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Abstract. Path-following methods for primal-dual active set strategies requiring a regulariza-
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1. Introduction. Primal-dual active set strategies or, in some cases equiva-
lently, semismooth Newton methods, were proved to be efficient methods for solving
constrained variational problems in function space [1, 9, 10, 11, 12, 13]. In certain
cases regularization is required, resulting in a family of approximating problems with
more favorable properties than those of the original one, [12, 13]. In previous work [13]
convergence, and in some cases rate of convergence, with respect to the regularization
parameter was proved. In the numerical work the adaptation of these parameters was
heuristic, however. The focus of the present investigation is on an efficient control
of the regularization parameter in the primal-dual active set strategy for a class of
constrained variational problems. To explain the involved issues we proceed mostly
formally in this section and consider the problem{

minJ (v) over v ∈ X

s.t. Gv ≤ ψ,
(1)

where J is a quadratic functional on a Hilbert space X, and G : X → Y . It is assumed
that Y ⊂ L2(Ω) is a Hilbert lattice with ordering ≤ induced by the natural ordering
of L2(Ω). We note that (1) subsumes problems of very different nature. For example,
for the control constrained optimal control problem⎧⎪⎨

⎪⎩
min 1

2 |y − z|2L2 + α
2 |u|2L2

s.t. − Δy = u in Ω, y = 0 on ∂Ω,

u ≤ ψ a.e. in Ω,

with Ω a bounded domain in R
n, z ∈ L2(Ω), α > 0, one can use y = (−Δ)−1u, where

Δ denotes the Laplacian with homogenous Dirichlet boundary conditions, and arrive
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at {
min 1

2 |(−Δ)−1u− z|2 + α
2 |u|2

s.t. u ≤ ψ a.e. in Ω,

which is clearly of the form (1). For J (v) = 1
2

∫
Ω
|∇v|2dx −

∫
Ω
f v, X = H1

0 (Ω),
and G = I we obtain the classical obstacle problem. For state constrained control
problems with y ≤ ψ one has{

min 1
2 |(−Δ)−1u− z|2 + α

2 |u|2

s.t. (−Δ)−1u ≤ ψ a.e. in Ω,

which is also of the form (1). From the point of view of duality theory these three
problems are very different. While it is straightforward to argue the existence of a
Lagrange multiplier in L2(Ω) for the control constrained optimal control problem, it is
already more involved and requires additional assumptions to guarantee its existence
in L2(Ω) for obstacle problems, and for state constrained problems the Lagrange
multiplier is only a measure. If we resort to a formal discussion, then in either of
these cases we arrive at the optimality system of the form{

J ′(v) + G∗λ = 0,

λ = max(0, λ + c(G(v) − ψ) )
(2)

for any fixed c > 0. Here, G∗ denotes the adjoint of G. The second equation in (2) is
equivalent to λ ≥ 0, G(v) ≤ ψ, and λ(G(v) − ψ) = 0.

Continuing formally, the primal-dual active set strategy determines the active set
at iteration level k by means of

Ak+1 = {x ∈ Ω: λk(x) + c(G(vk)(x) − ψ(x) ) > 0},

assigns the inactive set Ik+1 = Ω \ Ak+1, and updates (v, λ) by means of{
J ′(vk+1) + G∗λk+1 = 0,

λk+1 = 0 on Ik+1, (G(vk+1) − ψ)(x) = 0 for x ∈ Ak+1.
(3)

These auxiliary problems require special attention. For obstacle problems the con-
straint vk+1 = ψ on Ak+1 induces that the associated Lagrange multiplier λk+1 is in
general less regular than the Lagrange multiplier associated with v ≤ ψ for the original
problem; see, e.g., [13]. For problems with combined control and state constraints it
may happen that due to the assignment on Ik+1 and Ak+1, (3) has no solution while
the original problem does. For these reasons in, e.g., [9, 12, 13] the second equation
in (2) was regularized, resulting in the family of equations{

J ′(v) + G∗λ = 0,

λ = max(0, λ̄ + γ(G(v) − ψ)),
(4)

where λ̄ is fixed, possibly λ̄ = 0, and γ ∈ R
+. In the above-mentioned references it

was shown that under appropriate conditions the solutions (vγ , λγ) to (4) exist, the
quantity λγ enjoys extra regularity, and (vγ , λγ) converge to the solution of (2) as
γ → ∞+.
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In previous numerical implementations the increase of γ to infinity was heuristic.
As the system (4) becomes increasingly ill-conditioned as γ tends to ∞, in this paper
a framework for a properly controlled increase of γ-values will be developed in order to
cope with the conditioning problem. In fact, in a typical algorithmic regime for solving
(1) one uses the solution (vγ , λγ) to (4) for some γ as the initial guess for the solution to
(4) for the updated γ-value γ+ > γ. Typically, if γ+ 	 γ, then (vγ , λγ) is only a poor
approximation of (vγ+ , λγ+), which in addition to numerical linear algebra issues (like
ill-conditioned system matrices) causes severe stability problems for iterative solvers
for (4) such as semismooth Newton methods. Together with developing a new γ-
update strategy, we aim at solving the auxiliary problems (4) only inexactly to keep
the overall computational cost low. To this end we define neighborhoods of the path
which allow inexact solutions and which contract in a controlled way towards the
path as the iteration proceeds. Our work is inspired by concepts from path-following
methods in finite dimensional spaces [4, 5, 16, 18, 19]. We first guarantee the existence
of a sufficiently smooth path γ → (vγ , λγ), with γ ∈ (0,∞) in appropriately chosen
function spaces. Once the path is available it can be used as the basis for updating
strategies of the path parameter. Given a current value γk, with associated primal and
dual states (vγk

, λγk
), the γ-update should be sufficiently large to make good progress

towards satisfying the complementarity conditions. On the other hand, since we are
not solving the problems along the path exactly, we have to use safeguards against
steps which would lead us too far off the path. Of course, these goals are impeded by
the fact that the path is not available numerically. To overcome this difficulty we use
qualitative properties of the value function, like monotonicity and convexity, which can
be verified analytically. These suggest the introduction of model functions which will
be shown to approximate the value functional along the path very well. We use these
model functions for our updating strategies of γ. In the case of exact path-following we
can even prove convergence of the resulting strategy. In the present paper the program
just described is carried out for a class of problems corresponding to contact problems.
State constrained optimal control problems require a different approach that will be
considered independently. As we shall see, the (infinite dimensional) parameter λ̄ can
be used to guarantee that the iterates of the primal variable are feasible. Further, it
turns out that the numerical behavior of infeasible approximations is superior to the
feasible ones from the point of view of iteration numbers.

Interior point methods also require an additional parameter, which, however,
enters into (2) differently. For the problem under consideration here, the interior-
point relaxation replaces the second equation in (2) by

λ(x) (ψ −G(v))(x) =
1

γ
for x ∈ Ω.(5)

Path-following interior-point methods typically start strictly feasible, with iterates
which are required to stay strictly feasible during the iterations while satisfying, or
satisfying approximately, the first equation in (2) and (5). Path-following interior-
point methods have not received much attention for infinite dimensional problems
yet. In fact, we are aware of only [17], where such methods are analyzed for optimal
control problems related to ordinary differential equations. For the problem classes
that we outlined at the beginning of this section, the primal-dual active set strategy
proved to be an excellent competitor to interior-point methods, as was demonstrated,
for example, in [1] comparing these two methods.

This paper is organized as follows. Section 2 contains the precise problem for-
mulation and the necessary background on the primal-dual active set strategy. The
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existence and regularity of the primal-dual path is discussed in section 3. Properties
of the primal-dual path value functional are analyzed in section 4. Section 5 contains
the derivation of the proposed model functions for the primal-dual path value func-
tional. Exact as well as inexact path-following algorithms are proposed in section 6,
and their numerical behavior is discussed there as well.

2. Problem statement, regularization, and its motivation. We consider{
min 1

2 a(y, y) − (f, y) over y ∈ H1
0 (Ω)

s.t. y ≤ ψ,
(P)

where f ∈ L2(Ω), ψ ∈ H1(Ω), with ψ|∂Ω ≥ 0, where Ω is a bounded domain in
R

n with Lipschitz continuous boundary ∂Ω. Throughout, (·, ·) denotes the standard
L2(Ω)-inner product, and we assume that a(·, ·) is a bilinear form on H1

0 (Ω)×H1
0 (Ω)

satisfying

a(v, v) ≥ ν|v|2H1
0

and a(w, z) ≤ μ|w|H1 |z|H1(6)

for some ν > 0, μ > 0 independent of v ∈ H1
0 (Ω) and w, z ∈ H1(Ω). Here and

throughout we use |v|H1
0

= |∇v|L2 for v ∈ H1
0 (Ω), which defines a norm on H1

0 (Ω)

due to Friedrichs’ inequality, and |w|H1 = (|w|2L2 + |∇w|2L2)1/2 denotes the standard
H1-norm; see, e.g., [2]. Moreover, let A : H1

0 (Ω) → H−1(Ω) be defined by

a(v, w) = 〈Av,w〉H−1,H1
0

for all v, w ∈ H1
0 (Ω).

