
HAL Id: hal-01986326
https://hal.laas.fr/hal-01986326

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Path Deformation Roadmaps: Compact Graphs with
Useful Cycles for Motion Planning

Léonard Jaillet, Thierry Simeon

To cite this version:
Léonard Jaillet, Thierry Simeon. Path Deformation Roadmaps: Compact Graphs with Useful Cycles
for Motion Planning. The International Journal of Robotics Research, SAGE Publications, 2008, 27
(11-12), pp.1175-1188. ฀hal-01986326฀

https://hal.laas.fr/hal-01986326
https://hal.archives-ouvertes.fr


Path Deformation Roadmaps: Compact Graphs with Useful

Cycles for Motion Planning

Léonard Jaillet and Thierry Siméon

LAAS-CNRS, University of Toulouse

Toulouse, France

May 30, 2008

Abstract

This paper describes a new approach to sampling-based motion planning with PRM meth-

ods. Our aim is to compute good quality roadmaps that encode the multiple connectedness

of the configuration space inside small but yet representative graphs that capture well the

different varieties of free paths. The proposed Path Deformation Roadmaps (PDR) rely on

a notion of path deformability indicating whether or not a given path can be continuously

deformed into another existing one. By considering a simpler form of deformation than the

one allowed between homotopic paths, we propose a method that extends the Visibility-PRM

technique (Siméon et al., 2000) to constructing compact roadmaps that encode a richer and

more suitable information than representative paths of the homotopy classes. Path Deforma-

tion Roadmaps contain additional useful cycles between paths in the same homotopy class

that can be hardly deformed into each other. Experimental results provided in the paper show

that the technique enables small roadmaps to reliably capture the multiple connectedness of

complex spaces in various problems involving free-flying and articulated robots in both 2D

and 3D environments.

1 Introduction

Robot motion planning has led to active research over the past decades (Latombe, 1991). Sampling-

based approaches have now emerged as a general and effective framework for solving challenging

problems that remained out of reach of the previously existing complete algorithms. Today, they

make it possible to handle the complexity of many practical problems arising in such diverse fields

as robotics, graphics animation, virtual prototyping and computational biology.

The Probabilistic RoadMap planner (PRM) introduced in (Kavraki et al., 1996) and further

developed in many other works (see Choset et al., 2005; LaValle, 2004 for a survey) has shown

to perform well for a broad class of multiple-query problems, including in high-dimensional con-

figuration spaces. The overall principle of PRM is to capture the connectivity of the collision-free

space C f ree by a set of one-dimensional curves stored in a precomputed roadmap. The roadmap is

obtained by sampling robot configurations and subsequently connecting promising samples with

valid local paths generated by a simple and fast local planner. Then, multiple path planning queries

can be answered efficiently by simply connecting the query configurations and searching the aug-

mented roadmap for a solution path, generally smoothed in a post-processing step to improve the

quality of the solution. While PRM is successful for robots with many degrees of freedom and

1



probabilistic complete, its performance degrades in the presence of narrow passages that require

a prohibitively high density roadmap. A number of variants and extensions have been proposed

to alleviate this problem and improve PRM performance, e.g. biasing sampling around obstacles

(Amato et al., 1998; Boor et al., 1999; Hsu et al., 2003) or towards the medial axis (Wilmarth et

al., 1999; Holleman and Kavraki, 2000; Lien et al., 2003), using free-space dilatation (Cheng et

al., 2006; Saha and Latombe, 2005), visibility-based filtering (Siméon et al., 2000) or adaptive

sampling (Kurniawati and Hsu, 2006; Rodriguez et al., 2006), exploiting search space information

(Burns and Brock, 2005) or delaying collision checks (Bohlin and Kavraki, 2000; Sánchez and

Latombe, 2002).

While most PRM variants focus on the fast computation of roadmaps reflecting the connectiv-

ity of the free configuration space, only few works (Schmitzberger et al., 2002; Nieuwenhuisen and

Overmars, 2004; Geraerts and Overmars, 2006) address the problem of computing good quality

roadmaps that encode inside small graphs the multiple connectedness of the space with a limited

number of useful cycles, i.e. cycles representative of the varieties1of free paths. PRM often leads

to dense roadmaps, whereas small graphs may be desirable in order to fasten both query time and

roadmap updates. In contrast, Visibility-PRM (Siméon et al., 2000) produces very small roadmaps

by rejecting most samples that lie in the visibility regions of existing guards. However, this pruning

strategy leads to tree-like roadmaps that do not capture the multiple connectedness of the space.

Introducing cycles is important for getting higher quality solutions when postprocessing queries,

thus avoiding the computation of unnecessarily long paths, difficult to shorten by the smoothing

techniques (e.g. Sekhavat et al., 1998; Sánchez and Latombe, 2002). Useful cycles also make the

roadmap more robust to dynamic changes in the environment and may allow the planner to choose

alternative routes for avoiding repetitive motions (Nieuwenhuisen and Overmars, 2004).

Intuitively, the probability that a roadmap captures well the different paths varieties of the

free configuration space increases with its degree of redundancy. However, a direct approach at-

tempting connections between all pairs of nodes is far too costly. Thus, several heuristic-based

connection strategies are usually applied to limit the number of redundant cycles. A first way (e.g.

Kavraki et al., 1996) is to restrict the connection attempts of new samples to the k nearest nodes of

the roadmap (or of each connected component). Another variant is to only consider nodes within

a ball of radius r centered at the new sampled configuration (e.g. Bohlin and Kavraki, 2000).

