).
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Theorem 5.1 Assume (1.12). Let f : R4 ⊗ (R ∪ {∞}) → R be bounded and jointly

continuous. Then for 0 ≤ θ < α

lim
u→∞

E(u)f(Gτ(u)−, τ(u)−Gτ(u)−, Xτ(u) − u,Xτ(u)− −Xτ(u)−, Xτ(u)−)e
−θXτ(u)−I(Xτ(u)−≤0)

= E[f(GZ
ρ−, ρ−GZ

ρ−,W0, Zρ− − Zρ−, Zρ−)e
−θZρ−I(Zρ−≤0);W0 > 0]

+ E[f(ρ+GW
τ(0)−, τ

W
0 −GW

τ(0)−,Wτ(0),W τ(0)− −Wτ(0)−,∞);W0 ≤ 0]
(5.8)

and

lim
u→∞

E(u)f(Gτ(u)−, τ(u)−Gτ(u)−, Xτ(u) − u,Xτ(u)− −Xτ(u)−, u−Xτ(u)−)e
−θXτ(u)−I(Xτ(u)−≤0)

= E[f(GZ
ρ−, ρ−GZ

ρ−,W0, Zρ− − Zρ−,∞)e−θZρ−I(Zρ−≤0);W0 > 0]

+ E[f(ρ+GW
τ(0)−, τ

W
0 −GW

τ(0)−,Wτ(0),W τ(0)− −Wτ(0)−,−W τ(0)−);W0 ≤ 0].
(5.9)

Thus, under P (u),

(Gτ(u)−, τ(u)−Gτ(u)−, Xτ(u) − u,Xτ(u)− −Xτ(u)−, Xτ(u)−)

→ (GZ
ρ−, ρ−GZ

ρ−,W0, Zρ− − Zρ−, Zρ−)I(W0 > 0)

+ (ρ+GW
τ(0)−, τ

W
0 −GW

τ(0)−,Wτ(0),W τ(0)− −Wτ(0)−, δ∞)I(W0 ≤ 0)

(5.10)

in the sense of weak convergence on R
4 ⊗ (R ∪ {∞}), and similarly for (5.9).

Proof of Theorem 5.1. We only prove (5.8), as the proof of (5.9) is similar. Write the
expectation on the left side of (5.8) as the sum of two expectations, one over Y0 > 0 and
the other over Y0 ≤ 0. Convergence of the expectation over Y0 > 0 to the first term on
the right side of (5.8), as u → ∞ then x → ∞, follows easily from (5.7) and Proposition
5.1, since P (W0 = 0) = 0 and f is bounded and jointly continuous. For the expectation
over Y0 ≤ 0, first observe that if Y0 ≤ 0, then Xτ(u)− = u+ Yτ(0)−, and so on {Y0 ≤ 0}

e−θXτ(u)−I(Xτ(u)−≤0) = I(u+ Yτ(0)− > 0) + e−θXτ(u)−I(u+ Yτ(0)− ≤ 0).

Convergence of the expectation over {u + Yτ(0)− > 0, Y0 ≤ 0} to the second term on the
right side of (5.8), as u → ∞ then x → ∞, again follows from (5.7) and Proposition 5.1
since

lim
x→∞

lim
u→∞

P (u)(u+ Yτ(0)− ≤ 0, Y0 ≤ 0) = 0. (5.11)

Since f is bounded, it thus remains to show

lim
x→∞

lim
u→∞

E(u)(e−θXτ(u)−; u+ Yτ(0)− ≤ 0, Y0 ≤ 0) = 0.

For this it suffices by (5.11) and Hölder’s inequality, to show that for some θ′ > θ,

lim sup
u→∞

E(u)e−θ′Xτ(u)− < ∞,
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which in turn holds for any θ′ ∈ (θ, α) by (4.28). ⊔⊓

Theorem 5.1 provides a general convergence result for the variables of primary interest
in insurance risk, in the convolution equivalent case. It contains and extends many previ-
ous results in the literature as will be explained in Sections 6–8. The two components that
make up the limiting distributions in Theorem 5.1 arise as a consequence of the process
either overshooting or undershooting the boundary at the time of the large jump. We
now give alternate characterisations of these distributions in terms of quantities arising
in fluctuation theory.

Recall the definitions of κ and V in (2.4) and (2.5), and of κ̂ and V̂ in the paragraph
following (2.8). To avoid introducing further notation, there is clearly no harm in as-
suming that the random elements (W,Z, ρ) are independent of X . In particular ρ has
an exponential distribution with parameter β1 and is independent of X . Then by the
Wiener-Hopf Factorisation Theorem, (Gρ, Xρ) and (ρ − Gρ, Xρ − Xρ) are independent
with Laplace transforms given by

Ee−aGρ−bXρ =
κ(β1, 0)

κ(β1 + a, b)
, Ee−a(ρ−Gρ)−b(Xρ−Xρ) =

κ̂(β1, 0)

κ̂(β1 + a, b)
(5.12)

for a, b > 0; see Section 6.4 of [19].
Before stating the next result, we wish to make clear the meaning of the notation

|V (dt− r, z − dy)| below. It is the measure defined on Borel sets in R
2 by

∫ ∫

(t,y)

1A(t, y)|V (dt− r, z − dy)| =

∫ ∫

(t,y)

1A(t+ r, z − y)V (dt, dy).