It is well known that (P) admits a unique solution y∗ ∈ H1
0 (Ω) with associated

Lagrange multiplier λ∗ = −Ay∗ + f , satisfying the optimality system{
a(y∗, v) + 〈λ∗, v〉H−1,H1

0
= (f, v),

〈λ∗, y∗ − ψ〉H−1,H1
0

= 0, y∗ ≤ ψ, 〈λ∗, v〉 ≤ 0 for all v ≤ 0.
(7)

This also holds with f ∈ H−1(Ω). Under well-known additional requirements on a, ψ,
and Ω, as for example{

a(v, w) =
∫
Ω
(
∑

aijvxiwxj + d v w), with aij ∈ C1(Ω̄), d ∈ L∞(Ω),

d ≥ 0, ψ ∈ H2(Ω), ∂Ω is C1,1, or Ω is a convex polyhedron,
(8)

we have (y∗, λ∗) ∈ H2(Ω) × L2(Ω), and the optimality system can be expressed as{
Ay∗ + λ∗ = f in L2(Ω),

λ∗ = (λ∗ + c(y∗ − ψ))+ for some c > 0,
(9)

where (v)+ = max(0, v); for details see, e.g., [14].
Our aim is the development of Newton-type methods for solving (7) or (9), which

is complicated by the system of inequalities in (7) and the nondifferentiable max-
operator in (9). In the recent past significant progress was made in the investigation
of semismooth Newton methods and primal-dual active set methods for coping with
nondifferentiable functionals in infinite dimensional spaces; see, for instance, [10, 15].
A direct application of these techniques to (9) results in the following algorithm.
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Algorithm A.

(i) Choose c > 0, (y0, λ0); set k = 0.
(ii) Set Ak+1 = {x ∈ Ω: λk(x) + c(yk(x) − ψ(x)) > 0}.
(iii) Compute yk+1 = arg min { 1

2 a(y, y) − (f, y) : y = ψ on Ak+1}.
(iv) Let λk+1 be the Lagrange multiplier associated with the constraint in (iii),

with λk+1 = 0 on Ω \ Ak+1.
(v) Set k := k + 1 and go to (ii).
The optimality system for the variational problem in (iii) is given by{

a(yk+1, v) + 〈λk+1, v〉H−1,H1
0

= (f, v) for all v ∈ H1
0 (Ω),

yk+1 = ψ on Ak+1, λk+1 = 0 on Ik+1 = Ω \ Ak+1.
(10)

This corresponds to (3) in our introductory discussion. The Lagrange multiplier
associated with the constraint y = ψ on Ak+1 is in general only a distribution in
H−1(Ω) and is not in L2(Ω). In fact, λk+1 is related to the jumps in the normal
derivatives of y across the interface between Ak+1 and Ik+1 [13]. This complicates
the convergence analysis for Algorithm A since the calculus of Newton (or slant)
differentiability [10] does not apply. We note that these difficulties are not present
if (7) or (9) is discretized. However, they are crucial for the treatment of infinite
dimensional problems, and as such they are generic. Analogous difficulties arise for
state constrained optimization problems, for inverse problems with BV-regularization,
and for elasticity problems with contract and friction, to mention a few. This suggests
the introduction of regularized problems, which in our case are chosen as

min
1

2
a(y, y) − (f, y) +

1

2γ

∫
Ω

|(λ̄ + γ(y − ψ))+|2 over y ∈ H1
0 (Ω),(Pγ)

where γ > 0 and λ̄ ∈ L2(Ω), λ̄ ≥ 0 are fixed. For later use we denote the objective
functional of (Pγ) by J(y; γ). The choice of λ̄ will be used to influence the feasibility
of the solution yγ of (Pγ). Using Lebesgue’s bounded convergence theorem to dif-
ferentiate the max under the integral in J(y; γ), the first order optimality condition
associated with (Pγ) is given by

{
a(yγ , v) + (λγ , v) = (f, v) for all v ∈ H1

0 (Ω),

λγ = (λ̄ + γ(yγ − ψ))+,
(OCγ)

where (yγ , λγ) ∈ H1
0 (Ω)×L2(Ω). With (8) holding, we have yγ ∈ H2(Ω). The primal-

dual active set strategy, or equivalently the semismooth Newton method, for (Pγ) is
given next. For its statement and for later use we introduce χAk+1 , the characteristic
function of the set Ak+1 ⊆ Ω.

Algorithm B.

(i) Choose λ̄ ≥ 0, (y0, λ0); set k = 0.
(ii) Set Ak+1 = {x ∈ Ω: λ̄(x) + γ(yk(x) − ψ(x)) > 0}, Ik+1 = Ω \ Ak+1.
(iii) Solve for yk+1 ∈ H1

0 (Ω): a(yk+1, v)+((λ̄+γ(yk+1−ψ))χAk+1
, v) = (f, v) for

all v ∈ H1
0 (Ω).

(iv) Set

λk+1 =

{
0 on Ik+1,
λ̄ + γ(yk+1 − ψ) on Ak+1.
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Algorithm B was analyzed in [13], where global as well as locally superlinear con-
vergence for every fixed γ > 0 were established. However, the choice and adaptation
(increase) of γ was heuristic in [13] and earlier work. The focus of the present in-
vestigation is the automatic adaptive choice of γ. We shall utilize the following two
results, which we recall from [13] where the proofs can also be found.

Proposition 2.1. The solutions (yγ , λγ) to (OCγ) converge to (y∗, λ∗) in the
sense that yγ → y∗ strongly in H1

0 (Ω) and λγ ⇀ λ∗ weakly in H−1(Ω) as γ → ∞.
We say that a satisfies the weak maximum principle if for any v ∈ H1

0 (Ω)

a(v, v+) ≤ 0 implies v+ = 0.(11)

Proposition 2.2. Assume that (11) holds and let 0 < γ1 ≤ γ2 < ∞.
(a) In the infeasible case, i.e., for λ̄ = 0, we have y∗ ≤ yγ2 ≤ yγ1 .
(b) In the feasible case, i.e., if

λ̄ ≥ 0 and 〈λ̄− f + Aψ, v〉H−1,H1
0
≥ 0 for all v ∈ H1

0 (Ω),(12)

with v ≥ 0, then yγ1 ≤ yγ2 ≤ y∗ ≤ ψ.

3. The primal-dual path. In this section we introduce the primal-dual path
and discuss its smoothness properties.

Definition 3.1. The family of solutions C = {(yγ , λγ) : γ ∈ (0,∞)} to (OCγ),
considered as subset of H1

0 (Ω)×H−1(Ω), is called the primal-dual path associated with
(P).

For r ≥ 0 we further set Cr = {(yγ , λγ) : γ ∈ [r,∞)}, and with some abuse of
terminology we also refer to Cr as a path. In the following lemma we denote by ŷ the
solution to the unconstrained problem

minJ(y) =
1

2
a(y, y) − (f, y) over y ∈ H1

0 (Ω).(P̂)

Subsequently, in connection with convergence of a sequence in function space we
use the subscript “weak” together with the space to indicate convergence in the weak
sense.

Lemma 3.2. For each r > 0 the path Cr is bounded in H1
0 (Ω) × H−1(Ω), with

limγ→∞(yγ , λγ) = (y∗, λ∗) in H1
0 (Ω)×H−1(Ω)weak. For λ̄ = 0 the path C0 is bounded

in H1
0 (Ω) ×H−1(Ω), with limγ→0+(yγ , λγ) = (ŷ, 0) in H1

0 (Ω) × L2(Ω).
Proof. From (OCγ) we have for every γ > 0

a(yγ , yγ − y∗) + (λγ , yγ − y∗) = (f, yγ − y∗).(13)

Since λγ = max(0, λ̄ + γ(yγ − ψ)) ≥ 0 and ψ − y∗ ≥ 0 we have

(λγ , yγ − y∗) =

(
λγ ,

λ̄

γ
+ yγ − ψ + ψ − y∗ − λ̄

γ

)

≥ 1

γ
(λγ , λ̄ + γ(yγ − ψ)) − 1

γ
(λγ , λ̄)

=
1

γ

[
|λγ |2L2 − (λγ , λ̄)

]
.

Combined with (13) this implies that

a(yγ , yγ) +
1

γ
|λγ |2L2 ≤ a(yγ , y

∗) + (f, yγ − y∗) +
1

γ
(λ̄, λγ).(14)
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This estimate, (6), (OCγ), and the Poincaré–Friedrichs inequality imply that Cr is
bounded in H1

0 (Ω) ×H−1(Ω) for every r > 0. In fact, for ω > 0 satisfying ω|y|2H1 ≤
|y|2

H1
0
, we have

ω|yγ |2H1 +
1

γ
|λγ |2L2 ≤ a(yγ , yγ) +

1

γ
|λγ |2L2

≤ μ|yγ |H1 |y∗|H1 + |f |H−1 (|yγ |H1 + |y∗|H1) +
1

γ
|λ̄|L2 |λγ |L2

≤ ω

4
|yγ |2H1 +

μ2

ω
|y∗|2H1 +

ω

2
|yγ |2H1 +

1

2ω
|f |2H−1

+
1

2γ
|λγ |2L2 +

1

2γ
|λ̄|2L2 + |f |H−1 |y∗|H1 ,

and hence

ω

4
|yγ |2H1 +

1

2γ
|λγ |2L2 ≤ μ2

ω
|y∗|2H1 +

1

2ω
|f |H−1 + |f |H−1 |y∗|H1 +

1

2γ
|λ̄|2L2 .

This estimate implies that {yγ : γ ≥ r} is bounded in H1
0 (Ω) for every r > 0. The

first equation of (OCγ) implies that {λγ : γ ≥ r} is bounded in H−1(Ω) as well. From
Proposition 2.1 we have that limγ→∞(yγ , λγ) = (y∗, λ∗) in H1

0 (Ω) ×H−1(Ω)weak. If
λ̄ = 0, then from (14), (6), and (OCγ) the path Co is bounded in H1

0 (Ω) × H−1(Ω)

and λγ → 0 in L2(Ω) for γ → 0+. From (OCγ) and the optimality condition for (P̂)
we have

a(yγ − ŷ, yγ − ŷ) + (λγ , yγ − ŷ) = 0,

and hence limγ→0+ yγ = ŷ in H1
0 (Ω).

