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Abstract. Weighted finite automata (WFA) are used with accelerating
hardware to scan large genomic banks. Hardwiring such automata raise
surface area and clock frequency constraints, requiring efficient ε-transi-
tions-removal techniques. In this paper, we present new bounds on the
number of new transitions for several ε-transitions-removal problems. We
study the case of acyclic WFA. We introduce a new problem, the partial
removal of ε-transitions while accepting short chains of ε-transitions.

1 Introduction

Weighted Finite Automata (WFA) are used to find occurrences of biological
patterns in genomic databases containing tens of gigabytes of data. Biological
patterns can be seen as regular or weighted expressions over the 20-letter amino
acid alphabet. They may represent the signature of a protein family, the features
of a domain or the specific location of an active site. The usual length ranges of
the patterns are from a few amino acids to a few tenth.

WFA can be efficiently hardwired onto reconfigurable architectures (namely
FPGA components) to speed up the search of biological patterns, reducing com-
putation time from hours to minutes [1]. Today, with the exponential growth
of genomic data, the hardwire WFA alternative offers an interesting approach
compared to pure software implementation.

Hardware speed comes from the ability to compute all WFA states simulta-
neously. Actually, genomic data (input string) are processed on-the-fly, and the
performance of a hardwired WFA is mainly determined by the input data rate.
Thus, the processing time becomes independent of the WFA size, and is only
dictated by the time for accessing all the items of the database.

This scheme is valid as long as the WFA fits into FPGA components. Un-
fortunately, biological patterns may require consequent reconfigurable resources,
particularly when insertion/deletion errors are considered. In that case, inser-
tions are modeled by cyclic transitions and deletions by ε-transitions. Resulting
WFA are thus much larger in terms of the number of transitions. From a hard-
ware point of view, the resources are directly related to the number of transitions
to hardwire. Hence, finding equivalent automata with less transitions is highly
beneficial.
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Beside the automaton size, a direct hardware implementation of ε-transitions
is not realistic. Fig. 1 exemplifies the hardware mapping of a WFA with ε-transi-
tions. Paths with ε-transitions are represented by dotted lines: they systemat-
ically bypass state registers. The main consequence is that a long critical path
(dashed line) is created from the input to the output. The critical path is defined
as the longest path between two registers, and determines the maximum clock
frequency of the circuit. The longer the path, the lower the frequency. Hence, to
keep a reasonable working frequency, the critical path needs to be broken into
smaller parts by removing some ε-transitions.
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Fig. 1. Hardwiring a WFA with 5 regular transitions doubled with ε-transitions [2]. A
critical path runs through the whole automaton.

The classical method removing ε-transitions in automata use the ε-closure of
every state [3,4]. Recently, for WFA, Mohri proposed a generic algorithm with
a smallest distance method [5]. A certain condition must be checked to ensure
that the weights are well-defined in cycles.

These algorithms can raise the number of transitions from n to O
(
n2

)
. The

resulting automaton can be minimized [6], but for large automata, such a limit
makes the hardware implementation impossible. As an example, in [7], we ex-
perienced an 80-state automaton for discovering olfactory receptor genes in the
dog genome. On this automaton, the classical ε-transitions-removal algorithms
produce more than 3100 new transitions. This number reaches the limit of today
FPGA’s technology and prevents larger automata from being hardwired.

Hromkovic proposed a study for ε-transitions in finite automata [8]. There are
rational expressions of size O(n) such that every ε-free recognizing automaton
has a size Ω(n log n). Lifshits raised this bound to Ω(n log2 n/ log log n) [9]. Other
works optimized the creation time of those automata [10].

In this paper we study the development of WFA: we double every transi-
tion with an ε-transition, and we study the number of new transitions created
when removing the ε-transitions. We previously proposed a first study for linear-
shaped automata: in this case, we designed an optimal method that produces
automata with Θ(n log n) new transitions [2].
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The rest of the paper is organized as follows. Section 2 provides WFA back-
ground. Then, in Section 3, we study the development of WFA for acyclic
automata. Section 4 presents a new problem driven by the hardware constraints:
the removal while accepting short ε-chains. The final section concludes with ex-
perimental results and perspectives.

