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Quantum effects due to the spatial delocalization of light atoms are treated in molecular simulation

via the path integral technique. Among several methods, Path Integral (PI) Molecular Dynamics

(MD) is nowadays a powerful tool to investigate properties induced by spatial delocalization of

atoms; however, computationally this technique is very demanding. The above mentioned limitation

implies the restriction of PIMD applications to relatively small systems and short time scales. One

of the possible solutions to overcome size and time limitation is to introduce PIMD algorithms

into the Adaptive Resolution Simulation Scheme (AdResS). AdResS requires a relatively small

region treated at path integral level and embeds it into a large molecular reservoir consisting of

generic spherical coarse grained molecules. It was previously shown that the realization of the

idea above, at a simple level, produced reasonable results for toy systems or simple/test systems

like liquid parahydrogen. Encouraged by previous results, in this paper, we show the simulation of

liquid water at room conditions where AdResS, in its latest and more accurate Grand-Canonical-like

version (GC-AdResS), is merged with two of the most relevant PIMD techniques available in the

literature. The comparison of our results with those reported in the literature and/or with those

obtained from full PIMD simulations shows a highly satisfactory agreement. C 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4929738]

I. INTRODUCTION

The structure and dynamics of liquids consisting of mole-

cules that contain light atoms (e.g., hydrogen) can be influ-

enced by the quantum effects due to the delocalization of atoms

in space. In simulation, such systems are treated by modeling

the atoms of the molecules via the path integral formalism

of Feynman.1–3 In particular, liquid water is a typical subject

of interest given its role in many fields.4 As explained in more

detail in Sec. III, the computational effort is massive because

the number of interatomic interactions becomes much larger

compared to the classical case. As a consequence, the size

of the system and the simulation time affordable with stan-

dard computer resources are rather limited. For liquid water at

room condition, a system of 500 molecules for a simulation

time of 1-2 ns is usually considered already expensive. The

limited size and simulation time may imply that particle num-

ber density fluctuations are arbitrarily suppressed and some

systems cannot be treated if not at high computational price

(e.g., solvation of a large molecule in water). An optimal

complementary technique would consist of a Grand Canonical

(GC)-like scheme where (local) properties can be calculated

by employing a computationally affordable path integral (PI)

simulation of a small open region which, in statistical and ther-

modynamic equilibrium, exchanges particles and energy with

a reservoir acting at small computational cost. One possible

implementation of a grand canonical-like Molecular Dynamics

(MD) technique is the Adaptive Resolution Simulation scheme

a)animesh@zedat.fu-berlin.de
b)dellesite@fu-berlin.de

(AdResS)5–7 in its most accurate version of GC-AdResS.8–12

For the simplest version of AdResS, it was shown that for a

toy system (liquid of tetrahedral molecules) the embedding of a

PIMD technique into the scheme produced rather encouraging

results;13 such results were confirmed and empowered by the

application to simple/test systems like liquid parahydrogen at

low temperature.14,15 Meanwhile, the increased accuracy and

more solid conceptual framework of the adaptive scheme (GC-

AdResS) allow for the study of more complex systems and the

calculation of a larger number of properties than before.9–12

In this perspective, this paper reports the technical implemen-

tation of two different approaches to PIMD, Refs. 16–18 and

Refs. 19 and 20, into our GC-AdResS. We show its application

to liquid water and report results about static and dynamic

properties. The comparison with reference data is highly satis-

factory and suggests that GC-AdResS, as a complementary

method, may play an important role in future applications of

PIMD (today not feasible with full PIMD simulations). One

can think, for example, of solvation of a large molecules (e.g.,

fullerene in water) and look at possible quantum effects in

the structure of the solvation shell. However, it must also be

mentioned that in light of recent advances in the method-

ology of path integral calculations, the gain in efficiency with

the (current) PI-AdResS scheme presented here needs to be

compared with the gain of more advanced PIMD schemes.