Some authors omit the absolute values signs. We include them to emphasize that the
function V (t− r, z − y) is increasing in t and decreasing in y, hence the Stieltjes measure
associated with it, which assigns mass

V (t1 − r, z − y1)− V (t1 − r, z − y0)− V (t0 − r, z − y1) + V (t0 − r, z − y0)

to rectangles (t0, t1]× [y0, y1), is negative.

Theorem 5.2 For γ > 0, t ≥ 0, s ≥ 0, θ ≥ 0, φ ≥ 0

P (GZ
ρ− ∈ dt, ρ−GZ

ρ− ∈ ds,W0 ∈ dγ, Zρ− − Zρ− ∈ dφ, Zρ− ∈ dθ;W0 > 0)

= βαe−α(γ+φ−θ)V (dt, dθ)V̂ (ds, dφ)dγ,
(5.13)

where β is given by (2.12).
For γ ≥ 0, t ≥ 0, s ≥ 0, v ≥ 0, y ≥ 0

P (ρ+GW
τ(0)− ∈ dt, τW0 −GW

τ(0)− ∈ ds,Wτ(0) ∈ dγ,W τ(0)− −Wτ(0)− ∈ dv,

−W τ(0)− ∈ dy;W0 ≤ 0)

= βI(γ > 0)

∫

r≤t

e−β1rdr

∫

z≥y

αeαzdz|V (dt− r, z − dy)|V̂ (ds, dv)ΠX(dγ + v + y)

+ βdH

∫

r≤t

e−β1rdr

∫

z≥0

αeαzV (dt− r, dz)δ0(ds, dγ, dv, dy)

(5.14)
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where δ0 denotes a point mass at the origin.

Proof of Theorem 5.2. The form of the limit in (5.14) follows from an extension of
Doney and Kyprianou’s [11] quintuple law to include creeping, as given in Griffin and
Maller [16]. For γ ≥ 0, t ≥ 0, r ≥ 0, v ≥ 0, y ≥ 0, we have by, (3.1), and Theorems 3.1 (ii)
and 3.2 of [16],

P (GW
τ(0)− ∈ dr, τW0 −GW

τ(0)− ∈ ds,Wτ(0) ∈ dγ,W τ(0)− −Wτ(0)− ∈ dv,

−W τ(0)− ∈ dy;W0 ≤ 0)

= β2

∫

z≥0

αeαzdzP (Gτ(z)− ∈ dr, τ(z)−Gτ(z)− ∈ ds,Xτ(z) − z ∈ dγ,

Xτ(z)− −Xτ(z)− ∈ dv, z −Xτ(z)− ∈ dy)

= β2I(γ > 0)

∫

z≥0

αeαzdzI(y ≤ z)|V (dr, z − dy)|V̂ (ds, dv)ΠX(dγ + v + y)

+ β2dH

∫

z≥0

αeαzdz
∂−
∂−z

V (dt, z)δ0(ds, dγ, dv, dy)

= β2I(γ > 0)

∫

z≥y

αeαzdz|V (dr, z − dy)|V̂ (ds, dv)ΠX(dγ + v + y)

+ β2dH

∫

z≥0

αeαzV (dt, dz)δ0(ds, dγ, dv, dy).

(5.15)

Convolving with the exponential distribution of ρ gives (5.14).
For (5.13), using (3.2), (3.3), and independence of W , Z and ρ, we have

P (GZ
ρ− ∈ dt, ρ−GZ

ρ− ∈ ds,W0 ∈ dγ, Zρ− − Zρ− ∈ dφ, Zρ− ∈ dθ;W0 > 0)

= β2αe
−αγdγP (GZ

ρ− ∈ dt, ρ−GZ
ρ− ∈ ds, Zρ− − Zρ− ∈ dφ, Zρ− ∈ dθ)

= β2αe
−αγdγP (GZ

(t+s)− ∈ dt, Z(t+s)− ∈ θ − dφ, Z(t+s)− ∈ dθ) β1e
−β1(t+s)ds

= β2αe
−α(γ+φ−θ)dγ eβ1(t+s)P (G(t+s)− ∈ dt, X(t+s)− ∈ θ − dφ,X(t+s)− ∈ dθ)β1e

−β1(t+s)ds

= β2αe
−α(γ+φ−θ)dγ eβ1(t+s)P (Gρ− ∈ dt, Xρ− ∈ dθ, ρ−Gρ− ∈ ds,Xρ− −Xρ− ∈ dφ)

= β2αe
−α(γ+φ−θ)dγ eβ1tP (Gρ− ∈ dt, Xρ− ∈ dθ) eβ1sP (ρ−Gρ− ∈ ds,Xρ− −Xρ− ∈ dφ),

by independence of the Wiener-Hopf factors. Further

eβ1tP (Gρ− ∈ dt, Xρ− ∈ dθ) = κ(β1, 0)V (dt, dθ)

and
eβ1sP (ρ−Gρ− ∈ ds,Xρ− −Xρ− ∈ dφ) = κ̂(β1, 0)V̂ (ds, dφ),

as can be seen by taking the Laplace transforms and using (2.6) and (5.12). (5.13) then
follows since κ(β1, 0)κ̂(β1, 0) = β1 by (2.9). ⊔⊓
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Theorems 5.1 and 5.2 extend Theorems 10 and 11 in [11]. To see the connection
between (5.14) and Theorem 10 of [11], set

m(dt, dy) =

∫

r≤t

e−β1rdr

∫

z≥y

eαzdz|V (dt− r, z − dy)|,

n(dt, dy) =

∫

r≤t

e−β1rdr

∫

z≥y

eαzdzV (dt− r, dz)δ0(dy).

