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Path-integral formulation of closed strings

Shyamoli Chaudhuri, Hikaru Kawai, and S.-H. Henry Tye
Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853
(Received 21 April 1986)

We construct the covariant path integral for the Neveu-Schwarz-Ramond superstring in super-
space, with manifest invariance under diffeomorphisms and local supersymmetry transformations.
Spin structure is introduced, and the constraints imposed by modular invariance on fermionic
string models examined. The critical exponents of the bosonic and fermionic string models in
space-time dimensions less than the critical dimension are obtained for world surfaces of arbitrary

topology.

1. INTRODUCTION

Closed-string models are described by a two-
dimensional field theory on the world sheet, a multiply
connected two-dimensional manifold embedded in space-
time. A closed Riemann surface with ~ handles, or Euler
characteristic X =2 — 2h, corresponds to an hth-order loop
diagram. The path-integral formulation provides a natu-
ral framework for the study of multiloop amplitudes.
Such multiloop diagrams involve a complicated depen-
dence of the functional integrals on the moduli, and for
superstring models the supermoduli, of the Riemann sur-
faces.

Following Polyakov’s path-integral formulation’ for
strings, the importance of the moduli was first pointed
out by Friedan? and subsequently analyzed by Alvarez.’
More recently the structure of moduli space, or its cover-
ing space Teichmueller space, has been further clarified by
Polchinski,¥ Moore and Nelson,” and D’Hoker and
Phong.® For the fermionic string,” some progress has been
made by Martinec,® Moore, Nelson, and Polchinski,” and
others.'?

In this work, we construct a covariant path-integral for-
mulation of the fermionic string!' in superspace and ex-
tend it to include spin structure. Intuitively, the function-
al integration of fermions in the path integral must in-
clude a weighted sum over the possible boundary condi-
tions for the spinor fields, periodic and antiperiodic, al-
lowed by the symmetries of the fermionic string model.
However, the allowed sums are severely restricted by
modular invariance. For example, at the one-loop level
we obtain the space-time supersymmetry projection'? of
the Neveu-Schwarz-Ramond (NSR) model.!! For the
heterotic string!? the gauge groups SO(32) and Eg® E; also
arise from the requirement of modular invariance. Gen-
eralizations of these arguments put constraints on new
string models.

Both the NSR and the heterotic string actions can be
expressed either in terms of component fields,'* or
superfields.!”> The superspace treatment of fermionic
strings is an elegant and succinct parallel to the bosonic
construction. An advantage of the covariant formula-
tion in superspace is that invariance under
diffefomorphisms and local supersymmetry transforma-
tions is manifest. For the heterotic and other string
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models having world-sheet chiral fields, the measure in
the path integral cannot be defined in a Lorentz-
invariant way. This can give rise to Lorentz, or local
gravitational, anomalies. The absence of such an anoma-
ly forces these string models to the critical dimension.
Consequently, our discussion of these models is restrict-
ed to ten dimensions.

To clarify the meaning of this admittedly abstract for-
malism we obtain explicit expressions for the partition
functions at the one-loop level. The meaning of the con-
formal Killing vectors (spinors), the moduli (supermoduli),
and the spin structure, as well as the powerful constraints
coming from modular invariance become apparent.

The classical string actions all have local conformal in-
variance. However, when the dimensionality of space-
time is less than D_;;., a conformal anomaly is intro-
duced at the quantum level and we must integrate over
the Liouville degree of freedom."” In such cases, we can
rewrite the partition functions in the form'®

z=3 Zz,,
Y

z, = [TdaF a4

(1.1

(1.2)

and consider its behavior at fixed area 4. Asymptotical-
ly,

FlA) ~ C, A" X4

A— o

¥ (1.3)
where b, is a critical exponent and K is a regularization-
dependent quantity. For the bosonic string, the critical
exponent for surfaces of spherical topology b, has been
calculated by Zamolodchikov.!” We generalize this calcu-
lation for arbitrary topology with the result

X

b, = —D-19) — 1 ,

4
‘ = (1.4)

where we make use of the theorem on the existence of a
constant-curvature metric for any topology. An analogous
calculation!” yields the Hausdorff dimension of the sur-
faces. All the other critical exponents can be obtained in
terms of these two. The critical exponent b, can be cal-
culated for a variety of string models with an arbitrary
conformal field theory defined on the world sheet, an out-
standing exception being the heterotic strings. The re-
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36 ) PATH-INTEGRAL FORMULATION OF CLOSED STRINGS

quired cancellation of local gravitational anomalies forces
them to the critical dimension with conformal invariance
intact.

For string models having world-sheet supersymmetry,
in space-time dimensions below their critical dimension,

we can introduce the following substitution:
z, = [7dL F L), (1.5)

where L is a characteristic length scale of the Riemann
surface. Asymptotically,

by KL
FX(L)L:xC’( L' ¥e , (1.6)
and the critical exponent is calculated to be
X
b, = E(D—9) -1 (1.7)

The evaluation of b, naturally suggests the (world-sheet)
superspace generalization of the theorem on the ex-
istence of a unique constant curvature metric on a
Riemann surface of arbitrary topology.

In Sec. II we begin by reviewing the path-integral for-
mulation of the bosonic string®>~® to establish our nota-
tion. Choosing the space of constant curvature metrics as
a fiducial gauge slice we calculate the critical exponent b,
for an arbitrary value of the Euler characteristic X. In
Sec. III we consider the consequences of placing fermions
on the world sheet, and introduce the summation over
spin structures in the partition function. The construction
of the path integral for the NSR superstring in superspace
is carried out in Sec. IV. In Sec. V we approach the prob-
lem of constructing a path-integral formulation for the
heterotic string in a chiral superspace.

The torus is analyzed in depth in Sec. VI, clarifying the
meaning of spin structure and modular invariance. The
bosonic string torus is evaluated to illustrate the calcula-
tion of the critical exponent and the tori for the super-
string and the heterotic string are calculated to illustrate
spin structure and the constraints coming from modular
invariance.

Our calculations are entirely done in two-dimensional
Euclidean space. Appendix A contains our definition of
Majorana-Weyl fermions in two-dimensional Euclidean
space. Appendix B reviews some of the relevant facts!®
about two-dimensional superspace used in Secs. IV and
V.

II. THE BOSONIC STRING
AND ITS CRITICAL EXPONENTS

We begin this section with a review of the path-integral
formulation for closed Riemann surfaces,>>® and then
evaluate the critical exponents of the bosonic string. The
partition function is formally given by

z- 3 [ Dg.DX' exp(—S[Xgl ,
topologies mg R
2.1
where m is the space of metrics, and R? the space of all

embeddings of the world sheet in a D-dimensional Eu-
clidean space-time. X'(&), I=1,...,D, and g,,(&),
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m,n =1,2, are two-dimensional scalar and tensor fields
defined on a differentiable manifold M. The action is

SXgm] = [ d% Vemd,Xa,x', @2
and the volume elements in function space, DX and
Dg,,., are defined by the metric

I8x|2 = [d% Vgsx!y (2.3)

and
18gmn 1> = [ d’6 Vg (g™gP+CgPg 88,884
(2.4)

C is an arbitrarily chosen constant which, for conveni-
ence, we set equal to zero.

Both the action and the measure of the path integral
are invariant under the group of diffeomorphisms {D}. A
diffeomorphism is a differentiable one-to-one mapping of
M onto itself,

EMEM — EMEM (2.5)
under which X(£) and g,,,(§) transform as follows:

X(E5H—-X'&), X(&)=X(&), (2.6)

8mnE)—&mn &), o

Crn(ENAETAE" = g,y (E)AETE" .
Under a conformal transformation, the fields transform as

X(£)—-X(£) (no change) , (2.8)
Emn &) — grn(E)=A(£)g,n (E) . (2.9)

The definitions of the metrics in (2.3} and (2.4) are not in-
variant under the action of the conformal group {C}.
This is the origin of the conformal anomaly. Taking into
account the invariance of the partition function under
{D}, (2.1) can be rewritten as

Dg,..

zZ = ) G
I ox' G35y

exp (—S[X,g]), (2.10
where Q,({D}) is a formal expression for the volume of
the diffeomorphism group evaluated at g,,. It is con-
venient for our purposes to factor out the volume of the
subgroup {Dgy} of diffefomorphisms that are continuously
connected to the identity. In general, if we consider left-
right-asymmetric theories, anomalies can appear associat-
ed with the group {D}. The anomaly associated with
{Dy} is the local gravitational anomaly, while that associ-
ated with the mapping class group, G={D}/{Dy}, is the
modular anomaly. Formally, the volume of the invari-
ance group can be written as

Q. ({D}) = Q,({Do}) |G| ,

g (2.11)

where |G | is the order of the discrete group G. In
principle, Q,({D}) is fixed once the metric for
infinitesimal diffeomorphisms is defined:

[d* vVegu.onmsn"

1677|I> = 2.12)
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where 1™ generates infinitesimal diffeomorphisms:
é—m . é—m + Snm

In order to make the meaning of Dg/Q,({D}) more
transparent, we introduce a gauge slice S’ which
represents m’'=m/{Dy}, a slice in the functional space
of all metrics m that is transverse to the action of the
group {Dg}. The space m/{C}]®{D,] is -called
Teichmueller space and is known to be finite dimension-
al. If we fix a representation of Teichmueller space
S ={8,..(§,7)}, any element on the gauge slice S’ can be
expressed as

gmn() =

where the 7; are ¢ numbers that parametrize the space S.
Let 8g be an element of T,m, the tangent space of the
manifold m at any g €S’. An arbitrary infinitesimal vari-
ation 8g € Tym (see Fig. 1) can be expressed as

(2.13)

e¢(§)/\mn(§r'ri) ’ (214)

aAmn
88mn () = (149D, (E,7) + 4O (g, 718,

i

+(V,, 09, +V,86n,), (2.15)
where V,, is the covariant derivative on the world sheet.
The first two terms are variations within the gauge slice
S’, while the last term represents the effect of an
infinitesimal diffeomorphism operating on g,,,(£). In or-
der to avoid redundant parameters, conformal Killing
vectors should be excluded from the 8%, as is done ex-
plicitly later in this section.