2 Background

2.1 WFA and Pattern Matching

Definition 1. A Weighted Finite Automaton (WFA) is a 5-tuple A=(Q, Σ, Δ,
I, F ), where Q is a finite set of states, Σ a finite alphabet, Δ ⊂ Q × Q × (δ :
Σeps �→ K) a finite transition table, I ⊆ Q and F ⊆ Q the sets of initial and
final states.

The number of transitions of the WFA is |Δ|. For each transition τ = (q, q′, δ) ∈
Δ, we denote by i[τ ] = q its initial state, f[τ ] = q′ its final state, and δ[τ ] = δ its
weight function. A WFA without ε-transitions is a WFA such that δ(ε) = −∞ for
every transition (q, q′, δ). Now we define paths as consecutive labeled transitions:

Definition 2. A path π = (τ1, α1) . . . (τk, αk) ∈ (Δ × (Σeps))∗ in a WFA A is
a succession of pairs of transitions and characters where the transitions τ1 . . . τk

are consecutive transitions, that is f[τi] = i[τi+1] for i = 1 . . . k − 1, and where
the characters αi are in Σeps. The label of π is the word α1 . . . αk.

The weight function δ can be extended to paths: for a path π=(τ1, α1) . . . (τk, αk),
we define δ(π) = δ[τ1](α1) + . . . + δ[τk](αk). Weights on words used in pattern
matching are computed as weights on paths between some initial and final states.

2.2 Path-Equivalence

Now we give a definition of our ε-transition-removal problem. We define it as
finding a new automaton with a special kind of equivalence, the path-equivalence,
which requires that some paths (the closed paths, see below) have a superior path
in the corresponding automaton.

Definition 3. One path π is superior to another one π′ if both paths have the
same label, the same initial state and the same final state, and if δ(π) ≥ δ(π′).

Definition 4. A path π = (τ1, α1) . . . (τk, αk) is left-closed if it begins with an
initial state (i[τ1] ∈ I) or if its first character α1 is different than ε. Similarly, a
path is right-closed if f[τk] ∈ F or αk 	= ε. A path is closed if it is closed at both
sides.

Definition 5. Two WFA A = (Q, Σ, Δ, I, F ) and A′ = (Q, Σ, Δ′, I, F ) are
path-equivalent if every closed path in A labeled by a word w 	= ε has a superior
path in A′ and reciprocally.
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Basically, the path-equivalence states that the two automata simulate each other
through their paths. Usual algorithms that remove the ε-transitions such as [4]
or [5] produce path-equivalent automata.

2.3 Development of an Automaton

Given a WFA without ε-transitions A = (Q, Σ, Δ, I, F ) and a deletion cost cε,
we define Aε as the WFA in which all transitions of A are doubled by ε-transi-
tions. More precisely, every transition (q, q′, δ) ∈ Δ is extended with δ(ε) = cε.

Definition 6. Given a WFA A, any WFA A′ is a development of A if A′ is
path-equivalent to Aε and if has no ε-transitions. We say that A′ is developed
from A if A′ is a development of A.

To be efficiently harwired, a WFA needs to be developed with as few new transi-
tions as we can. In the general case, the ε-transitions-removal from an automaton
with n transitions gives an automaton with O

(
n2

)
new transitions. In [2], we

studied the case of linear-shaped automata. We designed an optimal method
that produces automata with Θ(n log n) new transitions.

3 Removal in Acyclic Automata

Here we use the results on linear-shaped WFA to analyze the number of new
transitions in the developments of some more generic automata. To ensure that
the weights are well defined, automata with cycles require special constraints
[5]. The section 3.1 considers acyclic automata with n states : we give an upper
bound to develop such automata. The section 3.2 extends the result to automata
with cycles, but with no cycles on ε-transitions. Such automata are common in
biological applications (Fig. 2).