A more recent technique proposed in (Nieuwenhuisen and Overmars, 2004) only creates cycles

between already connected nodes if they are k times more distant in the roadmap than in the con-

figuration space. This idea is also used in (Geraerts and Overmars, 2006) for creating high quality

roadmaps for simple 2-3 dof robots in virtual environments. In all cases, the capture of the relevant

path varieties notably varies depending on the choice of some parameter (e.g. k or r). Moreover

it is difficult to choose with these heuristic sampling strategies the right parameter values for a

given environment. This may result in a significant loss of performance of the roadmap construc-

tion process. A more formal technique (Schmitzberger et al., 2002) proposed for two-dimensional

problems only considers cycles that encode the homotopy classes of the free space. Finally, other

related works aim to increase the roadmap connectivity in constrained directions of the configura-

tion space using a node connection strategy based on a Delaunay triangulation (Huang and Gupta,

2004) or exploit cycles for providing alternative routes in dynamic environments with mobile ob-

stacles (van den Berg et al., 2005).

In this paper we present a new method to building compact roadmaps that are yet representative

1The term “path variety” is used in the paper to refer to a given class of similar paths.

2



of the different varieties of free paths. The method only generates a limited number of useful

cycles in the roadmap. Moreover it stops automatically when most of the relevant alternative

paths have been found. Our approach relies on a notion of path deformability indicating whether

or not a given path can be continuously deformed into another existing one. Compared with the

standard notion of homotopy which is not directly suitable for our purpose because it relies on

excessively complex deformations (Sect. 2), we consider simpler and more easily computable

deformations between paths (Sect. 3). This results in compact roadmaps that capture a richer set

of paths than homotopy (Sect. 4). We describe in Section 5 a two-stage algorithm for constructing

such (easy) path deformation roadmaps. The first stage builds on Visibility-PRM (Siméon et al.,

2000) to construct a small tree covering the space and capturing its connected components as

good as possible. The second stage aims at enriching the roadmap with new nodes involved in the

creation of useful cycles. The key ingredient of this step is an efficient path visibility test used for

the filtering of useless paths that can be easily deformed into existing roadmap paths. Following

the philosophy of Visibility-PRM, the second stage also integrates a stop condition based on the

difficulty of finding new useful cycles. Finally, some experimental results (Sect. 6) show that the

technique enables small roadmaps to reliably capture the multiple-connectedness of configuration

spaces in various problems involving free flying or articulated robots.

2 Homotopy versus Useful Roadmap Paths

First we informally discuss the relation between homotopy and the representative path varieties

that it would be desirable to store in the roadmap. The capture of the homotopy classes of C f ree

corresponds to a stronger property than connectivity. Two paths are called homotopic (with fixed

endpoints) if one can be ”continuously deformed” into the other (see section 3.1). Homotopy de-

fines an equivalence relation on the set of all paths of C f ree. A roadmap capturing the homotopy

classes means that every valid path (even cyclic paths) can be continuously deformed into a path of

the roadmap. PRM methods usually do not ensure this property. Only the work of Schmitzberger

(Schmitzberger et al., 2002) considers the problem formally and sketches a method for encoding

the set of homotopy classes inside a probabilistic roadmap. However, the approach is only ap-

plied on two-dimensional problems and its extension is limited by the difficulty of characterizing

homotopic deformations in higher dimensions.

Moreover, as it was noted in (Nieuwenhuisen and Overmars, 2004) capturing the homotopy

classes in higher dimensions may not be sufficient to encode the set of representative paths since

homotopic paths (i.e. paths in the same homotopy class) may be too hard to deform into each other.

This problem is illustrated by the example in Figure 1. Here C f ree contains only one homotopy

class. Therefore, an homotopy-based roadmap would have a tree structure, such as the simple 2

nodes (n1,n2) tree shown in the figure. While for the left query example, the solution path (qi-n1-

n2-q f ) found in the roadmap could be easily deformed into the displayed short path connecting

query configurations (qi,qg), a free deformation would be much difficult to compute for the right

example. Even if the topological nature of the two displayed paths is the same, their difference

is such that it is preferable to store a representation of both paths in the roadmap. Generalizing

this idea, we say that a roadmap is a good representation of the varieties of free paths if any path

can be ”easily” deformed into a path of the roadmap. This notion of simple path deformation is

formalized below.

3



qi

qf

n1

n2

qi

qf

n1

n2

Figure 1: Two examples of query for a 2 nodes graph (n1-n2). In the left picture, the solution

path (qi-n1-n2-q f ) extracted from the graph could be easily deformed into the displayed short path

connecting query configurations (qi,qg) whereas a deformation in C f ree would be much complex

in the case of the right picture.

3 Complexity of a Path Deformation

In this section, after a brief reminder of the definition of a homotopic deformation, we propose a

way to characterize classes of path deformations according to their complexity.

3.1 Homotopy

The homotopy between two paths is a standard notion from Topology (see Hatcher, 2002 for a

complete definition). Two paths τ and τ
′ in a topological space X are homotopic (with end points

fixed) if there exists a continuous map h : [0,1]× [0,1]→ X with h(s,0) = τ(s) and h(s,1) = τ
′(s)

for all s ∈ [0,1] and h(0, t) = h(0,0) and h(1, t) = h(1,0) for all t ∈ [0,1].

Homotopy is a way to define any continuous deformation from one path to another. Next,

we introduce a less general class of deformations, called K-order deformations characterizing

particular subsets of homotopic deformations and that is used in section 4 for computing path

deformation roadmaps.

3.2 K-order Deformation

Definition 1. A K-order deformation is a particular homotopic deformation such that each curve

transforming a point of τ into a point of τ
′ is an angle line of K segments, ie. a piecewise linear

curve, formed by K consecutive straight line segments.