We now introduce an orthogonal decomposition of
T,m as follows:

T,m = G & ImP, ® kerP] . (2.16)

G is the set of all infinitesimal, symmetric, rank-2 tensor
fields that can be expressed in the form O&A(£)g,,,(§),
where 8A(£) is an infinitesimal scalar field. The operator
P, maps infinitesimal vector fields into symmetric, trace-
less, rank-2 tensors:”

P V>V, 2.17)
o
‘ DIFF,
CONF
DIFFo

FIG. 1. §’ is a gauge slice which represents m'=m/{Dy}
where m is the space of metrics. In the space of m’, the gauge
slice S represents Teichmueller space, m/{Do}® {C}.
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and
Vi={9"}, V,={bh,,; g""bh,,=0]}. (2.18)
Explicitly,
P8 pn = Vuon, + V.87, — 80 VFPO7,. (2.19)

Since both &7,, and 8h,, have two components each,
and P, is a nondegenerate elliptic operator, it follows
that the kernels of the operators P, and its adjoint PJ{,
are finite dimensional. It is easy to check that G, ImP,,
and kerPI are orthogonal to each other. This is
schematically illustrated in Fig. 2, where 8¢ lies along
the axis of G; 6™ is in the plane of ImP, and G; and 87;
lies in the “‘parallelopiped” (G® ImP, & kerPf ). Since
G & ImP; covers all directions swept out by
{C}®{Dy}, the dimension of the remaining space,
kerP;, must be the saine as the dimension of Teichmuell-
er space: dim kerP{k=dimS. Then (2.15) can be rewrit-
ten as

88mn (§) = BAENGmn (£) + Bhpy(&) + 3 Scithyy

(2.20)

where {4{),] is a basis for kerP], and the 8¢,’s are
infinitesimal parameters. Comparing this expression with
(2.15) gives

SAE) e 3
Shon ) |=10 P, * || 69,06 |, @21
Bc; o o T¥|| 97
where
(¢‘i’|¢(”)Tj = <¢m e¢(§)g§L> .
! aTj

Ker PI*
A

ImP,

FIG. 2. A schematic picture illustrating the variations 6g in
the tangent space 7T,m of metrics g&S’ where
T,m=GaImP,®KerP].



36 PATH-INTEGRAL FORMULATION OF CLOSED STRINGS 1151

The volume element Dg is easily expressed in terms of
SA(E), &h,,, (&), and &¢; since the spaces G, ImP,, and
kerPJlr are mutually orthogonal. Explicitly,

Dg = DA Dk [[8¢; (det{y!"|y))!/? (2.22)

£)

D¢ (det’PiP,)"2 D'y det<1/1“

where DA and D/ must be defined by metrics obtained by
restricting the metric in (2.4) to the spaces G and ImP,,
respectively. Since the transformation matrix (2.21) is tri-
angular, the Jacobian of the transformation from
(DA DA [],58¢;) to (Dé Dy [],d7; ) is easily evaluated:

B(&) Bomn .
o7; >IIIdT'

Dg = - -
g (det(y'? | )}/

(2.23)

The primes in (det'PTPl )!”2 and D' mean that we should exclude the conformal Killing vectors. In other words, D'y

denotes the measure for (kerP,).

Finally, consider the volume of the gauge group ,({

D})=|G |Q,({Dy}). The

volume element D7 is defined by the metric in (2.12) and can be decomposed into kerP; and (kerP;)":

Dy = D% Dy
Thus,
D D¢(det’P’;P1)V2det<¢m ea;j)gf;)
ﬂg({lg)oi) - Qg({CKg})(det<¢(i}Ilp(j)>)|/12 ];Id'r[
Q. ({CK,})

equivalent to a sphere, there are six conformal Killing vectors, and {CK, }
ling vector space is then infinite. If M is a torus, there are two conformal Killing vectors, {CK,}
Q,({CK, }) is finite. For any higher genus (y=—2, —4, —6,

evaluate the partition function in (2.10):

D¢(det’PIP,)1/Zdet<¢“ b S8mn g"’” >Hd7—

Q, ({CK, })(det{y"” |¢f’> )12

z - J

The functional integral over X gives the factor

(det'A,)~27% v [f\/gdzg]"”

is the volume of the subgroup of {D,} generated by the conformal Killing vectors.

Dx 7 exp (

(2.24)

(2.25)

If M is topologically
The volume of conformal Kil-
=U(l)® U(1), and
.) there are no conformal Killing vectors. We can now

=SL(2,0).

- S[{X,g1)

(2.26)

where the system is put in a periodic box of volume V, and the prime implies that the zero modes of the Laplacian A,
are excluded. Using the heat-kernel method,® we can calculate the variation of det’ A, under a conformal transformatlon

Let us introduce the vacuum functional

Wigm] = In | (dera™' | [Veare | | (2.27)
The variation under infinitesimal conformal transformations is given by
W= Wle ] — Wigml (2.28)
¢ —
= — [V 2 2.
a5y ] VER@Bs a% (2.29)

R (g) is the scalar curvature calculated from g,,,, and c¢ is the central charge of the Virasoro algebra for a free scalar

field. Using the equation
R(e™%) = e®R(g) — e®A.4,
(2.29) can be integrated to give

Wle “gmn] =

Thus, on the gauge slice S'= {g;8m =€ “Gpn }»

Wigm] + —fdzgwggma $3,6+VEgRe)

(2.30)

(2.31)
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2
=V
P 48

V (det'A,) P72 {fx/gdzg }D/

d% (1V32™3,43,6 + VERS)
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— D/2
x (det’Ay) =P/ 2 { [Vzax [ (2.32)
Again, we can use the heat-kernel method to evaluate the Faddeev-Popov determinants:
i a/g\mn i a§
(det’P1P,)1”? det<1/1(’) e—¢—> Ié: det<¢‘” —) R
14 c or; lg i 07j Iz (det'P'P)12
b 0, ({CK, ) (det{y!? | ¢ ,)12 (det(y"” [g") )17 Q{CKy}
xexp | => [d% (1VE2™9,43,6 + VERS) ] (233
f
Notice that the ¢ dependence in (2.33) is confined to the DXDg
. F (A)= f——
exponential. X Q,({D})
The factor in the first set of large parentheses in (2.33),
namely, xexp (—S[X,g]) & {f\/Edzg - A]
h| og
I_Id'r,» det<¢“) __.._>
; or; /5  ptoy2 -
A e e | = v [ a1 am Dpexp | - 22D 5, 14) ]
(detCy [¥)) Q,((CK,}) 437
and the combination (det'AA/f\/ga'zg)‘D/2 are in- =
4 -V 52 _
variant under modular transformations, G ={D}/{Dy}. X8 fe Vigds — 4 ] (2.36)

Thus we can absorb 1/| G | in the measure to obtain an
integral defined in moduli space: m/{C}®{D}. Com-
bining the results (2.32) and (2.33), the partition function
becomes

-D/2
PR det’A.
Z = v [[dr] |(detP'B) /2 |——F—
JVieak
1 —[(26—D)/487]S; [¢]
—_— . . . D 2
“ 0, (CK, } J Dge
(2.34)
where S} is the Liouville action
Sp = [ (4V28™3,40,6+VER) d%
Here [d 7] is defined as
Hdr,.det<¢“> :_g>
i Tilg
[dr] = 28 (2.35)

(det(‘t//m | 1/}(j)>§ )1/2

Henceforth, we denote the factor in the large parentheses
in (2.34) by A(7).

Let us now discuss the asymptotic behavior of the num-
ber of random surfaces of a given topology!®!7 and fixed
area A. This is defined by

The number of random surfaces F,(4) is related to the
partition function by the expression (1.3). Let ¢ 4 be the
classical _minimum of S;, under the -constraint
Je-Vgd% = a:

85, = [ Ve *R(e %)8¢ d% = 0,
_ (2.37)
[ Ve tspd% = 0

These equations are satisfied if R(e ™ %g) is a constant.
From a general theorem on two-dimensional Riemann
surfaces, there exists a scalar field ¢4, for which
R =R (e %) is constant and ¢, is unique up to an addi-
tive constant. This constant is fixed by the constraint

[ e *Vga% = 4 (2.38)
Let us express
¢A(§) = ¢1(§) — InA4 , (2.39)

where ébl(g) is the solution for 4 =1, and define
gi=e 'g. Then the classical minimum can be expressed
as

S (4] = S 8] + [d*%V g R(g)In4
(2.40)

(2.41)

= S;{¢(&)] + 4mylnd
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Thus, at the tree level we have the simple area depen- Next, let us consider the world-sheet one-loop correc-
dence, tion to this behavior from the saddle-point expansion of
—(26—D) the Liouville action about its classical value. If we intro-

exp TSL AP —26/12]x duce the shifted field ¢ =¢—¢ 4, (2.35) can be rewritten as

F(4) = V[ Dgldr]a(r) (! 727 PRI 41p —26/121,

X
—(26—D — o~ J— . .
X exp ——(Tg{—)fd2§<g\/g,,g§'"am¢an¢+\/g,,RA¢) ) ‘f Vigee ® — A4 , (2.42)
where g , =e 7¢"§. At the one-loop level, we can introduce the following truncations:
1881 = [ Veie B8P d% = [ Vg, (58P d% (2.43)
and neglecting terms of O (&3),
— — [, %
S[f\/g,,e“”dzg—A]—z& J Vel (o -5 as | (2.44)