Fig. 2. Detail of a genomic automaton recognizing MIP membrane proteins [11]. The
complete automaton has more than 300 transitions. Except for some insertion transi-
tions (X), this automaton is acyclic.

3.1 Acyclic Automata

Definition 7. A WFA A = (Q, Σ, Δ, I, F ) is acyclic if its graph has no cycle.
The states of an acyclic WFA can be numbered q1, q2, . . . qn such than there is
no backward transition (qi, qj , δi,j) with i ≥ j.

We call such a WFA a numbered automaton. The following algorithm develops a
numbered automaton with n states from the development of two sub-automatons
obtained by cutting the automaton at a state qz .
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Algorithm 1. Development of a numbered WFA

Input: a numbered WFA with n states A = (Q,Σ, Δ, I, F ), an integer z ∈ [2, n − 1], a
cost cε

Let C be the set of all cut transitions (qi, qj , δi,j) with i < z < j
Let Z be a set of states touching C
Let A1 = (Q1 = {q1 . . . qz} ∪ Z, Σ, Δ1, I, {qz} ∪ Z)
and A2 = (Q2 = {qz . . . qn} ∪ Z, Σ, Δ2, {qz} ∪ Z, F )

where the transition tables Δ1 and Δ2 are the restrictions of Δ on Q1 and Q2

Let A′
1 and A′

2 recursively be two developments of A1 and A2

Let A′ be the concatenation of A′
1 and A′

2 : A′ = (Q,Σ, Δ′, I, F ), Δ′ = Δ′
1 ∪ Δ′

2

For all qi in Q1

Add to Δ′ the transition (qi, q, δ
′
i) for all final states q ∈ F

with δ′
i(α) = maxi+1≤k≤n [(n − i − 1)cε + δk(α)]

For all qi in Q2

Add to Δ′ the transition (q, qi, δ
′′
i ) for all initial states q ∈ I

with δ′′
i (α) = max1≤k≤i [(i − 1)cε + δk(α)]

Output: the WFA A′ = (Q, Σ, Δ′, I, F )

In the algorithm for linear-shaped WFA (Algorithm 1 in [2]), initial and final
states of both sub-automata guarantee that the paths are closed. Here some
transitions are cut over qz (Fig. 3). All the paths are closed if one adds to each
sub-automaton a set of states Z that touches the cut transitions, that is a set Z
such that any cut transition starts or ends in Z. Each state in Z is a final state for
the left sub-automaton and an initial state for the right one : the sub-automata
are overlapping. We have the following property:

Property 1. The algorithm 1 builds an automaton which is path-equivalent to
the initial automaton.

Proof. We just give the sketch of the proof, which is similar to the case of linear-
shaped WFA (Lemma 3 in [2]). A �→ A′ Each closed path of A not labeled by
ε and not completely included in A1 or in A2 can be written as π1π2, where
π1 and π2 are closed paths in A1 and A2. Any such decomposition leads to a
superior closed path in A′. A′ �→ A Reciprocally, any closed path of A′ either
goes through a state q ∈ {qz} ∪ Z, or jumps over such a state. In both case a
superior closed path of A can be reconstructed.

Each step of the algorithm adds no more than |Q1| · |F | + |Q2| · |I| transitions.
To bound this value, we need a bound on |Z|.

Definition 8. Let be a numbered WFA with states {q1, q2 . . . qn}, and qz a state.
The width κz is the number of transitions (qa, qb, δ) with a < z < b.

The maximal width is K = maxi κi: it can be seen as the maximal number of
branches in the WFA, except the main branch. On the automaton depicted on
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Fig. 3. Algorithm developing a numbered WFA with n states. A state qz is chosen to
split the automaton into two parts with z and n− z +1 states. The two cut transitions
are shown in double lines. The set Z = {x, 6′} touches every cut transition. This set
Z is added to the two parts to give the sub-automata A1 and A2. Final states of A1

(and initial states of A2) are {z} ∪ Z. At the bottom, we add to the developments of
the two sub-automata transitions from initial states of A1 to all states of A2. With the
symmetrical operation, no more than |Q1| · |F | + |Q2| · |I | transitions are created.