Therefore, a first-order deformation surface describes a ruled surface 2 and a K-order defor-

mation is obtained by concatenation of K ruled surfaces. This is illustrated by Figure 2, which

shows different types of path deformations: (a) is a general homotopic deformation whereas (b)

2A ruled surface is a surface that can be swept out by moving a straight line in space

4



τ

τ
′

τ

τ
′

τ

τ
′

a b c

Figure 2: (a) general homotopic deformation. (b) first order deformation: the deformation sur-

face is a ruled surface. (c) Second order deformation: the deformation surface is obtained by

concatenating two ruled surfaces.

and (c) respectively show 1st-order and a 2nd-order deformations.

Let Di denote the set of i-order deformations. We clearly have Di ⊂D j for all i < j. Thus, the

value K of the smallest K-order deformation existing between two paths is a good measure of the

difficulty to deform one path into the other.

3.3 Visibility Diagram of Paths

It is important to note that a first-order deformation between two paths exists if and only if it

is possible to simultaneously go through the two paths while maintaining a visibility constraint

between the points of each path (see Figure 3). This formulation provides a computational way to

test the existence of a first-order deformation, also called visibility deformation between two paths.

Let Llin be the straight line segment between two configurations of C. The parametric visibility

function Vis of two paths (τ,τ ′) is defined as follows:

Vis :







[0,1]× [0,1] → {0,1}
Vis(t, t ′) = 1 if Llin(τ(t),τ ′(t ′)) ∈ C f ree

Vis(t, t ′) = 0 otherwise

t = 0

t
′
= 0

t
′
= 1

t = 1

τ

τ
′

qt1

qt
′

1 qt
′

2

qt2

V is(t1, t
′

1
) = 1

V is(t2, t
′

2
) = 0

Figure 3: The parametric visibility function of two paths evaluates the visibility between the points

of each path.

Then, the visibility diagram of paths (τ,τ ′) is defined as the two dimensional diagram of the

Vis function. It is illustrated by Figure 4 showing several examples of computed visibility diagrams

5



τ

τ
′

τ
′

τ

τ

τ
′

a

c

d

τ

τ
′

b

τ

τ
′

τ

τ
′

τ

τ
′

τ

τ
′

0 1

1

0 1

1

0
1

0
1

0 1

0

1

1

1

1

1

0

0

Figure 4: Visibility diagrams for pairs of paths τ , τ
′ with the same endpoints. White areas repre-

sent regions where Vis(t, t ′) = 1. A visibility deformation is only possible in the last example (d),

where a valid path linking the points (0,0) and (1,1) can be found in the visibility diagram.

6



with the corresponding paths. Thanks to this diagram, the visibility (i.e. first-order) deformation

between two paths can now be expressed as follows: two paths (τ , τ
′) (with the same endpoints)

are visibility deformable one into the other if and only if there is a path in their visibility diagram

linking the points of parameters (0,0) and (1,1). Therefore it is possible to test the visibility de-

formation between two paths by computing their visibility diagram and then searching for a path

in the diagram linking the points (0,0) and (1,1).

In the two first examples (a-b) of Figure 4, there is no visibility deformation between the

paths (τ , τ
′) since obstacles inside the cycle paths forbid any homotopic deformation. In the third

example (c), an homotopic deformation between τ and τ
′ is possible, but the two paths are still

not deformable by visibility. Finally a visibility deformation is only possible for the last example

(d) where a valid path linking the points (0,0) and (1,1) can be found in the visibility diagram.

4 K-order Deformation Roadmap

In the previous section we have defined a way to characterize the complexity for two paths to be

deformed one into the other. This formalism is now used to define the ability of a given roadmap

to capture the different varieties of free paths of the configuration space.

Definition 2. A roadmap R is a K-order deformation roadmap if and only if for any path τ of

C f ree it is possible to extract a path τ
′
R from R (by connecting the two extreme configurations of

the path) such that τ and τ
′
R are K-deformable.

This definition establishes a strong criterion specifying how the different varieties of free paths

are captured inside the roadmap. One can also note that since a K-order deformation is a specific

kind of homotopic transformation, any deformation roadmap captures the homotopy classes of

C f ree. The following subsections present a computational method to construct such roadmaps.

4.1 Visibility Deformation Roadmap

We first define the notion of Roadmap Connected from any Point of View (called RCPV roadmaps)

previously introduced in (Schmitzberger et al., 2002). Then we establish that RCPV roadmaps are

visibility (i.e. first-order) deformation roadmaps.

4.1.1 Visible Subroadmap

Let R be a roadmap with a set N of nodes and a set E of edges. Let also assume that R covers C f ree.

The coverage property means that every configuration in C f ree is visible from a node of R. Thus

it is possible to extract from N a subset G of nodes (called guards) sufficient for maintaining this

coverage. Then, we can define for a free configuration qv, the Visible Subroadmap Rv = (Nv,Ev),
as follows :

• Nv sublist of guards visible from qv: Nv = {g ∈ G/Llin(qv,g) ∈ C f ree}

• Ev, sublist of edges visible from qv: Ev = {e ∈ E/Llin(qv,e) ∈ C f ree}

Note that the notation Llin(qv,e) ∈ C f ree means that {∀q ∈ e, L(qv,q) ∈ C f ree}. Examples of

visible subroadmaps are presented in Figure 5.

7



qv

qv

Gards Connectors

Edges visible from qv Edges unvisible from qv

Figure 5: Two examples of visible subroadmap from a given configuration qv. On the left, the

visible subroadmap is disconnected whereas it is connected on the right.