Using
[ Vedas = 1| VEg ds | + 03,
to replace the linear term in ¢ in the action, gives
[ VeiRgdd% ~ L [ Ve, Rgdd% (2.45)

since R (g 4) is a constant given by 4wy /4 . Thus the one-loop expression for F,(4) is

26—D
F(A))pop = AlP20/Ry f [d7] A(r) exp | == = S.[#1] ]
' 4 —172 — 2
x det AgA+-—X——~f‘/_g_Ad2§ |f Vg d2E ] : (2.46)

the last factor coming from the measure, and the constraint for the constant mode of ¢. The determinant can be evalu-
ated as follows:

-1/2
41 4w
det’ |[A, +—2X (det'A, )~ exp | —1Tr In |14 ——2X ——A-! (2.47)
84 f\/gAd2§ 84 2 f\/gAd2§ 84
From Eq. (2.39), the first factor can be rewritten as
— 1/2 — 172
(det'Ay )12 [f\/gAdlgj — (derA, "7 [f\/gldlg] Ax 12 (2.48)
The second factor in (2.47) may be expressed as a Taylor expansion:
2
. L) GRS B B 5 2 Sy 1| | 4mx -2 .
Trln | 1+ f\/g_Ad2§ Ay, |= p Tra,| — 5 y Tr(4a, ) -+ . (2.49)
The first term in (2.49) contributes a In 4 dependence, while the higher-order terms are free of In 4 corrections:
1 1 A4 (MK —1
— TrA;! = — ——— = — In4d + const, (2.50)
4 e A S, @r? —ki/4 4
L Tea? s (8] | t XO0(A4°) 2.51)
— Tr = — = cons . .
AZ 84 AZ K=o (277.)2 —k,~2/A

Thus,
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Tein |1+ X A7l | = K4 — ylnd + B() + 0(1/4) , (2.52)
f\/gAd &
where X is a regularization-dependent constant. The final expression for F, (A4) is
F(A4) ~ C, AUP-19/12=1 KA (2.53)
A tx d
where
-D/2 122
det’A, A o6 . det’A
c, =v [ 2] - (detPTp)1/2 ¢ 10PN B o (2.54)
@ UKD | [vza% [Vads

and the critical exponent b, = (D —19)y/12 — 1.

Of course, this is only the one-loop result obtained by
expanding the Liouville action about its classical value.
In practice, we expect this result to be exact. As dis-
cussed in Ref. 17 for the case of a spherical topology
(X=2) higher-loop contributions do not alter the leading
area dependence.

In the critical dimension, D =26, this analysis becomes

meaningless because of conformal invariance. In this
case, (2.10) is replaced by
Dg
Zp_ = DX exp( —S§) ,
(D =26) J a,({cha (b} P
(2.55)

where Q,({C}) is the conformal volume. It is easy to
divide by this new factor; the net effect is equivalent to
setting the ¢ field to some arbitrary value. Thus,

Zip_re = V[ldr] [det(P7P)}1?
devs, |
X W (2.56)
g

III. FERMIONIC STRINGS AND SPIN STRUCTURES

In our discussion this far, we have only considered bo-
sonic variables on the world sheet. In order to place fer-
mions on the world sheet, we must introduce the zweibein
field ¢ on the manifold. Corresponding to any Rieman-
nian metric g,,,,, there exists a set of zweibeins satisfying

gmn(g) = er()]'zenb8ab (3.1

In general, zweibeins cannot be defined globally; one must
introduce a set of patches that cover the manifold. The
zweibeins are then defined on each patch U and there are
transition functions relating the zweibeins on every pair of
overlapping patches:

e (E)dE™ = Ly(&)e(&NdE," ,

L, is the transition function from U; to U; given by

UNnuU'=£2 . 3.2)

G=(eV )e)"b, €%, is the rank-2 antisymmetric matrix,
and we have assumed for simplicity that the overlapping
region is simply connected. Fermion fields can now be in-
troduced by demanding that the transition functions for

the fermions be consistent with those for the zweibeins.
However, there is an ambiguity in sign since the spinor
representation doubly covers the vector representation.
Explicitly, define a spinor field ¥, on each patch U; that
satisfies the following transition condition:
iV 18172 .

ge, = oy e up i Unu 22, 63)
where o;=+1, and ¢,(§) is fixed so that the choice
o;=+1 gives a consistent spin structure. Then o; must
satisfy the cocycle condition in the triply overlapped re-
gion:

a,jajk = Ok U,ﬂUJﬁUk¢® (3.4)
However, since the Lagrangian contains only even powers

of the spinor fields, it is invariant under the change
PE)—— o),

on the patch U,. This means that spin bundles consistent
with the original zweibein structure are classified by the
one-dimensional cohomology group with Z, coeflicients,
H\M;Z,).

For example, a sphere has only one class of spin bun-
dles, while a torus has four classes of spin bundles (four
spin structures) since H !(torus; Z,) = Z,®Z,. This can
be seen more simply as follows: one can regard a torus as
a parallelogram (Fig. 3) with periodic boundary conditions
on which the zweibeins also satisfy periodicity. The
zweibein can be rotated by a phase angle 27n each time it
is transported around some noncontractible loop on the
torus. The integer n is unchanged by local Lorentz trans-
formations and can only be changed by a global Lorentz
transformation, or alternatively a modular transformation.
Since spinor fields can be either periodic or antiperiodic in
the (£, &,) directions, there are four spin structures. In
general, for a Riemann surface with 4 handles, there are
4" spin structures.

Chiral spin bundles can be analyzed in a similar
manner. In this case, there are ambiguities in sign for
each chirality separately. However, when we introduce
left-right asymmetry into the model, the phase of the path
integral becomes ill defined, and as mentioned before,
there is the possibility that a gravitational anomaly can
arise.

Next, consider the possibility of putting an arbitrary
two-dimensional conformal field theory on the world

(3.5)
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FIG. 3. The evaluation of the determinants with different
boundary conditions on the torus. (a) The standard periodic-
periodic (PP) case gives the function A4 (7) which is modular
invariant except for an overall phase; (b} the antiperiodic-
periodic AP case; (c) the PA case where the enlarged domain
shown must be rescaled so that the &, period is of unit length;
and (d) the 4 A4 case is related to the P A case as shown.

sheet. Fields with fractional spin other than half-integer
value can only be introduced on manifolds with certain
special values of the Euler characteristic y. This is easily
demonstrated: let us transport the field with spin s along
a loop C, that cuts the manifold M into two parts
M=M UM,. Since the loop C can be regarded as the
boundary of either M| or M, while the resulting phase
change should be independent of this choice, from the
Gauss-Bonnet theorem, we have the condition

4mys=2mn (3.6)

and hence the requirement that 2sy must be integer
valued. For example, a spin-1 field cannot be put on a
manifold topologically equivalent to the sphere (y=2) (an
exception occurs when there is a monopolelike object in-
side the sphere S2).

The conformal anomaly for a left-right-symmetric con-
formal field theory on the world sheet is given by the sum
of the central charges of the matter fields, minus 26 com-
ing from the Faddeev-Popov determinant. For such a
model the critical exponent is given by the general expres-
sion
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o X _
gc, 19]12 1, 3.7)

where the ¢;’s are the central charges of the fields intro-
duced on the world sheet. If we do not maintain left-
right symmetry, we must check the anomaly cancellation
conditions. For the well-known gravitational anomaly as-
sociated with { Dy}, this condition is'

n

>c;—26

i=1

n

> ¢ —26

i=1

— = 0 , (3.8)

where ¢;, and ; are the central charges for left-moving
and right-moving fields, respectively. This is easy to see:
the gravitational anomaly can be viewed as a local
Lorentz transformation and hence, as a conformal trans-
formation with a pure imaginary parameter that enters
with opposite sign for left- and right-moving fields. The
cancellation condition for the modular anomaly gives
another set of constraints, which are discussed in Sec. VI.

IV. THE COVARIANT PATH INTEGRAL
FOR THE NSR SUPERSTRING

We extend the preceding discussion to the path-integral
formulation of the Neveu-Schwarz-Ramond (NSR) model,
first discussed by Polyakov.” Our starting point is the
two-dimensional (N =1) supergravity theory. It is con-
venient to construct the functional integral for the NSR
string in superspace, maintaining manifest invariance un-
der both diffeomorphisms and local supersymmetry trans-
formations.

The superfield formulation of the fermionic string ac-
tion was carried out by Howe,!®> and unless stated other-
wise, we follow his notation. The partition function was
first discussed by Martinec,® who also generalized the
heat-kernel method and the complex tensor calculus to
the fermionic string. An advantage of this approach over
the Wess-Zumino gauge-fixed approach is that the super-
space formulation can be discussed in a way closely paral-
lel to that of the bosonic string. Also, lengthy and often
unnecessary calculations can be avoided.

For a fixed topology of the base manifold M, the parti-
tion function of the supersymmetric string is

Z, = 3 [ DEj DX’ exp (~S[X,E]), .1

S = 1f, d% EDX'DxX' | 4.2)
where z =(£",0%) are the (2 4 2) coordinates of the curved
supermanifold M, which is constructed as a spin bundle
with spin structure s on the base manifold M. &£" are the
coordinates of the two-dimensional world sheet, 6* are the

anticommuting  coordinates of the fiber, and
d’z=d?’Ed?6.
Here X! (I =1, ...,D) is the scalar superfield and E

the supervierbein, a 4 X4 graded, invertible matrix with
superdeterminant E. Following Howe,!®> the coordinate
indices are given by letters from the middle of the alpha-
bet, while tangent space indices are taken from the begin-
ning. Small latin (greek) letters stand for bosonic (fer-
mionic) components while, capital letters span both types.
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The covariant derivative is defined by

D, = E¥Dy, = E¥o, + QL (4.3)

where (1 4 is the spin connection and L the Lorentz gen-
erator.