Fig. 2, we have K = 1 for all numberings. In the general case, the widths depend
on the chosen numbering.

At each step, the set Z has no more than K elements. When applying recur-
sively algorithm 1, the sets I and F will always have no more than K+1 elements.
Then one step of the algorithm adds no more than (|Q1| + |Q2|) · (K + 1) ≤
(n + K) · (K + 1) transitions. We thus have the following consequence of the
property 1:

Property 2. Any numbered WFA with a maximal width K can be developed
with O((K + 1) · n · (log n + K)) transitions.
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This coarse bound guarantees that automata with a small maximum width are
developed with very few new transitions (Fig. 6). This is sufficient for real-life
genomic automata representing biological features. Such automata, hand-crafted
or computed by state-merging techniques [11], are compounds of a few linear-
shaped parts (Fig. 2).

For the lower bound, the generic argument on linear-shaped WFA can be
applied to the longest path in the WFA. If this longest path has a size � ≤ n, we
have a bound of Ω(� log �).

3.2 ε-acyclic Automata

To extend the previous bounds for automata with cycles, we can consider a
slightly modified automaton. An ε-acyclic automaton is an automaton without
cycles of ε-transitions (Fig. 4). As an ε-acyclic automaton has a numbering with
no backward ε-transition, the algorithm 1 can still be used. The same bound
of O((K + 1) · n · (log n + K)) is obtained (each width κi is now the number of
ε-transitions cut by the state qi).

1

2

4

z

1′

2′

3′

6′

... ...
y

Fig. 4. Unlike the automaton on Fig. 3, this numbered automaton has a backward
transition (6′, y, δ). However, that transition is not doubled with an ε-transition.

In real applications, if we have an automaton A without ε-transition s, we add
some ε-transitions while keeping the automaton ε-acyclic. This construction is
justified when the automaton represents biological structures made of similar
units. Those units are separated by sequences that cannot be deleted, as for
instance in the case of exon recognition.

4 Removal with Short ε-chains

To further lower the number of new transitions, we can remark that short ε-
chains (that is chains of successive ε-transitions) can be actually hardwired with
a reasonable critical path (Fig. 5).



30 M. Giraud, P. Veber, and D. Lavenier

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10

ns

Length of epsilon-chains

Critical path (ns)
25 MHz / 40 ns

Fig. 5. Critical path for ε-chains with 8-bit weights and a 40 ns (25 MHz) constraint
on a WFA with 20 regular transitions and different lengths of ε-chains. Chains of 3
ε-transitions can be hardwired. The FPGA being half-filled (between 48% and 51%),
the hardware compiler has a moderate pressure on the different optimisation phases.
The critical path should be linear to the length of ε-chains, but the hardware compiler
does not further minimize it as soon as it meets the constraint.

Definition 9. Given a WFA A and nε ∈ N, any WFA A′′ is a development
with short ε-chains of A if A′′ is path-equivalent to Aε and if all ε-chains of A′′

have a length ≤ nε.

Given a linear-shaped WFA with n states, we can split it into nε parts of size
O(n/nε), develop each sub-automaton with O(n/nε · log(n/nε)) transitions, and
finally add an ε-transition that covers each sub-automaton.

Thus we have the following property:

Property 3. A linear-shaped WFA with n states can be developed with short
ε-chains with O(n log(n/nε)) new transitions.

Furthermore, if we restrict that all remaining ε-transitions are original, that is,
they were present before the removal, the same bound is a lower bound:

Property 4. Given nε, any development with short original ε-chains of a linear-
shaped WFA with n states has Ω(n log(n/nε)) new transitions.