4.1.2 RCPV Roadmaps

Definition 3. A Roadmap Connected from any Point of View (or RCPV roadmap) is such that for

any configuration of C f ree, the visible subroadmap is connected.

The following property establishes the link between RCPV roadmaps and visibility deforma-

tion roadmaps.

Property: A RCPV roadmap is a particular case of visibility deformation roadmap.

Sketch of proof: Let R be a RCPV roadmap and τ , a path of C f ree. As a RCPV roadmap ensures

the coverage of C f ree, τ can be covered by a given set of n guards, inducing its partitioning into

successive elementary paths:

τ = {τg1
⊕ τg1∩g2

⊕ ...⊕ τgi
⊕ τgi∩gi+1

⊕ τgi+1
⊕ ...τ

gn−1
⊕ τgn−1∩gn

⊕ τgn
}

with τgi
denoting the portion of path visible from the gi guard, τgi∩gi+1

the portion visible

simultaneously from gi and gi+1 (c.f. Figure 6). Note that τ can possibly go through the visibility

region of a guard multiple times. Thus, we can have gi = g j for j 6= i− 1 and j 6= i + 1 and τ is

therefore partitioned into at least 2n−1 portions.

Since τgi
and gi are by definition visible, it is possible to build a patch of ruled surface between

them (Figure 7.a). Similarly, there is a patch of ruled surface between τgi+1
and gi+1. Because R

is a RCPV roadmap, any configuration qv ∈ τgi
∩ τgi+1

sees a path τ
′
R connecting gi to gi+1. This

property makes it possible to build a third patch of ruled surface between qv and τ
′
R (Figure 7.b).

Finally, it is possible to fuse these three patches into a single ruled surface between τgi
∩ τgi+1

and

τ
′
R (Figure 7.c). Thus, there exists a ruled surface (i.e. a visibility deformation surface) between

the totality of τ and a path of the roadmap.

RCPV roadmaps are first-order deformation roadmaps. However, these roadmaps involve a

high level of redundancy (see results section 6) and yet contain many useless cycles, especially in

constrained situations. Therefore, to keep a compact structure we filter a part of the redundancy

as explained in the following section. We will show that this filtering leads to a second-order

8



g1 g2 gi−1 gi+1gi gn−1 gn

τg1

τg1∩g2

τgi−1∩gi

τgi∩gi+1

τgn−1∩gn

τgn

τgn−1τg2

τgi−1

τgi
τgi+1

Figure 6: Path decomposition in function of the portions visible from the guard nodes.

R R

Figure 7: A RCPV roadmap is a visibility deformation roadmap. (a) the visibility of the guard

gives first patches of ruled surfaces. (b) the RCPV roadmap property guarantees the visibility of a

roadmap path connecting two guards. (c) By construction, a global visibility deformation surface

can be built.

deformation roadmap.

4.2 Second-order Deformation Roadmaps

Let R = (N,E) be a RCPV roadmap and G∈N be a set of guard nodes ensuring the C f ree coverage.

Let us also consider a given pair of guards and τ , τ
′ two paths of the roadmap linking these guards

(i.e. creating a cycle) and visibility deformable one into the other. Then we have the following

property:

Property: From a RCPV roadmap R, the deletion of redundant paths τ
′
R (i.e. visibility deformable

into path τ and connecting the same guards) leads to a second order deformation roadmap.

Sketch of proof: Let us consider the partition of a free path τ , as defined in section 4.1.2. In that

section we have shown that with a RCPV roadmap, one can extract a roadmap path τ
′
R such that

τgi
∩ τgi+1

is visibility deformable into τ
′
R (Figure 8.a). Now suppose that the redundant path τ

′
R

has been deleted as proposed above. It means that τ
′
R was visibility deformable into another path

τ
′′
R which remains in the roadmap (Figure 8 b). Thus, by concatenation of two ruled surfaces it is

possible to build a second order deformation surface between any path τ of C f ree and a path of the

roadmap (Figure 8 c).

9



R

RR

R

R

Figure 8: Deleting redundant paths in a RCPV roadmap leads to a second-order deformation

roadmap. (a) Visibility deformation between a path τ and a RCPV roadmap path τ
′
R. (b) A filtered

path τ
′
R is visibility deformable into a roadmap path τ

′′
R . (c) By construction, there is a second-

order deformation surface between a free path and a portion of roadmap.

The above proofs are not constructive. The next section describes a sampling-based algorithm

for constructing non-redundant graphs (referred to as ”Path Deformation Roadmaps” in the rest of

the paper) that tend to satisfy the second-order path deformation property.

5 Algorithm for building Path Deformation Roadmaps

The algorithm proposed for constructing Path Deformation Roadmaps (PDR) proceeds in two

stages. First, it computes a small covering tree that captures the connectedness of the space. Then,

during a second stage the initial tree is enhanced with useful cycles required for the multiple

connectedness.

The initial covering tree is computed using Visibility-PRM. The pseudo-code of the algorithm

is shown in Figure 9 (see Siméon et al., 2000 for a detailed description). Visibility roadmaps

rely on a free-space structuring into visibility domains (i.e. sets of configurations connectable

to a given guard by a valid local path). Computed guards are linked together via connectors

located in their overlapping visibility regions. Such roadmaps can be constructed using a simple

PRM variant : each free sample is added to the roadmap only if it cannot be connected to any

existing node (i.e. guard) or if it connects at least two components (i.e. connector). The algorithm

termination is controlled by the difficulty of adding a new guard (ntrymax parameter) which relates

to the quality of the roadmap in term of coverage (Siméon et al., 2000). The computed roadmap is

a small tree (i.e. no cycles) capturing the free space coverage with a limited number of nodes and

edges. However at this stage there is no guaranty concerning the deformability of C f ree paths into

roadmap paths.