For example, two schemes, in particular, reduce the cost of

path integral calculations by allowing a reduction in the num-

ber of beads. These are the path integral plus the general-

ized Langevin equation thermostat (PIGLET) of Manolopou-

los and coworkers19,21 and algorithms based on the Takahashi-

Imada factorization (see, e.g., Refs. 22 and 23). However, such

0021-9606/2015/143(9)/094102/17/$30.00 143, 094102-1 © 2015 AIP Publishing LLC
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approaches do not work for the Ring Polymer MD (RPMD)

scheme, employed later in this work for calculating equilib-

rium time correlation functions; in such case, the ring polymer

contraction scheme would be appropriate.20,24,25 This method

is applicable to RPMD simulations and it leads to essentially

classical (1 bead) numerical effort in the limit of large system

size; therefore, it can be expected to be highly competitive

with the current version of the method we propose. It must

also be clear that the approaches reported above are integration

techniques which are more efficient than the PIMD techniques

that we have merged with AdResS in this paper; however, they

may be merged with AdResS as well and thus take advantage

of the grand canonical-like approach in reducing the num-

ber of degrees of freedom (even further). Moreover, a point

that is certainly important is that GC-AdResS may be em-

ployed as a tool of analysis and study how the quantum effects

change as a function of the size of the region treated at PI

level. This would represent a novel type of analysis because

it unequivocally defines the essential molecular degrees of

freedom required for a given property26 and thus, it allows

to quantify how localized (possible) quantum effects (for the

properties considered) are. The paper is organized as follows:

Sec. II is dedicated to a summary of the relevant technical

and conceptual characteristics of GC-AdResS, followed by

Sec. III, which is dedicated to the description of the basic

characteristics of the two PIMD methods employed in this

study. The implementation of PIMD in GC-AdResS, for each

of the two specific techniques used, is reported in Sec. III B.

Sec. IV is divided into the subsections of (i) static and (ii)

dynamic properties. In Subsection IV A, we report particle

number density profiles, probability distributions, and radial

distribution functions of the GC-AdResS simulation compared

with results from full PIMD simulations. In Subsection IV B,

we report the calculation of equilibrium time correlation func-

tions compared, also in this case, with data obtained from

full PIMD simulations. Finally, the conclusion is presented in

Sec. V. The Appendix instead reports all technical data of the

simulations so that the results can be reproduced/checked by

other groups.

II. GC-ADRESS

In the original AdResS, the coupling idea is rather simple,

that is, in a region of interest (the atomistic or high resolution

region), all the molecular degrees of freedom are treated via

molecular dynamics, while in a (larger) region of minor inter-

est, only coarse-grained degrees of freedom are treated. The

passage of a molecule from one region to another should be

performed smoothly with hybrid dynamics in such a way that

the atomistic and coarse-grained regions are not perturbed in a

significant way. In order to do so, the space is divided into three

regions: the atomistic (high resolution) region, the coarse-

grained region, and an interfacial region where the atomistic

degrees of freedom are transformed in coarse-grained and vice

versa, we call this region hybrid region or transition region (see

Fig. 1 and Ref. 27). The coupling is made via a space dependent

force interpolation,

Fαβ = w(Xα)w(Xα)F
atom
αβ + [1 − w(Xα)w(Xα)]F

cm
αβ, (1)

where α and β indicate two molecules, and w(Xα) and w(Xβ)

indicate the interpolating (weighting) functions depending on

the coordinate of the center of mass of the molecules Xα and

Xβ,

w(x) =



1 x < dAT

cos2


π

2(d∆)
(x − dAT)