The variables in the superfield formulation of super-
gravity are highly redundant. This redundancy can be re-
moved by imposing kinematic constraints on some of the
components of the supertorsion tensor, T'Sp, defined by

[Dy, D} = TS Dc + R L , (4.4)

where R 45 is the curvature tensor. The kinematic con-

straints are given by

TQBV = O Py
T aff — 2l(ya)aﬂ y (45)
Tabc == O .

Using the Bianchi identity Riqpy -0, we find T3 =0.
As a consequence of these constraints, the volume ele-
ment DE;} needs careful treatment.

E¥ has 16 superfields, and there are a total of
(6 + 6 + 2=14) constraints in (4.5). Four of them deter-
mine ) 4 in terms of the supervierbeins. The rest can be
used to express EM in terms of EX and, in addition, set
two constraints on E, leaving only six independent
superfields in E¥. However, local Lorentz invariance and
superdiffeomorphisms remove (1 + 4=35) degrees of free-
dom so that there is actually only one independent
superfield. In the presence of superconformal invariance,
this remaining degree of freedom will be removed by a su-
perconformal transformation.

It is convenient to express 8E % in terms of the follow-
inngix independent superfields that span the variations
SE;:

8HE, (Y))EsHSG, SHE

with 8HE = (S8E)EE. Then the functional volume ele-
ment DE¥ is defined by the metric®

ISE* = [ d’z E [(SHENBHY) + ¢ (yPsHE)?

(4.6)

+c(8HE) 1, 4.7)
where ¢, and ¢, are arbitrary coefficients. It should be
noted that this definition of norm is for a nonchiral sum
over spin structures of the amplitudes in Eq. (4.1). (See
note added.)

We point out a potential difficulty here. The supervier-
bein functional space appears to have indefinite norm.
However, by a judicious choice of gauge slice this
difficulty can be overcome. For example, one can set the
arbitrary constants equal to zero, and choose the fiducial
gauge slice transverse to the action of the super-Weyl
group to be the space of vierbeins having constant super-
curvature. Small variations away from the fiducial super-
vierbein have the typical form (in a complex tensor basis)

8H?, = D 8HZ + O(8H?Y),
+ R_,8HS + O(HY.

+ R, _B8HS
8H*.

D _8H

Hence, the metric defined in (4.7) can be made positive
definite for genus A > 1. The proper treatment of the
norm for genus 1 remains an open issue. (This issue
enters only in the case of periodic boundary conditions
for the fermions in scattering amplitudes. For the vacu-
um amplitude, this problem does not arise since super-
moduli are absent for the three contributing choices of
boundary condition.)

The functional volume element DX is a straightfor-
ward generalization of the bosonic case:

[8x|)? = [ d% E (6x)? (4.8)
The action and the functional volume elements, DX and
DE;j, are invariant under the group of super-
diffeomorphisms {SD} and under local Lorentz transfor-
mations {L}. A superdiffeomorphism is a differentiable
supermapping of M onto itself,

z € M, —»z'(z) € M, 4.9)
under which X7 and E;} transform as
Xy —»x"z), X'z = x'z),
(4.10)

EN2)—E¥(z), EN¥(2)9y = EXz)9, .

Under a local Lorentz transformation, the superfields
transform as follows:

X!(z)>X%z) (no change) ,

i05
Ef(z)— |exp %@(Z) Ef(z), @.11)
B
Efy(2)—> {expled(z) 1}8EL(2)
where € is given by €,, = —¢€,, and €;;,=1. The action is

also invariant under the group of local superconformal
(SC) transformations:

X'—>Xx" (no change),

EM L A-V2EM | 4.12)

EM SAT'EY + iA" Uy, )P(DgAIEM .

We shall denote the group of superconformal transforma-
tions by {SC}. As in the bosonic case, the metric in (4.7)
and (4.8) is not invariant under superconformal transfor-
mations, giving rise to the superconformal anomaly. To
separate possible global anomalies from the supergravita-
tional anomaly, it is convenient to factor out {SDg}, the
set of superdiffeomorphisms continuously connected to
the identity, from {SD}. We define the super mapping-
class group G, as the factor group
G, ={SD}/{SDy} (4.13)
with order |G, |. Intuitively, one might expect that fer-
mionic coordinates & do not affect the global structure of
the space of diffeomorphisms, so that G,=G
Taking the superdiffeomorphism and local Lorentz in-

variance into account, we replace the functional measure
in (4.1) by
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DE; Dx! 8HY = [SH(L)I, + [8H(D)], (4.20)
DE;#DXx’ — , (4.14) P
JpEd / |G, | Qg({L}&{[SDo}) where
where Qg({L}&{SDy}) is the volume of the semidirect 3V16 . ITSHC B8
product of the gauge groups {SDgy} and {L}. Let us in- [BH(DIe = 3[8Hp( Vol
troduce a gauge slice S/, that represents m, = m,/ = —1(DgdQ )y, )2,
{L}® [SDy}, where m; is the space of all supervierbeins ot
on M, satisfying the kinematic constraints (4.5). The _ dEg
space = |8T,e =7 aT. Ef,,(ybyc P
1
which may be called super- Teichrpgeller space, is a ﬁni.te~ [BH(LY = L[8HH(v.¥"V,] 4.21)
dlmenswnal supermanifold. Fixing a representation
={ E¥z;1) )} of super-Teichmueller space, an element  With this decomposition,
of the gauge slice S, = {E%(z)} can be expressed as o
EM(z)=¢[®912EM (z;T) ot D
a »
. - @.16) | (Y3 8HY o1 * x =||sK
El2) ESeD) BHDL | = [0 0 M *  *||80°
. oM. a
leq)(z)(,ya )aB[DB(I)(Z)]Ea (z;17), [(SH ]a 0 0 0 _p * 80
where the T ’s are both bosonic and fermionic ¢ numbers 5C. 0 O 0 0o JY 8T;
that parametrize super-Teichmueller space. & is the su- !
perconformal superfield. An arbitrary infinitesimal vari- (4.22)
ation 8E¥ e T . in the tangent space of m; at some ) ) ) )
E ﬁl € S’ can be expressed as Here, P is the differential operator
SEM = EMsHE P .yl pta (4.23)
where 8H?2 is given by where V'V is the space of Lorentz vector superfields, and
V3/2) is the space of Lorentz spin-2 superfields. Explicit-
8HY = 8Q°T¢, — D,480% + (80°Qc + 8K )E] Iy,
M
b _ b, \B
+ 5‘1>A + 8T; oT, 4.17) (P8Q), = HDg8QNy°y. )V, (4.24)
5 2 ) As for the bosonic string, zero modes of P must be ex-
E; and A7 are, respectively, cluded from 8Q in order to avoid redundancy, so that
E; =€, El=Ei,=0, Efj=1ly)i , 80 € (kerP), 4.25)
and where kerP is the space of superconformal Killing vectors.
— 80, A = AL —0, AL — L&) 4.18) A basis for kerP’, {W(i)}, is defined by the relation
4 ; PSP GIR i () AE a
8Q“, 8P, and 8K are, respectively, infinitesimal (W) gl = <\I’ ! aT ) , (4.26)
superdiffetomorphisms, superconformal transformations, i £

and local Lorentz transformations. With the help of the
kinematic constraints, the independent components of
(4.17) can be obtained:

IEM
SHE = 80 — D80+ 8T, —— E;(,,
b . b b2 T aEM
SHY = 2i8QP(y")gy — D,8Q% + 8Te~ 3T o
(4.19)
(V)FSHE = 8K + 80°Q, — (v )3D,5Q"

oM
a A8

oF
+5T(‘}/)ﬂa E

Now 8HY can be decomposed into spin-{ and spin-1
components:

where the inner product must be defined by the metric
(4.7), and the relationship between Ej} and E;} is as given
by (4.16).

Extending the argument given in the bosonic con-
struction we introduce the superdimension of super-
Telchmueller space, equal to the super-dimension of
kerP

sdim(S,) = sdim(kerP") , 4.27)

and define it as follows: the superdimension is the pair of
numbers (b,f), where b is the bosonic dimension, or the
number of moduli, and f is the fermionic dimension, or
the number of supermoduli. For example, if the super-
space is a trivial spin bundle on a torus,

sdim(kerP) = (2,2),

. . (4.28)
sdim(kerP") (2,2) .
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However, if the superspace is a nontrivial bundle, for
which there are three possibilities on the torus,

(2,0),
(2,0) .

The sphere has sdim(kerP)=(6,4), sdim(kerPJr):((),O).
For Riemannian surfaces with genus 4 > 1, the Riemann-
Roch theorem gives

sdim(kerP) =

+ (4.29)
sdim(kerP’') =

J

sdim(kerP) = (0,0),
(4.30)

sdim(kerP") = (6(h —1),4(h —1))

These results may be easily confirmed by going to the
Wess-Zumino gauge.

