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Path following using dynamic transverse feedback

linearization for car-like robots
Adeel Akhtar Christopher Nielsen Steven L. Waslander

Abstract—This paper presents an approach for designing path
following controllers for the kinematic model of car-like mobile
robots using transverse feedback linearization with dynamic
extension. This approach is applicable to a large class of
paths and its effectiveness is experimentally demonstrated on a
Chameleon R100 Ackermann steering robot. Transverse feedback
linearization makes the desired path attractive and invariant
while the dynamic extension allows the closed-loop system to
achieve the desired motion along the path.

I. INTRODUCTION

The problem of generating accurate motion along a given

path for a control system can be broadly classified as either a

path following problem or a trajectory tracking problem [1].

In a path following problem, unlike trajectory tracking, the

main task of the controller is to follow a path with no a priori

time parameterization associated to the motion along the path.

The extra degree of freedom in path following of assigning

the timing law associated with path traversal allows a sig-

nificant improvement in the achievable performance for non-

minimum phase systems [2], [1]. Another key advantage of

adopting the path following approach is that the path can be

made an invariant set for the closed-loop system. In the context

of mobile robotics, this means that once the mobile robot is on

the path, with appropriate orientation, it never leaves the path.

On the other hand, since a tracking controller tracks a specific

system trajectory, if the robot is initialized on the path but its

position does not coincide with the reference position the robot

may leave the path before asymptotically approaching the

reference point on the path again [3]. In this paper we design a

path following controller for the kinematic model of a car-like

robot [4]. This model approximates the mobility of a car and is

relevant in automated driving applications. Moreover, the car-

like robot is the simplest nonholonomic vehicle that displays

the general characteristics and the difficult maneuverability of

higher dimensional systems, e.g., of a car towing trailers [4].

Accurate movement along a path is desirable for car-like

robots when they operate in tight spatial conditions, like indoor

robots moving in a room with obstacles. In these cases, path

following can be used in conjunction with path planning to

achieve collision-free motion.

Trajectory tracking and internal stability of the car-like robot

were analyzed in [5]. The performance of the controller therein
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was tested both in simulation and on an experimental testbed.

Path following controllers were proposed for the car-like robot

in [6], [7], [8]. The approach in [6] is similar to the one

followed in this paper. The key difference is that we do not

fix the translational velocity of the car and consequently the

path can be rendered invariant while having variable dynamics

along the path. In [9], [10] a similar problem is solved in the

presence of phase constraints and limited control resources.

The car-like robot is treated as a single input system, and

the translational velocity is a given, sign-definite, possibly

time-varying, function. In [11] it was shown that transverse

feedback linearization can be used to design path following

controllers for the car-like robot using only the steering input.

In this paper we provide explicit expressions for feedback

control laws that achieve path following while allowing the

motion along the path to change.1.

Feedback linearization controllers are criticized because

they only work “perfectly” in simulation, i.e., in the absence

of disturbances and parameter uncertainty. The authors of [13]

highlight that dynamically extended feedback linearized con-

trollers can involve high-order derivative terms which can be

sensitive to sensor noise and modeling uncertainty making

them difficult to implement experimentally. Furthermore, the

sensors used to estimate the states of car-like robots are

relatively inaccurate with lower update rates. These practical

constraints make the implementation of the proposed con-

troller challenging. Experimental implementation of a path

following controller using sliding mode control was presented

in [8]. A reference tracking and set-point regulation dynamic

feedback linearization controller was presented in [14].

A large class of non-linear systems fall in the category of

differentially flat systems [15]. Finding a flat output is, in

general, difficult and involves finding a function that satisfies

the conditions given in [16]. The search for a flat output can

be simplified by noting that they often have strong geometric

interpretations [17]. In [18] a flatness based approach is used

to derive open-loop control laws for a kinematic car-like robot

that are combined with interpolation using G2-splines. In

this paper we choose a virtual output because it has very

strong physical meaning for the path following problem and

subsequently show that it is a flat output. We use dynamic

extension [19] of the original system to achieve the desired

relative degree of the closed-loop system. Every system which

is feedback linearizable via dynamic extension is differentially

flat [20]. While we consider a kinematic model, the proposed

1A preliminary version of this paper, without Sections IV, V and VI, was
presented in [12].
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controller can be extended to dynamic models using integrator

backstepping [21].

A. Contributions

The main contributions of this paper are 1) an approach to

designing path following controllers for car-like vehicles that

is physically intuitive and mathematically proven to achieve

invariance of the path while traversing the path with desired

dynamics 2) A method for approximating arbitrary smooth

parameterized paths as the zero level set of a function 3)

Experimental results that demonstrate accurate path following

and feasibility of the proposed approach.

B. Notation

Let col(x1, . . . , xn) =
[
x1 · · · xn

]⊤
∈ R

n where ⊤

denotes transpose. We denote the Euclidean inner product by

〈x, y〉 and the associated Euclidean norm by ‖x‖. We let In
represent the n×n identity matrix and 0m×n represent the m×
n zero matrix. Given a set A ⊂ R

n, the point-to-set distance to

A is denoted ‖·‖A. Given a function f : A → B, we let Im(f)
or f(A) denote its image. A continuous function α : [0,∞) →
[0,∞) is said to belong to class-K∞ if α(0) = 0 and it is

strictly increasing [22]. Given a C1 mapping φ : Rn → R
m

let dφx be its Jacobian evaluated at x ∈ R
n. If f , g : Rn → R

n

are smooth vector fields we use the following standard notation

for iterated Lie derivatives L0
fφ := φ, Lk

fφ := Lf (L
k−1
f φ) =

〈dLk−1
f φx, f(x)〉, LgLfφ := Lg(Lfφ) = 〈dLfφx, g(x)〉.