For any a > 0, b > α,
∫

t≥0

∫

y≥0

e−at−bym(dt, dy) =

∫

t≥0

∫

y≥0

e−at−by

∫

r≤t

e−β1rdr

∫

z≥y

eαzdz|V (dt− r, z − dy)|

=

∫

r≥0

e−β1rdr

∫

z≥0

eαzdz

∫

t≥r

∫

0≤y≤z

e−at−by|V (dt− r, z − dy)|

=

∫

r≥0

e−β1rdr

∫

z≥0

eαzdz

∫

t≥0

∫

0≤y≤z

e−a(t+r)−b(z−y)V (dt, dy)

=

∫

r≥0

e−(β1+a)rdr

∫

y≥0

∫

t≥0

e−at+byV (dt, dy)

∫

z≥y

e−(b−α)zdz

=
1

(β1 + a)κ(a,−α)(b− α)
.

(5.16)
Similarly ∫

t≥0

∫

y≥0

e−at−byn(dt, dy) =
1

(β1 + a)κ(a,−α)
. (5.17)

Setting a = 0 and inverting shows that
∫

t≥0

m(dt, dy) =
eαydy

β1κ(0,−α)
=

eαydy

βq
,

∫

t≥0

n(dt, dy) =
δ0(dy)

β1κ(0,−α)
=

δ0(dy)

βq

(5.18)

from (2.12). Thus after integrating out t, (5.14) reduces to

P (τW0 −GW
τ(0)− ∈ ds,Wτ(0) ∈ dγ,W τ(0)− −Wτ(0)− ∈ dv,−W τ(0)− ∈ dy;W0 ≤ 0)

= I(γ > 0)q−1αeαydyV̂ (ds, dv)ΠX(dγ + v + y) + q−1αdHδ0(ds, dγ, dv, dy),
(5.19)

for γ ≥ 0, s ≥ 0, v ≥ 0, y ≥ 0. Thus we may conclude that for γ ≥ 0, s ≥ 0, v ≥ y ≥ 0

lim
u→∞

P (u)(τ(u)−Gτ(u)− ∈ ds,Xτ(u) − u ∈ dγ, u−Xτ(u)− ∈ dy, u−Xτ(u)− ∈ dv)

= I(γ > 0)q−1αeαydyV̂ (ds, dv − y)ΠX(dγ + v) + q−1αdHδ0(ds, dγ, dv, dy)
(5.20)

in the sense of vague convergence. For γ > 0, this is Doney and Kyprianou’s expression
in Theorem 10 of [11], for the vague limit when X does not creep over the boundary.
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The connection between (5.13) and Theorem 11 of [11] is similar but easier to see. It is
worth emphasizing that the convergence in Theorem 5.1 is stronger than the convergence
in (5.20). In particular convergence of the marginals does not follow from the vague
convergence of (5.20), indeed it need not be the case, but it does follow from the weak
convergence in Theorem 5.1. For example, marginal convergence of the overshoot in (5.20)
would imply

lim
u→∞

P (u)(Xτ(u) − u ∈ dγ)

= I(γ > 0)q−1αeαydy

∫

y≥0

∫

v≥y

∫

s≥0

V̂ (ds, dv − y)ΠX(dγ + v) + q−1αdHδ0(dγ)

= q−1α
[
dHδ0(dγ) +

∫

y≥0

eαyΠH(dγ + y)dy
]

by Vigon’s équation amicale inversée; see (6.7) below. However by Theorem 5.1, in which
marginal convergence does hold, we find that

lim
u→∞

P (u)(Xτ(u) − u ∈ dγ) = P (W0I(W0 > 0) +Wτ(0)I(W0 ≤ 0) ∈ dγ)

= β2αe
−αγdγ + q−1α

[
dHδ0(dγ) +

∫

y≥0

eαyΠH(dγ + y)dy
]
,

as discussed in Section 7. We will make frequent use of marginal convergence in Theorem
5.1 in the subsequent sections.

6 The Ruin Time

By taking f constant in the spatial variables in Theorem 5.1, we obtain marginal conver-
gence in the time variables. We begin with

Proof of Theorem 3.2. Let f : R → R be bounded and continuous. Then by (5.8) (or
(5.9)) with θ = 0

lim
u→∞

E(u)f(τ(u)) = E[f(ρ);W0 > 0] + E[f(ρ+ τW (0));W0 ≤ 0] = Ef(ρ+ τW (0))

which proves the first equality in (3.9). Since ρ+ τW (0) has a continuous distribution

P (ρ+ τW (0) ≤ t) =

∫

s≤t

β1e
−β1sds β2

∫

z

αe−αzdz Pz(τ(0) < t− s)

=

∫

s≤t

β1e
−β1sds β2[1 +

∫

z>0

αeαzdz P (Xt−s > z)]

= β2

∫

s≤t

β1e
−β1sEeαXt−sds

= β2E(eαXt−ρ ; ρ ≤ t)

(6.1)
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which completes the proof. ⊔⊓