Proposition 3.3. The path Cr is globally Lipschitz in H1
0 (Ω)×H−1(Ω) for every

r > 0. If λ̄ = 0, then C0 is globally Lipschitz continuous.
Proof. Let γ, γ̄ ∈ [r,∞) be arbitrary. Then

A(yγ − yγ̄) + (λ̄ + γ(yγ − ψ))+ − (λ̄ + γ̄(yγ̄ − ψ))+ = 0.

Taking the inner-product with yγ − yγ̄ and using the monotonicity and Lipschitz
continuity (with constant L = 1) of x → max(0, x), we find

a(yγ − yγ̄ , yγ − yγ̄)
≤

∣∣((λ̄ + γ(yγ − ψ))+ − (λ̄ + γ̄(yγ̄ − ψ))+, yγ − yγ̄
)∣∣

≤ |γ − γ̄| |yγ − ψ|L2 |yγ − yγ̄ |L2 .

By Lemma 3.2 the set {yγ}γ≥r is bounded in H1
0 (Ω). Hence there exists K1 > 0 such

that

ν|yγ − yγ̄ |2H1
0
≤ K1|γ − γ̄| · |yγ − yγ̄ |L2 ,

and by Poincaré’s inequality there exists K2 > 0 such that

|yγ − yγ̄ |H1
0
≤ K2|γ − γ̄| for all γ ≥ r, γ̄ ≥ r.
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Let us recall here that |y|H1
0

= |∇y|L2 . Lipschitz continuity of γ → λγ from [r,∞)

to H−1(Ω) follows from the first equation in (OCγ). For λ̄ = 0 the set {yγ}γ≥0 is
bounded in H1

0 (Ω). The remainder of the proof remains identical.
Lemma 3.4. For every subset I ⊂ [r,∞), r > 0, the mapping γ → λγ is globally

Lipschitz from I to L2(Ω).
Proof. For 0 < γ1 ≤ γ2 we have by (OCγ)

|λγ1
− λγ2

|L2 = |(λ̄ + γ1(yγ1 − ψ))+ − (λ̄ + γ2(yγ2 − ψ))+|L2

≤ (K3γ1 + K1 + |ψ|L2) |γ1 − γ2|

for some constant K3 > 0.
We shall use the following notation:

Sγ = {x ∈ Ω: λ̄(x) + γ(yγ − ψ)(x) > 0}.

Further we set

g(γ) = λ̄ + γ(yγ − ψ).(15)

Since γ → yγ ∈ H1
0 (Ω) is Lipschitz continuous by Proposition 3.3, there exists a weak

accumulation point ẏ(= ẏγ) of 1
γ̄−γ (yγ̄ − yγ) as γ̄ → γ > 0, which is also a strong

accumulation point in L2(Ω). Further 1
γ̄−γ (g(γ̄)− g(γ)) has ġ(γ) : = yγ − ψ + γ ẏγ as

a strong accumulation point in L2(Ω) as γ̄ → γ. In case γ̄ approaches γ from above
(or below), the associated accumulation points ẏrγ (or ẏlγ) satisfy certain properties

which are described next. In what follows we use ġr(γ) or ġl(γ) whenever ẏγ in ġ(γ)
is replaced by ẏrγ and ẏlγ , respectively.

Proposition 3.5. Let γ > 0, and denote by ẏrγ any weak accumulation point of
1

γ̄−γ (yγ̄ − yγ) in H1
0 (Ω) as γ̄ ↓ γ. Set

S+
γ = Sγ ∪ {x : λ̄(x) + γ(yγ(x) − ψ(x)) = 0 ∧ ġr(γ)(x) ≥ 0}.

Then ẏrγ satisfies

a(ẏrγ , v) + ((yγ − ψ + γẏrγ)χS+
γ
, v) = 0 for all v ∈ H1

0 (Ω).(16)

Proof. By (OCγ) we have for every v ∈ H1
0 (Ω)

a(yγ̄ − yγ , v) + ((λ̄ + γ̄(yγ̄ − ψ))+ − (λ̄ + γ(yγ − ψ))+, v) = 0.(17)

We multiply (17) by (γ̄ − γ)−1 and discuss separately the two terms in (17). Clearly,
we have

lim
γ̄↓γ

(γ̄ − γ)−1a(yγ̄ − yγ , v) = a(ẏrγ , v).

Here and below the limit is taken on the sequence of γ̄-values, which provides the
accumulation point. Lebesgue’s bounded convergence theorem allows us to consider
the pointwise limits of the integrands. Considering separately the cases g(γ)(x)< 0,
g(γ)(x) > 0, and g(γ)(x) = 0, we have

(γ̄ − γ)−1((g(γ̄))+ − (g(γ))+, v)

→ ((yγ − ψ + γ ẏrγ)χS+
γ
, v) as γ̄ ↓ γ,

(18)
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which ends the proof.
As a consequence of the proof we obtain the following result.
Corollary 3.6. Let γ > 0, and denote by ẏlγ any weak accumulation point of

1
γ̄−γ (yγ̄ − yγ) in H1

0 (Ω) as γ̄ ↑ γ. Set S−
γ = Sγ ∪ {x : λ̄(x) + γ(yγ(x) − ψ(x)) =

0 ∧ ġl(γ)(x) ≥ 0}. Then ẏlγ satisfies

a(ẏlγ , v) + ((yγ − ψ + γ ẏlγ)χS−
γ
, v) = 0 for all v ∈ H1

0 (Ω).(19)

Another corollary of Proposition 3.5 treats the case λ̄ = 0.
Corollary 3.7. Let λ̄ = 0, and assume that (11) holds. Then the right- and

left- derivatives ẏrγ and ẏlγ of γ → yγ , γ ∈ (0,∞), exist and are given by

a(ẏrγ , v) + ((yγ − ψ + γ ẏrγ)χ{yγ>ψ}, v) = 0 for all v ∈ H1
0 (Ω),(20)

a(ẏlγ , v) + ((yγ − ψ + γ ẏlγ)χ{yγ≥ψ}, v) = 0 for all v ∈ H1
0 (Ω).(21)

Proof. Let γ̄ ↓ γ. By Proposition 2.2 any accumulation point ẏrγ of (γ̄−γ)−1(yγ̄−
yγ) satisfies ẏrγ ≤ 0 and hence

S+
γ = {x ∈ Ω: yγ(x) > ψ(x)} ∪ {x ∈ Ω: yγ(x) = ψ(x) ∧ ẏrγ(x) = 0}.

Observe that

(yγ − ψ + γẏrγ)χS+
γ

= (yγ − ψ + γẏrγ)χ{yγ>ψ}.

This implies that every accumulation point ẏrγ satisfies (20). Since the solution to
(20) is unique, the directional derivative from the right exists.

Similarly, if γ̄ ↑ γ, by Proposition 2.2 we have S−
γ = {x ∈ Ω: yγ(x) ≥ ψ(x)}, and

(21) follows.
Henceforth we set

S◦
γ = {x ∈ Ω: λ̄(x) + γ(yγ − ψ)(x) = 0}.

Corollary 3.8. If meas(S◦
γ) = 0, then γ → yγ ∈ H1

0 (Ω) is differentiable at γ,
and the derivative ẏγ satisfies

a(ẏγ , v) + ((yγ − ψ + γ ẏγ)χSγ , v) = 0 for all v ∈ H1
0 (Ω).(22)

Proof. Let z denote the difference of two accumulation points of (γ̄ − γ)−1(yγ̄ −
yγ) as γ̄ → γ. As a consequence of (16) and (19)

a(z, v) + γ(zχSγ , v) = 0 for all v ∈ H1
0 (Ω).

This implies that z = 0 by (6). Consequently, accumulation points are unique, and
by (16), (19) they satisfy (22).

The assumption meas(So
γ) = 0 in Corollary 3.8 reflects the lack of differentiability

of the max-operation in (OCγ).

4. The primal-dual path value functional. In this section we investigate
the value function associated with (Pγ) and study its monotonicity and smoothness
properties.

Definition 4.1. The functional

γ → V (γ) = J(yγ ; γ) =
1

2
a(yγ , yγ) − (f, yγ) +

1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2
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defined on (0,∞) is called the primal-dual path value functional.
Let us start by studying first order differentiability properties of V .
Proposition 4.2. The value function V is differentiable with

V̇ (γ) = − 1

2γ2

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2 +
1

γ

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ).

Corollary 4.3. For λ̄ = 0 we have V̇ (γ) = 1
2

∫
Ω
|(yγ −ψ)+|2 ≥ 0 and V̇ (γ) > 0

unless yγ is feasible. For λ̄ satisfying (12) and with (11) holding, we have yγ ≤ ψ and

hence V̇ (γ) ≤ 0 for γ ∈ (0,∞).
In either of the two cases V̇ (γ) = 0 implies that yγ solves (P̂).

Proof. We show only that V̇ (γ) = 0 implies that yγ solves (P̂). The rest of the
assertion follows immediately from Proposition 4.2.

If λ̄ = 0, then V̇ (γ) = 0 yields yγ ≤ ψ. Thus, λγ = 0, and hence yγ solves (P̂).

If (11) and (12) are satisfied, then yγ ≤ ψ and V̇ (γ) = 0 implies γ(yγ − ψ) ≤
λ̄ + γ(yγ − ψ) ≤ 0. As a consequence λγ = 0, and yγ solves (P̂).