II. PROBLEM FORMULATION

Consider the kinematic model2 of a car-like robot with rear

traction

ẋ =




cosx3 0
sinx3 0

1
ℓ
tanx4 0
0 1



[

v
ω

]
(1)

where x ∈ R
4 is the state, the input v ∈ R is the translational

speed and ω ∈ R is the angular velocity of the steering angle

x4. We impose a steering angle constraint

(∀ t ≥ 0) −
π

2
< −x4 ≤ x4(t) ≤ x4 <

π

2
(2)

where x4 > 0 is given. We take the car’s position in the plane

as the output of (1)

y = h(x) = col (x1, x2). (3)

Suppose we are given a curve C in the output space R
2 of (1)

as a regular parameterized curve

σ : D → R
2, λ 7→ col (σ1(λ), σ2(λ)), (4)

where σ ∈ Cr with r ≥ 3 and C = Im (σ). Since σ is

regular, without loss of generality, we assume it is unit-speed

parameterized, i.e., ‖σ′(·)‖ ≡ 1. Under this assumption, the

curve σ is parameterized by its arc length. For closed curves

with finite length L, this means that D = RmodL and σ is

2 We do not model friction because it has a negligible effect on vehicle
performance for indoor scenarios with velocity and heading rate control inputs.

L-periodic, i.e., for any λ ∈ D, σ(λ + L) = σ(L). When the

curve is not closed D = R. We impose geometric restrictions

on the class of curves considered [23].

Assumption 1 (submanifold). The curve C is a one-

dimensional embedded submanifold of R2.

Assumption 1 imposes that the path has no self-

intersections, no “corners”, and does not approach itself

asymptotically.

Assumption 2 (implicit representation). The curve C ⊂ R
2

has implicit representation C = {y ∈ W : s(y) = 0} where

s : W ⊆ R
2 → R, is a smooth function such that dsy 6= 0 on

C and W is an open set. Moreover, there exist two class-K∞

functions α, β : [0,∞) → [0,∞) such that

(∀y ∈ W ) α(‖y‖C) ≤ ‖s(y)‖ ≤ β(‖y‖C). (5)

Assumption 2 asks that the entire path be represented as the

zero level set of the function s. This is always possible, locally,

if Assumption 1 holds. The second part of Assumption 2

ensures that, when C is not bounded, s(y) → 0 if and only if

y → C.

Since dhx = I2 for the output (3), the map h : R4 → R
2

is transversal [24] to C and therefore, if Assumption 1 holds,

the lift of C to R
4

Γ := (s ◦ h)−1
(0) =

{
x ∈ R

4 : s(h(x)) = 0
}

(6)

is a three dimensional submanifold.

Assumption 3 (curvature constraint [18], [25]). Given a

steering angle constraint (2) the curvature κ(λ) of (4) satisfies

(∀ λ ∈ D) κ(λ) <
1

ℓ
tan (x4). (7)

Assumption 3 ensures that the path is feasible, in light of

the steering angle constraint, for the car-like vehicle.

Problem 1: Given a curve C satisfying Assumptions 1, 2,

and 3 find, if possible, a smooth control law for (1), (3) of the

form

ζ̇ = a(x, ζ) + b(x, ζ)u[
v
ω

]
= c(x, ζ) + d(x, ζ)u

(8)

with ζ ∈ R
q , u = (u1, u2) ∈ R

2 such that for some open set

of initial conditions U × V ⊂ R
4 × R

q with C ⊂ h(U)

PF1 The solution (x(t), ζ(t)) of the closed-system (1), (8)

exists for all t ≥ 0 and ‖h(x(t))‖C → 0 as t → ∞.

PF2 The curve C is output invariant independent of the desired

motion along the path, i.e., if properly initialized, then

‖h(x(t))‖C = 0 for all t ≥ 0.

PF3 The system asymptotically tracks a given motion profile

σ(λref(t)) where λref : R → D is smooth and λ̇ref(t) is

uniformly bounded away from zero.
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III. DIFFERENTIALLY FLAT PATH FOLLOWING OUTPUTS

The path following manifold, denoted Γ⋆, associated with

the curve C is the maximal controlled invariant subset of the

lift (6). Physically it consists of all those motions of the car-

like robot (1) for which the output signal (3) can be made to

remain on the curve C by suitable choice of control signal [3].

The path following manifold is the key object that allows

one to treat the path following problem as a set stabilization

problem. If the path following manifold can be made attractive

and controlled invariant for the closed-loop system then PF1

and PF2 are satisfied.

When we apply the above definition to the car-like robot or,

more generally, to any drift-less system, it is immediate that

Γ⋆ = Γ. This is because one can trivially make the entire set Γ
controlled invariant by setting v = 0. This characterization of

Γ⋆ cannot be used to solve Problem 1 because path invariance

is not achieved independently of the motion along the path.

Stabilizing Γ with v|Γ = 0 ensures path invariance (PF2) but

fixes the motion along the path.

