Path decompositions of digraphs

Brian R. Alspach and Norman J. Pullman

Abstract

A path decomposition of a digraph G (having no loops or multiple arcs) is a family of simple paths such that every arc of G lies on precisely one of the paths of the family. The path number, $p n(G)$ is the minimal number of paths necessary to form a path decomposition of G.

We show that $p n(G) \geq \sum_{v} \max \{0, \operatorname{od}(v)$-id $(v)\}$ the sum taken over all vertices v of G, with equality holding if G is acyclic. If G is a subgraph of a tournament on n vertices we show that $p n(G) \leq \llbracket n^{2} / 4 \rrbracket$ with equality holding if G is transitive. We conjecture that $p n(G) \leq \llbracket n^{2} / 4 \rrbracket$ for any digraph G on n vertices if n is sufficiently large, perhaps for all $n \geq 4$.

In this paper the word "digraph" will be reserved for directed graphs having neither loops nor multiple arcs. A path decomposition of a digraph G is a family of simple paths such that every arc of G lies on precisely one of the paths of the family. The path number of G is the minimal number of paths necessary to form a path decomposition of G; it is denoted by $p n(G)$.

Counterparts of these ideas for undirected graphs were studied by Lovász [3] in response to a problem posed by Erdös (see also Erdös [1], Harary, Schwenk [2] and Stanton, Cowan and James [4]).

[^0]We obtain a lower bound for the path number of a digraph involving only the in- and out-degrees of its vertices (Theorem 1). In Theorem 3 we show that $\llbracket n^{2} / 4 \rrbracket$ is an upper bound for $p n(G)$ when G is a tournament or a subgraph of a tournament and in Corollary 4.2 we show that this bound is sharp. A formula is given in Theorem 4 expressing the path number of any acyclic digraph entirely in terms of its in- and out-degrees.

We conjecture that $\llbracket n^{2} / 4 \rrbracket$ is an upper bound for $p n(G)$ for any digraph G on n vertices if n is sufficiently large, perhaps for all $n \geq 4$.

Notation and preliminaries

The set of arcs of a digraph G will be denoted by $A(G)$, the set of vertices by $V(G)$ and $v w$ will be the notation for the arc from the vertex v to the vertex w. For every vertex v of G, if od (v) arcs begin at v and $i d(v)$ arcs terminate at v we define:

$$
\begin{aligned}
& x(v)=\max \{0, \operatorname{od}(v)-\mathrm{id}(v)\} \text { called the excess at } v, \\
& d(v)=|\operatorname{od}(v)-\mathrm{id}(v)| \text { called the net degree at } v \text {, and } \\
& \mu(v)=\max \{o d(v), \operatorname{id}(v)\} \text { called the maximon degree at } v .
\end{aligned}
$$

The graph obtained from G by deleting a vertex v and all its adjacent arcs will be denoted by G / v. If a vertex on a path is neither the initial nor the terminal vertex of the path we will call it an intermediate vertex of the path. Hereafter "path" will mean simple path.

The following inequality is useful for estimating path numbers.
THEOREM 1. For every digraph G,

$$
\begin{equation*}
p n(G) \geq \sum_{v \in V(G)} x(v) \tag{1}
\end{equation*}
$$

Proof. Let P be any path decomposition of G and $P(v)$ be the set of paths belonging to P which begin at v. Suppose $x(v)>0$. The vertex v is an intermediate vertex for at most id (v) paths of P so at least od (v) - id (v) paths begin at v. Therefore $|P(v)| \geq x(v)$ but $|P|=\sum_{v \in V(G)}|P(v)|$ and hence a minimal path decomposition has at least
Path decompositions of digraphs
$\sum_{v \in V(G)} x(v)$ members.
EXAMPLE 1. The digon below is an example of a digraph in which strict inequality holds in (1):

Another proposition useful in estimating the path number of a digraph is:

THEOREM 2. If v is any vertex of an arbitrary digraph G then $p n(G) \leq p n(G / v)+\mu(v)$.