Our derivation of the limiting distribution of the ruin time is based on splitting the
distribution at the time of the large jump. One of the points of distinction between the
path decomposition approach to studying ruin and that of [11], is that in [11] the split is
at Gτ(u)−, the time of the last maximum prior to passage over the boundary. This is a very
natural approach given the fluctuation theory as developed in [4] Ch. VI, for example.
We now show how the path decomposition approach can be used to easily derive the joint
limiting distribution of the fluctuation variables

(
Gτ(u)−, τ(u)−Gτ(u)−

)
under P (u), thus

extending the results in [11].
Introduce the measures on [0,∞) given by

δVα (dt) =

∫

θ≥0

eαθV (dt, dθ), δV̂−α(ds) =

∫

φ≥0

e−αφV̂ (ds, dφ) (6.2)

K(ds) =

∫

z≥0

(eαz − 1)ΠL−1,H(ds, dz) =

∫

z≥0

αeαzdzΠL−1,H(ds, z)

and their respective (improper) distribution functions δVα (t), δ
V̂
−α(s) and K(s), where

ΠL−1,H(ds, z) =

∫

y>z

ΠL−1,H(ds, dy).

Theorem 6.1 Assume (1.12). Then for all s, t,≥ 0, we have

lim
u→∞

P (u)
(
Gτ(u)− ∈ dt, τ(u)−Gτ(u)− ∈ ds

)

= β
[
δVα (dt)δ

V̂
−α(ds) +

(
K(ds)+αdHδ0(ds)

) ∫

0≤r≤t

e−β1rδVα (dt− r)dr
] (6.3)

in the sense of weak convergence of probability measures on [0,∞)2.

Proof of Theorem 6.1. From Theorem 5.1 we have

lim
u→∞

P (u)
(
Gτ(u)− ∈ dt, τ(u)−Gτ(u)− ∈ ds

)

= P (GZ
ρ− ∈ dt, ρ−GZ

ρ− ∈ ds;W0 > 0)+

P (ρ+GW
τ(0)− ∈ dt, τW0 −GW

τ(0)− ∈ ds;W0 ≤ 0).

(6.4)

Integrating out γ, θ and φ in (5.13) gives

P (GZ
ρ− ∈ dt, ρ−GZ

ρ− ∈ ds;W0 > 0)

= β

∫

γ>0

∫

θ≥0

∫

φ≥0

αe−α(γ+φ−θ)V (dt, dθ)V̂ (ds, dφ)dγ

= βδVα (dt)δ
V̂
−α(ds).

(6.5)
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Integrating out γ, y and v in the first term of (5.14) gives

P (ρ+GW
τ(0)− ∈ dt, τW0 −GW

τ(0)− ∈ ds,Wτ(0) > 0;W0 ≤ 0)

= β

∫

γ>0

∫

y≥0

∫

v≥0

∫

r≤t

e−β1rdr

∫

z≥y

αeαzdz|V (dt− r, z − dy)|V̂ (ds, dv)ΠX(dγ + v + y).

(6.6)
By Doney and Kyprianou’s extension of Vigon’s équation amicale inversée, it follows that

ΠL−1,H(ds, y) =

∫

v≥0

V̂ (ds, dv)Π
+

X(v + y), s ≥ 0, y ≥ 0. (6.7)

Thus continuing the equalities in (6.6)

= β

∫

y≥0

∫

r≤t

e−β1rdr

∫

z≥y

αeαzdz|V (dt− r, z − dy)|ΠL−1,H(ds, y)

= β

∫

z≥0

αeαzdz

∫

r≤t

e−β1rdr

∫

y≤z

|V (dt− r, z − dy)|ΠL−1,H(ds, y)

= β

∫

z≥0

αeαzdz

∫

r≤t

e−β1rdr

∫

y≤z

V (dt− r, dy)ΠL−1,H(ds, z − y)

= β

∫

y≥0

∫

r≤t

e−β1rdrV (dt− r, dy)

∫

z≥y

αeαzdzΠL−1,H(ds, z − y)

= β

∫

y≥0

eαy
∫

r≤t

e−β1rdrV (dt− r, dy)

∫

z≥0

αeαzdzΠL−1,H(ds, z)

= βK(ds)

∫

0≤r≤t

e−β1rδVα (dt− r)dr.

(6.8)

Integrating out γ, y and v in the second term of (5.14) gives

P (ρ+GW
τ(0)− ∈ dt, τW0 −GW

τ(0)− ∈ ds,Wτ(0) = 0;W0 ≤ 0)

= βdH

∫

r≤t

e−β1rdr

∫

z≥0

αeαzV (dt− r, dz)δ0(ds)

= βαdHδ0(ds)

∫ t

0

e−β1rδVα (dt− r)dr.

(6.9)

Adding the three terms in (6.5), (6.8) and (6.9) gives (6.3). ⊔⊓

7 Overshoots and Undershoots

By taking f constant in the time variables we obtain joint convergence of overshoots and
undershoots.
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Theorem 7.1 Assume (1.12). Let f : R2 ⊗ (R ∪ {∞}) → R be bounded and jointly

continuous. Then for 0 ≤ θ < α

lim
u→∞

E(u)f(Xτ(u) − u,Xτ(u)− −Xτ(u)−, Xτ(u)−)e
−θXτ(u)−I(Xτ(u)−≤0)

= E[f(W0, Zρ− − Zρ−, Zρ−)e
−θZρ−I(Zρ−≤0);W0 > 0]

+ E[f(Wτ(0),W τ(0)− −Wτ(0)−,∞);W0 ≤ 0]

(7.1)

and
lim
u→∞

E(u)f(Xτ(u) − u,Xτ(u)− −Xτ(u)−, u−Xτ(u)−)e
−θXτ(u)−I(Xτ(u)−≤0)

= E[f(W0, Zρ− − Zρ−,∞)e−θZρ−I(Zρ−≤0);W0 > 0]

+ E[f(Wτ(0),W τ(0)− −Wτ(0)−,−W τ(0)−);W0 ≤ 0].