On the other hand, when v = v 6= 0 is a fixed constant, the

path following manifold can be characterized [11] using the

steering input ω. Physically, this means that the car like robot

can be made to follow C solely using its steering input. The

main deficiency with the solution presented in [11] is that PF3

cannot be satisfied since v is fixed. To overcome this difficulty

a time-scaled transformation was applied in [9], [10], which

made it possible to ensure path invariance for variable speed

v(t).
To overcome this problem let v = v + ζ1, where ζ1 is the

first state of our dynamic controller and v 6= 0 is constant.

We take the simplest possible structure for the control law (8)

and let ζ̇1 = ζ2. In order to finish defining the control law we

let ζ̇2 = u1 where u1 is a new, auxiliary input. To simplify

notation, henceforth we do not distinguish between physical

states of the system (x1, x2, x3, x4) and states of the controller

(ζ1, ζ2). Let x5 := ζ1, x6 := ζ2. Therefore the system we

study has the form

ẋ = f(x) + g1(x)u1 + g2(x)u2

=




(v + x5) cosx3

(v + x5) sinx3
(v+x5)

ℓ
tanx4

0
x6

0



+




0
0
0
0
0
1



u1 +




0
0
0
1
0
0



u2

(9)

and the set Γ in (6) is embedded in the extended state

space R
6. The dynamic extension allows us to enforce PF2

independently of the function λref(t) from PF3. Similar ideas

have been applied to a tower crane model in [26].

A. Feedback linearization

We treat the path following problem as a set stabilization

problem and we follow the general approach of [3], [23].

In order to satisfy PF1 and PF2 we first stabilize the path

following manifold Γ⋆. Once the path manifold has been

stabilized we use the remaining freedom in the control law

to impose desired dynamics on the path and satisfy PF3.

Let N (C) ⊂ R
2 denote a neighbourhood of the curve C.

The neighbourhood N (C) has the property that if y ∈ N (C)
then there exists a unique y⋆ ∈ C such that ‖y‖C = ‖y− y⋆‖.

This allows us to define the function

̟ : N (C) → D

y 7→ arg inf
λ∈D

‖y − σ(λ)‖.
(10)

This function is as smooth as σ is which, by assumption, is

at least C3. Using (10) define the “path following output”

ŷ =

[
π(x)
α(x)

]
=

[
̟ ◦ h(x)
s ◦ h(x)

]
. (11)

Let Γ+ := Γ ∩
{
x ∈ R

6 : x5 + v > 0
}

, Γ− := Γ ∩{
x ∈ R

6 : x5 + v < 0
}

. The next lemma shows that the out-

put (11) yields a well-defined relative degree on Γ+

∐
Γ−

where
∐

denotes disjoint union.

Lemma III.1. The dynamic extension of the car-like robot (9)

with output (11) yields a well-defined vector relative degree

of {3, 3} at each point on Γ+

∐
Γ−.

Proof. Let x⋆ ∈ Γ+

∐
Γ− be arbitrary. By definition of Γ

the output h(x⋆) is on the path C. Let λ⋆ ∈ D be such that

h(x⋆) = σ(λ⋆). By the definition of vector relative degree we

must show that Lg1L
i
fπ(x) = Lg2L

i
fπ(x) = Lg1L

i
fα(x) =

Lg2L
i
fα(x) = 0 for i ∈ {0, 1} in a neighbourhood of x⋆ and

that the decoupling matrix

D(x) =

[
Lg1L

2
fπ(x) Lg2L

2
fπ(x)

Lg1L
2
fα(x) Lg2L

2
fα(x)

]
(12)

is non-singular at x = x⋆. Since

∂π(x)

∂xi

=
∂α(x)

∂xi

≡ 0

for i ∈ {3, 4, 5, 6}, it is easy to check that LgjL
i
fπ(x) =

LgjL
i
fα(x) = 0 for i ∈ {0, 1}, j ∈ {1, 2}.

To show that the decoupling matrix (12) is non-singular at

x = x⋆, we first find that

det (D(x)) =
(v + x5)

2

ℓ cos2 x4
(σ′

1(λ
⋆)∂x2

α− σ′
2(λ

⋆)∂x1
α) .

The only way for this determinant to vanish is if either (i) v =
−x5 or (ii) σ′

1(λ
⋆)∂x2

α−σ′
2(λ

⋆)∂x1
α = 0. Condition (i) does

not occur for x ∈ Γ+

∐
Γ−. We now argue that condition (ii)

never occurs on the path because the vectors col(∂x1
α, ∂x2

α)
and σ′(λ⋆) are orthogonal.

The chain rule and the form of the output map (3) yield

col (∂x1
α(x⋆), ∂x2

α(x⋆)) = ds⊤h(x⋆). By Assumption 2 the

differential dsy 6= 0 for y ∈ C. Thus the vector ds⊤h(x⋆)

is a non-zero gradient vector and is orthogonal to the path

at h(x⋆). On the other hand the vector σ′(λ⋆) is non-zero

because σ is regular and also tangent to the curve. Hence〈
ds⊤h(x⋆), σ′(λ⋆)

〉
= 0. If we rotate the vector ds⊤h(x⋆) by

π/2 radians then the rotated vector and σ′(λ⋆) are linearly

dependent. Let Rπ
2

be a rotation of the plane by π/2. Then

Rπ
2
ds⊤h(x⋆) = k(σ(λ⋆))σ′(λ⋆)
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for some smooth, scalar-valued, non-zero function k : R2 →
R. The function k is never equal to zero because the vector

ds⊤h(x⋆) is never zero.