Therefore, the visibility tree is enriched during the second stage with nodes and edges, creating

the useful cycles required to obtain a path deformation roadmap. Instead of first building a RCPV

roadmap and then filtering the redundant cycles (as defined in section 4.2), for efficiency purpose

the algorithm directly performs the redundancy filtering before each addition of a new cycle to the

roadmap.

The pseudo-code of the algorithm used to build a PDR is shown in Figure 10. At each itera-

tion a free configuration qv is randomly sampled and the connectivity of the visible subroadmap

Rv seen by the sample is determined (TestVisibSubRoadmap function line 6). When the visible

subroadmap is found to be singly connected, the sample can be directly rejected since any con-

nections to the roadmap will obviously yield to useless cycles (see Figure 5 right). In the other

10



VISIBILITY-PRM

input : the robot A, the environment B, ntrymax

output : a roadmap R with a tree structure

1 ntry← 0

2 While ntry < ntrymax

3 q← RandomFreeConfig(A,B)

4 gvis← /0; Connector← False

5 For all components Ri of R

6 g← VisibleConfInComponent(q,Ri)

7 If g 6= /0

8 if gvis = /0

9 gvis← g

10 Else

11 NewConnector(q,g,gvis)

12 Connector← True

13 End If

14 End If

15 until Connector = True

16 If (gvis = /0)

17 NewGuard(q)

18 ntry← 0

19 Else

20 ntry← ntry+1

21 End if

22 End While

Figure 9: Visibility-PRM algorithm used to compute an initial tree in the PDR method.

case, a reduncancy test of cycle paths possibly created by qv must be performed. As explained

in Sec. 5.1, the connectivity test of the visible subroadmap stops as soon as the subroadmap is

found to be disconnected (thus avoiding as much as possible a whole connectivity test) and returns

the two computed components Comp1 and Comp2. Then, the nearest nodes n1,n2 from qv are

selected inside these components and are used to test if there is a visibility deformation between

the path τ = n1−qv−n2 and a roadmap path linking n1 to n2 (TestRedundancy function line 10).

If such a visibility deformation exists, the configuration is useless with regards to the construc-

tion of a second-order deformation roadmap and is therefore rejected. Otherwise, qv is inserted

in the roadmap as a new node and n1−qv, n2−qv are also inserted as new edges. The algorithm

memorizes the number of successive failures since the last useful cycle inserted. Similarly to the

termination control of Visibility-PRM, this information is used to stop the iterations when the

insertion of a new cycle becomes too difficult, i.e. when most of the useful cycles are already

captured. From a convergence point of view, a roadmap computed with Path- Deformation-PRM

tends toward a second-order deformation roadmap for sufficiently high values of its termination

control parameter (ntry cyclmax).

We next detail the algorithms used to establish the subroadmap connectivity (TestVisibSub-

Roadmap function) and to test the visibility deformation between pairs of paths (TestRedundancy

function).

11



PATH-DEFORMATION-PRM
input : the robot A, the environment B, ntrymax, ntry cyclmax

output : a Path Deformation Roadmap

1 R← Visibility-PRM(A,B,ntrymax)
2 ntry cycl← 0

3 While ntry cycl < ntry cyclmax

4 qv← RandomFreeConfig(A,B)

5 ntry cycl← ntry cycl +1

6 If TestVisibSubRoadmap(R,qv) = Disconnected

7 n1← NearestGuard(qv,Comp1(Rv))
8 n2← NearestGuard(qv,Comp2(Rv))
9 τ ← BuildPath(n1,qv,n2)

10 If TestRedundancy (τ,n1,n2,R) = False

11 CreateCyclicPath(τ,R)

12 ntry cycl← 0

13 End If

14 End If

15 End While

Figure 10: General algorithm for building a Path Deformation Roadmap.

5.1 Visible Subroadmap

The pseudo-code of the TestVisibSubRoadmap function (figure 11) outlines the lazy evaluation

method used to check the connectivity of a visible subroadmap seen from a given configuration

qv. This two-stage process is also illustrated on Figure 12. Starting from the current roadmap

(Fig. 12.a), all the edges are first initialized as potentially visible. The algorithm first checks the

node visibility from qv by testing the collision-freeness of straight line segments linking qv to each

roadmap nodes (Fig. 12.b). The set of non visible nodes is then used to speed up the connectivity

test. Indeed, when a given node is labeled as non visible, all its edges can also be labeled as non

visible from qv. In most cases, this fast test is sufficient to establish the disconnectedness of the

visible subroadmap without requiring more costly tests. Otherwise, the algorithm further proceeds

by computing the visibility of edges linking the visible nodes (Fig. 12.c). Note that all edges are

not systematically tested since the computation stops as soon as the visible subroadmap (Fig. 12.d)

is found to be disconnected. Next section describes the visibility test between a whole edge and a

given configuration.

5.1.1 Edge Visibility :

Testing the visibility of an edge from a configuration qv is equivalent to checking the validity of

triangular configuration-space facets, defined by qv and the two edge’s endpoints (c.f. Figure 13).

The test can involve one or several facets depending on the topological nature of C :

• If C is isomorphic to [0,1]n (the robot’s degrees of freedom are only translations and/or

bounded rotations) then the visibility test can be done by testing only a single facet in C

(Figure 14.a).