Proof. Suppose there are $t \geq 0$ digons adjacent to v. If $t \neq 1$ then the digons' arcs can be partitioned into t paths of length 2 . The remaining arcs adjacent at v (if any) can be partitioned into $\max \{\operatorname{od}(v)-t$, id $(v)-t\}$ paths and hence

$$
\begin{aligned}
p n(G) & \leq p n(G / v)+t+\max \{o d(v)-t, i d(v)-t\} \\
& \leq p n(G / v)+\mu(v)
\end{aligned}
$$

If $t=1$ and $o d(v)$ or $i d(v)$ isn't l it is easy to verify that $\mu(v)$ paths suffice to form a decomposition of the arcs adjacent at v. If $\operatorname{od}(v)=\operatorname{id}(v)=t=1$ let w be the vertex of G / v adjacent to v and P be a minimal path decomposition of G / v. If w is an initial (or terminal) vertex of some path of P then we can augment that path by $v w$ (or $w v$) to obtain a path decomposition for G having $p n(G / v)+1$ members. If w is an intermediate vertex of some path p of p augment the part of p from its beginning to w by $w v$ (call the resulting path r), augment the part of p from w to the end of p by $v w$ (call the resulting path s), then $(P \sim\{p\}) \cup\{r, s\}$ is a path decomposition of G having $p n(G / v)+1$ members.

Asymmetric digraphs

A digraph G is asymmetric iff $w v$ is not an arc of G whenever v is an arc of G for every arc $v w$ of G. Alternatively, G is asymmetric iff there exists a tournament T such that G is a subgraph of T.

THEOREM 3. If G is an asymmetric digraph with n vertices then $p n(G) \leq \llbracket n^{2} / 4 \rrbracket$.

Proof (by induction on n). It is easy to check the proposition is true for $1 \leq n \leq 3$.

Suppose $n=2 m>2$. If $d(\dot{v}) \leq 1$ for some $v \in V(G)$ then $\mu(v) \leq m$ because G is asymmetric. Assuming inductively that

$$
p n(G / v) \leq \llbracket(n-1)^{2} / 4 \rrbracket
$$

we have $p n(G) \leq m^{2}$ by Theorem 2. If on the other hand, $d(w) \geq 2$ for all $w \in V(G)$ we may assume that $x(w)>0$ for at least m vertices w of G. Let v be one of these vertices. If $\operatorname{od}(v) \leq m$ then $\mu(v) \leq m$ and we have $p n(G) \leq m^{2}$ by Theorem 2 as before. Therefore we may assume that $\operatorname{od}(v)>m$. Notice that the vertices of G other than v having positive excess as vertices of G have positive excess as vertices of G / v because their net degrees (relative to G) exceed l. If P is a minimal path decomposition of G / v then these vertices of positive excess are initial vertices of paths of P. Let $k=o d(v)-m$ and $W=\{w \in V(G): v w \in A(G)$ and $x(w)>0\}$. W has at least k members. Let p_{ω} denote a path of P beginning at ω and $\hat{\mathrm{p}}_{\omega}$ be the path obtained by augmenting P_{w} by $v w$. The arcs of G which are adjacent at v but do not end in W can be decomposed into $i d(v)$ paths of length 2 and at most $m-i d(v)$ paths of length 1 . Calling this path decomposition $P *$ we see that

$$
\left(P \sim\left\{\mathrm{p}_{w}: w \in W\right\}\right) \cup\left\{\hat{\mathrm{p}}_{w}: w \in W\right\} \cup \mathrm{p}^{*}
$$

is a path decomposition of G of cardinality not exceeding

$$
(p n(G / v)-|W|)+|W|+m
$$

and hence

$$
\begin{aligned}
p n(G) & \leq p n(G / v)+m \\
& \leq m^{2} \text { by our inductive assumption. }
\end{aligned}
$$

A similar argument shows that $p n(G) \leq m^{2}+m$ when $n=2 m+1>1$ and hence

$$
p n(G) \leq \llbracket n^{2} / 4 \rrbracket .
$$

COROLLARY 3.1. For every tournament T,

$$
p n(T) \leq \llbracket n^{2} / 4 \rrbracket .
$$

Later in Corollary 4.2 we will show that the path number of the transitive tournament on n vertices is $\left[n^{2} / 4 \rrbracket\right.$ so the bound given by Corollary 3.1 is best possible with respect to the class of tournaments as well as the class of asymmetric digraphs. In Example 3 below we present an arc-minimal family of digraphs realizing this upper bound for each n.

Acyclic digraphs

LEMMA. If P is a path decomposition of an acyclic digraph G and there exist distinct paths p and r of P such that p ends at the vertex where r begins then P is not minimal.

Proof. Augment p by r to obtain a path decomposition smaller than P.