(7.2)

For γ > 0, θ ≥ 0, φ ≥ 0

P (W0 ∈ dγ, Zρ− − Zρ− ∈ dφ, Zρ− ∈ dθ;W0 > 0) = βαe−α(γ+φ−θ)V (dθ)V̂ (dφ)dγ. (7.3)

For γ ≥ 0, v ≥ 0, y ≥ 0

P (Wτ(0) ∈ dγ,W τ(0)− −Wτ(0)− ∈ dv,−W τ(0)− ∈ dy;W0 ≤ 0)

= I(γ > 0)q−1αeαydyV̂ (dv)ΠX(dγ + v + y) + q−1αdHδ0(dγ, dv, dy).
(7.4)

Proof of Theorem 7.1. This follows immediately from (5.8), (5.9), (5.13) and (5.19). ⊔⊓

Theorem 7.1 contains all results we know of in the literature on convergence of indi-
vidual overshoots and undershoots, under a convolution equivalent assumption. The only
marginal limiting distribution in Theorem 7.1 which is proper is that of the overshoot,
and this is given by W0I(W0 > 0) +Wτ(0)I(W0 ≤ 0). An easy calculation from (7.3) and
(7.4), using (6.7), gives

Overshoot: Assume (1.12). Then for γ ≥ 0

P (u)(Xτ(u) − u ∈ dγ) → β2αe
−αγdγ + q−1α

[
dHδ0(dγ) +

∫

y≥0

eαyΠH(dγ + y)dy
]
. (7.5)

Observe that the limiting distribution has mass αdHq
−1 at the origin, and for x > 0

P (u)(Xτ(u) − u > x) → β2e
−αx + q−1e−αx

∫

y>x

(eαy − eαx)ΠH(dy). (7.6)

This is the form of the limiting distribution given in [18] and [11]. In [11], it is
indicated that the limiting distribution on (0,∞) arises as a consequence of either an
arbitrarily large jump from a finite position after a finite time, or a finite jump from a
finite distance relative to the boundary after an arbitrarily large time. This is not quite
correct. From the path decomposition, the latter component of the limiting distribution
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arises as a consequence of a large jump from a finite position to within a finite distance of
the boundary after a finite time, followed by a finite jump a finite time later. The atom
at 0 in the limiting distribution is a consequence of creeping across the boundary when
the large jump undershoots the boundary.

The other marginal limits in Theorem 7.1 are improper, thus in each instance below,
convergence is in the vague sense with remaining mass escaping to +∞. We leave the
calculations to the reader.

Undershoots: Assume (1.12). Then for x ≥ 0

P (u)(u−Xτ(u)− ∈ dx) → q−1αdHδ0(dx) + q−1αeαxΠX(x)dx

∫

0≤v≤x

e−αvV̂ (dv), (7.7)

while for y ≥ 0

P (u)(u−Xτ(u)− ∈ dy) → q−1αdHδ0(dy) + q−1αeαyΠH(y)dy. (7.8)

Remark 7.1 An alternative formulation of (7.7) appears in Theorem 3.2 of [22]. (7.8)
corrects an oversight in Theorem 3.3 of [22]. The first term in (7.8), representing possible
mass at 0 if creeping over the boundary occurs, was omitted.

Positions Prior to Overshoot: Assume (1.12). Then for ζ ∈ (−∞,∞)

P (u)(Xτ(u)− ∈ dζ) → βeαζVX(dζ), (7.9)

where VX is the potential measure of X , while for θ ≥ 0

P (u)(Xτ(u)− ∈ dθ) → qβ2
2e

αθV (dθ).

8 Laplace Transforms and Penalty Functions

Expected discounted penalty functions (EDPF’s) were introduced into risk theory by
Gerber and Shiu [15]. As an example consider

E(u)e−νGτ(u)−−ζ(τu−Gτ(u)−)−η(Xτu−u)−λ(u−Xτu−) (8.1)

where ν ≥ 0, ζ ≥ 0, η > −α, λ ≥ 0. In this case penalization is more severe when
the shortfall at ruin is greater (if η < 0), but this is moderated by a later occurrence of
ruin or by a larger minimum surplus prior to ruin. Among other things, EDPF’s provide
a natural approach to studying solvency requirements, and more generally to valuing
cashflows related to first passage over a barrier; see for example the discussion in Biffis
and Morales [6]. In this section we use our previous results to calculate the limit, as
u → ∞, of (8.1) and other related EDPF’s and Laplace transforms.
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If η ≥ 0, then the limit in (8.1) can be found by using Theorem 5.1. To include the
case −α < η < 0 it will suffice, by uniform integrability, to show that

lim sup
u→∞

E(u)e−η(Xτ(u)−u) < ∞, η > −α. (8.2)

A stronger version of (8.2) is in Park and Maller [22]. Since our weaker version is easy
to prove, we give a direct proof that does not involve delicate estimation of convolution
equivalent integrals as in [22]. Combined with convergence of the overshoot, this weaker
result is in fact equivalent to Park and Maller’s a priori stronger result on convergence of
the mgf of the overshoot.