Returning to the expression for det (D(x)), we have that

σ′
1(λ

⋆)∂x2
α− σ′

2(λ
⋆)∂x1

α =
〈
Rπ

2
ds⊤h(x⋆), σ′(λ⋆)

〉

= k(σ(λ⋆)) 〈σ′(λ⋆), σ′(λ⋆)〉

= k(σ(λ⋆))‖σ′(λ⋆)‖2

= k(σ(λ⋆)).

Let Γ⋆ :=
{
x ∈ R

6 : α(x) = Lfα(x) = L2
fα(x) = 0

}
.

Define Γ⋆
+ := Γ⋆ ∩ Γ+ and Γ⋆

− := Γ⋆ ∩ Γ−. The next result

defines a diffeomorphism valid in a neighbourhood of Γ⋆
+. The

equivalent result for Γ⋆
− is omitted to avoid repetition.

Corollary III.2. Let x⋆ ∈ Γ⋆
+. There exists a neighbourhood

U+ ⊂ R
6 containing Γ⋆

+ such that T : U+ → T (U+)



η1
η2
η3
ξ1
ξ2
ξ3



= T (x) =




π(x)
Lfπ(x)
L2
fπ(x)

α(x)
Lfα(x)
L2
fα(x)




(13)

is a diffeomorphism onto its image.

Proof. In order to show that (13) is a diffeomorphism in a

neighbourhood of Γ⋆
+ we appeal to the generalized inverse

function theorem [24, pg. 56]. We must show that 1) for all x ∈
Γ⋆
+, dTx is an isomorphism, and 2) T |Γ⋆

+

: Γ⋆
+ → T (Γ⋆

+) is a

diffeomorphism. An immediate consequence of Lemma III.1

and [19, Lemma 5.2.1] is that the first condition holds. To

show that the second condition holds we explicitly construct

the inverse of T restricted to Γ⋆
+. On Γ⋆

+, ξ1(x) = ξ2(x) =
ξ3(x) = 0 and simple calculations show that the inverse of T
restricted to Γ⋆

+ is3




x1

x2

x3

x4

x5

x6



= T |−1

Γ⋆
+

(η, 0) =




σ1(η1)
σ2(η1)
ϕ(η1)

arctan (ℓκ(η1))
η2 − v
η3




where ϕ : D → Rmod 2π is the map that associates to each

η1 ∈ D the angle of the tangent vector σ′(η1) to C at σ(η1)
and κ : D → R is the signed curvature. The inverse is clearly

smooth which shows that T |Γ⋆
+

is a diffeomorphism onto its

image.

This coordinate transformation of Corollary III.2 is physi-

cally meaningful for path following applications. When ξ = 0
the system is restricted to evolve on the path following man-

ifold Γ⋆. We call the ξ-subsystem the transversal subsystem

and the states ξ the transversal states. On the path following

manifold the motion of the car-like robot on the path is

3The inverse is obtained under the assumption that the curve is arc-length
parameterized.

governed by the η-dynamics. We call the η-subsystem the

tangential subsystem and states η the tangential states. When

the robot is on the path following manifold, i.e., ξ = 0
then η1 determines the position of the robot on the path,

η2 represents velocity of the robot along the path and η3
represents acceleration of the robot along the path.

We apply the regular feedback transformation

[
u1

u2

]
:= D−1(x)

([
−L3

fπ

−L3
fα

]
+

[
v‖

v⋔

]
,

)
(14)

where (v‖, v⋔) ∈ R × R are auxiliary control inputs. By

Lemma III.1 this controller is well-defined in the neighbour-

hood of Γ⋆
+ from Corollary III.2. Thus in a neighbourhood of

Γ⋆
+ [resp. Γ⋆

−] the closed-loop system becomes

η̇1 = η2 ξ̇1 = ξ2
η̇2 = η3 ξ̇2 = ξ3
η̇3 = v‖ ξ̇3 = v⋔

(15)

We refer to the control input v⋔ as the transversal input and v‖

as the tangential input. The control law (14) has decoupled the

transversal and tangential subsystems which makes designing

(v‖, v⋔) to solve Problem 1 particularly easy. In summary, we

have shown that the extended car-like robot is differentially

equivalent to a controllable linear time invariant system (LTI)

in a neighbourhood of each connected component, Γ⋆
+ and

Γ⋆
−, of the path following manifold. Another way to state this

is to say that the output (11) is a flat output for the car-like

robot (1) [27], [28].

B. Transversal and tangential control design

The objective of the transversal controller is to force the

system to converge to the path. For that we to stabilize the

origin of the transversal subsystem. The simplest choice for

the transversal input is

v⋔(ξ) = k1ξ1 + k2ξ2 + k3ξ3, (16)

with ki < 0, i ∈ {1, 2, 3}, chosen so that the polynomial

s3−k3s
2−k2s−k1 is Hurwitz. This controller exponentially

stabilizes ξ = 0 and hence, under (5) in Assumption 2,

makes the path following manifold attractive. These gains can

be chosen using, for instance, pole-placement or quadratic

optimization (LQR).

Assumption 4 (desired motion on path). The desired

motion on C given by a smooth function ηref(t) :=
(λref(t), λ̇ref(t), λ̈ref(t)), t ≥ 0 with |λ̇ref | uniformly bounded

away from zero.