Proof of Proposition 4.2. For γ̄, γ ∈ (0,∞) we find

1

2
a(yγ̄ + yγ , yγ̄ − yγ) − (f, yγ̄ − yγ)

+ 1
2 ((λ̄ + γ̄(yγ̄ − ψ))+ + (λ̄ + γ(yγ − ψ))+, yγ̄ − yγ) = 0,

(23)

and consequently

V (γ̄) − V (γ) =
1

2
a(yγ̄ , yγ̄) − 1

2
a(yγ , yγ) − (f, yγ̄ − yγ)

+
1

2γ̄

∫
Ω

|(λ̄ + γ̄(yγ̄ − ψ))+|2 − 1

2γ

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2

=
1

2γ̄

∫
Ω

|(λ̄ + γ̄(yγ̄ − ψ))+|2 +
1

2γ

∫
Ω

−|(λ̄ + γ(yγ − ψ))+|2

+
1

2

∫
Ω

−((λ̄ + γ̄(yγ̄ − ψ))+ + (λ̄ + γ(yγ − ψ))+)(yγ̄ − yγ)

=

∫
Pγ̄∩Pγ

z +

∫
Pγ̄∩Nγ

z +

∫
Pγ∩Nγ̄

z = I1 + I2 + I3,

where z stands for the sum of the kernels on the left of the above equalities,

Pγ = {x : λ̄ + γ(yγ − ψ) > 0}, Nγ = {x : λ̄ + γ(yγ − ψ) < 0},

and Pγ̄ , Nγ̄ are defined analogously. For I2 we have

|I2| ≤
1

2

∫
Pγ̄∩Nγ

1

γ̄
(λ̄ + γ̄(yγ̄ − ψ))2 + |λ̄ + γ̄(yγ̄ − ψ)| |yγ̄ − yγ |

≤ 1

2

∫
Ω

1

γ̄
(γ̄(yγ̄ − ψ) − γ(yγ − ψ))2 + |yγ̄ − yγ |(|γ̄yγ̄ − γ yγ | + |γ̄ − γ| |ψ|),

and hence by Proposition 3.3

lim
γ̄→γ

1

γ̄ − γ
|I2| = 0.(24)
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Analogously one verifies that

lim
γ̄→γ

1

γ̄ − γ
|I3| = 0.(25)

On Pγ̄ ∩ Pγ we have

z =
1

2γ̄
(λ̄ + γ̄(yγ̄ − ψ))2

− 1

2γ
(λ̄ + γ(yγ − ψ))2 − 1

2
(2λ̄ + γ̄(yγ̄ − ψ) + γ(yγ − ψ))(yγ̄ − yγ)

=
γ − γ̄

2γ̄γ
(λ̄ + γ̄(yγ̄ − ψ))2

+
1

2γ

[
2λ̄(γ̄(yγ̄ − ψ) − γ(yγ − ψ)) + γ̄2(yγ̄ − ψ)2 − γ2(yγ − ψ)2

]
− 1

2
(2λ̄ + γ̄(yγ̄ − ψ) + γ(yγ − ψ))(yγ̄ − yγ)

=
γ − γ̄

2γ̄γ
(λ̄ + γ̄(yγ̄ − ψ))2 +

λ̄

γ
[γ̄(yγ̄ − ψ) − γ(yγ̄ − ψ)]

+
1

2

[
γ̄2

γ
(yγ̄ − ψ)2 − γ̄(yγ̄ − ψ)2 + (γ̄ − γ)(yγ̄ − ψ)(yγ − ψ)

]
,

and thus on Pγ̄ ∩ Pγ̄

(γ̄ − γ)−1z =
−1

2γ̄γ
(λ̄ + γ̄(yγ − ψ))2 +

λ̄

γ
(yγ̄ − ψ)

+
1

2

[
γ̄

γ
(yγ̄ − ψ)2 + (yγ̄ − ψ)(yγ − ψ)

]
.

By Lebesgue’s bounded convergence theorem,

lim
γ̄→γ

1

γ̄ − γ
I1 = lim

γ̄→γ

1

γ̄ − γ

∫
Ω

z χPγ̄∩Pγ

= − 1

2γ2

∫
Ω

((λ̄ + γ(yγ − ψ))+)2 +
1

γ

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ).

Together with (24) and (25), this implies the claim.
Remark 4.1. Note that V̇ is characterized without recourse to ẏγ .

The boundedness of {γ2V̇ (γ)}γ≥0 is established next. In what follows we use
(v)− = −min(0, v).

Proposition 4.4. If λ̄ = 0 and a(v+, v−) = 0 for all v ∈ H1
0 (Ω), then

{γ2V̇ (γ)}γ≥0 is bounded. If (11) and (12) hold, then again {γ2V̇ (γ)}γ≥0 is bounded.
Proof. In the case λ̄ = 0 we have

a(yγ − ψ, v) + γ((yγ − ψ)+, v) = (f, v) − a(ψ, v) for all v ∈ H1
0 (Ω).

Since (yγ − ψ) ∈ H1
0 (Ω) and a((yγ − ψ)+, (yγ − ψ)−) = 0 we have, using (6) with

v = (yγ − ψ)+,

ν|(yγ − ψ)+|2H1
0 (Ω) + γ|(yγ − ψ)+|2L2 ≤ |f |L2 |(yγ − ψ)+|H1

0
+ μ|ψ|H1 |yγ − ψ|H1 .
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This implies the existence of a constant K, depending on |ψ|H1 and |f |L2 but inde-
pendent of γ ≥ 0, such that γ|(yγ − ψ)+|L2 ≤ K. Since V̇ (γ) = 1

2

∫
Ω
|(yγ − ψ)+|2 the

claim follows.
Turning to the feasible case with (11) and (12) holding, we have that yγ ≤ ψ for

every γ > 0, and hence (λ̄ + γ(yγ − ψ))(x) > 0 if and only if λ̄(x) > γ(ψ − yγ)(x).
Consequently,

|V̇ (γ)| ≤ 1

2γ2

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2 +
1

γ

∫
Ω

(λ̄ + γ(yγ − ψ))+(ψ − yγ)

≤ 3

2γ2
|λ̄|2L2 ,

which again implies the claim.
Before we investigate V̈ , we state a result which connects γV̇ (γ), |y∗−yγ |H1

0
, and

V ∗ − V (γ), where V ∗ = limγ→∞ V (γ). It will be used in section 6.1 for designing a
γ-update strategy.

Proposition 4.5. In the feasible and infeasible cases the following estimate holds
true:

|y∗ − yγ |2H1
0
≤ 2

ν

(
V ∗ − V (γ) − γV̇ (γ)

)
.

Proof. We have V ∗ − V (γ) = J(y∗) − J(yγ ; γ) and

J(y∗) − J(yγ ; γ) ≥ ν

2
|y∗ − yγ |2H1

0
+ a(yγ , y

∗ − yγ) − (f, y∗ − yγ)

− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2 ,

where we have used (6). From (OCγ) we have

a(yγ , y
∗ − yγ) − (f, y∗ − yγ) = −((λ̄ + γ(yγ − ψ))+, y∗ − yγ),

and hence

J(y∗) − J(yγ ; γ) ≥ ν

2
|y∗ − yγ |2H1

0
− ((λ̄ + γ(yγ − ψ))+, y∗ − yγ)

− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

≥ ν

2
|y∗ − yγ |2H1

0
− 1

2γ
|(λ̄ + γ(yγ − ψ))+|2L2

+ ((λ̄ + γ(yγ − ψ))+, yγ − ψ)

=
ν

2
|y∗ − yγ |2H1

0
+ γV̇ (γ).

This completes the proof.
Below we shall assume that yγ − ψ ∈ C(Ω̄). Recall that for dimension n ≤ 3 and

with (6) and (8) holding, we have yγ ∈ H2(Ω) ⊂ C(Ω̄).
Proposition 4.6. Let ẏγ denote any accumulation point of (γ̄ − γ)−1(yγ̄ − yγ)

as γ̄ → γ.
(a) If λ̄ = 0, yγ − ψ ∈ C(Ω̄), and (8) is satisfied, then γ → V (γ) is twice

differentiable at γ with

V̈ (γ) =

∫
Ω

(yγ − ψ)+ẏγ .(26)
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(b) For arbitrary λ̄, if meas(S◦
γ) = 0, then γ → V (γ) is twice differentiable at γ

with

V̈ (γ) =
1

γ3

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2

− 2

γ2

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)

+
1

γ

∫
Ω

(yγ − ψ)(yγ − ψ + γ ẏγ)χSγ .

(27)

Proof. (a) On the subsequence γn realizing the accumulation point, we have
that limn→∞(γn − γ)−1(V̇ (γn)− V̇ (γ)) equals the right-hand side of (26). The claim
will be established by verifying that the accumulation points ẏγ restricted to Sγ =
{x : yγ(x) − ψ(x) > 0} are unique. Let z denote the difference of two accumulation
points. By (16) and (19) we have

a(z, v) + γ(z, v) = 0 for all v ∈ H1
0 (Ω) with v = 0 on Ω \ Sγ .

Using (8) and the fact that Sγ is an open set relative to Ω due to the continuity of
yγ − ψ, we find that z = 0 in Sγ , as desired.

