
Path Dictionary� A New Approach to Query Processing in

Object�Oriented Databases

Wang�chien Lee Dik Lun Lee
Dept of Computer and Information Science Department of Computer Science

The Ohio State University University of Science and Technology
Columbus� Ohio ����������� USA Clear Water Bay� Hong Kong

wlee�cis	ohio�state	edu dlee�cs	ust	hk
FAX
 ������������ FAX
 ���� ���������

October �� ����

Abstract

We present a new access method� called the path dictionary index �PDI� method� for support�
ing nested queries on object�oriented databases� PDI supports object traversal and associative
search� respectively� with a path dictionary and a set of attribute indexes built on top of the path
dictionary� We discuss issues on indexing and query processing in object�oriented databases�
describe the operations of the new mechanism� develop cost models for its storage overhead and
query and update costs� and compare the new mechanism to the path index method� The result
shows that the path dictionary index method is signi�cantly better than the path index method
over a wide range of parameters in terms of retrieval and update costs and that the storage
overhead grows slowly with the number of indexed attributes�

� Introduction

Object�oriented database system �OODBS� has been one of the most prominent areas of database
research in the last decade� Many experimental prototypes �������	
� and commercial systems
��������
 have been introduced in the past decade� In addition to facilitating the design and
engineering of traditional database applications� OODBSs provide data modeling mechanisms
which support exible data types� useful relationships �e�g�� aggregation�association and special�
ization�generalization relationships� and allow users to de�ne� query� and update nested entities�
This functionality meets the needs of new database applications such as CAD�CAM� CASE� o�ce
automation� multi�media systems� and geographic information systems�

The need to reduce the cost of developing� operating� and supporting the above mentioned
applications prompted the rapid development of OODBSs� However� to the success of OODBSs�
implementation and performance issues play an important role� E�cient techniques for query
processing and indexing are critical ���������������	
� Although indexing techniques have been
proposed to support query processing in OODBSs ���	������
� they in general introduce large storage
overhead and maintenance cost� In this paper� we investigate the problems of indexing and query
processing in OODBSs and propose a new indexing scheme and the associated query processing
methods�

�
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Figure �� Aggregation hierarchy�

The object�oriented data model is based on the following basic concepts� In the data model�
a real�world entity is represented as an object� which consists of methods and attributes� While
methods� which are procedures and functions associated with the object� de�ne the reactions of the
object in response to messages from other objects� attributes represent the inner state of the object�
Objects sharing the same methods and attributes are grouped into classes� The concept of class
allows OODBSs to model complex data more precisely and conveniently than the relational data
model� A class may consist of simple attributes �e�g�� of domain integer or string� and complex

attributes with user�de�ned classes as their domains� Since a class C may have a complex attribute
with domain C�� an aggregation relationship can be established between C and C�� Using arrows
connecting classes to represent aggregation relationship� a directed graph� called the aggregation

hierarchy� may be built to show the nested structure of the classes�
Figure � is an example of an aggregation hierarchy� which consists of four classes� Person�

Vehicle� Person Name� and Company� The class Person has three simple attributes� SSN� Residence
and Age� and two complex attributes� Owns and Name� The domain classes of the attributes Owns

and Name are Vehicle and Person Name� respectively� The class Vehicle is de�ned by three simple
attributes� Id� Color� and Model� and a complex attribute Manufacturer� which has Company as its
domain� Company and Person Name each consists of two simple attributes�

Another feature of OODBS is the specialization�generalization relationships between classes�
In this paper� we call it inheritance relationship� The inheritance relationship organizes classes into
an inheritance hierarchy� Inheritance allows a class C to be de�ned as a specialization of another
class C�� C is called the subclass of C � and C� is a superclass of C� A subclass inherits attributes
and methods from its superclasses� A subclass can have more attributes and methods than its
superclass�

Since similar objects are grouped into a hierarchy of classes� whether to create a single index for
the whole hierarchy of classes or to build an index for each of the classes is an interesting indexing
problem�

Figure � is an example of inheritance hierarchy among the class Vehicle and its subclasses
Automobile� DomesticAuto� ForeignAuto� and Truck� In addition to the attributes inherited from the
superclass Vehicle� objects in class Automobile have an additional attribute Model� Therefore� the
objects in class DomesticAuto have attributes Id� Color� Manufacturer� Model� and Country�

Every object in an OODBS is identi�ed by an object identi�er �OID�� The OID of an object
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may be stored as attribute values of other objects� If an object O is referenced as an attribute of
object O�� O is said to be nested in O� and O� is referred to as the parent object of O� Objects are
nested according to the aggregation hierarchy�

OODBSs support queries involving nested objects� These queries are called nested queries�
There are many kinds of nested queries� However� an access method doesn�t necessarily support all
of them� Even with the same access method� di�erent kinds of queries may be evaluated di�erently�
To facilitate our discussion� we de�ne target classes as the classes from which objects are retrieved
and predicate classes as the classes involved in the predicates of the query� We classify nested
queries by the following factors�

�� Relative positions of the target and predicate classes on the aggregation hierarchy�

� TP� The target class is an ancestor class of the predicate classes�

� PT� The target class is a nested class of the predicate classes�

� MX� The target class is an ancestor class of some predicate class and a nested class of
some predicate class�

�� The complexity of the predicates�

� Simple� The predicate is speci�ed on a simple attribute� Based on the operators used
in the predicates� this class of nested queries is further divided as follows�

� Equality� ��

� Range� ���� ���� �� and ���

� Inequality� ���

� Complex� The predicate is speci�ed on a complex attribute� Depending on whether or
not an OID is speci�ed in the predicate class� this class can be further divided into�

� Exist� An OID is speci�ed in the predicate�

� Nonexist� No OID is speci�ed in the predicate�

�� and � are partial string matching operators�
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In the following� we give examples for each type of the nested queries� We will use some of these
examples to illustrate the query processing strategies described in this paper� Note that Company�i

and Person�i
 denote the OIDs of the ith object in class Company and Person� respectively�

Q�� Retrieve persons who owns cars made by �GM�� �TP�Simple�Equality�

Q�� Retrieve persons who owns cars made by �G��� �TP�Simple�Range�

Q�� Retrieve persons who owns cars not made by �GM�� �TP�Simple�Inequality�

Q�� Retrieve manufacturers of the cars owned by persons at the age of 	�� �PT�Simple�Equality�

Q�� Retrieve manufacturers of the cars owned by persons older than 	�� �PT�Simple�Range�

Q�� Retrieve manufacturers of the cars owned by persons not at the age of 	�� �PT�Simple�
Inequality�

Q�� Retrieve persons who have a car made by Company��
� �TP�Complex�Exist�

Q	� Retrieve persons who don�t have a car� �TP�Complex�Nonexist�

Q
� Retrieve vehicles which are owned by Person��
� �PT�Complex�Exist�

Q��� Retrieve vehicles which are not owned by any person� �PT�Complex�Nonexist�

There are three basic approaches to evaluating a nested query� top�down� bottom�up and mixed

evaluations� The top�down approach traverses the objects starting from an ancestor class to a
nested class� Since the OID in a parent object leads directly to a child object� this approach is
also called a forward traversal approach� On the other hand� the bottom�up method� also known
as backward traversal� traverses up the aggregation hierarchy� A child object� in general� does not
carry the OID of �or an inverse reference to� its parent object� Therefore� in order to identify the
parent object�s� of an object� we have to compare the child object�s OID against the corresponding
complex attribute in the parent class� This is similar to a relational join when we have more than
one child object to start with� Mixed evaluation is a combination of the top�down and bottom�up
approaches� which is often required for complex queries� Note that when every reference from
an object O to another object O� �e�g�� Owns� is accompanied with an inverse reference from O�

to O �e�g�� Owned by�� the aggregation hierarchy becomes bi�directional� resulting in no di�erence
between the top�down and the bottom�up approaches� In this paper� however� we assume there is
no inverse references�

Let�s consider the above query examples� To answer Q� in the top�down approach� the system
has to retrieve all of the objects in class Person� then retrieve the Vehicle objects of the Person

objects and their nested Company objects to check the manufacturers� names� Finally� those persons
who own GM cars are returned� In the bottom�up approach� the objects in class Company are
retrieved to examine if their names are GM� The OID�s of the GM companies are maintained in
a set S� Then� the vehicle objects in class Vehicle are examined to identify those vehicles made
by the companies in S� The quali�ed vehicle objects are collected in a set S�� Finally� the Person

objects are retrieved to �nd out if their cars are one of the vehicles in S�� The other TP queries�
such as Q�� Q�� Q� and Q�� can be evaluated similarly�

The top�down approach is more e�ective for PT queries� which retrieve nested attributes of
some speci�c collection of objects� Take Q� as an example� the objects in Person are �rst re�
trieved to examine their ages� Those objects with Age of 	� are then traversed along the path of
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Person�Vehicle�Company to retrieve the names of the automobile makers� The bottom�up approach�
in contrary with the top�down approach� is cumbersome in this query� It requires all of the objects
in class Company to join to the objects in class Vehicle� and the result is further joined to the
Person class� Then� the names of the auto makers corresponding to the 	��year�old auto owners
are returned�

The other PT queries� except for Q��� may be evaluated in a manner similar to Q�� To answer
Q��� we have to retrieve person objects and collect in a set S the vehicle objects which have owners�
Then� the set S is subtracted from the Vehicle class to return the vehicle objects which have no
owners�

The performance of the top�down and the bottom�up approaches is strongly dependent on the
distribution of objects located in the classes to be traversed� No matter where the predicate classes
are located� the bottom�up approach will always scan through all objects in the classes on the path�
However� the number of objects fetched by the top�down approach is at most the number of objects
in the top class times the number of classes on the path�

As a result� it is intuitive to conclude that the top�down evaluation is more appropriate than
the bottom�up method when the ancestor classes have fewer objects than the other classes on
the paths or when the number of path traversals are reduced due to the predicate evaluations in
the top classes� On the other hand� the bottom�up evaluation is more suitable when the ratio of
object sharing from ancestor classes to their nested classes is high� In other words� the bottom�up
approach prevails when the numbers of objects in ancestor classes are much larger than that of
their nested classes�

Generally speaking� the top�down approach has an advantage over the bottom�up approach
for queries which have predicate classes located near the top of the paths to be traversed� If the
number of quali�ed objects in these predicate classes is small� the number of forward traversals
will be small� For example� if there are �� persons who are 	� years old in the class Person� at
most �� Vehicle objects and �� Company objects will be fetched� This kind of queries only bene�ts
the top�down method and has no advantage for the bottom�up method� Another disadvantage of
the bottom�up approach is that it requires a lot of internal memory due to the breath��rst style of
the join operations� On the other hand� the top�down approach may choose a depth��rst style of
forward traversal which doesn�t require much internal memory�

Many access methods have been proposed to support complex queries in OODBSs� In particular�
three techniques� namely� indexing �����	���
� signature �le ��������
 and data dictionary ������
�
have been proposed recently� In this paper� we discuss the problems with query processing in
OODBSs and present the path dictionary organization�

The rest of the paper is organized as follows� Section � summarizes the access methods proposed
in the literature� Section � introduces the concept of path dictionary and possible approaches to
implement the path dictionary� The implementation of the s�expression scheme for path dictionary
and its retrieval and update operations are discussed in Section � and Section 	 respectively� In
Section �� we present the performance analysis and comparison of various techniques discussed�
Finally� we conclude the paper in Section ��

� Related Work

A relational database consists of a group of separated relations� which are related through primitive
key values� The join operation is used to connect these relations� In object�oriented databases�
objects of various classes are related by object identi�ers� which leads to the special structure of

	



nested objects� Traversal through the bridges built upon OIDs is a natural way of evaluating
OODBS queries� Therefore� nested queries implies traversal of objects along the path between the
target class and the nested attributes�

From our discussion on traversal methods� we can see that a signi�cant part of the query
processing cost is spent on accessing intermediate objects between the target class and the predicate
classes� Techniques based on indexing or signature �le methods have been proposed to expedite
the processing of queries� According to our observation� the essence of these techniques is to reduce
physical traversals of intermediate objects between the target class and the predicate classes�

��� Indexing Techniques

The idea behind indexing techniques for nested query processing is to map a value of certain
attribute to some ancestor objects which directly or indirectly own the attribute values� The
indexing mechanisms implicitly create a direct reverse link from a nested attribute to an ancestor
class� As a result� the goal of bypassing the intermediate objects is achieved by scanning indexes�
Indexing techniques are e�ective and will be e�cient as long as the overhead they introduce is
smaller than the saving gained from avoiding intermediate object traversal� Unfortunately� most
indexing techniques require costly storage overhead and expensive index maintenance� Therefore�
they can�t be applied on too many attributes� Only some frequently queried target classes and
predicate attributes can be chosen to create indexes�

����� Indexing Aggregation Hierarchy

Multiple Index �	���
 is the �rst of the indexing techniques for OODBSs� It creates an index for
each edge on the path from a nested attribute to the target class� It is like creating a reverse link
for each edge along the path� To answer a query involving the indexed attribute and target class�
index scans may be used to replace physical access to intermediate objects for backward traversals
from the nested attribute to the objects in target class� Although several indexes are created for
a given path and thus many index scans are necessary for a query evaluation� this organization is
exible for creating indexes sharing a path without introducing much duplicated overhead�

Nested Index and Path Index �	
 map a speci�c nested attribute to the target class and to
the classes located along the given path� respectively� Like multiple index� they separately create
implicit reverse links from the nested attribute to the target class and the classes appearing on
the path� Only one index scan is needed to reach the target classes from the nested attribute�
Although both techniques are very e�ective� they require high storage cost and expensive update
maintenance� Thus� they are very expensive when many attributes are indexed� Further� the nested
index requires system�supported reverse links among objects in the path to e�ciently update the
index �	
�

These indexing techniques cannot support all of the nested queries we classi�ed� PT queries
implicitly suggest a forward traversal to the nested attributes� Thus� they cannot bene�t from
the reverse links built by the indexes� Support of TP�Simple�Inequality queries is problematic�
since inequality cannot be easily supported by indexing techniques� We can create indexes for
TP�Complex�Exist queries using OIDs as the key� However� the applicability of these indexes is
limited� because the only meaningful operator for the kind of indexes is equality� Finally� TP�
Complex�Nonexist queries are not supported by these indexing techniques either�

Field Replication Technique ���
� as its name suggested� replicates attributes of nested objects
into their ancestor objects� Therefore� nested attribute values that would normally be accessed
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through forward traversal are replicated such that expensive traversals may be avoided� The prob�
lems with �eld replication are that it imposes a structure change to the original database and
that its update cost is expensive� In order to improve the update performance� inverted path was
introduced to implement reverse links along the path ���
� The idea of inverted path is similar to
that of multiple index� Therefore� this organization can be used to support backward traversals
and some of the forward traversals where the nested attributes are replicated�

Join Indices ���
 were proposed for improving joins in relational database systems� It may
be created by joining two relations� say R and S� and project the corresponding tuple identi�ers
from R and S into a �join index� relation of parity �� In order to facilitate fast access to the join
index relation� two copies of the join index are usually maintained� One copy is clustered on the
tuple identi�ers of R and the other is clustered on that of S� The join indices can also be used
in OODBSs� A join index may be used for each direct connection of classes along a given path�
Therefore� it may be implemented as two sets of multiple indexes� which will allow both directions
of traversal� The tradeo� for the bi�directional traversal is to double the storage overhead�

Access support relations ���
 is a generalization of the join indices for OODBSs� Instead of
supporting traversal �or join� of two connected classes �relations�� access support relations support
the traversal along a path of arbitrary length� The relations may be created by joining all of the
classes along the path and project the object identi�ers from the classes on the path� Similar to
join indices� two copies of an access support relation are stored and clustered correspondingly on
the OIDs of objects in the two end classes of the path� Therefore� traversals from either end class
of the path to any class on the path can be supported�

Direct Links ���
 maintain links connecting objects in two separate classes for fast object traver�
sal� Since objects in the intermediate classes between the target class and the predicate class usually
are not directly related to the query� much computing cost will be saved if they are not accessed
during query processing� Therefore� the direct links between two classes provide short cuts for ob�
ject traversals� The direct links are similar to projecting the OIDs of the end classes on the access
support relations� Thus� it may go from one end of the path to the other end e�ciently� Moreover�
in order to facilitate associative search of the direct links� indexes can be built to map attributes of
either end classes to the direct links organization� Therefore� both forward and backward traver�
sals are supported with reasonable storage overhead� However� like nested index� system�supported
reverse links among objects in the path is needed to e�ciently update the direct links�

����� Indexing Inheritance Hierarchy

Issues in building a single index for the classes in an inheritance hierarchy were studied in ���
�
It compares the Single�Class Index� which maintains a conventional index for each class of the
hierarchy� to the Class�Hierarchy Index� which maintains a single index for the whole hierarchy
of classes� The conclusion is that the class�hierarchy index is superior to the single�class index as
long as there are more than two classes in the inheritance hierarchy ���
� However� the study in
���
 is con�ned to single level indexes for primitive attributes of a class without considering nested
attributes�

H�trees is a hierarchical indexing organization supporting e�cient associative search on objects
based on the inheritance hierarchy ���
� The organization is tailored to supporting object retrieval
from a single class as well as from an inheritance hierarchy of classes� The H�tree indexes of the
classes are structured in accordance with the inheritance hierarchy� A B��tree is created for each
class� The nested indexes are connected to their parent indexes by pointers� which associate the
nodes in the nested H�trees to their parent H�trees according to the indexed values� As a result�
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searching for a value against an inheritance hierarchy of classes requires only a full search on the
root H�tree and partial searches on the nested H�trees�

The study of Nested�Inherited Index ��
 takes both of the aggregation and inheritance relation�
ships into account� Actually the inheritance index scheme is an extension of the path index to
cover the inheritance relationship among classes� Yet another improvement of the nested�inherited
index over the path index is to store the ancestor information of objects in a network of indexed
auxiliary records� This mechanism facilitates the update maintenance of the nested�inherited index�
However� the storage overhead involved is tremendous�

��� Signature File Techniques

The signature �le techniques� in contrary with the indexing techniques� use abstracted information
stored in signature �les to avoid actual retrieval of intermediate objects located on the paths from
the top class to the nested attributes� An object signature is an abstraction of the information
stored in the �nested� attributes of the object� When processing a query� a query signature is
formed to match with object signatures� An object signature which fails to match the query
signature guarantees that the corresponding object can be ignored� Consequently unnecessary
object accesses are avoided� Only the objects passing the signature matching are traversed to
eliminate false�drops� The signature �le techniques generally have a much lower storage overhead
and a simpler �le structure than indexing techniques� They are particularly good for queries which
requires forward traversals �i�e�� PT queries� and queries involving a large number of the attributes�
The latter is because values from many attributes� not just one attribute� are encoded in the
signatures�

Tree signature and path signature are two of the signature �le schemes proposed by the authors
���
� The tree signature scheme generates the signature of an object by hashing all of its direct
and nested primitive attributes into a signature� Therefore� the signature is an abstraction of
information directly stored or nested in the object� The path signature scheme generates the
signature of an object by hashing all of its direct primitive attributes and nested primitive attributes
located in a given path� Consequently� the abstraction of information in the path signature scheme is
limited to the primitive attributes along the path� For a given aggregation hierarchy� the information
embedded in a path signature is less than that of a tree signature� The cost and complexity of
maintenance for the path signature scheme is less than that of the tree signature scheme� because
the scope of the index is con�ned to a path� not the whole aggregation hierarchy� Since there
are fewer attributes involved� the path signature scheme is more e�ective in �ltering unquali�ed
objects� On the other hand� the tree signature scheme provides a more general support for queries
involving any attribute in the database�

Signature replication technique ���
 generates object signatures from the direct attribute values
of the objects� Instead of using only OIDs� the object signature of an object and its OID are stored
as complex attributes of the parent objects� Therefore� the object signatures are �rst used to
screen out unquali�ed nested objects before performing forward traversal� Like the �eld replication
technique� this organization will change the structure of the original database� Further� it has
expensive update and maintenance costs� Also� for a nested query involving a long path with
predicate class at the far end� the signature replication method may save only the �nal step in the
traversal instead of bypassing all intermediate classes in the path�
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� Path Dictionary Index

In this paper� we propose a new technique� called the path dictionary index �PDI�� to support
e�cient query evaluation in object�oriented databases� The PDI is a separate access structure for
the object database� It consists of two parts� the path dictionary supports e�cient object traversal
and the identity and the attribute indexes support associative search� The identity and attribute
indexes are built on top of the path dictionary� Figure � illustrates the overall architecture of the
path dictionary index� Upon the receipt of a query� the query processor will e�ciently evaluate the
predicates� if any� using the attribute indexes and then traverse to the target classes using the path
dictionary� In other words� the PDI approach reduces the cost of query processing by supporting
both associative search and object traversals�

Path Dictionary

Object Base

Path Dictionary Index
Attribute

Index
Identity
Index

Attribute
Index

Queries

Figure �� Path dictionary index�

��� Path Dictionary
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Figure �� �a� A database instance� �b� Path information�

An object�oriented database may be viewed as a space of objects connected with links through
complex attributes� Figure ��a� shows some object instances corresponding to the aggregation
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hierarchy in Fig� �� Fig� ��b� is a conceptual path dictionary storing the connections among the
objects in the database� General speaking� the path dictionary extracts the complex attributes
from the database to represent the connections between objects� Since primitive attribute values
are not stored in the path dictionary� it is much faster to traverse the nodes in the path dictionary
than objects in the database� Therefore� the path dictionary can be used to reduce the number of
accesses to the database� and� in particular� to avoid accessing intermediate objects when traversal
from one class to another is performed�

Compared to other approaches which use reverse links from nested attributes to the target
objects or store abstract information of �nested� attributes with the objects� the path dictionary
prevents unnecessary object accesses by storing the path information among the objects in a sep�
arate access structure� The path dictionary provides shortcuts for both forward and backward
traversals of the objects on a given path� As a result� it is suitable for general queries� whether
they imply top�down or bottom�up evaluation�

When the connections between objects is very complex� the path dictionary can be decomposed
into a number of simpler path dictionaries� For instance� a long path may be decomposed into
several small path segments for design and e�ciency reasons� The con�guration issues involved
with path and nested indexes were discussed in ��
� In this paper� we assume that only one path
dictionary is built for an aggregation hierarchy�

��� Attribute Index

While the path dictionary supports fast traversal among objects� it by itself will not help predicate
evaluation which involves �nding objects meeting certain conditions speci�ed on their attribute
values� To facilitate associative search� the PDI provides attribute indexes which map attribute
values to the OIDs in the path dictionary corresponding to the attribute values� As usual� attributes
which have high selectivity and are frequently used in queries should be indexed�

Instead of mapping attribute values directly to objects �as in the nested index and path in�
dex methods�� the attribute indexes map attribute values to path information stored in the path
dictionary� The path dictionary serves as a shared structure for object traversal and as a level of
indirection from attribute values to the physical objects� The separation of support for traversal
and associative search contributes to the low storage overhead and maintenance cost of the PDI
approach�

As a result of the separation� as many attributes indexes as necessary can be built on top of the
path dictionary without incurring extraordinary growth in storage overhead� The attribute indexes
provide general support for various kinds of queries as well as reduce the cost of query evaluation�
The more attributes involved in a query� the more options are available for query optimization�

The attribute indexes can be organized as tree�structures� such as B��trees� However� in order
to share the path information with other attribute indexes and to reduce redundant updates on
path dictionary� the location of path information in the dictionary should be stored as the leaf
nodes of the indexes�

��� Identity Index

Since OIDs are used to describe the path information among objects� it is often necessary to obtain
from the path dictionary path information associated with a given OID� In order to e�ciently
support this operation� an identity index is provided to map OIDs to the locations in the path
dictionary where the OIDs can be found� Since identity search is important for retrieval and update�
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the identity index signi�cantly reduces the cost for retrieval and update operations� Similar to the
attribute indexes� the identity index is organized as a separate search tree on top of the path
dictionary�

��� Design Considerations

When designing a new access method to support nested query� we considered the following require�
ments�

� It must be a secondary �le organization�

� It must support both forward and backward traversals�

� It must be easily coupled with attribute indexes to support associative search techniques�

� It must support multiple access methods�

� It must support various nested queries e�ciently�

The path dictionary index is designed to meet each of the requirements� It is desirable to retain
the organization of the original database and keep the index structures transparent to the users� so
we like the access structure to be implemented as a secondary �le without the need of modifying
the database structure at the system level� Also� we like the access method to be general enough
to support both forward and backward traversals and a large variety of queries �i�e�� the queries we
classi�ed in section ��� Since most database queries involve associative search on simple attributes�
the method must support both traversal and associative search� Also� we like the structure to
be general enough to support many query evaluation plans for optimization� Finally� we like the
structure to be useful for various kinds of queries instead of being useful only for certain kinds of
queries� The design of PDI as presented above meets each of these requirements�

��� S�expression Scheme

In the following� we present the s�expression scheme and discuss the multi�link and path schemes
for the path dictionary implementation�

The s�expression scheme encodes into a recursive expression all paths terminating at the same
object in a leaf class� The s�expression for the path C�C����Cn is de�ned as follows�

S� � ��� where �� is the OID of an object in class C� or null�
Si � �i�Si���� Si��
� � � i � n� where �i is the OID of an object in class Ci or null� and Si��

is an s�expression for the path C�C����Ci���
Si is an s�expression of i levels� in which the list associated with �i contains recursively the

OIDs of all ancestor objects of �i�
� We call it the ancestor list of �i� Except for the objects in C��

every object on the path has an ancestor list� which may be empty�
Note that� by our de�nition� s�expressions comprise OIDs of objects� However� through out the

paper� we might use �objects� to refer to the OIDs of objects in the s�expression when it does not
cause confusion�

The path dictionary for C�C����Cn consists of a sequence of n�level s�expressions� The leading
object in an s�expression� which does not necessarily belong to Cn� is the terminal object of the

�Although �i denotes the OID of an object� we use it to refer to the object itself� as in this case� when no confusion

arises�

��



Path = Person.Vehicle.Company

Company[1](Vehicle[5](Person[3], Person[7]), Vehicle[12](Person[4]))
Company[2](Vehicle[6](), Vehicle[9](), Vehicle[11]())
Company[3](Vehicle[3]())
Company[4](Vehicle[4](), Vehicle[7](Person[1], Person[6]))
Company[5](Vehicle[1](Person[2]), Vehicle[2](Person[8], Person[12]), 
           Vehicle[8](Person[5]), Vehicle[10]())
((Person[9]))

Figure 	� Examples of the s�expression scheme�

paths denoted by the s�expression� Thus� the number of s�expressions corresponding to a path
equals to the number of objects along the path which don�t have a nested object on the path�
Several s�expressions are shown in Figure 	� They represent the linkage information for the objects
on the path Person�Vehicle�Company� In the examples� we use Person�i
� Vehicle�i
� and Company�i

to refer to the OIDs of the ith objects in Person� Vehicle and Company� respectively� The �rst
s�expression in the �gure indicates that there are three paths�

Person��
�Vehicle�	
�Company��

Person��
�Vehicle�	
�Company��

Person��
�Vehicle���
�Company��


all terminating at Company��
� and that Person��
 and Person��
 connect to Company��
 through the
common node Vehicle�	
� It is possible that the �rst i levels of an s�expression are all null� which
means the object on level i�� is the terminal object for the subtree represented by the s�expression�
For instance� the last s�expression in the �gure� ��Person��
��� indicates that Person��
 has no car
and therefore no manufacturer for the car� On the other hand� an s�expression may contain null
ancestor lists indicating that the object is not referenced by any other object� For instance� in
the third s�expression in Fig� 	� the ancestor list for Vehicle��
 is empty� meaning that the vehicle
doesn�t have an owner� An advantage of the s�expression scheme is that every object on the
path appears only once in the path dictionary� thus avoiding redundant partial path information
introduced in other schemes�

Due to the inherent tree structure� the s�expression scheme supports naturally ��� and ��N
relationships� N�M relationship can be easily supported by extending the s�expression� The analysis
in this paper� however� is based on ��� and ��N relationships� because these are most common in
database applications� Furthermore� since the goal of the analysis is to compare the performance of
PDI against the nested and path index methods� given the decoupling of traversal and associative
search support the performance advantage of PDI for N�M relationships is even more conspicuous
than that of ��� and ��N relationships�

� Implementation of the s�expression Scheme

Figure ��a� illustrates the data structure of an s�expression for C�C����Cn� SPi in the header points
to the �rst occurrence of �i in the s�expression� Following the SPi �elds is a series of hOID�Offseti
pairs� At the end of the s�expression is a special end�of�s�expression �EOS� symbol� The data
structure mimics the nesting structure in the s�expression� The OIDs in the data structure are in
the same order as the OIDs in the unwrapped s�expression� The o�set associated with �i� � � i � n�
points to the next occurrence of �i in the s�expression� The OIDs for class C� don�t have o�set
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Company[5](Vehicle[1](Person[2]), Vehicle[2](Person[8], Person[12]), 
           Vehicle[8](Person[5]), Vehicle[10]())
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Figure �� Data structure of an s�expression�

�elds� since all ���s referencing the same �� are stored consecutively right after ��� for the same
reason� SP� is not needed either� since ���s can be located by tracing ���s� Using the SPi and
o�set values� we can easily trace the nested relationship among objects in an s�expression� For
example� to obtain the ancestor list associated with �i� we simply collect the OIDs stored after �i
until we reach the OID pointed to by �i�s o�set� An s�expression and its representation are shown
in Fig� ��b� and �c�� respectively�

An advantage of this representation is that it allows fast retrieval of OIDs in the same class� To
retrieve all OIDs for class Ci� we start with SPi� which will lead us to the �rst �i in the s�expression�
Following the associated o�set value we can reach the next �i� and so on� Thus� we can quickly
scan through all OIDs in a class� skipping the OIDs of irrelevant classes� Notice that the o�set
associated with �n is pointing to �n in the next s�expression� because there is at most one OID of
class Cn in an s�expression�

S�expressions are stored sequentially on disk pages� In order to reduce the number of page
accesses� an s�expression is not allowed to cross page boundaries unless the size of the s�expression
is greater than the page size� If an s�expression is too long to �t into the space left in a page� a
new page is allocated� Consequently� free space may be left in a page� Updates and insertions may
cause a page to overow� which requires a new page to be allocated and some of the s�expressions
in the overown page to be moved to the new page� In order to e�ectively keep track of the free
space available in the pages� a free space directory �FSD�� which records the pages with free space
above a certain threshold� is maintained at the beginning of the path dictionary�

Figure ��a� illustrates the physical structure of the path dictionary index� which consists of
the free space directory� the s�expression pages� and attribute and identity indexes� Fig� ��b� and
�c� show the structures of a leaf node record and a non�leaf node for B��tree implementation of
the identity index� respectively� In the identity index� the OIDs are used as the key value� The
s�address in the leaf node is the address of the s�expression corresponding to the OID in the same
leaf node� The page pointers in a nonleaf nodes are pointing to the next level of nonleaf nodes or
to the leaf nodes�

Figures ��d� and �e� show the structures of an attribute index�s leaf node record and non�
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Figure �� Path Dictionary Index� �a� Structure of the path dictionary index� �b� leaf node record
of the identity index� �c� nonleaf node of the identity index� �d� leaf node record of an attribute
index� �e� nonleaf node of an attribute index�

leaf node page� The OIDs and s�expression addresses �denoted as s�addr� are used to access the
s�expressions of the corresponding OIDs� Attribute indexes improve the path dictionary�s per�
formance in predicate evaluation and range query processing� because single�value predicates and
range predicates can be performed by e�cient index scanning rather than accessing all of the objects
in the predicate classes�

� Retrieval and Update With Path Dictionary Index

In the following� we discuss the strategies used to process nested queries and updates with the path
dictionary index�

��� Retrieval Operations

In order to simplify our discussion� we assume that the query has only one predicate attribute�
which is indexed by an attribute index� Indexp� We specify a nested query Q as having Ct as the
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target class and Cp as the predicate class� where � � t� p � n� We use �t and �p to denote OIDs of
objects in class Ct and Cp�

We assume that a path dictionary index for the path C�C����Cn has been created� Indexp is
the attribute index based on an attribute of Cp� The path dictionary supports all classes of the
nested queries� The following strategies are applicable to both TP and PT queries�

Simple Predicates� Attribute indexes have advantages of processing simple predicates with equal�
ity and range operations� For inequality operation� the path dictionary is still better than
the conventional traversal approaches�

Equality � We use the attribute value speci�ed in the predicate to search attribute index
Indexp for the corresponding addresses of the s�expressions� Through the addresses� we
can obtain the s�expressions and derive from the s�expressions the OIDs for Ct� PDI
allows us to avoid accessing any objects from the database�

Assuming that the attribute Name of Company is indexed by Indexname� we can answer
a query �retrieve persons who own cars made by GM� by �rst searching Indexname

using �GM� as the search key to obtain the addresses of the s�expressions corresponding
to �GM�� After the s�expressions are accessed through the addresses� the OIDs of the
Person objects in the s�expressions are returned�

Range � For the range query� we use the lowest key value in the range to search the attribute
index for leaf node record containing the lowest key value� Then we sequentially search
the leaf node records until the record containing the highest key value in the range is
reached� From those leaf node records� we obtain the addresses of the s�expressions
corresponding to the predicate objects with an attribute value in the speci�ed range� As
before� we obtain the s�expressions and return the OIDs for Ct from the s�expressions�
This strategy prevents repeated scanning on the attribute index�

Use Q	 as an example� Assume that the attribute Age of Person is indexed by Indexage�
We use �	�� as the search key on Indexage to arrive at the leaf node record corresponding
to 	�� Starting from the next leaf node record� which is corresponding to the next age
greater than 	�� we sequentially scan the leaf nodes and use the addresses in the records
to access the corresponding s�expressions� From the s�expressions� the OIDs of the
Company objects are returned� In this example� the scanning of the leaf nodes continues
until there is no more leaf node records left�

Inequality � The attribute indexes cannot be used for predicates with inequality operation�
However� the path dictionary can still improve the processing of this class of queries�
The objects in Cp are retrieved from the database for predicate evaluation� The OIDs
of the quali�ed objects� �p�s� are collected in a set P � The OIDs in P are used as keys to
search the identity index for the s�expression addresses� Then the s�expressions in the
path dictionary are accessed to return the OIDs of the quali�ed objects in the target
class �i�e�� �t�s�� with which the target objects can be retrieved from the database� Using
the path dictionary� we avoid accessing from the database any objects between Ct and
Cp�

To answer query Q�� �retrieve persons who own cars not made by GM�� all of the objects
in class Company are accessed to collect OIDs of GM company objects into a set P� The
OIDs in P are then used as keys to search the identity index for s�expressions� Finally
the OIDs of objects in the target class are derived from the found s�expressions and
returned�
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Complex predicates� Attribute indexes have great advantages on predicate evaluation� Unfortu�
nately� they don�t bene�t queries with complex predicates� which require scanning the identity
index or sequentially searching the path dictionary�

The strategies for answering this class of nested queries are di�erent depending on the exis�
tence of �p in the predicate�

Exist � If �p is speci�ed in the predicate� we can use the identity index to locate the s�
expressions containing �p from the path dictionary and derive �t from the s�expression
for predicate evaluation� If the relationship between �p and �t satis�es the predicate� �t
is returned�

For example� to answer a query Q� �retrieve persons who have a car made by Company��
��
we search the identity index using Company��
 as the key� obtain from the path dictionary
the s�expressions corresponding to Company��
� and derive from the s�expressions the
OIDs of Person objects�

Nonexist � If no �p is speci�ed in the predicate� we will scan the path dictionary for the
s�expressions in which the predicate on Ct and Cp is satis�ed� and return �t�

Take Q� �retrieve persons who don�t have a car� as an example� The s�expressions
in the path dictionary are sequentially searched for the pattern ���Person���� and the
matching Person objects are returned� Without the path dictionary� we will have to
examine every Person object in the database and check if the Owns attribute is null or
not�

On the other hand� to evaluate Q�� �retrieve vehicles which are not owned by any
person� �the PT case�� we sequentially scan the path dictionary and simply return all
of the vehicle objects with an empty ancestor list �i�e�� vehicle objects matching the
pattern �Vehicle������ Without the path dictionary� the query would be very expensive
since it requires a scan through the Vehicle class to collect all OIDs in it� another scan
through the Person class to collect all OIDs under the Owns attribute �i�e�� all vehicles
with owners�� and a set di�erence between the two result sets�

For queries with predicates on more than one indexed attributes� the evaluation is accomplished
by �rst separately scanning the attribute indexes� with the results unioned or intersected according
to the Boolean condition in the query� For each index� addresses of the s�expressions� corresponding
to objects which passed the predicates� are collected� Next� these sets of s�expression addresses are
unioned or intersected to generate a set S in accordance with boolean combination of the search
conditions� Using addresses in S to access the s�expressions� The OIDs of objects corresponding to
unindexed predicate classes are derived from the s�expressions and used to access to the objects in
the database� After the evaluation of the search condition is completed� the OIDs of the quali�ed
objects in target class are returned from s�expression�

Comparing to the nested index� the path dictionary index approach needs to derive the target
objects from the s�expressions in the path dictionary� while the nested index will directly return
the quali�ed target objects through index scan� However� with queries involving unindexed at�
tributes� the nested index needs to traverse the objects in the database in order to evaluate the
predicate� while the path dictionary index can directly access to the objects in the target class�
Besides� with queries involving more than one indexed attribute� the cost of index scans is about
the same for both methods� Although the path dictionary index may cost more when the number
of s�expressions accessed is large� we expect the path dictionary index to have about the same re�
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trieval performance as the nested index for queries with typical selectivity and reasonably restricted
conjunctive conditions�

��� Update Operations

When changes are made to the database� the path information in the dictionary must be updated�
Operations such as update� insertion� deletion� creation� destruction and destroy will require up�
dates to the path dictionary� In the paper� we only describe the update operation�

When changes are made to the database� the path information in the dictionary must be
updated� Since updates to simple attributes won�t change the links among objects� they have no
e�ect on the path dictionary� When complex attributes are modi�ed� however� the path dictionary
must be updated� However� owing to the attribute indexes� updates on the simple attributes of the
objects located along the indexed path induces updates on the PDI� The PDI has to be updated
in the following situations�

�� When an indexed simple attribute is modi�ed� the corresponding attribute index has to be
updated� while the path dictionary and the identity index need not be changed� Suppose one
of the indexed attributes of an object� identi�ed by �� is modi�ed� Let A� be the address of
the s�expression containing �� The update of the attribute indexes is accomplished by two
index scans� one to delete A� from the leaf node corresponding to the old attribute value�
and the other to insert A� to the leaf node corresponding to the new attribute value�

�� When one of the complex attributes connecting the path is modi�ed� Suppose object Oi

changes its complex attribute from Oi�� to O
�
i�� �Oi� Oi�� and O

�
i�� are identi�ed by �i� �i��

and ��i���� If none of the direct attributes of class Ci and none of the direct attributes of Ci�s
ancestor classes are indexed� we have to search the path dictionary through the identity index
to �nd the s�expressions containing �i and ��i��� Then� �i and its ancestor list are moved from
the ancestor list of �i�� to the ancestor list of ��i��� Meanwhile� the identity index has to
be updated by changing the old s�expression address in �i�s leaf node to the new address�
However� if some direct attributes of class Ci or Ci�s ancestor classes are indexed� we also
have to update those attribute indexes� which is the same as described above�

Note that an alternative approach is to traverse fromOi�� and O�
i�� to their nested attributes�

then use the attribute values to scan through the attribute index to locate the s�expressions
and update the path dictionary� The update of the attribute index may be done while locating
the s�expression addresses� Whether this method is better than the previous one depends on
whether or not traversing through the nested attributes is more expensive than going through
the identity index�

Let�s consider the following update examples� Assume that the attribute Age of class Person

is indexed by Indexage� The update �change Person��
�s age from 	� to 	�� will not change the
path dictionary and the identity index� but Indexage has to be searched twice to move Person��
�s
s�expression address from the leaf node corresponding to 	� to the leaf node corresponding to
	�� Next� for the update �change Person��
�s car from Vehicle��
 to Vehicle���
�� we �rst use the
identity index to locate the s�expressions corresponding to Vehicle��
 and Vehicle���
� The path
dictionary is updated by moving person��
 from the s�expression corresponding to Vehicle��
 to
the s�expression corresponding to Vehicle���
� The identity index is then updated by changing
the leaf node of Person��
 from pointing to the s�expression corresponding to Vehicle��
 to that
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corresponding to Vehicle���
� Finally� the attribute index Indexage has to be updated by remov�
ing the s�expression address corresponding to Vehicle��
 and inserting the s�expression address
corresponding to Vehicle���
 into the leaf node of Indexage corresponding to the age of Person��
�

� Storage Cost and Performance Evaluation

In this section� we formulate the cost models for the path index� path dictionary� and path dictionary
index methods to analyze their storage overhead and query processing performance� Then� we
compare their performance in terms of their storage� retrieval� and update costs� We select the
path index as a reference point in the comparison� because it can be generally applied to queries
with di�erent target classes as long as the classes are on the indexed path �i�e�� TP queries��
However� the path index can�t be used for PT queries� because its structure implies a bottom�up
evaluation� We didn�t select the nested index method even though it has outstanding performance
for certain kind of queries �i�e�� queries on a target class to which the indexed attribute is mapped
to� �	
� because the applicability of the nested index is limited� Most importantly� it requires reverse
links built in by the system to support e�ective update operations� The path dictionary and path
dictionary index are general enough to provide signi�cant support for both TP and PT queries�
The path dictionary method can serve as the baseline performance for the path dictionary index
method� where no attribute index is used�

In order to facilitate our comparison� we adopt some common parameters from �	
� We use the
following parameters to describe the characteristics of the classes and their attributes on the path�
C�C����Cn� and the structures of the three organizations�

Ni� the number of objects in class Ci� � � i � n�
Si� the average size of an object in class Ci�
Ai� the complex attribute of Ci used on the path� � � i � n�
Di� the number of distinct values for complex attribute Ai�
ki� the ratio of shared reference between objects in class Ci and values for Ai� �ki � Ni�Di��

Ai�j � the jth simple attribute of Ci� � � i � n�
Ui�j � the number of distinct values for simple attribute Ai�j of class Ci�
qi�j � the ratio of shared attribute value between objects in class Ci and values for attribute

Ai�j � �qi�j � Ni�Ui�j ��
K� the average ratio of shared references� i�e�� k�s� and shared attribute values� i�e�� q�s�

UIDL� the length of an object identi�er�
P � the page size�
pp� the length of a page pointer�
f � average fanout from a nonleaf node in the path index� identity index� and attribute

indexes�
kl� average length of a key value in path index and attribute indexes�
ol� the sum of the key length� record length� and number of path �elds in the path index�

OFFL� the length of an o�set �eld in the path dictionary�
SL� the length of the start �eld in the path dictionary�

FSL� the length of the free space �eld in the free space directory�
EL� the length of EOS�
Performance is measured by the number of I�O accesses� Since a page is the basic unit for data

transfer between main memory and external storage� we use it to estimate the storage overhead
and the performance cost� All lengths and sizes used above are in bytes�
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Table �� Parameters of the cost models�

P � ����
UIDL � �

pp � �
OFFL � �

SL � �

FSL � �
EL � �
kl � �
ol � �
f � ���

To directly adopt the formulae developed in �	
� we follow their assumptions�

�� There are no partial instantiation� which implies that Di � Ni���

�� All key values have the same length�

�� Attribute values are uniformly distributed among the objects of the class de�ning the at�
tribute�

�� All attributes are single�valued�

Further� we adopt the parameter values in �	
� Table � lists the values chosen for the path dictionary�

��� Storage Overhead

Path Index

To create a path index for a primitive attribute� An�j � of the class Cn� which maps the key values
of An�j to every class on the path C�C����Cn� the number of pages needed is �	
�

LP �

���
��

dUn�j�bP�XPce� where XP � PN �UIDL�n� kl � ol if XP � P

Un�jdXP�P e� where XP � PN �UIDL�n� kl � ol �DS�
DS � d�PN �UIDL�n� kl � ol
�Pe�UIDL�n� pp� if XP � P�

and PN � k�k����kn��qn�j � The number of nonleaf pages is�

NLP � dLO�fe � ddLO�fe�fe � ����X�

where LO � min�Un�j � LP � and X � f � If X �� �� NLP is increased by one to account for the root
node� The total number of pages needed for the path index is�

PIS � LP �NLP�

Path Dictionary

Each object in the path dictionary� except for those in the root class of the path� is associated with
an o�set� Therefore� an object will take at most �UIDL � OFFL� bytes in an s�expression� The
average number of objects in an s�expression is�

NOBJ � � �Kn�� �Kn��Kn�� � ����Kn��Kn�����K��
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Thus� the average size of an s�expression is�

SS � SL��n� �� � �UIDL�OFFL�NOBJ � EL�

The number of pages needed for all of the s�expressions on the path is�

SSP �

�
dNn�bP�SSce if SS � P
NndSS�P e if SS � P�

The number of pages needed for the free space directory is�

FSD � dSSP �pp� FSL��P e�

The total number of objects in the database is�

TOBJ � N� �N� � ����Nn � NOBJ �Nn�

The number of leaf pages needed for the identity index of the path dictionary is�

LPidentity � dTOBJ�bP��UIDL� pp�ce�

The number of nonleaf pages is�

NLPidentity � dLPidentity�fe � ddLPidentity�fe�fe� ����X�

where X � f � If X �� �� NLPidentity is increased by � to account for the root node� The total
number of pages needed for the identity index is�

IIP � LPidentity �NLPidentity �

Therefore� the number of pages needed for the path dictionary is�

PDS � FSD� SSP � IIP�

Path Dictionary Index

The number of pages for the dictionary part of PDI is the same as the path dictionary� In the
following� we develop the cost model for the attribute index part of PDI�

For an attribute index based on the jth primitive attribute� Ai�j � of the class Ci� the average
number of pages needed for a leaf node record is�

XPAi�j
� kl� ol� qi�j�UIDL� pp��

The number of leaf node pages needed is�

LPAi�j
�

�
dUi�j�bP�XPAi�j

ce� if XPAi�j
� P

Ui�jdXPAi�j
�Pe� if XPAi�j

� P�

The number of nonleaf pages is�

NLPAi�j
� dLOAi�j

�fe� ddLOAi�j
�fe�fe � ����X�

where LOAi�j
� min�Ui�j � LPAi�j

� and X � f � If X �� �� NLPAi�j
is increased by one to account for

the root node� Thus� the total number of pages needed for indexing Ai�j is�

AIPAi�j
� LPAi�j

�NLPAi�j
�

As a result� the number of pages needed for the path dictionary index is�

PDIS � FSD � SSP � IIP � AIPindex� �AIPindex� � ����AIPindexm �

where index�� index�� ���� indexm are the attribute indexes created�
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Comparison

Using the formulae developed above� we compare the storage overhead of the path index� path
dictionary� and path dictionary index� We choose a path of � classes in the comparison� For the
path index and path dictionary index� a primitive attribute in the bottom class of the path� A���� is
chosen for indexing� Also� we �x the cardinality of N� to ������ and the average size of an object
to �� bytes� In the following� we use PIS� PDS and PDIS to represent the storage overhead of the
path index� path dictionary and path dictionary index� respectively�
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Figure �� Storage overhead�

To observe the impact of the ratios of shared references and shared key values on the storage
overhead� we vary the average ratio� K� from � to �	� Figure � shows that PIS � PDS � PDIS
when K � � and �� and that PDS � PDIS � PIS when � � K � �	� The explanation for the case
of K � � is that when there are no shared references and key values in the database� the structure
of an s�expression in the path dictionary methods is similar to that of a leaf node record in the
path index� except that the path dictionary methods have additional storage overhead for the o�set
�elds in the s�expressions� the identity index� and the leaf node records in the attribute indexes�
However� the amount of redundant path information in the path index increases when the ratios of
shared references and shared key values increase� Therefore� we can conclude that� in general� the
path dictionary and the path dictionary index have better storage overhead than the path index�

In practice� we usually have more than one attribute in the path to be indexed� In order to
compare the overall storage overhead for the indexes created� we calculate the total cost of creating
n indexes on attributes of class C� for the path index and the path dictionary index� We vary n
from � to �� to observe the change of storage overhead for the three methods� In this comparison�
we �x the ratios of the shared references among the classes along the path and the ratios of the
shared key values for each attribute indexes �i�e�� k�s and q�s are set to ���

Figure � shows that PIS increases dramatically� because the path index creates a separate index
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for each attribute indexed� PDS� shown here as a reference� is constant since it doesn�t create any
index� On the other hand� the increase on PDIS is due only to the storage for building the attribute
indexes� Thus� we can see that PDIS increases linearly with the number of attribute indexes� but
at a much lower rate than that of PIS�

��� Retrieval Cost

Using the classi�cation introduced in Section �� queries on nested objects can be classi�ed as
TP� PT and MX � To simplify our analysis� we assume that there is only one predicate attribute in
the queries� Therefore� we will only consider TP and PT queries in our discussion�

Path Index

Since the structure of the path index implies a bottom�up evaluation� it can�t be applied to PT

queries� Therefore� the traditional forward traversal approach is used� The cost model for evaluating
TP queries with the path index is given in �	
� The number of pages accessed for retrieval is�

PIR �

�
h � � if XP � P
h � dXP�Pe if XP � P�

where h � height of the path index� �� and XP is the size of a leaf node record in the path index�

Path Dictionary

The path dictionary may be applied to TP and PT queries� To answer a query Q which has Ct as
the target class and Cp as the predicate class� where � � t� p � n� the path dictionary approach

��



will have to retrieve all of the objects in class Cp for predicate evaluation� search the identity index
to locate the addresses of the s�expressions� then access the s�expressions in the path dictionary to
return the objects in Ct� Therefore� the number of pages accessed is�

PDR � dNpSp�Pe�NpjQ�hidentity � � � dSS�Pe��

where NpjQ is the number of objects in class Cp� which satisfy the predicates in Q� and hidentity �
height of the identity index � ��

Path Dictionary Index

Likewise� the path dictionary index supports both TP and PT queries� To answer Q using the path
dictionary index� we need to traverse a number of nonleaf nodes and one leaf node record in the
attribute index� IndexAi�j

� and then access the path dictionary� Therefore� the number of pages
accessed is�

PDIR � hattr� � dXPattr��P e �NpjQ �dSS�P e

where hattr� � height of the attribute index � ��

Comparison

We use the same parameters and assumptions as we used in evaluating the storage cost� We use
PIR� PDR and PDIR to represent the retrieval costs of the the path index� the path dictionary and
the path dictionary index� respectively�

First� we assume that the query has C� as the target class� C� as the predicate class� and A���

as the indexed predicate attribute� We assume that all k and q values equal to an average ratio�
K� As before� we increase K from � to �	 to observe the e�ect on retrieval cost�
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Figure ��� Retrieval cost�
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Figure �� indicates that the path index has the lowest retrieval cost initially� while the path
dictionary index is a close second� However� asK increases� the e�ect of redundant path information
in the path index becomes dominant� costing more page accesses� After k � 	� the path dictionary
index has a lower retrieval cost than the path index� after k � ��� the path dictionary also has
a lower retrieval cost than the path index� Therefore� we may conclude that for a query with an
indexed attribute in the predicate�

PIR � PDIR � PDR when K � 	
PDIR � PIR � PDR when 	 � K � ��
PDIR � PDR � PIR when �� � K

The path dictionary and the path dictionary index are more general mechanisms than the
path index in terms of improving the overall performance for di�erent kinds of queries� The path
dictionary mechanisms may be used to process any kind of queries which has predicate attributes
in the classes located along the path� The path index� however� can only be used to process queries
with predicates on the indexed attributes�

To compare the overall retrieval performance of the three methods� we select the following mix
of queries for evaluation�

�� Three queries in which the indexed attribute� A���� of C� is the only predicate attribute� and
each with C�� C� or C� as the target class�

�� Three queries in which a non�indexed attribute� A���� of C� is the predicate attribute� and
each with C�� C� or C� as the target class�

�� Two queries in which C� is the target class� and each with C� or C� as the predicate class�

Note that we only include the TP class of the queries in the list� Since the queries in � and �
are not supported by the path index� we have to use the traditional forward traversal or backward
traversal approaches to evaluate these queries� When the queries are not supported by the path
index� we use the cost models for retrieval without path index�path dictionary developed in ���
 to
compute the retrieval cost�

As before� we vary the average ratio of shared reference and shared key values� K� from � to �	
to observe the retrieval performance of the methods with respect to K� Figure �� shows that PDR
and PDIR have a much better overall retrieval performance than PIR� The overall performance
of PDIR will be better if we index more attributes on the path� Likewise� the overall retrieval
performance of the database will improve if we create more path indexes on di�erent attributes�
However� some queries� such as PT queries� won�t be supported at all by the path index method�
Also� the cost of building more path indexes is very expensive as shown previously�

��� Range Query Cost

Range query is one of the important operations for database query� In this section� we develop cost
models for the path dictionary and the path dictionary index� Using the formulae� we compare the
cost of range query with respect to the percentage of objects satisfying the query predicate�
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Path Index

Based on �	
� the number of page accesses is�

PIRQ �

�
h � dNRQ�NRECe if XP � P
h � dNRQ�dXP�Pee if XP � P�

where h � height of the path index � �� XP is the size of a leaf node record for the path index�
NRQ is the number of key values speci�ed in the query� and NREC is the number of records in a
leaf node page�

Path Dictionary

For range queries on the path dictionary� the formula is the same as the formula for single value
retrieval�

PDRQ � dNpSp�P e�NpjQ�h� � � dSS�Pe��

whereNpjQ is the number of objects in class Cp satisfying the predicates in Q and h � height of the identity index�
��

Path Dictionary Index

To answer a range query with the path dictionary index� an attribute index scan is performed to
�nd the leaf node record corresponding to the lower bound value of the range� then sequentially
access to the leaf node pages in the range� and �nally retrieve all of the s�expressions speci�ed in
these records to return the target objects� Therefore� the number of pages accessed is�

PDIRQ �

�
h � dNRQ�NRECe�NpjQdSS�Pe if XP � P

h � dNRQ�dXP�Pee�NpjQdSS�P e if XP � P�

�	



where h � height of the attribute index � �� XP is the size of a leaf node record for the attribute
index� NRQ is the number of key values speci�ed in the query� and NREC is the number of records
in a leaf node page�

Comparison

Instead of varying the ratio of references between classes� we change the selectivity of the predicate
speci�ed in the query� RANGE� from �� to ����� In the comparison� we �x k�� k�� k� and q��� to
�� The number of key values satisfying the predicate� NRQ� is U����RANGE� Therefore� the number
of objects in C� satisfying the query predicate� NpjQ� is NRQ�q���� NpjQ is used in computing the
cost of range queries for the path dictionary and the path dictionary index�
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Figure ��� Range Retrieval Cost�k� � k� � k� � q � ���

Figure �� shows that the path index has a much better performance on answering range queries
than the other two approaches� This is because the leaf node records of the path index are sorted
based on the key values of the indexed attribute� After accessing to the record corresponding to the
lowest key value� the OIDs of the target objects may be returned by sequentially scanning the leaf
nodes until the highest range value is reached� On the other hand� the path dictionary index has
to access to s�expressions in the path dictionary to return the OIDs of the target objects after they
obtain the addresses of s�expressions� The path dictionary approach has the worst performance�
because the evaluation of predicates is based on accessing the objects in the predicate class�

��� Update Cost

Due to space constraints� we only present the cost model for update operation� Other update
operations� such as insertion and deletion� may be derived in a similar way� To simplify the
analysis� we do not include the cost due to page overow caused by insertion or update operations�
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In the following� we assume that the complex attribute Ai�� of Oi is changed from �i�� to ��i��
��i�� and ��i�� are OIDs of Oi�� and O�

i����

Path Index

Suppose that the path index is based on the simple attribute� An�� of class Cn� To determine the
nested attribute values in An�� for Oi�� and O�

i��� we need two forward traversals to An���

FT � dSi�Pe � dSi���Pe � ���� dSn�P e�

To simplify the cost model� we assume that Oi�� and O�
i�� have di�erent key values and that they

are in di�erent leaf node pages of the path index� To search through the nonleaf nodes of the path
index and to read and write the leaf pages for Oi�� and O�

i��� the number of page accesses needed
is�

CO � h� �dXP�Pe�

Therefore� the number of pages accesses for update with the path index is�

PIU � ��CO� FT ��

Path Dictionary

To update the complex attribute Ai�� of Oi from �i�� to ��i��� the identity index is searched to
read and write back the s�expressions corresponding to �i�� and ��i��� To simplify our analysis�
we assume that �i�� and ��i�� are in di�erent s�expressions and that they are in di�erent pages�
Therefore� the number of page accesses for update is�

PDU � ��hidentity � �� �dSS�P e��

where hidentity � height of the identity index � ��

Path Dictionary Index

There are three di�erent cases in which we have to update the path dictionary index�

�� An indexed simple attribute is modi�ed� in this case� the update necessary for the PDI is to
update the attribute index involved� Since two index scans are needed� the number of page
accesses for update with PDI is�

PDIU � ��hattr� � �dXPAi�j
�Pe��

where hattr� � height of the attribute index � ��

�� The complex attribute Ai�� of Oi is changed from �i�� to ��i��� and no attribute in Ci and
Ci�s ancestor classes are indexed� In this case� the update cost is the same as that of the path
dictionary�

�� If one of the attributes in Ci or Ci�s ancestor classes is indexed� the attribute index has to be
updated too� Therefore� the number of page accesses for update with PDI is�

PDIU � ��hidentity � �� �dSS�Pe� � ��hattr� � �dXPattr��P e��

where XPattr� is the size of a leaf node record in the attribute index�
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Comparison

In the �rst case� both the path index and the path dictionary index are required to update their
indexes� while the path dictionary mechanism is not required to do so� For the second case� all of
the three mechanisms need an update� while the path dictionary and path dictionary index have
the same update cost� For the third case� it�s only fair to compare the path dictionary and path
dictionary index� because the indexed attribute in the path index must be at the leaf class of the
path� this is why the path index doesn�t support PT queries and it doesn�t need an update in this
situation� In our comparison� we choose the formula for case � to compute the update cost of the
path dictionary index� PDIU � Since PDU and PDIU are the same for the second case� PIU and
PDU are used to compare the update costs between the path index and the other two mechanisms�
The di�erence between PDIU and PDU is the update overhead on the attribute index required for
the path dictionary index method�
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Figure ��� Update Cost�

One of the most important reasons for extending the path dictionary with the identity index
is to improve its update performance� The improvement is shown in Figure ��� which depicts the
update cost of the three methods� Initially� the path index has the same update cost as that of the
path dictionary and the path dictionary index� However� as K increases� the update cost of the
path index dramatically increases� while the update cost for the two path dictionary mechanisms
remains relatively low� The di�erence between PDU and PDIU decreases as K increases� because�
owing to assumptions � and �� there are fewer key values in the indexed attribute and fewer objects
in C� when K is large� Therefore� the size of the attribute index is smaller with large values of K�
resulting in smaller update overhead on the attribute index�
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� Conclusion

Aggregate relationship is one of the most frequently found relationships in database applications�
In object�oriented database systems� the aggregate relationship is implemented by allowing an
object to be stored as a complex attribute of another object� This nested structure among objects
suggests the need of nested queries� In this paper� we classify and give examples of nested queries
in OODBS� Then� we introduce the path dictionary and path dictionary index methods for nested
query evaluation� We also develop cost models for the storage overhead and retrieval and update
costs� and compare the costs to the path index method� For most of the comparisons� we vary the
average ratio of shared references and shared key values to observe its impact on the performance
and overhead of the three mechanisms�

When there is one indexed attribute� the storage overhead for the path dictionary method is
better than that of the path dictionary index method� which in turn is better than that of the path
index method� When there is more than one indexed attribute� the storage overhead for the path
index method is increasingly larger than that of the two path dictionary mechanisms� The storage
requirement for the path dictionary is constant� because it is general enough to support all classes
of nested queries� For the path dictionary index� the extra storage needed to create the attribute
indexes is low comparing to the path index method� Thus� it is a�ordable to have many attribute
indexes on the path dictionary�

Generally speaking� the path dictionary index method has the best retrieval performance� The
path index method is better than the other two organizations only when the average ratio of shared
references and key values is extremely low� Furthermore� when considering a general mix of nested
queries� the performance of the path dictionary and path dictionary index is overwhelmingly better
than that of the path index� Also� the path index cannot be used to support queries in which the
predicate class is an ancestor of the target class�

For the update operation� the path dictionary has the best performance and the path dictionary
index is a close second� Under all conditions� both of the path dictionary and path dictionary index
have a better performance than the path index�

We have shown that the path information embedded among objects can be exploited to sig�
ni�cantly improve the performance of nest object queries in object�oriented databases� We are
currently investigating a new method which combines the signature �le technique with the path
dictionary and developing cost models for the new organization� Using the cost models for de�
tailed analysis of available query processing strategies presents a future research topic on query
optimization�
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