• If C is isomorphic to [0,1]n× SO(d)m with m > 0 (i.e. one or more degrees of freedom

are cyclic), the visibility test of an edge can lead to test several facets (Figure 14.b). A

12



TestVisibSubRoadmap(R,qv)

1 Nvis← EmptyList

2 For all node n ∈ R

3 If VisibleNode(n,qv)

4 AddToList(n,Nvis)

5 End If

6 Endfor

7 TestEdges← False

8 If VisibleConnectivity(qv,Nvis,R,TestEdges) = False

9 Return Disconnected

10 End If

11 TestEdges← True

12 If VisibleConnectivity(qv,Nvis,R ,TestEdges) = False

13 Return Disconnected

14 End If

15 Return Connected

Figure 11: Algorithm testing the visible subroadmap connectivity from a given configuration qv.

a Current roadmap

qv

qv

qv

b Nodes visibility test

c Edges visibility test d Visible subroadmap

Figure 12: Two-stage connectivity test of a visible subroadmap.

discontinuity leading to a split in two facets occurs each time the distance between qv and a

configuration on the edge is equal to π according to a given degree of freedom.

5.1.2 Elementary Facet Test

To test the validity of a facet we try to cover it entirely with free balls of C (Figure 15). First, the

radii of the free balls centered on each vertex of the facet are computed. If they are sufficient for

13



n1

n2

qv

Figure 13: Edge visibility: n1−n2 is visible from qv if the facet {qv,n1,n2} is valid.

[0, 1]2

0

0

1

1

[0, 1]× SO(2)

qv

qv

n1 n1

n2n2

a. space b. space

0

1

0

2π

Figure 14: Testing the visibility of an edge can lead to test one (a) or several (b) facets, depending

on the topological nature of the configuration space.

covering the facet, then the algorithm returns that the facet is valid. Otherwise it is split into two

sub-facets computed such that their common vertex is as far as possible from the regions already

covered by the balls. The radius of the ball centered on this new vertex is then computed. This

dichotomic process is performed until the entire facet is covered or one vertex is tested as invalid.

To compute the radius of a free ball centered on a vertex, we use a conservative method based

on the robot kinematics and minimal distances of its bodies to the obstacles. The principle is

similar to the one used for path collision detection with nonuniform step size (see LaValle, 2004

for a formal presentation and Jaillet, 2005 for the extension to the case of free balls of C). In

practice, such methods can however be too conservative when applied to complex robots with

many rotational degrees of freedom. A discrete variant of the edge visibility test can be preferable

to efficiently deal with such cases. It simply consists in discretizing the edge and checking the

validity of the straight-line paths that connect qv to the intermediate configurations along this

edge. Another advantage of this discrete variant is to avoid the elementary facet decompositions

phase (the switch of direction along the edge is automatically performed when computing the set

of straight-line paths to be checked). Note that the discrete test was used in our experiments for

the 6-dof manipulator example (see Fig. 21).

5.2 Redundancy Test

A disconnected subroadmap from the point of view of a configuration qv can be reconnected by a

path τ = n1−qv−n2 with n1, n2 belonging to two distinct subcomponents. Such connection has

to be performed only if it introduces cycles that are useful with regards to the construction of a

14



Figure 15: Dichotomic covering of a valid facet with C f ree balls.

second order deformation roadmap. Testing the usefulness of adding a path τ is performed by

the TestRedundancy algorithm (see pseudo-code in Figure 16). Roadmap paths linking nodes n1

to n2 are iteratively extracted and tested according to their visibility deformation relatively to τ .

This process starts with the shortest path and stops when a visibility deformation is found (i.e.

τ is useless and thus rejected) or when all the candidate paths have been tested (i.e. τ creates a

useful cycle and it is inserted to the roadmap). In practice, only the k first shortest paths found

in the roadmap (e.g. k = 10) are considered as candidate for the redundancy test. This filtering

is justified by the fact that the longest paths have the less chances to be visibility deformable into

the path τ . This is specially useful for complex environments where the roadmap may contain

many cycles, resulting into possibly many paths between nodes n1 and n2. Finally, note that in the

worst case, if the redundancy test fails to detect an existing deformation whereas it exists, then a

“useless” cycle is added but the property of second order deformation roadmap stated in Definition

2 still holds.

TestRedundancy(τ,n1,n2,R)

1 τ
′
R← BestPath(n1,n2,R)

2 While τ
′
R 6= ∅

3 If VisibDeformation(τ,τ ′R) = True

4 Return True

5 End If

6 τ
′
R← BestPath(n1,n2,R)

7 End While

8 Return False

Figure 16: Visibility deformation test between a path τ and roadmap paths.

The VisibDeformation function (line 3 of algorithm 16) tests whether two paths τ and τ
′
R can

be visibility deformed one into the other. This function is based on the grid based computation of

the visibility diagram associated to the two paths. The deformation is only possible when there

exists a path between the (0,0) and (1,1) points in this diagram (c.f. section 3.3). In practice, the

whole diagram is not computed. The tests are limited to the grid cells visited during the A∗ search

of a valid path in the visibility diagram, incrementally developed during the search. This implicit

search of the diagram noticeably limits the number of visibility tests to be performed (Figure 17)

and significantly accelerates the redundancy test. Note that further speed up may be achieved

using the lazy search technique proposed in (van den Berg and Overmars, 2007) combined with

15



lifelong planning A* (Koenig and Furcy, 2004), aiming at further minimizing the number of grid

cells tested for visibility.

τ
′

τ 1

1

0 τ

τ
′

0 1

1

Figure 17: Visibility diagram (left) and cells explored during the visibility deformation test (right).