dAT < x < dAT + d∆

0 dAT + d∆ < x

,

where dATand d∆ are the size of atomistic and hybrid regions,

respectively. Fatom
αβ

is the force in the atomistic region, which is

derived from atomistic interactions, and Fcm
αβ

is the force in the

coarse-grained region, which is derived from a coarse-grained

potential. A thermostat takes care of thermally equilibrating

the atomistic degrees of freedom reintroduced in the transi-

tion region. This simple setup turned out to be computation-

ally robust; the calculation of structural and thermodynamics

properties in AdResS compared with the calculations done

in a subregion of equivalent size in a full atomistic simula-

tion shows a highly satisfactory agreement for several test

systems.26,28–32 The computational robustness encouraged the

investigation of the conceptual justification of the method on

the basis of first principles of thermodynamics and statistical

mechanics.33,34 This analysis first led to the introduction of

a thermodynamic force acting on the center of mass of the

molecules in the hybrid region. The thermodynamic force is

based on the principle of uniformizing, to the atomistic value,

the chemical potential of each (space dependent) resolution7

and then to the derivation of such a thermodynamic force

from a more general thermodynamic principle, that is from the

balance of grand potential for two interfaced open systems,8


Patom + ρo


∆

Fth(x)dr


V = PCGV, (2)

where Patom and PCG are the pressure of the atomistic and

coarse-grained regions, ρo is the target density of the reference

full atomistic simulation, and V the volume of the simu-

lation box. The explicit calculation of Fth(x) is reported in

Sec. III B 1. Based on such derivation, a step forward was

done and AdResS was reformulated in terms of grand canon-

ical formalism (GC-AdResS) where mathematical rigorous

conditions were derived in order to assure that in the atomistic

region, the system samples a grand canonical distribution.

Such conditions, at the first order, has been shown to be equiv-

alent to the use of the thermodynamic force.10,11 Moreover,

the coarse-grained model can be arbitrarily chosen without

any reference to the atomistic model. In recent work,12 we

have embedded the scheme into the grand ensemble model

of Bergmann and Lebowitz35,36 and introduced a local ther-

mostat acting only in the coarse-grained and hybrid region.

Such a formalization allows one to define, with well founded

physical arguments, the Hamiltonian of the atomistic (high

resolution) region as the kinetic energy plus the interaction

energy of the molecules in the atomistic region only; this

implies that the interaction with molecules outside can be

formally neglected. The definition of the Hamiltonian allows

then to properly define the procedure for the calculation of

equilibrium time correlation functions; moreover, for the case
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FIG. 1. Pictorial representation of the

GC-AdResS scheme; CG indicates the

coarse-grained region, HY the hybrid

region where path-integral and coarse-

grained forces are interpolated via a

space-dependent, slowly varying, func-

tion w(x) and EX (or PI) is the path-

integral region (that is the region of

interest). Top, the standard setup with

the thermostat that acts globally on the

whole system used in the calculation

of static properties. Bottom, the “local”

thermostat technique employed in this

work in the calculation of dynamical

properties.

of PI approach, this setup will provide a rigorous definition of

the Hamiltonian of quantization. As it will be specified later

on, there also exists a clear numerical argument that supports

the definition of an accurate Hamiltonian in the high resolution

region.

III. PIMD TECHNIQUES

The path integral formalism of Feynman applied to molec-

ular simulation/dynamics of molecular systems is a well

established approach and thus here, we will not report its

formal derivation but only those aspects which are technically

relevant for this specific study. A formal derivation and discus-

sion of basic aspect of this approach can be found in Refs. 16

and 37, for example. The essential point of interest (in this

paper) is the transformation, via path integral formalism, of

a classical Hamiltonian of N distinguishable particles with

phase space coordinate (p,r), mass m j (for the jth particle),

and interaction potential in space V (r1, . . . ,rN),

H =

N


j=1

p2
j

2m j

+ V (r1, . . . ,rN), (3)

into a quantized Hamiltonian which is formally equivalent to

a Hamiltonian of classical polymer rings (atoms). The inter-

atomic potential is distributed over the beads in such a way that

each bead of a polymer ring interacts with the corresponding

bead of another polymer ring. The intra-atomic interactions

consist of harmonic potentials which couple each bead to the

first neighbors in the chain. The fictitious dynamics of this

polymeric liquid, with the spatial fluctuations/oscillations of

the rings describing the quantum spatial delocalization of the

atoms, allows for the calculation of quantum statistical prop-

erties of the atomic/molecular system. The quantized Hamil-

tonian takes the form

HP =

P


i=1



N


j=1

[p(i)]2
j

2m′
j

+

N


j=1

1

2
m jω

2
P(r

(i)

j
− r

(i+1)

j
)2 +

1

P
V (ri1, . . . ,r

i
N)


, (4)
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where P is the number of beads of the polymer, m′
j
= Pm

(2π~)2

and pi are a fictitious mass and momentum, respectively,

ωP =
√
P

β~
(β = 1/kBT), and V (ri

1
, . . . ,ri

N
) is the potential that

acts between same bead index i of two different particles.