Assumption 4 ensures that x5 + v 6= 0 for the desired

motion. When x5 + v = 0 the robot has no translational

velocity, the decoupling matrix loses rank and the control

law (14) is not well-defined. Given a desired motion that

satisfies Assumption 4, let

v‖(η) = k4(η1−ηref1 (t)) + k5(η2 − η̇ref1 (t))

+ k6(η3 − η̈ref1 (t)) +
...
η ref
1 (t),

(17)
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with gains ki < 0, i ∈ {4, 5, 6}, chosen so that the polynomial

s3 − k6s
2 − k5s − k4 is Hurwitz. The numerical value of

these gains can be chosen similarly to the transversal gains.

Typically, one seeks that the closed-loop transversal dynamics

converge to zero faster than the closed-loop tangential dynam-

ics.

Proposition III.3. The control law (14), (16), (17) solves

Problem 1.

Proof. Assume that4 η̇ref1 > 0 and let x(0) ∈ U+ where

U+ ⊆ R
6 is defined in Corollary III.2. By Lemma III.1, and

by shrinking U+ if necessary, the control law (14), (16), (17)

is well defined in U+. The transversal controller (16) ex-

ponentially stabilizes ξ = 0 and hence, by Assumption 2,

x → Γ⋆
+ ⊂ U+ and PF1 holds. Since ξ = 0 is an equilibrium

of the closed-loop transversal subsystem, if x(0) ∈ Γ⋆
+ ⊂ U+,

h(x(t)) remains on the path for all future time. Therefore (16)

achieves PF1, PF2 in Problem 1.

Define errors coordinates eη := η−ηref . It is straightforward

to show that, for the tangential controller (17), that eη → 0.

Once again, by shrinking U+ if necessary, it is possible to

ensure that η2(t) 6= 0 during the transient phase in which

η2 → η̇1. This shows that the closed-loop tangential dynamics

satisfy PF3 and hence Problem 1 is solved.

Remark III.4. When the desired motion corresponds to ve-

locity tracking then ηref(t) = (0, ηref2 (t), η̇ref2 (t)). In this case

we select k4 = 0. Similar comments apply to acceleration

tracking.

Remark III.5. Proposition III.3 shows that the region of

attraction5 is an open subset of U+ [resp. U−]. Since (13)

relies (10), the image of this set under (3) must be a neigh-

bourhood of C in which the closest point on the path is well-

defined. This is a necessary, far from sufficient, property of the

region of attraction.

IV. CURVE REPRESENTATION

The control design technique discussed in this paper relies

on having both a parametric representation (Equation (4))

and an implicit representation (Assumption 2) of the path C.

Although such curve representation pairs are well known for

many commonly used paths such as circles and Cassini ovals,

not all cases can be addressed this way.

Given an arbitrary curve C in R
2 with a Cr, r ≥ 3, regular

parameterization (4), we provide the following procedure for

finding its implicit representation. First, we approximate the

parametric representation as a rational parametric curve using

the Weierstrass approximation theorem. Second, relying on

elimination theory [30] , we represent the image of the rational

approximation as an implicit function.

A. Polynomial approximation

Given σ(λ) = col (σ1(λ), σ2(λ)) we generate polynomial

approximations pj(λ) to the functions σj : D → R, j ∈ {1, 2}.

4If η̇ref
1

< 0 then the proof is the same, mutatis mutandis, using U
−

⊆ R
6.

5 See [29] for further discussion on estimating the region of attraction.

We start by sampling the domain D. Let {λ1, λ2, · · · , λq+1}
be q + 1 points in D with λi < λi+1, i ∈ {1, . . . , q}. Let

I := [λ1, λq+1] ⊂ R. The associated points on C are given by

σ(λi) = col (σ1(λi), σ2(λi)), i ∈ {1, . . . , q + 1}. If we seek

a single polynomial pj(λ) of fixed order N that approximates

σj(λ) at the sample points, then we can simply solve two

least squares optimization problems for pj(λ) =
∑N

i=0 a
j
iλ

i,

j ∈ {1, 2} to find the coefficients aji ∈ R. The Weierstrass

Approximation Theorem [31] ensures that for any ǫ > 0, there

exists N sufficiently large such that

max
λ∈I

‖σj(λ)− pj(λ)‖ < ǫ. (18)

Furthermore, at the sample points σ(λi), the above polynomial

approximation is optimal in the least squares sense.

A drawback of the above approach is that, for a given set

{λ1, λ2, · · · , λq+1} and a given ǫ > 0, the order N of the

polynomial required to ensure (18) holds is a priori unknown.

In such cases we propose an algorithm to recursively compute

polynomials pj that satisfy (18).

Our algorithm is based on the constructive proof of Weier-

strass Approximation Theorem presented in [31]. In that proof,

given a uniformly continuous function f : [0, 1] → R, one

constructs a Bernstein polynomial

Bf
n(θ) :=

n∑

k=0

ckh
k
n(θ), (19)

where ck := f (k/n) and hk
n(θ) :=

(
n
k

)
θk(1 − θ)n−k, which

is shown to converge uniformly to f as the order of Bf
n

gets sufficiently large. In our application, on the interval

I = [λ1, λq+1], define the function τ : [0, 1] → I as

τ(θ) = λ1 + θ (λq+1 − λ1) .

This function is a homeomorphism between [0, 1] and I . We

use it to define

fj(θ) := σj ◦ τ(θ), j ∈ {1, 2} . (20)

Using the Weierstrass Approximation Theorem and Bernstein

polynomials for the function (20), we have that for any ǫ > 0,

there exists an integer N > 0 such that

(∀n ≥ N) max
θ∈[0,1]

‖fj(θ)−Bfj
n (θ)‖ < ǫ. (21)

These arguments lead to the following conclusion.