The calculation of the functional measure in (4.15) is a
straightforward generalization of the bosonic case:

oM

I OEG A
D® [sdet'(P'P)]'? sdet<\v“’ b Ew>
f DE —f T ar (4.31)
Q4([L]&{SDy}) Q;({SCK}) (sdet(w | wiiny, iz et '
The measure for D® is induced from the third term of (4.7) and is given by the metric
8@ = [E6®)’d% [e *Es®rd’ (4.32)
Qp({SCK}) denotes the volume of the space spanned by the superconformal Killing vectors.
Using the heat-kernel method in superspace, the ® dependence of the integrand in (4.31) can be calculated. Let us in-
troduce the vacuum functional
0By
[sdet'(PTP); ]2 sdet<\l/(” a—]f3~Ef4
WIEM] = In o
[Ee] Qp({SCK}) (sdet{ W | W) )72
Then
M 80(2)/2 2 M M Crp 2
SWIEM] = Wle EM) WIE] = [ Evsea’z (4.33)
T
where cpp= —(26—11)= —135 is the central charge of the super-Virasoro algebra of the supersymmetric Faddeev-Popov
ghost field, and Y is the curvature superfield defined by
(VS)D(BY = Raﬁ (434)

Recall that the kinematic constraints leave six independent superfields in EY. Using the Bianchi identitites and the kine-
matic constraints as described in Appendix B, all components of the Riemann curvature tensor R ;5 and the supertor-

sion T5C can be expressed as functions of Y (Ref. 15).

Following similar arguments to those given in the bosonic construction, we define

Y(e®2EM) e®Y — D,DD)

Integrating (4.33) gives

—15

WIES] = 481

Wle®?EY] —

where ¥ and ﬁa are evaluated at the fiducial reference supervierbein £;f. Thus,

OEN
—E€,>
AT, M|

1

[sdet'(PTP),1'/? sdet<\ll”)

Qp({SCK}) (sdet{ W™ | W) )1/2

and the super-Liouville action is given by

Ssu[®,E] = [ E(Yo+1D,0D°®)d%z . (4.38)
Comparing this with (4.2) and (4.34), we see that Sg is
both Lorentz and superdiffeomorphism invariant.

The X integration gives

(4.35)
[ E (Yo+1D, @D @)% (4.36)
JU AE)
[sdet’(P P)E]l/2 sdet<\ll‘” —BEA"W>
aT; E (—15/487)Sg [®,E] @.37)
Q;({SCK}) (sdet{W'? | W) .)172 ’ '
f
sdet(D,D%) |~P/?

[ DXexp(—$) = ¥ , (439

Ed?z
f

where the volume factor ¥ comes from the constant
modes of the superfield. Note that sdet’(D, D% ! may
still have factors of zero coming from fermionic zero
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modes. For example, as is discussed in Sec. VI, a torus
with trivial spin structure has sdet'(D,D®)~'2=0 be-
cause of the fermionic zero modes. Using the super heat-
kernel method,® we have

—172

sdet'(D,D%); =2 sdet'(D,D%) s
fE d?z fEdzz
“ Sal®.E
Xexp 487 SL[ > ] ’
(4.40)
where ¢, = (1+3) = J is the central charge of the

super-Virasoro algebra for the free scalar superfield.
Combining (4.37), (4.38), and (4.40) gives

~ -D/2
S f DG [dT] sdet'(D,D*)z
x ? fﬁdzz
[(sdetP'P);]'/2
X T Q,({SCK))
X exp uSSL[<1>,E]] , (4.4
327
where we have introduced the measure
o | 3EY
sdet<\lf’ T E}"l)g
[dT] = ! (4.42)

T oU dT,
| G | (sdet{¥" | W) .12 I,I

Again, the appearance of the superconformal superfield @
is restricted to Sg [D].

As for the case of bosonic world sheets, it is possible to
define a critical exponent for the sum over random super-
surfaces. Since the area of the world sheet, [Vgd?, is
not invariant under local supersymmetry we must identify
some other parameter to serve as an invariant under

F(L) = LIP=19%k [ [g7] A(T)e—B‘T’e‘SSL“"”lsdet'

where E;, = E e
fﬁe_q>" dz2 = L

Then,

superdiffecomorphisms. The natural counting of the num-
ber of random supersurfaces is given by

z, = ["dL FD),

DE DX
FAD = 3 [ Gtie (D))

(4.43)
exp(—S[E,X])

XS[fEdzz—L :

where L has the dimension of length instead of area. For
fixed spin structure and fixed super-Teichmueller parame-
ters, we evaluate the functional ® integral in the saddle-
point approximation. The classical minimum is given by

88y, = fdzzl? e P Y(e®EM)80 = 0 , (449

under the constraint
JdzEe 80 = 0

This is satisfied if, and only if, ¥ (e®/2E¥) is a constant
superfield. In terms of component fields, this implies that
only the bosonic component A of the constant superfield
Y is nonzero. As defined in Appendix B, 4 is the auxili-
ary field of the supervierbein. Explicitly, in the Wess-
Zumino gauge

(4.45)

Ef = ep + i0y"Y, + L(i06e; A), (4.46)
where e2 is the zweibein, and ¢, is the gravitino field.
For the bosonic case, it is well known that for any fiducial
reference metric £ on a two-dimensional manifold, there
exists a conformal field ¢ such that R (e ~%g)=const, and
¢ is unique up to an additive constant. Here we shall
simply propose the following conjecture: for any supervi-
erbein EY satisfying the kinematic constraints, there ex-
ists a superconformal transformation E% —E % ', such that

Y(EY ) = const. (4.47)
This is easily established at the linearized level, as can be
seen by reverting to component fields. Assuming this
statement, the rest of the calculation parallels that given
in the bosonic case:

®L and @, is the classical solution given by (4.44) and (4.45) satisfying

—1/2
o 47 5 —12
lDaD +4X EL] [ Ed*@ ,
(4.48)
(4.49)
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—1/2
sdet’

a 4 2
DD + —X_L [fELd 2

Ep

X exp

L—x

In contrast to the bosonic case, the exponent in the
second factor does not give a In(L) dependence, because
of supersymmetry. Notice that the asymptotic power
behavior

F.(L) ~ L[(D~9)/8]X—l

4.51
)~ { )

is completely independent of the spin structure, which
only affects the coefficient C, in F,(L). It is easy to gen-
eralize this argument to the case of arbitrary superconfor-
mal fields on the super world sheet. We have

¢ 9
12 8

¥y — 1 , (4.52)

where the c¢;’s are the central charges of the super-
Virasoro algebra for the superconformal fields introduced
on the world sheet.

We emphasize that thus far our discussion dealt with
properties of the fermionic string path integral that utilize
only the local features of moduli space, which makes pos-
sible a treatment outside of the critical dimension. Howev-
er, as is shown in Sec. VI, to obtain the Gliozzi-Scherk-
Olive spacetime supersymmetric projection necessitates an
independent summation over spin structures separately
for the left-handed and right-handed spinors. It is only in
the critical dimension that the required factorization of
the fermion determinant into the product of its left-
handed and right-handed sectors can be done without the
introduction of a global anomaly.

V. THE HETEROTIC STRING
IN A CHIRAL SUPERSPACE

Heterotic strings share several properties of the boson-
ic and NSR string models with an important exception:
the heterotic string has chiral fields and as a conse-
quence, gravitational, or local Lorentz anomalies can
arise on the world sheet. Demanding the absence of the
gravitational anomaly forces the model to the critical di-
mension, D =10, as is demonstrated in Ref. 19. There-
fore, the discussion in this section is confined to the case
of the heterotic string in its critical dimension. The
path-integral formulation for the heterotic string in the

[ sdet'(D, D)y, 1712 [fELd?-z]

~ LB/2X/12 (gdet’'D, D% ) {fE]dzz
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1/2

— L str In

3

1 + (DD} i’zl

|

172
exp[B'(T) ]

(4.50)

Wess-Zumino gauge has been discussed by Moore, Nel-
son, and Polchinski.” Here, we examine the problem of
constructing the path integral in superspace with mani-
fest invariance under superdiffeomorphisms.

The definition of the measure in functional space in
general breaks superconformal as well as Lorentz invari-
ance giving rise to both superconformal and Lorentz
anomalies. In ten dimensions and with 32 left-handed
chiral fermion fields these anomalies are absent. Howev-
er, there remains the more serious difficulty of defining
chiral determinants in supermoduli space. In the absence
of a proof of holomorphic factorization, there is the pos-
sibility of a global obstruction to factorization which
renders the fermionic determinant ill defined. Here we
restrict ourselves to a discussion of the measure, stop-
ping short of a complete expression for the path integral.
Since the formulation here closely parallels Secs. IT and
IV we will be brief in our discussion.

The chiral nature of the model makes it useful to intro-
duce the complex tensor calculus as described in Appen-
dix B. In complex tensor notation,>? the helicity + 1
and — 1 superfields are defined by

P, = P

F4

= (P, —iD, ) /V2,

_ (5.1)
(D, + id,) /V2

. = P =

K

where z=£&'+i£2, and the right-handed fermionic coordi-
nate 6 carries + 1 helicity. Then,

6:2 — 622 — 1, &% = 827 = 0 ,
Vi, = —V2, . = V2
In complex notation, the partition function for a given

topology of the base manifold M is given by’

Z, = zmeDE;} DX’ DA, exp (—Sy[E,X,A]) ,
s

Y

(5.2)
Sy = fMH(i\/EVEX’V+XI + AV, M) E d*d6,
(5.3)

where E;}, X!, and A, are N =1 superfields defined on
the heterotic manifold My. The integration is over the
space of heterotic supervielbeins, my. FE is the super-
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determinant of the supervierbein E;f. The heterotic
manifold, M, is a right-handed chiral spin bundle with
spin structure s constructed on the base manifold M.
Z = (£, 0) = (z,Z; 6), with £,, and 6 the coordi-
nates of the base manifold and the fiber, respectively.
The fields A, (J=1,2,...,32) are left-handed Major-
ana-Weyl fermions as defined in Appendix A. The co-
variant derivative is given by

v, = EM3, + o,L , (5.4)

where ) , is the heterotic spin connection, and the curva-
ture is related to the torsion as follows:

(VaVs] = —T5Ve + Ryl (5.5

The number of independent components of the supervi-
erbein are limited by the kinematic constraints imposed
on the torsion:

e, = 2y, .,

T2 T T/ T, >0
++ = ++ = Ltz = :+ = 0

Solving these constraints and the Bianchi identities, all
components of the heterotic torsion and heterotic curva-
ture can be expressed in terms of a single superfield R, ,
analogous to the superfield Y, in the case of the NSR
string. The seven kinematic constraints determine the
three heterotic spin connections in terms of the superviel-
bein and provide four relations among the E¥.