Lemma 8.1 Let F and G be distribution functions with F (0−) = G(0−) = 0, F ∈ S(α)

and

lim sup
u→∞

G(u)

F (u)
< ∞. (8.3)

Then

lim sup
u→∞

∫
F (u− y)

F (u)
G(dy) < ∞ (8.4)

Proof of Lemma 8.1. (8.3) implies supu G(u)/F (u) ≤ C for some C < ∞, so the lemma
follows easily from (1.11) since

∫
F (u− y)G(dy) =

∫
G(u− y)F (dy)

≤ C

∫
F (u− y)F (dy)

= CF ∗2(u).

⊔⊓

In the following lemma, C denotes an unimportant constant which may change in
value from one usage to the next.

Lemma 8.2 For any η > −α

lim sup
u→∞

E(u)e−η(Xτ(u)−u) < ∞. (8.5)

Proof of Lemma 8.2. Let T (u) = inf{t : Ht > u}. Then τ(u) = L−1
T (u) and Xτ(u) = HT (u).

Hence applying the killed version of Proposition III.2 of [4] (see Theorem 5.6 of [19]), for
x ≥ 0

P (u)(Xτ(u) − u > x) =
P (HT (u) − u > x, T (u) < ∞)

P (τ(u) < ∞)

=
ΠH(u)

P (τ(u) < ∞)

∫

0≤y≤u

ΠH(u− y + x)

ΠH(u)
V (dy).

(8.6)
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Fix ε > 0 so that α− ε+ η > 0. Applying (4.10),

∫

0≤y≤u−1

ΠH(u− y + x)

ΠH(u)
V (dy) ≤ Ae−(α−ε)x

∫

0≤y≤u−1

ΠH(u− y)

ΠH(u)
V (dy)

≤ ACe−(α−ε)x

(8.7)

if u ≥ 2, since by (2.15), (2.17) and (2.18), Lemma 8.1 may be applied to the distributions
F (dy) = I(y > 1)ΠH(dy)/ΠH(1) and G(dy) = V (dy)/V (∞). On the other hand

∫

u−1≤y≤u

ΠH(u− y + x)

ΠH(u)
V (dy) ≤ ΠH(x)

V (u− 1)

ΠH(u)
≤ Ce−αx, (8.8)

as ΠH ∈ S(α). Since the ratio in front of the integral in (8.6) is bounded by (2.15)–(2.17),
the result follows from (8.7) and (8.8). ⊔⊓

As preparation for calculating the limit of (8.1) we need,

Proposition 8.1 Let ν ≥ 0, ζ ≥ 0, η > −α, λ ≥ 0. Then

E[e−νGZ
ρ−−ζ(ρ−GZ

ρ−)−ηW0−λZρ−;W0 > 0] =
βα κ(ζ,−α)

(α + η)(ζ + β1)κ(ν, λ− α)
(8.9)

If in addition λ 6= α + η, then

E[e−ν(ρ+GW
τ(0)−

)−ζ(τW0 −GW
τ(0)−

)−ηWτ(0)+λW τ(0)− ;W0 ≤ 0] =
βα [κ(ζ, λ− α)− κ(ζ, η)]

(β1 + ν)(λ− α− η)κ(ν,−α)
(8.10)

Proof of Proposition 8.1. Fix ν ≥ 0, ζ ≥ 0, η > −α, λ ≥ 0. Then by (5.13)

E[e−νGZ
ρ−−ζ(ρ−GZ

ρ−)−ηW0−λZρ−;W0 > 0]

= βα

∫

t≥0

∫

s≥0

∫

γ>0

∫

θ≥0

∫

φ≥0

e−νt−ζs−ηγ−λθe−α(γ+φ−θ)V (dt, dθ)V̂ (ds, dφ)dγ

= βα

∫

γ>0

e−(α+η)γdγ

∫

t≥0

∫

θ≥0

e−νt−(λ−α)θV (dt, dθ)

∫

s≥0

∫

φ≥0

e−ζs−αφV̂ (ds, dφ)

=
βα

(α + η)κ(ν, λ− α)κ̂(ζ, α)
,

since κ(ν, λ − α) > 0 by (2.10) and κ̂(ζ, α) > 0 trivially. Thus (8.9) follows from (2.11)
and (2.12).
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Now assume λ 6= α + η, then by (3.1)

E[e−ν(ρ+GW
τ(0)−

)−ζ(τW0 −GW
τ(0)−

)−ηWτ(0)+λW τ(0)− ;W0 ≤ 0]

= β2α

∫

z≤0

e−αzdzEz [e
−ν(ρ+Gτ(0)−)−ζ(τ(0)−Gτ(0)−)−ηXτ(0)+λXτ(0)−; τ(0) < ∞]

=
βα

β1 + ν

∫

z>0

eαzdzE[e−νGτ(z)−−ζ(τ(z)−Gτ(z)−)−η(Xτ(z)−z)−λ(z−Xτ(z)−); τ(z) < ∞]

=
βα [κ(ζ, λ− α)− κ(ζ, η)]

(β1 + ν)(λ− α− η)κ(ν,−α)

by the extension of the Second Factorisation Identity in Theorem 3.5 of [16]. ⊔⊓

We are now ready to calculate the limit of (8.1) and a related penalty function.