Lemma IV.1. There exists a positive finite integer N such

that (18) holds with

pj(λ) = Bfj
n (τ−1(λ)), n ≥ N, j ∈ {1, 2} .

Algorithm 1, given below, shows how to use Lemma IV.1

to find the polynomials pj .

B. Sylvester matrix elimination method

We now apply elimination theory to form an implicit

representation of the planar curves obtained in Section IV-A.

There are multiple ways to accomplish this but we present

Sylvester’s method [32].
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input : σj : D → R

ǫ > 0
N = 1; (start with the smallest possible order)

I = [λ1, λq+1]
output: pj(λ)

compute: fj = σj ◦ τ(θ)
while error > ǫ do

for k = 0 : N do
compute: ck = fj(k/N)
compute: hk

N (θ) =
(
N
k

)
θk(1− θ)N−k

compute: pj(λ) = pj(λ) + ckh
k
N (τ−1(λ))

end

calculate error: maxλ∈I ‖σj(λ)− pj(λ)‖
N = N + 1

end
Algorithm 1: Curve approximation

Sylvester’s dialytic expansion [32] computes the resultant

of a given polynomial system by constructing a matrix that is

rank deficient whenever the polynomial system has a solution.

Consider two polynomials constructed using the ideas of

Section IV-A p1(λ) =
∑n

i=0 aiλ
i, p2(λ) =

∑m
i=1 biλ

i. Let

y1 = p1(λ) and y2 = p2(λ) and rewrite the polynomials as

P1(λ) := anλ
n + · · ·+ a1λ+ (a0 − y1) = 0

P2(λ) := bmλm + · · ·+ b1λ+ (b0 − y2) = 0.
(22)

The key insight in [33] is that, by viewing the terms (a0 − y1)
and (b0 − y2) in (22) as constant terms, the associated resul-

tant expresses the relationship which must exists among the

coefficients in order for there to exist λ that simultaneously

satisfies both equations (22). In other words, the resultant itself

is the implicit form of the parametric curve.

Let Syl (P1, P2, λ) denote the (n+m)× (n+m) Sylvester

matrix of P1 and P2 with respect to λ. Then, the resultant of

P1 and P2 with respect to λ is denoted by Res (P1, P2, λ) and

is given by Res (P1, P2, λ) = det (Syl (P1, P2, λ)).
In summary, we use the following two step approach to

implicitize a curve C ⊂ R
2 with regular parameterization (4).

1) Approximate the function σj : D → R, j ∈ {1, 2} as

a uni-variate polynomial pj(λ) over a compact interval.

Do this using least squares optimization or Algorithm 1.

2) Form the Sylvester matrix Syl (P1, P2, λ) using (22)

then set s(y) = Res (P1, P2, λ) = det (Syl (P1, P2, λ))
as the zero-level set representation of the approximation

of C obtained above.

V. IMPLEMENTATION ISSUES

In order to implement the proposed controller the coordinate

transformation (13), the feedback (14) with D(x) defined

in (12) and transversal and tangential controllers (16), (17)

must be computed. In this section we address the two main

issues that complicate implementing the above. The first is that

the parameterization of C may not be unit-speed. The second

is that the computation of the tangential states (η1, η2, η3)
involves computing the projection (10) and its derivatives. In

general the function (10) does not have a closed-form which

makes these calculations non-obvious.

Following the discussion in Section IV, we assume that

we are given C, a not-necessarily unit-speed parameterization

σ̃ : R → R
2 and a function s : R

2 → R such that

Assumption 2 holds. Note that having an expression for s(y)
makes the computation of the transversal states straightforward

using symbolic algebra software.

Let N (C) ⊆ R
2 be a neighbourhood of C. Now introduce a

projection operator, defined in N (C), which is the same as (10)

except it uses a non-unit speed parameterization

λ⋆ = ˜̟ (y) = arg inf
λ∈R

‖y − σ̃(λ)‖. (23)

The value λ⋆ can be effectively numerically computed using

line search algorithms. For closed-curves this calculation is

straightforward because the line search is over a compact

interval of R. For non-closed curves heuristic methods must

be employed to compute the infimum. To calculate the first

tangential state we find the arc-length

η1 = g(λ⋆) :=

∫ λ⋆

0

∥∥∥∥
dσ̃

dλ

∥∥∥∥ du (24)

so that η1 = g ◦ ˜̟ ◦ h(x). To calculate η2 we note

η2 =
∂(g ◦ ˜̟ ◦ h)

∂x

dx

dt

=

(
∂g

∂λ

)∣∣∣∣
λ=λ⋆

(
∂ ˜̟
∂y

)∣∣∣∣
y=h(x)

[
(v + x5) cos (x3)
(v + x5) sin (x3)

]
.

Simple geometric arguments, similar to those used in the proof

of Lemma III.1, show that ∂ ˜̟

∂y

∣∣∣
y

is given by

∂ ˜̟
∂y

=
(σ̃′(λ⋆))

⊤

‖σ̃′(λ⋆)‖2
. (25)

Differentiating (24) one obtains

∂g

∂λ

∣∣∣∣
λ=λ⋆

= ‖σ̃′(λ⋆)‖ (26)

and so

η2 =
(σ̃′(λ⋆))

⊤

‖σ̃′(λ⋆)‖

[
(v + x5) cos (x3)
(v + x5) sin (x3)

]
. (27)

To simplify notation let

∆(x) :=
(σ̃′(λ⋆))

⊤

‖σ̃′(λ⋆)‖
, Ω :=

[
(v + x5) cos (x3)
(v + x5) sin (x3)

]
.