Since only five of the nine heterotic vielbein fields are
independent, we take the following five fields to span the
displacements SE ¥

8HZ, 8HT, S8H’ , 8HZ, and 8H? , (5.7)
where 8H%4 = (8E%) Ef. The action Sy in (5.3), is in-
variant under local Lorentz transformations because the
volume element E d2£d@ carries a lower, right-handed
spinor index d 0 while the integrand carries its comple-
ment. The measure for DE,C} may be defined by a
Lorentz-invariant metric:

ISEX|? = [ [(c\8HZ + c,8HT) 8H%,

+c3;8HZ8H 1Ed*do , (5.8)
where ¢, ¢,, and c¢; are arbitrary coefficients. This metric
is however degenerate. There does not exist a nondegen-
erate, local Lorentz-invariant metric for 8H. Similarly,
the measures for DX’ and DA, cannot be defined by a
Lorentz-invariant metric.

We choose to abandon manifest Lorentz invariance
while maintaining manifest invariance under
diffeomorphisms and local supersymmetry transforma-
tions. In doing so, we make the assumption that the
Lorentz anomaly does not reappear. A rigorous usage of
this formalism would necessitate explicitly checking the
final expressions for Lorentz invariance. Thus, we define
the measure for DEy} as follows:

ISEX|? = [USH) +c,(8H)?

+¢,(8H? Y +c38H0H? 1E d*Ed6,

where ¢, ¢, and c; are arbitrary coefficients. In order to
perform an orthogonal decomposition of the space of
infinitesimal variations 8E%, it is essential that a positive-
definite metric can be defined on this space as was done
for the superstring. Again, a suitable choice of gauge slice
may resolve this problem.

As an aside, it is interesting to compare the definitions
of the measure for the different string path integrals. To
put them on an equal footing introduce zweibeins e, for
the bosonic string as well. In complex tensor notation,
the four independent fields that span the variations 8e,,
are HZ, HZ, HZ and H} . The first two can be gauged
away by conformal and Lorentz transformations, and
the last two by diffeomorphisms. The heterotic string has
nine N =4 supervielbeins, four of which are supersym-
metric generalizations of the zweibeins, and the addition-
al five are H? , H° , H*, H, and HT . Of these
nine fields, only five are independent. The independent
set in (5.7) is chosen such that the measure involves a
minimal number of differential operators. For the super-
string, there are sixteen N =1 supervierbeins, nine of
which are supersymmetric generalizations of the heterot-
ic supervielbeins, and the additional seven are H* , H |
H,H ,HY, H, and HZ. Of these sixteen fields,
only six are independent. The independent set in (4.6) is
chosen so that the operators involved in the measure of
the functional integral have the lowest possible dimen-
sion.

The rest of the discussion closely parallels that given
for the superstring. The heterotic diffeomorphism group
{HD} is defined as the set of differentiable mappings from
My onto itself:

ZeEMy — Z'EMy,
E}Z) — EHZ), Ef(2)dz™M=EjZ)dz",

xz) - x"z), x"zH=x"2), >
ANZ) — AYNZ), ANZ)=A,Z).

The local Lorentz group {L}, is the set of local Lorentz
transformations:

x(z)
EL(Z) — exp [i®(Z)]E;(2Z) ,
Ex(Z) — exp (1] IO EH(2)

— Xz,
(5.10)

A)Z) — exp (1 iO(Z2)]] A;(2)

The group {HC} is the set of (heterotic) conformal trans-
formations:

Ey — AEL,
Ejy — AEy, (5.11)
Ey — AV2Ey — [LER(V . A)]/V2

Factoring out the subgroup {HDy} from {HD}, where
{HDg} is the set of heterotic diffeomorphisms that may be
expressed as successive operations of infinitesimal trans-
formations, we can define the factor group
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Gy = {HD}/{HD,}. However, Gy is simply
= {D}/{Dy}, since the supermanifold has no topology in
the odd directions.

Let my be the space of all heterotic supervielbeins com-
patible with the kinematic constraints. We consider a
gauge slice Sy  that represents the coset space
my =my/{L}® {HDy}. Introducing a representation
Sy = {E{,’(Z;T)} for my/{HC]}, any element of Sy can
be written as
J

SHE
1 * * * *
SHi O 1 * * *
dH", 0 0 —2v2i @ x *
8HZ | — |0 O 0 —V. *
SH, 0 0 0 0o -V,
5C, 0 0 0 0 0
Here
: . 13EY
NVIUNIR UM 7R <\],m _iﬁa >
< i )E / aTj M E
80" and 8K are the variations due to heterotic

diffeomorphisms and Lorentz transformations, respective-
ly. Since our choice of the metric for the subspace
spanned by 8H? and 8H? in (5.7) is Lorentz invariant, J}
does not suffer from the difficulties of a non-Lorentz-
invariant measure. Explicitly, {W'"} is a basis for (ImP)",
where the operator P is given by

Vie vV

P (5.14)

—

Vie Vi,

and V7, VZ VZ and V7 belong to functional spaces of
3

infinitesimal tensors with helicity 1, —1, 2, and — 3, re-
spectively. Thus,
P=V. oV,
The space (ImP)* is given by
(ImP)* = {892 ; V, 6n2=0 }a& {87 ; V.87° =0},
(5.15)
and kerP is given by
(V,8Q ) = V.00 = 0, (5.16)
(V,8Q P = V,807F = 0 (5.17)

To illustrate the meaning of the above formalism, con-
sider the case of the torus (a parallelogram with opposite
sides identified in the complex plane). By introducing
component fields for Q% and 8Q7, (5.16) can be rewritten
as

9

V.97 = (dT46F) = O

(5.18)
‘ 0z
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Ej, exp[®(Z) 1E{(T;2Z) ,

E%L exp[®(Z) 1E{(T;2Z)
Ej; =exp[i®(Z)E(T;2Z)

li

(5.12)

—{iexp[®(Z)IV PE;(T;Z)} /V2 .

Variations SE‘:’ around an element, E;‘,lESH, can be writ-
ten in the following form:

3P +id6K
(6P —idK)/2
5Q * ‘
807 (5.13)
507
8T,
or
3 9
— QP = — 0 (5.19)
oz azwz*
Likewise, (5.17) gives
0 d = .
_— — (g = 0 5.20
30 + 3% ( + 6¢7 ) ( )
or
Bgr — g2 — 0 (5.21)
dz o A )

The solution to Eq. (5.19) is ®* = ®?(z) . Since the only
doubly periodic analytic functions on the complex plane
are constants, (5.19) and (5.20) imply that ®* and &7 are
constant superfields. They are to be interpreted as confor-
mal Killing vectors. Similarly, the only conformal Killing
spinor solution to (5.19) is a constant spinor ¢, . For the
doubly periodic boundary condition, sdim(kerP) = (2,1).

For other choices of the boundary condition, ¥¥, = 0, so
that sdim(kerP) = (2,0).
Using similar arguments for (5.15), we have

sdim[(ImP)*] = (2,1) for the doubly periodic boundary
condition, and sdim[(Im P)'] = (2,0) for the other

boundary conditions. For 4 > 1, the Riemann-Roch
theorem suggests
sdim(kerP) = (0,0),

(5.22)
sdim[{(ImP)'] = (6(h—1), 2th—1)) ,

which can be confirmed by going to the Wess-Zumino
gauge.

VI. SPIN STRUCTURE AND MODULAR
INVARIANCE ON THE TORUS

In this section we examine the partition function for
surfaces topologically equivalent to the torus (y =0) in the
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context of various string models.”® The explicit evalua-
tion of the one-loop partition function both clarifies the
formal presentation given above, and also demonstrates
the powerful constraints imposed by modular invariance
on string models.

The partition function and the critical exponent for the
bosonic string are immediately obtained from Eq. (2.34).
Below the critical dimension

zZ =3 ["daF(a) (6.1)
X

and the number of random surfaces with y=0 and of
fixed area A, behaves like

FO(A)A~ Cod 'e¥4, (6.2)
where
—D/2
det'A, At
Co = V [ [dr] (det'P'P)1/2 .