(b) Let ẏγ denote any accumulation point of (γ̄ − γ)−1(yγ̄ − yγ) as γ̄ ↓ γ, and
recall the notation g(γ) = λ̄+ γ(yγ − ψ) and S+

γ from section 3. On the subsequence
realizing the accumulation point we find

lim
γ̄→γ

1

γ̄ − γ
(V̇ (γ̄) − V̇ (γ)) =

1

γ3

∫
Ω

|(λ̄ + γ(yγ − ψ))+|2

− 2

γ2

∫
Ω

(λ̄ + γ(yγ − ψ))+(yγ − ψ)

+
1

γ

∫
Ω

(yγ − ψ)(yγ − ψ + γ ẏγ)χS+
γ
.

(28)

By assumption, meas(S◦
γ) = 0 and, hence the right-hand sides of (27) and (28) coin-

cide. Since ẏγ is unique by Corollary 3.8 the claim is established.

5. Model functions. In this section we derive low-parameter families of func-
tions which approximate the value functional V and share some of its qualitative
properties. We will make use of these models in the numerics section when devising
path-following algorithms.

5.1. Infeasible case. Throughout this subsection we assume (8) and

λ̄ = 0, yγ − ψ ∈ C(Ω̄) for all γ ∈ (0,∞).(29)

Observe that (8), together with the general assumption (6), implies (11). In fact, for
any v ∈ H1

0 (Ω) we have a(v, v+) ≥ γ|v+|2, and hence 0 ≥ a(v, v+) implies v+ = 0.
Proposition 5.1. The value function V satisfies V̇ (γ) ≥ 0 and V̈ (γ) ≤ 0 for

γ ∈ (0,∞).
Proof. Proposition 4.2 implies that V̇ (γ) ≥ 0. Moreover, yγ2 ≤ yγ1 for γ2 ≥ γ1 > 0

and hence ẏγ ≤ 0 a.e. on Sγ . Consequently V̈ (γ) ≤ 0 by Proposition 4.6.
A model function m for the value function V should reflect the sign properties

of V and its derivatives. Moreover, V (0) gives the value of (P̂), and hence we shall
require that m(0) = V (0). Finally from Lemma 3.2 we conclude that V is bounded
on [0,∞). All these properties are satisfied by functions of the form

m(γ) = C1 −
C2

E + γ
(30)
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with C1 ∈ R. Here C2 ≥ 0, E > 0 satisfy

m(0) = V (0) = C1 −
C2

E
.(31)

Other choices for model functions are also conceivable, for example, γ → C1 − C1

(E+γ)r

with r > 1. Note, however, that the asymptotic behavior of the model in (30) is
such that γ2ṁ(γ) is bounded for γ → ∞. This is consistent with the boundedness of
γ2V̇ (γ) for γ → ∞ asserted in Proposition 4.4.

Another reason for choosing (30) is illustrated next. Choosing v = (yγ − ψ)+ in
(OCγ), we find

a(ẏγ , (yγ − ψ)+) + |(yγ − ψ)+|2L2 + γ

∫
Ω

(yγ − ψ)+ẏγ = 0.(32)

For the following discussion we

replace a(·, ·) by E(·, ·) with E > 0 a constant, and V by m.(33)

By Proposition 4.2 and (26) the following ordinary differential equation is obtained
for m:

(E + γ) m̈(γ) + 2 ṁ(γ) = 0.(34)

The solutions to (34) are given by (30). To get an account for the quality of our model
in (30) we refer to the left-hand plot of Figure 4 in section 6.

5.2. Feasible case. Throughout this subsection we assume

(11), λ̄ satisfies (12), and meas (S◦
γ) = 0 for all γ ∈ (0,∞).(35)

Proposition 5.2. The value function V satisfies V̇ (γ) ≤ 0 and V̈ (γ) ≥ 0 for
γ ∈ (0,∞).

Proof. By Proposition 2.2 we have yγ ≤ ψ and hence V̇ (γ) ≤ 0 by Proposition
4.2. A short computation based on (27) shows that

V̈ (γ) =
1

γ3

∫
Ω

χλ̄2 +

∫
Ω

χ(yγ − ψ)ẏγ ≥ 1

γ

∫
Ω

χ(yγ − ψ)2 +

∫
Ω

χ (yγ − ψ)ẏγ ,(36)

where χ is the characteristic function of the set Sγ = {λ̄+ γ(yγ −ψ) > 0}. From (22)
we have

γ|ẏγ |L2(Sγ) ≤ |ψ − yγ |L2(Sγ),

and hence V̈ (γ) ≥ 0.
An immediate consequence is stated next.
Lemma 5.3. If the solution to the unconstrained problem is not feasible, then

limγ↓0 V (γ) = ∞.
Proof. Assume that limγ↓0 V (γ) is finite. Then, using (Pγ), there exists a sequence

γn → 0 and ỹ ∈ H1
0 (Ω) such that yγn ⇀ ỹ weakly in H1

0 (Ω), with yγn the solution to
(Pγn), and λγn = max(0, λ̄+ γn(yn −ψ)) → 0 in L2(Ω). Consequently ỹ ≤ ψ. Taking

the limit with respect to n in (OCγn), it follows that ỹ ≤ ψ is the solution to (P̂),
which contradicts our assumption.
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From Lemmas 3.2 and 5.3 and Proposition 5.2 it follows that γ → V (γ), γ ∈
(0,∞), is a monotonically strictly decreasing convex function with limγ→0+ V (γ) = ∞.
All these properties are also satisfied by functions of the form

m(γ) = C1 − C2

E + γ
+

B

γ
,(37)

provided that C1 ∈ R, C2 ≥ 0, E > 0, B > 0, and C2 ≤ B.
We now give the motivation for choosing the model function m for V as in (37).

From (22) with v = (yγ − ψ)χ we get

a(ẏγ , (y − ψ)χ) + γ(ẏγχ, yγ − ψ) + ((yγ − ψ)χ, yγ − ψ) = 0,

where χ = χSγ . As in the infeasible case we replace a(·, ·) by E(·, ·), with E a constant,
and using (22), we arrive at

(E + γ)(ẏγχ, v) + ((yγ − ψ)χ, v) = 0.

The choice v = yγ − ψ implies

(E + γ)(ẏγχ, yγ − ψ) + ((yγ − ψ)χ, yγ − ψ) = 0.(38)

Note that V̇ (γ) can be expressed as

V̇ (γ) = − 1

2γ2

∫
Ω

λ̄2χ +
1

2

∫
Ω

(yγ − ψ)2χ.(39)

Using (36) and (39) in (38), and replacing V by m, due to the substitution for a(·, ·),
we find

(E + γ)m̈ + 2ṁ− E γ−3

∫
Ω

χ λ̄2 = 0.

We further replace
∫
Ω
χλ̄2, which is a bounded quantity depending on γ, by 2B, and

obtain, as the ordinary differential equation that we propose for the model function
m in the feasible case,

(E + γ)m̈ + 2ṁ− 2γ−3EB = 0.(40)

The family of solutions is given by (37). In the right-hand plot of Figure 4 in section 6
we depict the approximation quality of m(γ).

6. Path-following algorithms. In this section we study the basic Algorithm
B together with a variety of adjustment schemes for the path parameter γ. For this
purpose recall that, depending on the shift parameter λ̄, the elements yγ along the
primal-dual path are feasible or infeasible. As we have seen in the previous section,
this implies different models for approximating the value function V . We will see,
however, that for γ > 0 in both cases similar strategies for updating γ may be used.
When referring to the infeasible or feasible case, (29), respectively (35), is assumed
to hold.

The subsequent discussion is based on the following two-dimensional test prob-
lems. We point out that the bound ψ in problem P1 below does not satisfy ψ ∈ H1(Ω).
However, as we shall see, the feasible and infeasible primal-dual path as well as the al-
gorithms introduced subsequently still perform satisfactorily. We include this example
since discontinuous obstacles are of practical relevance.
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Test problem P1. We consider (8) with aij = δij , with δij the Kronecker symbol,
d = 0, and Ω = (0, 1)2. We choose

f(x1, x2) = 500x1 sin(5x1) cos(x2)

and ψ ≡ 10 on Ω \K, and ψ ≡ 1 on K with K = {x ∈ Ω : 1
5 ≤ ‖x− ( 1

2 ,
1
2 )�‖2 ≤ 2

5}.
The solution y∗, the obstacle ψ, and the active set A∗ at the solution are shown in
Figure 1.

Fig. 1. Optimal solution y∗ (upper left plot), obstacle ψ (upper right plot), and the active set
A∗ (lower plot) for test problem P1.

Test problem P2. Again we consider (8), with aij , d, and Ω as before, and define

y† :=

⎧⎪⎪⎨
⎪⎪⎩

x1 on T1 := {x ∈ Ω : x2 ≤ x1 ∧ x2 ≤ 1 − x1},
1 − x2 on T2 := {x ∈ Ω : x2 ≤ x1 ∧ x2 ≥ 1 − x1},
1 − x1 on T3 := {x ∈ Ω : x2 ≥ x1 ∧ x2 ≥ 1 − x1},
x2 on T4 := {x ∈ Ω : x2 ≥ x1 ∧ x2 ≤ 1 − x1}.