This setup allows to use molecular dynamics for the calcu-

lation of statistical properties. However, the direct use of

the Hamiltonian above has shown to lead to a highly non-

ergodic dynamics and suffers from poor sampling problems

in the extended phase space of polymer rings,3 since there are

a wide range of frequencies present. The highest frequency

limits the time step to be used in the simulation which causes

the low frequency modes to be poorly sampled. Thus, either

a very small time step should be used or very long runs

should be performed, starting from different initial condi-

tions. In order to circumvent the ergodicity problem, normal

modes transformation is preferred.16,38 The basic idea is to

decouple the harmonic spring term, so that only a single

harmonic frequency remains in the dynamics, and the time

step for the simulation can be adjusted accordingly. The whole

procedure is based on a transformation of coordinates to

normal mode coordinates and thus to the use of an effective

Hamiltonian,

HP =

P


i=1



N


j=1

p
(i)2

j

2m
(i)′
j

+

N


j=1

1

2
m

(i)

j
ω2

P(x
′)(i)

2

j
+

1

P
V
(

r
(i)

1
(x ′1), . . . ,r

(i)

N
(x ′N)
)


, (5)

where 1
P

U
(

r
(i)

1
(x ′

1
), . . . ,r

(i)

N
(x ′

N
)
)

is the potential that acts between same bead index i of two different particles in terms of the

normal mode coordinates x ′
1
, . . . , x ′

N
.

A. Choice of masses

In the standard PIMD,39,40 the masses m
(i)′
j

are chosen such that all the internal modes have the same frequency and the

sampling is efficient. Thus, the choice of mass is

m
(i)′
j
= m jλ

i
j, i = 2, . . . ,P,

m1′
j = m j,

where m j is the physical mass and λi
j
are the eigenvalues obtained by the normal mode transformation. This approach was used to

calculate static properties and here we will use it, within GC-AdResS, for the same purpose. We will refer to this approach as H1.

Craig and Manolopoulos41 have developed RPMD, which has been successfully shown to calculate time correlation functions;

the choices of the masses in RPMD are as follows:

m
(i)′
j
= m j . (6)

In this work, we will employ this approach within GC-AdResS to calculate, in addition to static properties, time correlation

functions; we will refer to it as H2 approach. However, there exists an alternative formulation for RPMD.19 The classical

Hamiltonian for RPMD is

HP =

P


i=1



N


j=1

[p(i)]2
j

2m j

+

N


j=1

m j

2β2
P
~2
(r

(i)

j
− r

(i+1)

j
)2 + V (ri1, . . . ,r

i
N)


, (7)

where βP = β/P, which effectively means that the simulation

is performed at P times the original temperature. Moreover,

the harmonic bead-bead interaction and the potential energy

are scaled by P relative to Eq. (5). In Ref. 18, equivalence

between different RPMD formalisms was shown. Due to the

calculation of the thermodynamic force, for GC-AdResS simu-

lations, this becomes an interesting technical aspect to inves-

tigate (see Sec. III B 1). We will refer to this approach as

H3 and verify its numerical robustness in GC-AdResS by

comparing its results with the results obtained from H1 and

H2.

B. PIMD in GC-AdResS

The original idea of merging PIMD and AdResS

was based on a simple extension of the AdResS principle.