Theorem 8.1 Fix ν ≥ 0, ζ ≥ 0, η > −α, λ > 0. Then

lim
u→∞

E(u)e−νGτ(u)−−ζ(τu−Gτ(u)−)−η(Xτ(u)−u)−λXτ(u)− =
βα κ(ζ,−α)

(α+ η)(ζ + β1)κ(ν, λ− α)
. (8.11)

If in addition λ 6= α + η, then

lim
u→∞

E(u)e−νGτ(u)−−ζ(τ(u)−Gτ(u)−)−η(Xτ(u)−u)−λ(u−Xτ(u)−) =
βα [κ(ζ, λ− α)− κ(ζ, η)]

(β1 + ν)(λ− α− η)κ(ν,−α)
.

(8.12)

Proof of Theorem 8.1. Since (8.11) and (8.12) follow in a similar manner from (8.9)
and (8.10) respectively, we only prove (8.11). Let

g(t, s, γ, y) = e−νt−ζs−ηγ−λy.

By (5.10), (8.5) and uniform integrability

lim
u→∞

E(u)g(Gτ(u)−, τ(u)−Gτ(u)−, Xτ(u) − u,Xτ(u)−)

= E[g(GZ
ρ−, ρ−GZ

ρ−,W0, Zρ−);W0 > 0]

+ E[g(ρ+GW
τ(0)−, τ

W
0 −GW

τ(0)−,Wτ(0),∞);W0 ≤ 0]

= E[e−νGZ
ρ−−ζ(ρ−GZ

ρ−)−ηW0+λZρ−;W0 > 0],

since λ > 0. Thus (8.11) follows from (8.9). ⊔⊓

Setting η = ν = ζ = 0 in (8.11) gives

lim
u→∞

e−λuE(u)eλ(u−Xτ(u)−) = lim
u→∞

E(u)e−λXτ(u)−

=
β2 κ(0,−α)

κ(0, λ− α)
.

(8.13)
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This gives a transparent explanation of the mgf result in Theorem 3.3 of [22], and extends
it to all λ > 0. Note that letting λ ↓ 0 in the final expression of (8.13), reflects that in the
limit, Xτ(u)− has mass 1 − β2 at infinity under P (u). Similarly setting η = ν = ζ = 0 in
(8.12) gives the growth in the mgf of Xτ(u)− as measured from the origin; for every λ > 0

lim
u→∞

e−λuE(u)eλXτ(u)− =
β2α [κ(0, λ− α)− q]

(λ− α)κ(0,−α)

=
α [κ(0, λ− α)− q]

(λ− α)q
.

(8.14)

In this case letting λ ↓ 0 reflects that in the limit, u−Xτ(u)− has mass β2 at infinity under
P (u).

Observe that (8.11) and (8.12) are both false when λ = 0, as can be seen from (8.13)
and (8.14). In this case the limit is obtained by adding the corresponding expressions in
(8.9) and (8.10).

Theorem 8.2 Fix ν ≥ 0, ζ ≥ 0, η > −α, then

lim
u→∞

E(u)e−νGτ(u)−−ζ(τ(u)−Gτ(u)−)−η(Xτ(u)−u)

=
βα

(α + η)κ(ν,−α)

[
κ(ζ,−α)

β1 + ζ
+

κ(ζ, η)− κ(ζ,−α)

β1 + ν

]
.

(8.15)

Proof of Theorem 8.2. By Theorem 5.1 and (8.5)

lim
u→∞

E(u)e−νGτ(u)−−ζ(τ(u)−Gτ(u)−)−η(Xτ(u)−u)

E[e−νGZ
ρ−−ζ(ρ−GZ

ρ−)−ηW0 ;W0 > 0] + E[e−ν(ρ+GW
τ(0)−

)−ζ(τW0 −GW
τ(0)−

)−ηWτ(0) ;W0 ≤ 0].

The result now follows by setting λ = 0 in (8.9) and (8.10) and adding. ⊔⊓

As a special case of (8.15), with ν = ζ , we obtain the limit of the joint transform of
the overshoot and ruin time;

lim
u→∞

E(u)e−ζτ(u)−η(Xτ(u)−u) =
βα κ(ζ, η)

(α+ η)(β1 + ζ)κ(ζ,−α)
. (8.16)

Setting ζ = 0 in (8.16) evaluates the limit in (8.2). With η = 0, (8.16) reflects the
description of the limiting distribution in Theorem 3.2.

We now briefly describe an application of the EDPF in (8.16) when η > 0. Fix ζ ≥ 0
and choose η = η(ζ) so that e−ζt−ηXt is a martingale. In actuarial terms, η is a solution
to Lundberg’s fundamental equation see, e.g., Gerber-Shiu [15], p.51. To see that such a
η exists and is unique in our setup, first observe that by (2.9), this is equivalent to

κ(ζ, η)κ̂(ζ,−η) = 0. (8.17)
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Now for ζ ≥ 0,

e−κ(ζ,η) = e−qEe−ζL−1
1 −ηH1 ≤ e−qEe−ηH1 =

{
< 1, η ≥ −α

= ∞, η < −α

by Proposition 5.1 of [18]. Thus in order that (8.17) hold it must be that κ̂(ζ,−η) = 0.
Since κ̂(ζ, 0) ≥ 0 and κ̂(ζ,−η) ↓ −∞ as η ↑ ∞, this equation has a unique solution η ≥ 0.
Then by (8.16), if ζ > 0 and η = η(ζ)

E(u) e
−ζτ(u)(1− e−η(Xτ(u)−u))

ζ
→

βα

ζ(β1 + ζ)κ(ζ,−α)

(
κ(ζ, 0)

α
−

κ(ζ, η)

α + η

)

In the spectrally positive case, Gerber and Shiu [15], interpret this in terms of the expected
present value of a deferred continuous annuity at a rate of 1 per unit time, starting at the
time of ruin and ending as soon as the shortfall returns to zero.