6 Experimental Results

We implemented the algorithm for constructing (second-order) deformation roadmaps in the Move3D

software platform (Siméon et al., 2001). The experiments reported below were performed on a

1.2GHz G4 PowerPC running on Mac OS-X. The performance results summarized in Table 2 and

3 correspond to average values computed over several runs of the algorithm.

The first experiment shown on Figure 18 compares the level of redundancy obtained depending

on the algorithm used: (a), a minimum tree structure obtained with the Visibility-PRM, (b) a first-

order roadmap (built without the filtering process) and (c) a second-order deformation roadmap

that captures the different varieties of paths while maintaining a compact structure. This clearly

shows the interest of second-order deformation roadmaps (PDR) over first-order (RCPV) ones.

The next set of experiments (Figure 19) presents the path deformation roadmaps obtained for

a 2-dof robot evolving in complex environments. The first scene (a) requires 25 elementary cycles

to capture the homotopy. Our method makes it possible to build a roadmap capturing these cycles

in only 109 seconds. The second scene (b) has a higher geometrical complexity (70 000 facets).

b ca

Figure 18: Comparison between three algorithms of roadmap construction. (a) Visibility-PRM.

(b), first-order and (c), second-order deformation roadmap.

16



The computing time (164 secs) reported in Table 2 shows that the algorithm can efficiently handle

such geometrically complex scenes. One can also note that the resulting 2D roadmaps contain a

very limited number of additional nodes compared to homotopy.

a b

Figure 19: Path Deformation Roadmaps for 2D environments: (a) a labyrinth with many homotopy

classes. (b) an indoor environment with a complex geometry.

The third experiment (Figure 20) involves a narrow passage problem for a squared robot with

3-dof (two translations and one rotation). The robot has four ways to go through the narrow

passage, depending on its orientation. Therefore the narrow passage corresponds to four homotopy

classes in the configuration space.

x

y

0

Π

2

yx

θ

Π

3Π

2

ca b

y

xθ

y

xθ

Figure 20: Path Deformation Roadmap capturing the four homotopy classes for a rotating square

and a narrow passage. (a) (x,y) view of the deformation roadmap, (b) (y,θ ) view of the same

roadmap showing the four kinds of passages found in C, (c) comparison with the dense roadmap

obtained with a classic k-nearest PRM.

Table 1 presents results obtained with a traditional k-nearest PRM (Kavraki et al., 1996) for

different couples (N,k) (with N, the number of roadmap nodes). The reported results (averaged

over 10 runs) show that even for the densest and most redundant case (N = 8000,k = 100), the

homotopy is not well captured (n classes = 3.2/4) by the k-nearest PRM. Moreover, the large size

of the computed roadmap results in a significant computing time (3819 secs) due to the amount of

collision tests required for adding new nodes and edges. Comparatively, our method captures the

four homotopy classes in only 37 secs. The high speed-up comes from the very compact size of

17



Table 1: Homotopy classes found by a k-nearest PRM for the problem of Figure 17.

n classes time (s)

N k =10 k =20 k =100 k =10 k =20 k =100

k-near

PRM

1000 0.1 0.2 1.2 6.4 9.3 33.2

2000 0.1 0.6 1.6 33.2 43.5 110.0

4000 0.8 1.0 2.8 246 336 455

8000 1.4 2.4 3.2 2947 3295 3819

PDRoadmap 12 4 37

the path deformation roadmap (only 12 nodes) which largely compensates the additional cost of

filtering the useless redundant cycles.

The last set of experiments (Figure 21) involves 6-dof robots in 3D environments. In the first

case (free flying robot), the free space has only one homotopy class. Thus, a roadmap based on

homotopy would have a tree structure. The results show that our method makes it possible to build

a compact roadmap (in 56 secs) while capturing a richer variety of paths than the homotopy. The

second scene concerns a 6-dof manipulator arm where 6 additional nodes (and 12 edges) are added

to the visibility roadmap (total time of 99 secs) to represent the complexity of the space.

Finally, Table 2 summarizes the performance results and Table 3 provides a break-up of the

total computational effort by showing the respective contributions of the visibility tree building

and the cycle addition stages.

a b

Figure 21: Path Deformation Roadmaps for 3D environments: (a) free flying robot, (b) 6-dof

manipulator arm.

7 Conclusion

We have presented a general method to build compact PDR roadmaps with useful cycles represen-

tative of the different varieties of free paths of the configuration space. The introduction of these

cycles is important for obtaining higher quality solutions when postprocessing queries inside the

roadmap. Our approach is based on the notion of path deformability indicating whether or not a

given path can be easily deformed into another one. Our experiments show that the method enables

18



Table 2: General performance for the Roadmaps construction

Environments 2D Vis 2D 1-order 2D 2-order Laby Indoor Square Helico Arm

Figure 18.a 18.b 18.c 19.a 19.b 20 21.a 21.b

dof 2 2 2 2 2 3 6 6

nodes 20 71 44 149 66 12 30 41

edges 19 121 34 177 83 14 39 46

cycles 0 51 14 29 18 3 10 6

time (s) 2 8 16 109 164 37 56 99

Table 3: Time repartition for the Roadmaps construction (in %)

Environments 2D Vis 2D 1-order 2D 2-order Laby Indoor Square Helico Arm

Vis-PRM 100 19 13 19 25 24 5 12

SubRoadmap - 75 15 32 20 61 9 70

Redundancy - - 66 35 49 11 80 13

Other 0 6 6 14 6 4 6 5

small roadmaps to reliably capture the multiple connectedness of possibly complex configuration

spaces. Several improvements remain for future work. First, the method has so far been tested for

free flying and articulated robots with up to 6 dof. We will need to further evaluate its performance

for higher dof articulated robots. We would also like to further investigate the link between the

varieties of free paths stored in the roadmap and the smoothing method used to shorten the solu-

tion paths when postprocessing queries. Finally, another improvement concerns the extension to

robots with kinematically constrained motions (e.g. nonholomic or closed chain robots) requiring

the use of a non-linear local method.