The dynamics of polymer rings, from a technical point of

view, is nothing else than the dynamics of classical

degrees of freedom; thus, the standard AdResS could be

applied (technically) in the same way, with only one

modification,13–15

Fαβ = w(Xα)w(Xα)F
PI
αβ + [1 − w(Xα)w(Xα)]F

cm
αβ, (8)
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where FPI
αβ

is the force between beads of the rings represent-

ing the atoms of molecule α and molecule β. There exists

another version of AdResS, recently developed in the group

of Kremer,42 based on a global Hamiltonian where the atom-

istic and coarse-grained potentials are interpolated instead of

forces. The force-based and Hamiltonian-based approaches

were shown to be numerically equivalent,11,43 while conceptu-

ally both methods need strong assumptions when considering

the physics of the entire system (see discussion in Refs. 12

and 44–46). In our force-based approach, from the conceptual

point of view, the coupling between the polymer rings and

the coarse-grained molecules cannot be rigorously expressed

in a Hamiltonian form. However, calculations have shown

that PIMD-AdResS was able to reproduce very well results

obtained with full PIMD simulations. Since a rigorous Hamil-

tonian formalism is at the basis of the PIMD approach, the

procedure of Refs. 13–15 was empirical and could be verified

only a posteriori. The reason why the procedure was successful

is that the coupling between the polymer rings and the coarse-

grained molecules is negligible, in terms of energetic contri-

bution, under the hypothesis that the path integral region and

the coarse-grained region were large enough compared to the

hybrid region. However, we have also numerically verified

that even when all the three regions are relatively small and

comparable in size, results are still satisfactory. The latest

formalization of AdResS in GC-AdResS, reported in Sec. II,

justifies why from a conceptual point of view the setup of PI-

AdResS is robust. In fact, according to the model of Bergmann

and Lebowitz,12,35,36 for a simulation in a grand ensemble, one

does not need to have an explicit coupling between the path

integral region and the reservoir. The necessary and sufficient

condition is the knowledge of the molecules’ distribution in the

reservoir. It follows that the interaction of the molecules of the

path integral region with the rest of the system, while techni-

cally convenient and numerically efficient, from the conceptual

(formal) point of view instead does not play a crucial role.

Such an interaction plays only the technical role of a sort of

“capping potential” which avoids that molecules entering the

path integral region overlap in space. Moreover, the action of

the thermodynamic force and of the thermostat in the hybrid

region makes the stochastic coupling dominant (compared to

the explicit hybrid interactions), which is the essence of any

grand ensemble scheme. It follows that in GC-AdResS, the

Hamiltonian to be considered for the path integral formalism

is the Hamiltonian of the path integral region only, without

any external additional term, i.e., the path integral region with

its quantized Hamiltonian is embedded in a large reservoir

with the proper grand canonical behaviour. It must be clarified

that while the Bergmann-Lebowitz model provides an elegant

and solid formal structure to the PI-AdResS, it is not strictly

required to justify the existence of an accurate Hamiltonian

in the PI region and thus the implementation of PIMD in

AdResS. In fact, in the Appendix, we provide a numerical

proof that, for the systems treated in this paper, the interaction

energy between the PI region and the rest of the system is

at least one order of magnitude smaller than the interaction

energy of the molecules in the PI region. The accuracy and

robustness of PI-AdResS (or PI-GC-AdResS) will be shown

with the simulation of liquid water in Sec. IV. Finally, it must

be clarified that for the current implementation of PIMD in

GC-AdResS (in the GROMACS package), it is difficult to

estimate the computational gain since the code architecture

is not yet optimized. At this stage, we only want to show

that the approach is satisfactory from a conceptual point of

view. However, for very large systems with P = 32, the compu-

tational gain is around 1.7-2.0 compared to the full PIMD

simulations. With further code modifications (e.g., removal of

explicit degrees of freedom in the coarse-grained region, using

multiple time steps) or with the implementation of PI-AdResS

in a platform explicitly designed for PIMD simulations we

estimated, for systems of the order of thousand molecules, a

gain of at least a factor 4.0-5.0 compared to the full PIMD

simulations.