The standard form of the EDPF’s introduced by Gerber and Shiu is

E(u)[e−ζτ(u)g(Xτ(u) − u, u−Xτ(u)−)] (8.18)

for suitably chosen functions g. We have chosen to formulate the results in this section in
terms of exponential penalty functions using the undershoot of the maximum u−Xτ(u)−

instead of u − Xτ(u)−. It is clear that more general penalty functions could have been
used, and the resulting limits could then be found using Theorem 5.1 and Theorem 5.2.
For the Gerber-Shiu penalty function in (8.18), under the appropriate conditions on g so
that Theorem 5.1 applies, we have

lim
u→∞

E(u)[e−ζτ(u)g(Xτ(u) − u, u−Xτ(u)−)]

= E[e−ζρg(W0,∞);W0 > 0] + E[e−ζ(ρ+τW0 )g(Wτ(0),−Wτ(0)−);W0 ≤ 0].
(8.19)

A natural example would be

lim
u→∞

E(u)e−ζτ(u)−η(Xτ(u)−u)−λ(u−Xτ(u)−) = Ee−ζρE[e−ζτW0 −ηWτ(0)+λWτ(0)−;W0 ≤ 0] (8.20)

for ζ ≥ 0, η > −α and λ > 0. The limit can then be calculated using Theorem 5.2,
although the resulting expression obtained is not as simple as those obtained in Theorem
8.1. Quite different behaviour occurs if λ < 0 in (8.20);

Proposition 8.2 Let ν ≥ 0, ζ ≥ 0, η > −α, 0 < θ < α and assume that θ − η < α.
Then

lim
u→∞

E(u)e−νGτ(u)−−ζ(τ(u)−Gτ(u)−)−η(Xτ(u)−u)−θXτ(u)− =
βα

(α + η)κ(ν, θ − α)κ̂(ζ, α− θ)
.

(8.21)
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Proof of Proposition 8.2. With η and θ as above, we first observe that

lim sup
u→∞

E(u)e−η(Xτ(u)−u)−θXτ(u)−I(Xτ(u)−≤0) < ∞. (8.22)

This follows immediately from (4.28) if η ≥ 0, consequently we may assume −α < η < 0.
By considering separately the cases Xτ(u) − u > |Xτ(u)−| and Xτ(u) − u ≤ |Xτ(u)−|, one
finds

e−η(Xτ(u)−u)−θXτ(u)−I(Xτ(u)−≤0) ≤ e(θ−η)(Xτ(u)−u) + e−(θ−η)Xτ(u)−I(Xτ(u)−≤0),

and so (8.22) again follows from (4.28) and (8.5), since θ−η < α. Hence e−η(Xτ(u)−u)−θXτ(u)−

is uniformly integrable if η > −α, 0 < θ < α and θ − η < α. Thus by Theorems 5.1 and
5.2

lim
u→∞

E(u)e−νGτ(u)−−ζ(τ(u)−Gτ(u)−)−η(Xτ(u)−u)−θXτ(u)−

= E[e−νGZ
ρ−−ζ(ρ−GZ

ρ−)−ηW0−θZρ−;W0 > 0]

= βα

∫

t≥0

∫

s≥0

∫

γ>0

∫

φ≥0

∫

ξ≥−φ

e−νt−ζs−ηγ−θξe−α(γ−ξ)V (dt, φ+ dξ)V̂ (ds, dφ)dγ

=
βα

α + η

∫

t≥0

∫

ξ≥0

e−νt+(α−θ)ξV (dt, dξ)

∫

s≥0

∫

φ≥0

e−ζs−(α−θ)φV (dt, dθ)V̂ (ds, dφ)

which gives (8.21). ⊔⊓

Setting ν = ζ , using (2.11), and rewriting (8.21) in terms of the undershoot gives

lim
u→∞

e−θuE(u)e−ζτ(u)−η(Xτ(u)−u)+θ(u−Xτ(u)−) =
βα

(α+ η)(ζ −Ψ(i(θ − α)))
. (8.23)

The special case of (8.23) with ζ = η = 0, is given in Theorem 3.2 of [22]. Results related
to (8.23) for the case of a Cramér-Lundberg model with bounded claims density can be
found in Corollary 3.2 of Tang and Wei [24]. When θ = 0, (8.21) fails just as (8.11) fails
when λ = 0. Observe though that letting θ ↓ 0 on the RHS of (8.21) and λ ↓ 0 on the
RHS of (8.11) results in the same limit, as one would expect.
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cesses. Ann. Appl. Probab. 16(1), 91–106.

[12] Embrechts, P. and Goldie, C.M. (1982). On convolution tails. Stoch. Proc. Appl. 13,
263–278.

[13] Embrechts, P., Goldie, C.M. and Veraverbeke, N. (1979). Subexponentiality and
infinite divisibility. Z. Wahrsch. Verw. Geb. 49, 335–347.
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