To find η3 we differentiate (27) and get η3 = ∆̇Ω+∆Ω̇. The

term Ω̇ is easy to compute using the system dynamics (9). The

term ∆̇ = ∆′λ̇ can be found by noting that

∆′ :=
∂∆

∂λ
=

(σ̃′′)
⊤ ‖σ̃′‖2 − (σ̃′)

⊤∑2
i=1 σ̃

′
iσ̃i

‖σ̃′‖3
(28)

and, using (24) and the chain rule,

λ̇ =
1

‖σ̃′‖2
η2. (29)

This shows that the tangential state η3 can be computed

effectively using (25), (28), (29), Ω and Ω̇.

Finally, in order to implement the feedback transforma-

tion (14) we must find expressions for L3
fπ and the first
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row of the decoupling matrix (12). The decoupling matrix is

straightforward but tedious to compute, and calculations give

L3
fπ =

η2
‖σ̃′‖

(
∆′Ω̇ + ∆′Ω+

d∆′

dt
Ω+

η2
∑2

i=1 σ̃
′
iσ̃i

‖σ̃′‖3
∆′Ω

)
q

+ ∆̇Ω̇ + ∆Ω2

(30)

where

Ω2 :=
(v + x5)

ℓ
tan (x4)

[
(1− 2x6) sin (x3)
(1 + 2x6) cos (x3)

]

−
(v + x5)

3

ℓ2
tan2 (x4)

[
cos (x3)
sin (x3)

]
.

Implementation of controller and the regular feedback (14) is

summarized by Algorithm 2.

input : σ̃(λ) : R → R
2 (non-unit speed)

s : W ⊆ R
2 → R

System model (9)

Current state x ∈ R
6

output: (u1, u2)

for each do
Using (23) numerically compute λ⋆.

Compute σ̃′(λ⋆), σ̃′′(λ⋆), σ̃′′′(λ⋆), ‖σ̃′(λ⋆)‖.

Numerically compute η1 using (24).

Compute η2 using (27).

Compute η3 using (25), (28), (29), Ω and Ω̇.

Compute L3
fπ using expression (30).

Compute ξ1, ξ2, ξ3, L3
fα.

Compute (u1, u2) using (14), (16), (17).
end

Algorithm 2: Control algorithm

VI. EXPERIMENTAL VERIFICATION

A. Experimental platform and setup

The Chameleon R100 built by Clearpath Robotics Inc., see

Figure 1(a), is a low cost car-like robot for testing control

and estimation algorithms. A DC motor is attached to the

rear axle of the robot. A servo motor is used to control the

steering angle of the robot. The maximum steering angle is

approximately x4 = 0.4712 rad (27 degrees). This means that

Assumption 3 is satisfied, given that ℓ = 22.9 cm in this case,

if the maximum curvature of the path is 2.22m−1. The wheels

of the robot provide sufficient friction with the ground to make

the rolling without slipping assumption implicitly made in (1)

hold. However, the steering linkage to front wheels permits up

to ± 7 degrees of error. This error source is not captured by the

mathematical model (1) used for control design. The chassis of

the robot measures 30× 22× 20 cm (l/w/h) and is controlled

from an Intel Atom Notebook. Onboard electronics provide

low-level commands to the motors while the proposed control

algorithm is implemented on the notebook, hereafter called the

control computer, running the Robot Operating System (ROS)

in Linux.

To implement Algorithm 2, all of the robot’s states are

needed. To this end, an Indoor Positioning System (IPS) is

(a) The Chameleon R100 robot.

(b) Experimental Setup.

Fig. 1: The Chameleon R100 robot and the experimental

setup are shown. The position and orientation of the robot

is measured by the IPS.

TABLE I: Controller gains used in Section VI

Description Symbols Values

Transversal gains (16) {k1, k2, k3} {−46.3,−38.7,−10.8}
Tangential gains (17) {k4, k5, k6} {0,−1.3,−2.3}

employed using the NaturalPoint OptiTrack local positioning

system. The IPS uses sixteen near-infra red cameras. Infra red

(IR) reflectors are attached to the robot’s chassis to make the

position (x1, x2) and orientation x3 available for feedback, via

the IPS, over WiFi. The control computer uses multithreaded

Publish/Subscribe model to read the position and orientation

of the robot at 100Hz from the IPS.

In many car-like robot platforms, the steering angle can

be directly measured using a potentiometer or an absolute

optical encoder; however the Chameleon R100 lacks this

feature. Since the steering angle cannot be measured by the

IPS, a standard Extended Kalman Filter (EKF) is used to

obtain estimate (x1, x2, x3, x4, x5, x6) from the measurements

(x1, x2, x3) and the control inputs (u1, u2). The control inputs

of the Chameleon are its steering angle and translational speed.

However, the control inputs of (1) are the rate of change of

the steering angle and translational speed. The steering control

input can be computed from the rate of change of steering

angle by integration.
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B. Experimental Results

In the first experiment the Chameleon R100 robot is asked

to follow a circular path of radius r = 1.3 meters while

maintaining a constant speed of ηref2 (t) = 0.3 m/sec along

the path, i.e., ηref(t) = (0, 0.3, 0) which clearly satisfies

Assumption 4.