(41)

The obstacle ψ is defined by ψ ≡ y† on S1 := {x ∈ Ω : ‖x− ( 1
2 ,

1
2 )�‖∞ ≤ 1

4}, ψ ≡ 1
4

on S2 \ S1, and

ψ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2x1 on T1 ∩ (Ω \ S2),
1
4 − 2(x2 − 7

8 ) on T2 ∩ (Ω \ S2),
1
4 − 2(x1 − 7

8 ) on T3 ∩ (Ω \ S2),

2x2 on T4 ∩ (Ω \ S2),

with S2 := {x ∈ Ω : ‖x− ( 1
2 ,

1
2 )�‖∞ ≤ 3

8}. The forcing term is given by

(f, φ)L2 =

∫
Ω+

φ(s)ds + (χS1 , φ)L2 +

∫
S1∩Ω+

φ(s)ds for all φ ∈ H1
0 (Ω),
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where Ω+ := {x ∈ Ω : x2 = x1}∪{x ∈ Ω : x2 = 1−x1}. We recall that for φ ∈ H1
0 (Ω),

Ω ⊂ R
2, the traces along smooth curves are well defined. The solution y∗ is given

by y∗ = y†. The active or coincidence set at the solution is A∗ = S1. The Lagrange
multiplier λ∗ = f + Δy∗ is in H−1(Ω) and enjoys no extra regularity. In Figure 2 we
display the optimal solution y∗, the obstacle ψ, and the active set A∗.

Fig. 2. Optimal solution y∗ (upper left plot), obstacle ψ (upper right plot), and the active set
A∗ (lower plot) for test problem P2.

Test problem P3. For this test problem (8) is satisfied. We therefore obtain
y∗ ∈ H2(Ω) and λ∗ ∈ L2(Ω). The coefficients aij and d as well as Ω are as before. The
volume force f is given by f = −Δv with v(x1, x2) = sin(3πx1) sin(3πx2). Further, we
have ψ = 1

4 − 1
10 sin(πx1) sin(πx2). The optimal solution y∗, the Lagrange multiplier

λ∗, and the active set at y∗ are displayed in Figure 3.
Unless specified otherwise, the subsequent algorithms are initialized by y0 =

(−Δ)−1f , where −Δ denotes the Laplacian with homogeneous Dirichlet boundary
conditions. The initial Lagrange multiplier is chosen as λ0 = γ0χ{y0>ψ}(y0 − ψ).

The discretization of −Δ is based on the classical five-point finite difference sten-
cil. We denote the mesh size by h, which we occasionally drop for convenience. The
forcing term f in P2 is discretized by f = −Δy† + χS1e+ χS1(−Δy†), where e is the
vector of all ones and χS1 represents a diagonal matrix with entry (χS1)ii = 1 for
grid points xi ∈ S1 and (χS1)ii = 0 otherwise. Above y† denotes the grid function
corresponding to (41).

6.1. A strategy based on model functions—exact path-following. As
outlined in section 5, there are good reasons to trust our model functions (30) and
(37) in the infeasible and feasible cases, respectively. Let us start by focusing on the
infeasible case. The model is given by m(γ) = C1 − C2(E + γ)−1. For determining
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0 1
0 

1
Active set P3

Fig. 3. Optimal solution y∗ (upper left plot), obstacle ψ (upper right plot), and the active set
A∗ (lower plot) for test problem P3.

the three parameters C1, C2, and E, we use the information V (0), V (γ), V̇ (γ), which,
by Proposition 4.2, is available from one solve of the unconstrained problem (P̂) and
one solve for (Pγ). The conditions

m(0) = V (0), m(γ) = V (γ), ṁ(γ) = V̇ (γ)(42)

yield

E = γ2V̇ (γ)
(
V (γ) − V (0) − γV̇ (γ)

)−1

,

C2 = γ−1E(E + γ) (V (γ) − V (0)) ,(43)

C1 = V (0) + C2E
−1.

We could have used an alternative reference value γr ∈ (0, γ) and computed m(γr) =
V (γr) instead of m(0) = V (0). In Figure 4 we compare V (γ) to m(γ) for different
values of the coefficients (C1, C2, E). These coefficients depend on different values
yf for γ (in (42)) produced by Algorithm EP (see below) for problem P1. The solid
line corresponds to V (γ). The corresponding γ-values γf for (42) are depicted in the
legend of the left plot in Figure 4. The dotted and dashed line belong to rather small
γ-values, and the dashed-dotted and the circled lines to large γf in (42). As we can
see, the dotted line is accurate in the range of relatively small γf , while the other lines
are more accurate for large γf . From now on we consider only the choices γr = 0 and
γ = γk in (42) when updating γk.

Next we discuss properties of the model parameters E, C1, C2 according to (43).
For this purpose assume that the solution ŷ to (P̂) is not feasible for (P). Then
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Fig. 4. Left: Model m(γ) vs. V (γ) (solid) in the infeasible case for P1. Right: Model m(γ) vs.
V (γ) in the feasible case.

by Corollary 4.3 we have V̇ (γ) > 0 for all γ > 0. Consequently V (γ) > V (0) and
V (γ) − V (0) − γV̇ (γ) = −

∫ γ

0

∫ γ

s
V̈ (σ)dσds > 0, and hence E > 0 and C2 > 0 for all

γ ∈ (0,+∞). This implies m(γ) ≤ C1 and m(γ) → C1 for γ → +∞.
We propose the following update strategy for γ: Let {τk} satisfy τk ∈ (0, 1) for

all k ∈ N and τk ↓ 0 as k → ∞, and assume that V (γk) is available. Then, given γk,
the updated value γk+1 should ideally satisfy

|V ∗ − V (γk+1)| ≤ τk|V ∗ − V (γk)|.(44)

Since V ∗ and V (γk+1) are unknown, we use C1,k and our model mk(γ) = C1,k −
C2,k/(Ek + γ) at γ = γk+1 instead. Thus, (44) is replaced by

|C1,k −mk(γk+1)| ≤ τk|C1,k − V (γk)| =: βk.(45)

Solving the equation C1,k −mk(γk+1) = βk, we obtain

γk+1 =
C2,k

βk
− Ek.(46)

In Theorem 6.1 we shall show that γk+1 ≥ κγk, with κ > 1, independently of k ∈ N.
Before we turn to the feasible case, we interpret (44) in view of Proposition 4.5

in the infeasible case. Recall that V ∗ ≥ V (γ), and observe that |V ∗ − V (γ)| =
O(|y∗ − yγ |H1

0
). Proposition 4.5 yields

|y∗ − yγ |2H1
0
≤ 2

ν
(V ∗ − V (γ))

since V̇ (γ) > 0. Setting τk = ω2
k|V ∗ − V (γk)|, with ωk → 0, in (44) yields

|y∗ − yγk+1
|2H1

0
≤ Cτω

2
k|y∗ − yγk

|2H1
0
.

Consequently, we obtain

|y∗ − yγk+1
|H1

0

|y∗ − yγk
|H1

0

≤ Cτωk,
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which implies q-superlinear convergence of {yγk
} in H1

0 (Ω).
In the feasible case, i.e., when λ̄ satisfies (12), we use the model m(γ) = C1 −

C2(E + γ)−1 +Bγ−1 with C2 ≥ 0 and E,B > 0; see (37). Let γr > 0, γr �= γ, denote
a reference γ-value; then we use the conditions

m(γr) = V (γr), ṁ(γr) = V̇ (γr), m(γ) = V (γ), ṁ(γ) = V̇ (γ)

for fixing B, C1, C2, E. Solving the corresponding system of nonlinear equations, we
get

E =

((
(γr − γ)(V̇ (γr)γ

2
r + V̇ (γ)γ2) + 2γrγ(V (γ) − V (γr)

))
(
(V̇ (γ)γ + V̇ (γr)γr)(γ − γr) + (γr + γ)(V (γr) − V (γ))

)
and

B =
γ2
rγ

2
(
(V (γ) − V (γr))

2 − V̇ (γ)V̇ (γr)(γ − γr)
2
)

(
(γ − γr)2(V̇ (γr)γ2

r + V̇ (γ)γ2) + 2(γ − γr)γrγ(V (γr) − V (γ))
)

Then the parameters C1 and C2 are given by

C2 = (E + γ)2
(
B

γ2
+ V̇ (γ)

)
,

C1 = V (γ) +
C2

E + γ
− B

γ
.

In the right plot of Figure 4 we show |m(γ) − V (γ)| with m(γ) produced by the
iterates of Algorithm EP for P1 similar to the infeasible case. Again we can see that
our model yields a close approximation of the value function V .

If we require that (45) be satisfied in the feasible case, then we obtain the following
update strategy for γ:

γk+1 = −Dk

2
+

√
D2

k

4
+

BkEk

βk
,(47)

where Dk = Ek + (C2,k − Bk)/βk. In Theorem 6.1 we shall establish γk+1 ≥ κγk for
all k ∈ N0 with κ > 1 independent of k.

Next we describe an exact path-following version of Algorithm B, which utilizes
the update strategy (45) for updating γ.

Algorithm EP.

(i) Select γr. Compute V (γr), and choose γ0 > max(1, γr); set k = 0.
(ii) Apply Algorithm B to obtain yγk

.

(iii) Compute V (γk), V̇ (γk), and γk+1 according to (46) in the infeasible case or
(47) in the feasible case.