The proof, which enumerates some sets in which at least one transition must
appear in the automaton, is given in appendix. Although accepting short chains
of ε-transitions is a local change, this technique lowers the actual number of
new transitions (Fig. 6). The ε-chains can be used in (ε)-acyclic WFA to obtain
O((K + 1) · n · (log(n/nε) + K)) new transitions.
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Number of states of the initial automaton 20 80 200
Quadratical ε-transitions-removal algorithms 190 3160 19900
Linear-shaped WFA [2] 69 433 1345
Linear-shaped WFA, development with short ε-chains (section 4)

ε-chains of length ≤ nε = 3 42 310 1022
ε-chains of length ≤ nε = 5 30 250 890

(ε-)acyclic WFA (section 3)
K = 1, best-case 96 522 1555
K = 1, worst-case 141 925 2835
K = 2, best-case 124 612 1766
K = 2, worst-case 176 1292 4096

Fig. 6. Number of new transitions produced while removing ε-transitions on various
automata. For acyclic WFA, complexity range from best-case (only one additional
branch through the whole WFA) to the worst-case (each cut has a maximal width: the
automaton is constantly branching). Even in the worst-case situation, genomic WFA
with 80 states and no more than K + 2 = 3 branches can be efficiently hardwired with
less than 1300 new transitions.

5 Conclusions and Perspectives

The removal techniques presented in sections 3 and 4 allow larger automata
to be hardwired on a given FPGA. For acyclic automata, the best results for
a strict application of algorithm 1 would require finding the numbering of the
states that minimizes the maximal width K. In fact, for real automata with a
small number of branches as the one in Fig. 2, good solutions are found when
cutting at the branching states.

Other studies could find more precise bounds. For acyclic automata, the initial
number of transitions could be taken into account. Finally, we plan to study ap-
proximated developments of automata, in which the resulting automaton would
not strictly be path-equivalent to the initial one. In real applications, the cost
assigned to deletions prevents sequences with too many ε-transitions from being
accepted.
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Appendix

Proof of Property 4

This proof uses a similar technique than the proof of the Lemma 6 in [2], but
additional work is done to handle the short ε-chains. The span of a transition
(qi, qj , δ) is |j − i|.

Proof. Let A be a linear-shaped WFA with n states, and A′′ a development with
short original ε-chains of A. Let π = (τa+1, αA)(τa+2, ε) . . . (τb−1, ε)(τb, αB) be
a closed path in A, where αA and αB are two characters different from ε. This
path has in A′′ a superior path π′ that can be written as π′ = (π′

1, ε) (τA, αA)
(π′

2, ε) (τB , αB) (π′
3, ε).

As the three paths π′
1, π′

2 are π′
3 are original ε-chains, any of them has a span

not greater than nε transitions, that is 3nε globally. Therefore, at least one of
the two transitions τA and τB has a span included in {

⌈
k−3nε

2

⌉
, . . . , k − 1} with

k = b − a (Figure 7).

a . . . . . . . . . bαA
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ε

Fig. 7. Proof of the property 4. At least one of the transitions τA and τB has a span in-
cluded in {

�
k−3nε

2

�
, . . . , k−1}, where k = b−a is the span of the path (τA, αA)(τB , αB).
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If we consider all n−k+1 pairs (a, b) with the same k = b−a, then the WFA A′′

has no less than (n−k+1)/2 transitions of span included in {
⌈

k−3nε

2

⌉
, . . . , k−1}.

Let (ki) the sequence defined by ki+1 = 2ki + 3nε and k0 = 1. We have
ki = 2i(1 + 3nε) − 3nε. We consider several ks taking the values of (ki) from
i = 1 to the last i such that ki ≤ n, that is if =

⌊
log n+3nε

1+3nε

⌋
= Θ(log(n/nε)).

Then the WFA A′′ has not less than Σ
if

i=1(n − ki + 1)/2 = Θ(n log(n/nε))
transitions.
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