[Vga
6.3)

The integration domain in moduli space is the parallelo-
gram shown in Fig. 3(a). By rescaling the domain to

0 < & < 1 (m=1,2), the flat metric can be chosen as
. [T 64
8mn = 2 |71 T2 ( . )

where 7=7,+i7, are the complex moduli, 72=73+173,
and the normalization is fixed so that the metric

[ aeve =1 (6.5)
M

1

is independent of the moduli 7. To calculate the parti-
tion function, we choose a basis {#!} which spans

kerP}, where "¢, = 0. To be specific, let us choose
(1) __ 1p(Z)_ -1 0 (6.6)
Ymn — |1 27-1 ’ mn — 0 +T2 ’ .
so that
det<¢<“ ﬂ) - 4+ 6.7)
aTj T3
det(¢'" | ") = 47}, (6.8)
and the volume element given by (2.35),
dTldTZ
d = 2 , 6.9
flan . = (6.9)

is modular invariant. The determinants in (6.3) can be
rewritten as

(det’P1P, )1/2(21Tdet’A§ y—P7/2

= 12m)7P Adet')! ~ PP (6.10)

The functional determinant det’Ag is manifestly modular
invariant and has been evaluated:*

det’ (A§) = ekm—Z/BT H(l_eZWinr)
n=1
= A7) A(r)? s 6.11)
with A(7) defined as
R B
A1) = —IT eﬂ—ifr/127_é/4 H(l__eZ‘n'irn)
| 7| e
Y
= 7| e 6.12)

Here, n(7) is the Dedekind eta function. The phase of
A (7) is chosen such that A(—1/7)= A(7). It is impor-
tant to point out that the exponential factor e T
in (6.11), which is related to the value of the Regge inter-
cept, and the presence of the tachyonic mode, is uniquely
fixed by modular invariance. The partition function in
the critical dimension (D =26) is

dTldTZ

Zyeo)= 2m) "B A |, (6.13)
(x=0) fF 27_% (27) l (7 1

where F is the fundamental domain [ —1 <7
<1750, |7|>1 1] The extra factor of (J) comes
from the discrete symmetry &,,— —§&,. For D <26,

the critical exponent is

bo = —1 >
and the coefficient C, is given by
drdr
Co = V [ —52@m PV g(r)| %P
F 2T2

(6.14)

Because of the presence of the tachyon, this integral is not
well defined: | 4 (7)| ~2P diverges exponentially for large
values of 7,. In other words, the partition function is
dominated by very thin “tubes,” and this system cannot
describe a system of random surfaces.

Next, we introduce N, massless, free fermion fields A
(a=1,2) on the world sheet. Consider the case of N left-
handed fermions belonging to a O(N) vector multiplet.
The action is of the form

— N p—
S = [ d%Vgg™ |3,X3,X + SR y".A, ],

J=1
(6.15)
and the partition function is given by
z = 3 [ |11 Dxs | (PX') (D]
s N
xexp(—S[A, X,e]) (6.16)

The result of the fermionic integration, including the sum
over spin structures, is the factor
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K, =(detD; )3p +(detD; )p + (detD, )},

+(detD; )Y , , 6.17)

where P denotes periodic and A the antiperiodic bound-
ary condition on the spinor fields in the integration re-
gion shown in Fig. 3. Of course, the above expression is
multiplied by the determinants coming from the integra-
tion of e? and X'; since these are already modular in-
variant, we need only check the modular invariance of
the fermionic determinants. For the (PP) case A; has a
zero mode Ay, Integration over each of these zero
modes gives zero so that

(detD, )}p = 0. (6.18)

For the next term, (detD; )‘sz(detAg Y442, This deter-
minant is easy to evaluate. First we enlarge the integra-
tion domain from (7,1) to (27,1) as illustrated in Fig.
3(b). The corresponding determinant includes modes that
are both periodic and antiperiodic in the domain (7,1).
The periodic modes can be removed by taking the follow-
ing ratio:

N
BY = (detD, )Y, = |27 (6.19)
AlT)
Similar arguments [see Fig. 3(c)] give
BY = (detpp)y, = | A2 (6.20)
A (1)

where the domain is rescaled so that the coordinate £,
belongs to the interval [0,1]. From the (PA) domain,
we can shift 7—7+1 to obtain the (4 A4) domain [see
Fig. 3(d)] so that

A(T/2+ %)

A(T+1) (21

BY = (detD )V =

Since the functional integral determines this function only
up to a phase, we have

Ky=B{+BBY +aBY

400 |7 42 |
an | PPTam
Ar/2+14) | 23
Ml TSy (6.22)

Here 3 and « are some phases to be fixed by modular in-
variance. Ky(7) should be invariant under modular
transformations 7-—>(a7+b)/(cT7+d), where a, b, ¢, d
are integers and ad —bc=1. Using (6.12) for A4 (), the
B;(7) transform under modular transformations as fol-
lows:

B,—B,,

1
T— — —
-

B, B, , (6.23)

B3¥>B3 >
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so that S=1. Likewise,

7741 B, —explim/12)B, ,
B,—B;, (6.24)
By —exp(—im/12)B, ,
so that
Ky—e ™/ YBN 4 o ~ITN/6qBY | ¢ —inN/12pY) (6.25)
Therefore, modular invariance requires
a=e tITN/6 (6.26)
N=8I, (6.27)

where the overall phase in (6.25) may cancel those arising
from other fields. If we now consider only right-handed
fields, then

KN—>e_i”}V/]2(B ;'J\’+B’2"N+e+l'7TN/4a*B;N)‘ (628)

Here B* and a* are the complex conjugates of the corre-
sponding variables in (6.22). Next, let us consider

N N N
Ky, (D=[B(1)) +B (1) +a,B(1);']

X[B' 2N +B (2 +a B (2))] ,  (6.29)

where either both factors involve only left-moving fields,
or one factor involves only left-moving and the other only

right-moving fields. Modular invariance requires
N;=0 (mod8),

NL —NR:O

(6.30)

(mod24) , (6.31)

where N; (Np) is the total number of left- (right-) mov-
ing fields. It is obvious that

Ky x,(D=B(1)]'B2),*+B(1),'B(2)}

+a,a,B(1)}' B3, (6.32)
is also modular invariant. Now a nontrivial modular in-
variant function can be obtained by taking the difference
of KNINZ( 1) and KNINZ(Z):

Ky x, Ky 5,(2)—Ky 5,(1) (6.33)
In general, the spin structures can be intricately correlat-
ed. This method for the construction of modular-
invariant functions with nontrivial coefficients relating
different sets of spin structures can be easily extended.
Since modular invariance is only a necessary condition for
viable string models, other constraints such as demanding
a tachyon-free spectrum, a proper space-time projection
and the absence of the space-time gravitational anomaly
can impose further limitations on the list of interesting
models. Properties of string models corresponding to
various spin structures will be discussed elsewhere.

Before we apply this analysis to the NSR and the
heterotic string models, we observe that for left-right-
symmetric models, the function K is modular invariant
for any N. Also, for N =38,
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Ky=B$+Bi+e*"’B§=0 (6.34)
which follows from the Jacobi identity.
For the closed superstring in D dimensions,
De D
DY, (6.35)

7 = _omTmTm )\,IDXI —S[X,A,e,¢] ,
%fﬂg({sym])D ¢

Ste, w0, X)= [d%e %g’""alea,,XI—}—ékly’"amkl—k é—dz,,y"'y"}nl

where F! is the auxiliary matter field. For the torus
(y=0), the sum is over the four boundary conditions
shown in Fig. 3. Integrating the D-dimensional fields,
the partition function for the torus reduces to a product
of fermion determinants. For the left-moving sector, the
(PP) boundary condition permits a conformal Killing
spinor (a spin-{ spinor) and a supermodulus (a parame-
ter in the form of a constant spin-2 spinor), while the
other boundary conditions (4P, PA, and A A ) permit
neither conformal Killing spinors nor supermoduli.
However, the presence of zero modes in the matter fields
Al in the PP case again renders

(detD, )8 = 0 6.37)

so that for the torus, supermoduli do not appear. In-
tegrating over the fermionic fields gives

K(XZO) = z(detﬁ;’/zﬁ]/z)}‘/z(detDL )D

5

X 3 (detP] 1P, )k (detDg )°.  (6.38)

P, ,, is the operator that converts the spin-1 spinor vari-
able that appears in the supersymmetry transformation to
a spin-2 variable (8¢, =P ,,¥=7"Y,V,¥), and PT/Z is
its adjoint (PT/21/J= —2V,,¥™). For the torus with super-
conformally flat metric, we have the relation

K =3(detP] P, ;)}/*(detD; )

5

= >(detD; )P 2 (6.39)

s
Hence, (D —2)=28/ gives modular invariance. For space-
time supersymmetry, (I =1) or (D =10), it follows from
(6.34) that the partition function gives zero cosmological
constant in space-time at the one-loop level. Thus, the
|

16 16

X _[[4aen Ae/2) |° | aass [ AG/24172) 1072
[16816] A(T) A(7) A(r+1)
32 32 32
_ [ [aen A2 |7 e | AG241/2) }
A7) A(r) A(r+1)

=2K)

where the summation is over different topologies and over
all spin structures permitted by the symmetry properties
of the model. Q,({sym}) is a formal expression for the
volume of the superdiffeomorphism and Lorentz groups.
(At the critical dimension, the volume of the superconfor-
mal group must also be included.) Expressed in terms of
component fields, the action is'*

FZ
4+ —

2 ) (6.36)

X]_i I
I R

sum over spin structures is simply the space-time super-
symmetry projection. This is the original observation of
Gliozzi, Scherk, and Olive.!> D =10 is also the critical
dimension. It is meaningless to consider /> 1, since for
/> 1, the Liouville action will have the wrong sign and the
path integral becomes ill defined.