In the experiment, pole placement was used to select

the gains so that the control signals did not saturate. The

closed-loop transversal dynamics were designed to converge

to zero faster than the closed-loop tangential error dynamics,

to promote convergence to the path over progress along the

path. In the following experiments, the desired pole locations

for the transversal states ξ were chosen as −3.9,−3.6,−3.3.

The desired pole location for the tangential error states eη =
(η2−ηref

2 , η3−η̇ref
2 ) are chosen to be −1.2,−1.1. The controller

gains computed for the desired pole locations as shown in the

Table I.

The robot’s initial position is indicated by a solid green dot

in Figure 2(a). The desired circle is represented by a dotted

line in the figure.
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(a) Chameleon R100 following the circular path.

0 5 10 15 20 25 30 35 40
−12

−10

−8

−6

−4

−2

0

2

4

6

8

t(sec)

ξ 1
,
ξ 2
,
ξ 3

 

 

ξ1
ξ2
ξ3

(b) Convergence of ξ1, ξ2, ξ3 states.

Fig. 2: Chameleon R100 robot following the circular curve

σ : [0, 2.6π) → R
2, λ 7→ col(1.3 sin(λ/1.3), 1.3 cos (λ/1.3)).

The position of the robot along the path is given by the

transformed state η1 ∈ [0, 2.6π). In this example the path is

closed and has arc-length 2.6π; therefore D = [0, 2πr) =
[0, 2.6π) and η1 remains bounded between 0 to 2πr as shown

in Figure 3(a). The tangential state η2 is shown in Figure 3(b).

A fixed tangential speed of 0.3 m/sec was chosen due to the

limited capabilities of the vehicle and the limited test area

available inside the indoor positioning system capture region.

Simulation examples with variable speed profiles can be found

in [12].
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(a) Position η1 of the robot along the path.
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(b) Chameleon R100 maintaing a desired speed of 0.3 m/sec
along the path.

Fig. 3: Velocity and position of the Chameleon R100 robot

while following the circular curve σ : [0, 2.6π) → R
2, λ 7→

col(1.3 sin(λ/1.3), 1.3 cos (λ/1.3)).

In the second experiment the Chameleon R100 robot is

made to follow a non-closed sinusoidal path. Figure 4(a) shows

that the robot first converges to the desired path and follows

it. Due to limited lab space the robot is asked to follow only a

small portion of the sinusoidal path. All the transversal states

(the ξ states) converge to zero (Figure 4(b)). As the robot

follows the sinusoid path a desired speed of 0.3 m/sec is

achieved as shown in Figure 5.

In the third experiment the repeatability of the proposed

controller is tested on a circular path of radius 1.3 meters.

The experiment is repeated six times and the convergence

of the path following error is analyzed. In each test the

robot converges to the desired path starting from an initial

point away from the path as shown in Figure 6(a). The

path following error ePF :=
√
x2
1 + x2

2 − 1.3, is shown in

Figure 6(b). The initial pose (position and orientation) and

steady-state path following error |essPF| := limt→∞ sup |ePF|
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(a) Chameleon R100 following the sinusoidal path.
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(b) Convergence of ξ1, ξ2, ξ3 states.

Fig. 4: Chameleon R100 robot following the non-closed, non-

unit speed, sinusoidal path σ̃(λ) = col(λ, 0.8 cos (λ)).
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Fig. 5: The Chameleon R100 maintaining a desired speed of

0.3 m/sec along the sinusoidal path.

of the robot in each run is presented in Table II. Figure 7 gives

a zoomed in view of the path following error. We see that the

path following error in each run remains within ±0.015m. We

conclude that path following controller gives fairly accurate

and reliable results as the mean path following error of the

six runs is 1.0689cm with a standard deviation of 0.154cm.
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(a) Convergence of the robot’s position to the circle.
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(b) Path following error.

Fig. 6: Multiple experiments following circular path σ :
[0, 2.6π) → R

2, λ 7→ col(1.3 sin(λ/1.3), 1.3 cos (λ/1.3)).
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Fig. 7: Magnified view of the path following error after the

convergence of the robot to the desired path.

We observed that the closed-loop performance is very sen-

sitive to IPS calibration errors. A small misalignment between

the center of IR reflectors and center of the rear axle, i.e.,

(x1, x2), is reflected in the path following error. Moreover,

we observed that the error is reduced by a few centimeters if

an EKF is used, as described above, on all six states of the

system. An adaptive path following controller may perform

better in the face of calibration errors.
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TABLE II: Steady-state path following error. The initial condi-

tions (x1(0), x2(0)) and x3(0) are given in metres and radians,

respectively. The path following error is given in centimetres.

Test (x1(0), x2(0)) x3(0) |ess
PF

|

1 (3.0267, 0.4083) 1.8153 1.0580
2 (−0.1675,−1.7628) 0.1440 1.3766
3 (2.7383, 1.2309) 2.3205 0.9556
4 (1.4719, 1.8907) 2.9793 1.0089
5 (−0.0971,−0.3565) −0.6987 1.0148
6 (−2.2894,−0.4131) −1.0454 0.9992

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper a path following controller is designed for the

kinematic model of a car-like mobile robot using transverse

feedback linearization with dynamic extension for a large class

of paths. The control method is experimentally demonstrated

on a Chameleon R100 Ackermann steering robot. It has been

shown that the path following controller forces the robot to

converge and then follow the desired path with very small

error. Future research includes precise characterizations of the

region of attraction of the proposed controllers, and the use of

adaptive, nonlinear PI path following controllers based on the

notion of immersion and invariance [34] to reduce sensitivity

to sensor calibration errors.
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