(iv) Set k = k + 1, and go to (ii).
Concerning the choice of γr note that in the infeasible case we have γr ≥ 0, and

in the feasible case γr > 0. Convergence of Algorithm EP is addressed next.
Theorem 6.1. Assume that the solution to (P̂) is not feasible for (P). Then the

iterates γk of Algorithm EP tend to ∞ as k → ∞, and consequently limk→∞(yγk
, λγk

) =
(y∗, λ∗) in H1

0 (Ω) ×H−1(Ω)weak.
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Proof. Let us consider the infeasible case. Then (45) is equivalent to

0 < C1,k −mk(γk+1) < τk(C1,k −mk(γk)).(48)

Since γ → mk(γ) is strictly increasing and τk ∈ (0, 1), it follows that γk+1 > γk for
every k = 0, 1, . . . . If limk→∞ γk = ∞, then limk→∞(yγk

, λγk
) = (y∗, λ∗). Otherwise

there exists γ̄ such that limk→∞ γk = γ̄. Since γ → V (γ) and γ → V̇ (γ) are continuous
on (0,∞), it follows from (42) and (43) that limk→∞ Ek = E(γ̄), limk→∞ C1,k =
C1(γ̄), and limk→∞ C2,k = C2(γ̄), where E(γ̄), C1(γ̄), C2(γ̄) are given by (43) with γ
replaced by γ̄. Taking the limit with respect to k in (48), we arrive at

C2(γ̄)

E(γ̄) + γ̄
= 0,

which is impossible, since C2(γ̄) > 0 and E(γ̄) > 0 if the solution to (P̂) is not feasible
for (P). Thus limk→∞ γk = ∞. The feasible case is treated analogously.

Numerically we stop the algorithm as soon as ‖(r1,h
k , r2,h

k , r3,h
k )�‖2 ≤ √

εM , where

r1,h
k = ‖yhγk

+ (−Δh)−1(λh
γk

− fh)‖H−1,h/‖fh‖H−1,h ,

r2,h
k = ‖λh

γk
− max(0, λh

γk
+ yhγk

− ψh)‖H−1,h ,

r3,h
k = ‖max(0, yhγk

− ψh)‖Lh
2
,

and εM denotes the machine accuracy. Here | · |H−1,h denotes the discrete version of
| · |H−1 . For some vector v it is realized as |v|H−1 = |∇h(−Δh)−1v|Lh

2
with | · |Lh

2
the

discrete L2-norm and ∇h a forward difference approximation of the gradient operator;
see [8]. The inner iteration, i.e., Algorithm B for γ = γk, is terminated if successive
active sets coincide or

‖ − Δhyh,lγk
+ λh,l

γk
− fh‖H−1,h

‖fh‖H−1,h

≤ √
εM .

Here the superscript l = l(k) denotes the iteration index of Algorithm B for fixed k.
For a discussion and numerical results in the case where the approximation errors due
to the discretization of the underlying function space problems are incorporated into
the algorithmic framework, e.g., when stopping the algorithm, we refer to the next
section 6.2.

The initialization of γ is as follows: In the infeasible case we propose a choice of
γ0 based on the deviation of the linearization of V (γ) at γ = γr from the objective
value of the unconstrained problem (P̂) at the projection of yγr onto the feasible set.

In our realization of this heuristic we choose γr = 0 and compute ŷ, V (0), and V̇ (0).
Then we set

γ0 = max

{
1, ζ

J(yb) − V (0)

V̇ (0)

}
,(49)

where ζ ∈ (0, 1] is some fixed constant, yb(x) = min(ŷ, ψ(x)), and J denotes the
objective function of (P̂). Note that ŷ is the minimizer of the unconstrained problem
(P̂). For the examples below we use ζ = 1. In the feasible case we choose a reference
value γr, e.g., γr = 1, and solve the path problem (Pγ). Then we choose

γ0 = γr +
J(ŷ) − V (γr)

V̇ (γr)
,(50)
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where ŷ denotes the minimizer of the discretized unconstrained problem (P̂). If ŷ is
not feasible for (P), then one has J(ŷ) < V (γr) and hence γ0 > γr.

When applied to P1, P2, and P3 for h = 1/128 and with τk = 0.01k+1, we obtain
the results shown in Figure 5 and Table 6.1.
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Fig. 5. Number of inner iterations (vertical axis) per outer iteration for P1 (left plot), P2
(middle plot), and P3 (right plot); solid line – infeasible case, dashed line – feasible case.

Table 6.1

Comparison of iteration counts.

P1 P2 P3
Version # outer # inner # outer # inner # outer # inner

Feasible 5 44 4 10 4 31
Infeasible 4 15 4 11 4 16

From our test runs, also for other test problems, we observe the following char-
acteristics:

• For the feasible version the number of inner iterations exhibits an increasing
tendency until a saturation value is reached, and then, unless the algorithm
stops at an approximate solution, it starts to decrease. For the infeasible
version we typically observe that the first couple of iterations require several
inner iterations. As the outer iterations proceed the number of inner iterations
drops eventually to one. We also tested less aggressive γ-updates compared
to the ones used here, e.g., updates based on γk+1 = ξγk with ξ > 1 fixed.

• The numerically observable convergence speed of yγk
towards y∗ in H1

0 (Ω) is
typically superlinear. This can be seen from Figure 6, where the plots for the
discrete versions qhk of the quotients

qk =
|yγk+1

− y∗|H1
0

|yγk
− y∗|H1

0

are shown. Note that the vertical axis uses a logarithmic scale. In the first
row, for P1 we depict the behavior of qhk for h = 2−i, i = 5, 6, 7, 8, for the
infeasible case (left plot) and the feasible case (right plot). We observe that
the convergence rate is stable with respect to decreasing mesh size h. In the
second row we see the behavior of qhk for P2 and P3, with h = 2−7. Again,
we observe a superlinear rate of convergence. With respect to decreasing h
the same conclusion as for P1 holds true. These stability results provide a
link between our function space theory and the numerical realization of the
algorithms.
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• In connection with the convergence speed it is of interest how the detection
process of the correct active set works. For the rather aggressive γ-updates
used in Algorithm EP the difference between two successive active sets is zero
typically only in the last iteration. However, if a less aggressive strategy for
updating γ is used, then it is to be expected, that the difference of active sets
might become zero earlier along the iteration. In Figure 7, for the strategy
γk+1 = 2γk, we show the difference of successive active sets; i.e., the vertical
axis relates to the number of grid points that are in Ak+1 but not in Ak

and vice versa. We detect that for the infeasible case there exists an iteration
index k̄ after which the difference is constantly zero. This behavior is a strong
indication that the correct active set was detected. It suggests that we fix this
set Ak̄ and set ȳ|Ak̄

= ψ|Ak̄
, Ik̄ = Ω \ Ak̄, and λ̄Ik̄

= 0. Then one computes
ȳ|Ik̄

and λ̄Ak̄
such that a(ȳ, v) + 〈λ̄, v〉H−1,H1

0
= (f, v) for all v ∈ H1

0 (Ω), and

checks whether (ȳ, λ̄) satisfies (7). If this is the case, then the solution is
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found; otherwise γk̄ is updated and the iteration continued. If we apply this
technique for P1 in the infeasible case, then the algorithm stops at iteration
15 (35 inner iterations) with the exact discrete solution, as compared to 28
outer and 47 inner iterations without the additional stopping rule. There were
four iterations where the additional system solve was necessary but without
obtaining the numerical solution. Hence, with respect to system solves, the
amount of work drops from 47 solves to 39 (= 35 + 4). A similar observation
is true for P2 and P3. In the feasible case, however, this strategy yields no
reduction of iterations. Here, typically the correct active set is determined in
the last iteration (for large enough γ).

• The dependence of the iteration number on the mesh size of the discretiza-
tion for P1 is depicted in Table 6.2 (those for P2 and P3 are similar). In
parenthesis we show the number of inner iterations. The results clearly in-
dicate that the outer iterations are mesh independent, while the number of
inner iterations increases as the mesh size decreases. In the third row we
display the results obtained by applying Algorithm A for the solution of the
unregularized problem (P) with data according to P1. If we compare these
results with those of the infeasible exact path-following algorithm, we find
that for sufficiently small mesh sizes h the infeasible version of Algorithm EP
requires significantly fewer iterations than does Algorithm A, which is also an
infeasible algorithm. Also, the number of iterations required by Algorithm
A exhibits a relatively strong dependence on h when compared to Algorithm
EP in the infeasible case. Similar observations apply also to P2 and P3. This
shows that taking into account the function space theoretic properties when
regularizing problem (P) results in an algorithmic framework which performs
stably with respect to decreasing mesh size of the discretization.

Table 6.2

Comparison of iteration counts for different mesh sizes.

Mesh size h
Version 1/16 1/32 1/64 1/128 1/256

EP feasible 5(19) 5(23) 5(30) 5(44) 5(72)
EP infeasible 4(8) 4(11) 4(13) 4(15) 4(19)

Algorithm A 4 8 14 26 48
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Fig. 8. γ-updates; solid line – infeasible case, dashed line – feasible case.

• From the plots in Figure 8, where the y-axis again has a logarithmic scale,
it can be seen that our strategy (45) produces a rapidly increasing sequence
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{γk}. The plots in Figure 8 depict the increase of γk as a function of the
iteration number. The question arises of whether one could increase γ more
rapidly. Numerical examples employing an ad hoc strategy show that if γ is
increased too quickly, then the numerical error may prevent the residuals of
the first order system from dropping below

√
εM . This effect is due to the

ill-conditioning of the linear systems for large γ. On the other hand, small
increases in γ result in a slow convergence speed of Algorithm EP. Further,
in our test runs and as can be seen from Figure 8, the feasible version of
Algorithm EP is less aggressive in enlarging γk.

6.2. Inexact path-following. While exact path-following is primarily of the-
oretical interest, the development of inexact path-following techniques that keep the
number of iterations as small as possible is of more practical importance. The strat-
egy in the previous section relies on the fact that for every γk the corresponding point
on the primal-dual path is computed. This, however, is not the case for inexact tech-
niques and, as a consequence, a different update strategy for the path parameter γ
is necessary. A common concept in inexact path-following methods is based on the
definition of an appropriate neighborhood of the path; see, e.g., [3] and the references
therein for a noninterior neighborhood-based path-following method, or [5, 16, 18, 19]
for path-following techniques related to interior point methods. It is typically re-
quired that the primal-dual iterates stay within the neighborhood of the path, with
the goal to reduce the computational burden while still maintaining convergence of
the method.