Let us now consider the right-moving fields. If
K; =0, it may appear that any combination of right-
moving fields is allowed. However, in general we also
demand modular invariance for one-loop scattering am-
plitudes. Hence, the right-hand sector should be invari-
ant under modular transformations except for an overall
phase which is required to cancel the phase that arises in
the left-hand sector. For type-1I superstrings, both the
left- and the right-hand side have / =1, so that K, _¢, in
Eqg. (6.38) is modular invariant. Observe that PP and
AP come from the Ramond sector while P4 and A A4
come from the Neveu-Schwarz sector. The path integral
naturally requires a sum over different boundary condi-
tions; this provides precisely the space-time projection
that gives the superstring.!”> Let us fix the right-moving
sector to be world-sheet supersymmetric with / =1. Ex-
amining (6.28), the solutions with left-moving fermion
fields are SO(8/,)®2 SO(8/,)® - - - such that

21121

By this, we mean theories with blocks of fermions con-
taining, respectively, 8/,,8/,,... fields all with their spin
structures pinned together but independent of the other
blocks. If the fermions contain an SO(8) multiplet, K; =0
from the Jacobi identity. For n > 32, the central charge
becomes positive, so that the Liouville action carries the
wrong sign and the path integral is ill defined. The sim-
plest cases that do not contain a SO(8) multiplet of fer-
mions, are the cases /=4 [the multiplet SO(32)] and
l,=2, I,=2 [multiplets SO(16) ® SO(16)]. It turns out
that they have the same modular function:

(mod3) (6.40)

(6.41)
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where the Jacobi identity has been used. As noted in Ref. 13, in the SO(16)® SO(16) case, an Ez® Eg symmetry is in-

duced. Specifically, the Eg character function is given by*°

ch(Eg pasic) =ch(SO(16)) +ch(SO(16), ,) ,

where [g =exp(27iT)]
16

AQ27)
ch(SO(16), ,,) = 16¢ '3 400\
B ( /2) a A( /2 1/2) e
3| | AT/2) 2insy | AT/241/2)
ch(SO(16))=16q = e 2 }

To see this explicitly, we follow the construction of Ref.
21 by exploiting the fact that SO(16) DSO(8)® SO(8),
where the isometry of the SO(8) Dynkin diagram permits
the Eg construction from SO(16). Generalizations of these
arguments for other gauge groups will be given elsewhere.

After completion of this work, we learned that several
papers overlap with our discussion on the spin structure
and modular invariance: N. Seiberg and E. Witten [Nucl.
Phys. B276, 272 (1986)]; L. Alvarez-Gaume, P. Ginsparg,
G. Moore, and C. Vafa [Phys. Lett. 171B, 155 (1986)]; L.
Alvarez-Gaume, G. Moore, and C. Vafa [Commun.
Math. Phys. 106, 40 (1986)]; L. Dixon and J. Harvey,
Princeton report (unpublished); W. Nahm, in Proceedings
of the 19th International Symposium: Special Topics in
Gauge Field Theories, Ahrenshoop, Germany, 1985 (Insti-
tut fiir Hochenenergiephysik, Akademie der Wissenschaf-
ten, Berlin, 1985), p. 303; E. D’Hoker and D.H. Phong
[Nucl. Phys. B278, 225 (1986)]. The last paper also for-
mulated the path integral of the NSR string in the com-
ponent formalism.

2 .

» (7/1) -
= (y3)? = +1, (y5)? = +1

(o) = —1 =y ) = +1,

(’}/1)2 =

Let us begin by considering a Dirac spinor y“ in a d-
dimensional space of as yet unspecified metric. The parti-
tion function is given by

Z = [DyDype SV, (A3)
where
S = [di 9y, +m (A4)

There exist two different but equivalent formulations
for Dirac spinors. In the first, the fields ¥ and ¢ are tak-
en to be independent, complex, anticommuting variables
that satisfy the equations

Jdiy =1,
Jdvy = 1.

The second approach is to make the decomposition

(AS)

(A6)

('}/5)2 = +1
(Euclidean) .

(6.42)

Note added. Since the first appearance of this work
the question of global obstructions to superholomorphic
factorization has been examined by E. D’Hoker and D.
Phong [Report No. PUPTHY-1029 (unpublished)]. Us-
ing the results of Sec. IV, they have claimed the com-
plete cancellation of anomalies in the critical dimension.
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APPENDIX A

We summarize the definition of Majorana-Weyl spinors
on an (even) d-dimensional Euclidean space. Our conven-
tion for the metric is

(Minkowski) , (A1)

(A2)

Y = g +iyY; where Yz and ¥, are independent, real, an-
ticommuting variables and the Grassmann integrals are
defined as follows:

[ dvrve = 1,
[ dvw, = 1.

In Minkowski (Euclidean) space ¢ is interpreted as
W0 ("Y'y®), where ¥* = g —it; is the complex con-
jugate of . Since the operator iy°y™3,, (iy°¥™d,,) is
Hermitian in Minkowski (Euclidean) space, both formula-
tions are equivalent and one can choose freely between
them.

For Weyl fermions, on the other hand, the choice of
formulation is not arbitrary. While either formulation
works in Minkowski space, only the first can be used in
Euclidean space. In Minkowski space the operator
{Y°y™3,,[(1+7y5)/2]1} is still Hermitian, but in Euclidean

(A7)
(A8)
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space [y°y™3,,[(1+y5)/2]} is neither Hermitian nor
anti-Hermitian. Thus, 1 cannot be regarded as the com-
plex conjugate of ¢ if we work in Euclidean space.

We now construct Majorana fermions in Euclidean
space using the first formulation. It is well known that,
for d =0,2,4 (mod8), there exists an antisymmetric matrix
C such that the Majorana condition can be satisfied:

Cc y,C = (A9)

(A10)

_ym
‘c = —-Cc

and the operator C(y"9,, +m) is antisymmetric. Thus,
we can construct the Lagrangian

L = YCy"s,, +m) , ¥ =9C (Al
such that
[ Dy exp —fddgL] — Pfaffian ("3, +m) .

(A12)

Here, the y’s are complex, anticommuting variables and
the measure is defined by

Jdvey = 1

Under a Lorentz transformation, the fields transform as
follows:

¢ — Ry, ¥ — YR,

where R is the generator of the Lorentz transformation.
Then,

(A13)

{R)C = C(R)™! , (A14)
or, equivalently,
I’V[mIYn]C = _Cy[myn] ’ (A15)

so that the action is Lorentz invariant. Note that this for-
mulation of Majorana fermions is independent of whether
the space has a Euclidean or a Minkowski metric.

For d =2 (mod8), we define the Lagrangian for
Majorana-Weyl fermions by
L = t‘/}LCVmamt/JL ’ (A16)
with
1+ 1+
(Cy™a,,) 275 - ZVS(Cymam).

For example, in two-dimensional Euclidean space the
choice

. 0 1 5 0 —1
vo= 1 o > v T | o |°
(A17)
s 1 0
vo= 0 -1 |
0 —1
c = |, o |- (A18)

satisfies the conditions in (A9).
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APPENDIX B

This appendix contains a useful compendium of facts'®
related to the discussion in Secs. IV and V. We work on
Euclidean world sheets and our convention for the ¥ ma-
trices is given in (A17), with

trmy") = 28™ . (B1)
The bosonic metric is

O, = diag(l,1), €, = —€, , €, =1.(B2)
Spin indices  are  raised and lowered by
€up = € e,=—¢€;,=1, and

X = €Pxp, xXa = —€px® . (B3)

The expression Ty, = ¢§TA,5 where 9,9, are ar-
bitrary spinors, and ¥ = “4C. Here C is the matrix
defined in (A18). The Fierz rearrangement identity is
given by

(r2)b; = —3 : (6 T30y, Ti=(Lv,,ys) .
(B4)

A p-form is defined by its transformation under the
tangent space group:

SE 4 E®Lg , Li = LE§ (BS)
and
Ef = €, Ej = Ej = 0 , Ef = Miysj.
(B6)
For instance, the superconnection transforms like
O = QEF; , Qi = Q.Ef (B7)
where 6Q) = —dL. Tangent-space and world-sheet in-

dices are freely interchanged by the supervierbein Ez.
The superdeterminant, E = sdetEy}, is defined by

E = deW(E} — En(E3)"'EY) / detES , (BS)

and the supertrace is defined as strtM = M7 - M.

The redundancy in the superfield formulation allows
the imposition of the kinematic constraints contained in
(4.5). The constraints can be used to demonstrate'® that
all components of the supercurvature and supertorsion
tensors can be expressed in terms of a single scalar
superfield, Y. The Bianchi identity we make use of is

Riasct” = DaTsc® + T "Tric)®, B9

where T[,p, = HT4p — (—1)*Tp,1 and (—1)4
= =1, for bosonic and fermionic indices, respectively.
The identity R.g,1" = 0 gives T}, = 0. Combining
the R, 4 and R [,p,1° identities gives

Ty, = )Y,

Faﬁ ==

(B10)
—i(ys)epY

where Y is a scalar superfield. The identities for R[abc,d
and R[aﬁﬂs yield
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Th = —ilenlivs)®DyY],
5 (B11)
Fop = —5[(ysvs)aDpY]
and finally the Ry, ® identity gives
F, = Lilie;D DY) — e, Y7 (B12)

In the Wess-Zumino gauge the scalar field Y is given by

Y = A+0n+ %QIR + Y W)+ e ity sty 4)

2
—1(4] (B13)
where ¥, is the gravitino, and the spinor field ¢ is
defined by
n% = —2e™ysD Y5 — L y"yY A) (B14)
A similar analysis can be made for heterotic super-
space. Here we follow the notation of Ref. 9. A heterotic
manifold is constructed as a right-handed chiral spin bun-
dle on the (bosonic) base manifold. It is convenient to
work in complex coordinates because of the chiral nature
of the heterotic superspace. The bosonic tangent space is
parametrized by

z=E£"4ig?, z=£'-iE?, (B15)
and the metric is defined as
bz =08, =1, €; = —¢, =1, (B16)

8, =0, =0, €, =¢€;=0.
The fermionic tangent space is likewise complexified, with
€., =€__=0 (B17)

(a=1,2)—>(AT,A7) with A" = A_ and

€, = —€_, =1,

Thus A“

A~ = —A,. The Lorentz generator is defined by
L= —Li=i, 2LT = —2L" =i (B18)
The y matrices in the complex basis are
V2 0 0 0 i 0
=1 0 of"=lo vi|' "0 -i
(B19)

Again, tangent space and space-time indices may be inter-
changed by the supervierbein

EY = (EMEMEY) .
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