THEOREM 4. If G is an acyclic digraph then $p n(G)=\sum_{v \in V(G)} x(v)$.
Proof. Suppose P is a minimal path decomposition of G. If $x(v)=0$ then $\operatorname{id}(v) \geq o d(v)$ and hence if some path of P began at v then some other path ends at v. This would imply by the Lemma that P is not minimal. Therefore $P(v)=\varnothing$ whenever $x(v)=0$. Consequently $\{P(v): x(v)>0\}$ partitions P and we have

$$
\begin{equation*}
p n(G)=\sum_{v \in V(G)}|P(v)| . \tag{2}
\end{equation*}
$$

Now suppose $x(v)>0$. No path of P entering v ends at v otherwise as od $(v)>\operatorname{id}(v)$, some other path of P would begin at v which is impossible by the Lemma. Therefore v is an intermediate vertex for id (v) paths and hence $o d(v)-i d(v)$ paths begin at v. Therefore $|P(v)|=x(v)$ for all $v \in V(G)$. Applying (2) we have

$$
\begin{equation*}
p n(G)=\sum_{v \in V(G)} x(v) . \tag{3}
\end{equation*}
$$

EXAMPLE 2. That the converse to Theorem 4 is false is shown by the
digraph below:

COROLLARY 4.1. If G is an acyclic digraph on n vertices, precisely k of which have positive excess then $p n(G) \leq k(n-k)$.

Proof. Let P denote the vertices of G of positive excess. If an arc of G joins two vertices of P then it may be removed from G without altering $\sum_{v \in V(G)} x(v)$ which is $p n(G)$ by Theorem 4. Therefore we may assume, without loss of generality, that any arc of G beginning at a vertex of P must end in a vertex which is not in P. Thus $x(v) \leq n-k$ for all $v \in P$ and hence $p n(G) \leq k(n-k)$.

This gives us an alternate proof of
COROLLARY 4.2. If G is an acyclic digraph on n vertices then $p n(G) \leq \llbracket n^{2} / 4 \rrbracket$.

COROLLARY 4.3. $p n(T)=\llbracket n^{2} / 4 \rrbracket$ if T is a transitive tournament.
EXAMPLE 3. Define a bipartite digraph B_{k} on n vertices as follows: let $v\left(B_{k}\right)=\{1,2, \ldots, n\}$ and let $v w \in A\left(B_{k}\right)$ iff $1 \leq v \leq k$ and $k<w \leq n$. It follows that $x(v)=n-k$ if $1 \leq v \leq k$ and $x(v)=0$ if $k<v \leq n$. Theorem 4 implies that $p n\left(B_{k}\right)=k(n-k)$.

If we take $q .=\llbracket(n+1) / 2 \rrbracket$ then B_{q} is an acyclic digraph whose path number is $\llbracket n^{2} / 4 \rrbracket$. This shows that the inequalities of Corollary 4.2 and Theorem 3 are best possible. No digraph G can have fewer than $p n(G)$ arcs. Therefore B_{q} is an arc-minimal digraph with path number $\mathbb{I} n^{2} / 4 \rrbracket$. In fact, for each $1 \leq k \leq \llbracket n^{2} / 4 \rrbracket$ we can exhibit an arc-minimal connected digraph on n vertices having path number k, because if $k \geq n-1$ a suitable bipartite digraph with k ares can always be chosen, and if $1 \leq k<n-1$ one can orient the arcs on a hamiltonian path suitably to obtain the required path number.

References

[1] P. Erdös, "Some unsolved problems in graph theory and combinatorial analysis", Combinatorial mathematics and its applications, 97-109 (Proc. Conf. Math. Institute, Oxford, July, 1969. Academic Press, London and New York, 1971).
[2] Frank Harary, Allen J. Schwenk, "Evolution of the path number of a graph: covering and packing in graphs, II", Graph theory and computing, 39-45 (Academic Press, New York and London, 1972).
[3] L. Lovasz, "On covering of graphs", Theory of graphs, 231-236 (Proc. Colloq. Tihany, Hungary, September, 1966. Academic Press, New York and London, 1968).
[4] R.G. Stanton, D.D. Cowan, L.O. James, "Some results on path numbers", Proceedings of the Louisiana Conference on Combinatorics, Graph Theory and Computing (1970), 112-135 (Louisana State University, Baton Rouge, 1970).

```
Department of Mathematics,
Simon Fraser University,
Burnaby,
British Columbia, Canada;
Department of Mathematics,
Queen's University,
Kingston,
Ontario, Canada.
```


[^0]: Received 12 February 1974. This work was supported in part by the National Research Council of Canada. The authors would like to thank Professor Paul Kelly for several interesting conversations; and also the Mathematics Department of the University of California at Santa Barbara for the use of their facilities in the preparation of this manuscript.