Acknowledgment

This work was supported by the European projects MOVIE IST-20001-39250 and PHRIENDS

IST-045359.

References

N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo. Obprm: An obstacle-based prm for 3d

workspaces. In P. Agarwal, L.E. Kavraki, and M. Mason, editors, Robotics: The Algorithmic Perspective

(WAFR1998), pages 155–168. A.K. Peters, 1998.

R. Bohlin and L.E. Kavraki. Path planning using lazy prm. IEEE Int. Conf. on Robotics and Automation,

pages 521–528, 2000.

V. Boor, M.H. Overmars, and A.F. van der Stappen. The gaussian sampling strategy for probabilistic

roadmap planners. Proc. IEEE Int. Conf. on Robotics and Automation, pages 1018–1023, 1999.

B. Burns and O. Brock. Toward optimal configuration space sampling. Proceedings of Robotics: Science

and Systems, 2005.

19



H.-L. Cheng, D. Hsu, J.-C. Latombe, and G. Sánchez-Ante. Multi-level free-space dilation for sampling

narrow passages in PRM planning. In Proc. IEEE Int. Conf. on Robotics & Automation, pages 1255–

1260, 2006.

H. Choset, K.M. Lynch, S.Hutchinson, G. Kantor, W. Burgard, L.E.Kavraki, and S. Thrun. Principles of

robot motion. MIT Press, 2005.

R. Geraerts and M.H. Overmars. Creating high-quality roadmaps for motion planning in virtual environ-

ments. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006.

A. Hatcher. Algebraic Topology. Cambridge University Press, 2002. Available at

http://www.math.cornell.edu/~hatcher/AT/ATpage.html.

C. Holleman and L.E. Kavraki. A framework for using the workspace medial axis in prm planners. Proc.

IEEE Int. Conf. on Robotics and Automation, pages 1408–1413, 2000.

D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic

roadmap planners. Proc. IEEE Int. Conf. on Robotics and Automation, 2003.

Y. Huang and K. Gupta. A delaunay triangulation based node connection strategy for probabilistic roadmap

planners. Proc. IEEE International Conference on Robotics and Automation, pages 908– 913, 2004.

L. Jaillet. Méthodes Probabilistes Pour La Planification Réactive de Mouvements. PhD thesis, Paul Sabatier

University, 2005. Available at http://robotics.cs.umass.edu/tc-apc/Main/Theses.

L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars. Probabilistic roadmaps for path planning in

high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580,

1996.

S. Koenig and D. Furcy. Lifelong planning A*. Artificial Intelligence, 155:93–146, 2004.

H. Kurniawati and D. Hsu. Workspace-based connectivity oracle: An adaptive sampling strategy for PRM

planning. In S. Akella and et.al., editors, Algorithmic Foundations of Robotics VII. Springer–Verlag,

2006.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

S.M. LaValle. Planning Algorithms. Cambridge University Press, 2004-2005. Available at

http://msl.cs.uiuc.edu/planning/.

J.-M. Lien, S.L. Thomas, and N.M. Amato. A general framework for sampling on the medial axis of the

free space. Proc. IEEE Int. Conf. on Robotics and Automation, 2003.

D. Nieuwenhuisen and M.H. Overmars. Useful cycles in probabilistic roadmap graphs. IEEE Int. Conf. on

Robotics and Automation, pages 446–452, 2004.

S. Rodriguez, S. Shawna, R. Pearce, and N.M. Amato. Resampl: A region-sensitive adaptive motion

planner. Proc. Workshop on the Algorithmic Foundations of Robotics, 2006.

M. Saha and J.C. Latombe. Finding narrow passages with probabilistic roadmaps: The small-step retraction

method. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005.

E. Schmitzberger, J.L. Bouchet, M. Dufaut, W. Didier, and R. Husson. Capture of homotopy classes with

probabilistic road map. IEEE/RSJ Int. Conf. on Robots and Systems, 2002.

S. Sekhavat, P. Svestka J.-P. Laumond, and M.H. Overmars. Multi-level path planning for nonholonomic

robots using semi-holonomic subsystems. International Journal of Robotics Research, 17(8):840–857,

1998.

20



T. Siméon, J.-P. Laumond, and C. Nissoux. Visibility-based probabilistic roadmaps for motion planning.

Advanced Robotics Journal, 14(6):477–494, 2000.

T. Siméon, J.-P. Laumond, and F. Lamiraux. Move3d: a generic platform for path planning. IEEE Int.

Symp. on Assembly and Task Planning, 2001.

G. Sánchez and J.-C. Latombe. On delaying collision checking in prm planning - application to multi-robot

coordination. International Journal of Robotics Research, 21(1):5–26, 2002.

J.P. van den Berg, D. Nieuwenhuisen, L. Jaillet, and M.H. Overmars. Creating robust toadmaps for motion

planning in changing environments. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005.

J.P. van den Berg and M.H. Overmars. Kinodynamic motion planning on roadmaps in dynamic environ-

ments. Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007.

S. Wilmarth, N.M. Amato, and P.Stiller. MAPRM: A Probabilistic roadmap planner with sampling on the

medial axis of the free space. Proc. IEEE Int. Conf. on Robotics and Automation, pages 1024–1031,

1999.

21