We define

r1
γ(y, λ) = ‖ − Δy + λ− f‖H−1 ,(51a)

r2
γ(y, λ) = ‖λ− max(0, λ + γ(y − ψ))‖H−1 ,(51b)

and the neighborhood

N (γ) :=

{
(y, λ) ∈ H1

0 (Ω) × L2(Ω) : ‖(r1
γ(y, λ), r2

γ(y, λ))�‖2 ≤ τ
√
γ

}
(52)

in the infeasible case and

N (γ) :=

{
(y, λ) ∈ H1

0 (Ω) × L2(Ω) :‖(r1
γ(y, λ), r2

γ(y, λ))�‖2 ≤ τ
√
γ

∧ ∂

∂γ
J(y; γ) ≤ 0

}
(53)

in the feasible case. Above, τ > 0 denotes some fixed parameter. Note that adding
the condition ∂

∂γJ(y; γ) ≥ 0 in (52) yields no further restriction, since this condition

is automatically satisfied by the structure of J(y; γ). We also point out that the
conditions on the derivative of J(y; γ) are included in (52) and (53), respectively,
in order to qualitatively capture (up to first order) the analytical properties of the
primal-dual path.

Next we specify our framework for an inexact path-following algorithm.
Algorithm IP.

(i) Initialize γ0 according to (49) in the infeasible case or (50) in the feasible
case; set k := 0.
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(ii) Apply Algorithm B to find (yk+1, λk+1) ∈ N (γk).
(iii) Update γk to obtain γk+1.
(iv) Set k = k + 1, and go to (ii).

Note that if in step (ii) the path-problem (Pγ) is solved, then r1
γ(yγ , λγ) = r2

γ(yγ , λγ) =
0.

As is the case with primal-dual path-following interior point methods, the update
strategy for γ in step (iii) of Algorithm IP is a delicate issue. If the increase of γ
from one iteration to the next is rather small, then we follow the path closely, and the
convergence speed is slow. If the γ-update is too aggressive, then step (ii) requires
many iterations of Algorithm B to produce iterates in the neighborhood. We propose
the following strategy, which performed very well in our numerical tests.

We introduce the primal infeasibility measure ρF and the complementarity mea-
sure ρC as follows:

ρFk+1 :=

∫
Ω

(yk+1 − ψ)+dx,(54)

ρCk+1 :=

∫
Ik+1

(yk+1 − ψ)+dx +

∫
Ak+1

(yk+1 − ψ)−dx,(55)

where (·)− = −min(0, ·) and (·)+ = max(0, ·). Note that at the optimal solution both
measures vanish. Further, we point out that ρC is related to the duality measure well
known from primal-dual path-following interior point methods. These measures are
used in the following criterion for updating γ:

γk+1 ≥ max

(
γk max

(
τ1,

ρFk+1

ρCk+1

)
,

1

(max(ρFk+1, ρ
C
k+1))

q

)
(56)

with τ1 > 1 and q ≥ 1. The first term in the outermost max-expression is used
because of our observation that ρFk+1 ≥ ρCk+1 in the infeasible case. If ρC is small

compared to ρF , we find that the iterates primarily lack feasibility as compared to
complementarity. Therefore, a strong increase in γ, which aims at reducing constraint
infeasibility, is favorable. If both measures are of almost the same size and rather
small, then the second term in the outer max-expression should yield a significant
increase in γ. Typically q ∈ [ 32 , 2] is chosen, which induces growth rates for γ.

If there is still a significant change in the active sets from one iteration to the next
and the update γk+1 based on (56) would be too large compared to γk, then many
inner iterations would be necessary to keep track of the path, or very conservative
γ-updates in the following iterations have to be chosen. We safeguard the γ-updates
by utilizing our model function m(γ), which was found to be a reliable tool. In fact,
in updating γ, large deviations from m(γ) are prohibited by comparing the value of
the tangent to J(y; γ) at γ = γk with the actual model value. If necessary and as long
as γk+1 is much larger than γk, we reduce the actual γ-value until

|tk(γk+1) −mk(γk+1)| ≤ τ3|J(yk+1; γk) − J(yk; γk−1)|(57)

with 0 < τ3 < 1, tk(γ) = J(yk+1; γk) + ∂J
∂γ (yk+1; γk)(γ − γk), and mk(γ) the model

related to γk. Recall that mk(γk) = J(yk+1; γk). The motivation of this strategy
utilizes the good approximation qualities of our models. Indeed, for small γ the
distance between tk and mk might be large, but so is |J(yk+1; γk)−J(yk; γk−1)| since
the change in the function value is expected to be relatively large for small γ. For
large γ, however, both difference measures tend to be small.
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Concerning the numerical realization of Algorithm IP in the discrete setting we
point out that by an a posteriori analysis of the discretization errors one finds that the
norm of the residuals in (51a) and (51b) can be approximated typically to the order
of h. This can be used as an upper bound for γ in the discrete versions of (52) and
(53), respectively. However, since, on a fixed grid, our discrete versions of (P) and
(Pγ) are consistent (as γ → ∞) and admit unique solutions in R

Nh , where Nh ∈ N

depends on the mesh size of discretization h, it is of interest to consider γ → ∞. On
a fixed grid, this allows us also to study the behavior of our discretized algorithms
as finite dimensional solvers for problems similar to the discrete versions of the ones
under consideration. With respect to the latter aspect, below we report on test runs
of Algorithm IP when applied to our test problems P1, P2, and P3. The parameters
had values q = 1.5, τ1 = 10, τ3 = 0.999, τ = 1e6. The stopping rule for the outer
iteration is as before.

P1. The infeasible version of Algorithm IP requires 9 outer iterations and at most
2 inner iterations per outer iteration. In particular, in many iterations the criterion
(yk+1, λk+1) ∈ N (γk) was satisfied within 1 inner iteration. The feasible version of
Algorithm IP stops after 11 iterations. With respect to inner iterations in the feasible
case we note that more than 1 or 2 inner iterations were necessary only in the last
3 outer iterations with 3, 4, and 6 inner iterations, respectively. For both runs, the
behavior of the measures ρF and ρC is shown in Figure 9. Note that the vertical scale
is a logarithmic one. The left plot corresponds to the infeasible case. The feasibility
measure ρF and the complementarity measure ρC are both convergent at a superlinear
rate. In the feasible case, which is depicted in the right plot, we observe that ρC is
only linearly convergent. In some iterations we have ρFk > 0. However, the constraint
violation is of the order of the machine precision and thus negligible.

1 2 3 4 5 6 7 8 9

10
−13

10
−10

10
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10
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ρF (solid) and ρC (dashed); P1 (infeasible)

outer iteration

Fig. 9. Behavior of the measures ρF (solid) and ρC (dashed) for P1, left plot – infeasible case,
right plot – feasible case.

P2. For this test problem the infeasible version of Algorithm IP required 11
iterations with one inner iteration per outer iteration. The feasible version needed 6
outer iterations and 9 inner iterations.

P3. The behavior of Algorithm IP for solving P3 is comparable to its behavior
for P1 and P2. In fact, the infeasible version required 11 outer iterations and 11
inner iterations for solving the discrete problem. The feasible variant of Algorithm
IP stopped successfully after 9 outer and 19 inner iterations. For the latter run, in
the next-to-last iteration 5 inner iterations were necessary; otherwise at most 2 inner
iterations were needed. With respect to the behavior of the decrease of the measures
ρC and ρF , an observation similar to the one obtained from Figure 9 for P1 holds
true. We remark only that in the feasible case ρC exhibits an almost superlinear
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convergence behavior.
Compared to the exact path-following strategy of Algorithm EP, the inexact path-

following concept of Algorithm IP is in many cases more efficient. In Table 6.3 we pro-
vide the number of outer and inner iterations for exact versus inexact path-following.
In parenthesis we write the number of inner iterations.

Table 6.3

Comparison of iteration counts between exact and inexact path-following.

Infeasible case Feasible case
P1 P2 P3 P1 P2 P3

EP 4 (15) 4 (11) 4 (16) 5 (44) 4 (10) 4 (31)
IP 9 (12) 11 (11) 11 (11) 11 (25) 6 (9) 9 (19)

Finally we address the issue of how to incorporate the approximation error due
to the discretization of function space quantities; see [6, 7]. First note that with (8)
holding (which is the case for P3), the discretization of the residual in the definition of
the neighborhoods (52), respectively (53), approximates the original one to the order
of h. Hence, in our discrete version of Algorithm IP the neighborhood criterion

‖(r1
γ(y, λ), r2

γ(y, λ))�‖2 ≤ τ
√
γ

becomes

‖(r1,h
γ (y, λ), r2,h

γ (y, λ))�‖2 ≤ max

{√
εM , κinh,

τ
√
γ

}
,

with some constant κin > 0. We stop the outer iteration as soon as the discrete
residual drops below max{κouth,

√
εM}, where κout > 0 is fixed. In our tests we use

κin = 1 and κout = 10. Applying this strategy for the solution of P3, we obtain
(outer) iteration numbers as displayed in Table 6.4. Here, in parenthesis we give the
total number of inner iterations.

Table 6.4

Inexact path-following with h-dependent stopping of inner and outer iterations.

Version Mesh size
1/16 1/32 1/64 1/128 1/256 1/512

IP 1 (1) 4 (4) 5 (5) 8 (8) 9 (10) 10 (10)
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