1. Calculation of the thermodynamic force in PIMD

For an atomistic system, the thermodynamic force, Fth(x),

can be expressed as

Fth(x) =
M

ρo
∇P(x), (9)

where M is the mass of the molecule and P(x) is the pressure
which characterizes different resolutions (for the initial config-

uration). P(x) is approximated in terms of linear interpolation

of molecular number density,

P(x) = Patom +
M

ρoκ
[ρo − ρ(x)] , (10)

where κ is the compressibility and ρ(x) is the density generated
if the simulation runs without any thermodynamic force. The

thermodynamic force is then obtained by an iterative proce-

dure,

F th
k+1(x) = F th

k (x) −
Mα

[ρo]2κ
∇ρk(x). (11)

After each iteration, a density profile ρ(x) is obtained due
to the application of the thermodynamic force. The process

converges when the density profile obtained is equal to the

target density. At this point, the system is in thermodynamic

equilibrium and the production run can start. The calculation

of thermodynamic force in PIMD-GC-AdResS is essentially

based on the same principle of balancing grand potential for

interfaced open systems,

Pquantum + ρo


∆

Fth(r)dr


V = PCGV, (12)

where ρo is the target density of the reference full path-integral
system. As for the classical case, P(x) can be written as

P(x) = Pquantum +
Ma

ρoκ
[ρo − ρ(x)] . (13)

While the above approach is highly efficient for classical

simulations, for path integral simulations, it is cumbersome

to run a PIMD-GC-AdResS simulation to calculate the ther-

modynamic force, before doing an actual production run, as

the path-integral simulation is inherently very expensive. In

order to make the scheme efficient, we have devised a strategy

to calculate the thermodynamic force which requires least

computation. As discussed in Sec. III A, we will show how the

thermodynamic force is calculated for different Hamiltonian
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FIG. 2. Thermodynamic force calculated in AdResS simulation using H1

(H2) approach. The force is calculated for different number of polymer ring

beads. It does not change as the number of beads is varied.

approaches. In case of H1 and H2, where the temperature of

the system is just the normal temperature, we calculated the

thermodynamic force for path-integral systems with varying

Trotter number P = 1,4,6,8, and 10 (P = 1 represents the

classical limit). Since the thermodynamic force takes care of

a thermodynamic equilibration and since the thermodynamic

conditions (thermodynamic state point) of a classical and

a quantum system are the same, we expect that the ther-

modynamic force calculated in the classical case (P = 1)

would be sufficient to provide thermodynamic equilibrium

in simulations where P = 32 is used. In fact, we found that

the thermodynamic force was same in all the cases. Fig. 2

shows the thermodynamic force calculated for a water system,

with different number of ring polymer beads in each case.

Using this argument, we used this thermodynamic force in

the actual production run with P = 32. We found that the

density of water molecules in the full quantum subregion

and the transition region is equal to the reference density

of the water system at the same thermodynamic conditions.

Thus, in H1 and H2 approaches, if the quantum effects on

the pressure of the system are not large, we can directly

use the thermodynamic force calculated from the classical

simulation.

In H3 approach, the situation is more complex, as the

effective temperature of simulation changes if the number of

beads is changed, thus the (numerical) thermodynamic state

point changes. In this case, there would be no other choice

but to run a full PIMD-GC-AdResS simulation with P = 32

and calculate the thermodynamic force. However, we avoided

such an expensive calculation and instead calculated the ther-

modynamic force for system with different number of beads

P = 1,4,6,8, and 10 at temperatures T = 298 × P and extrap-

olated thermodynamic force for P = 32, using space depen-

dent factors calculated from thermodynamic force for smaller

values of P (Fig. 3). Next, we used this thermodynamic force

for production run with P = 32 and found that the density of

water molecules in the full-PI subregion is same as the target

density, while the density in transition region differs at worst

by 3%.

FIG. 3. Thermodynamic force calculated in AdResS simulation using H3

approach. The force is calculated for different number of polymer ring

beads. The thermodynamic force for P = 32 is then extrapolated by using

space-dependent scaling factors calculated using thermodynamic force for

P = 1,4,6,8, and 10.

2. Equilibrium time correlation functions: Theoretical
and computational aspects

The technique of RPMD (H2) focuses on the Kubo-

transformed correlation functions.47,48 The Kubo-transformed

correlation function of the operators Â and B̂ is defined by41

KAB(t) =
1

βZ

 β

0

dλ


e−(β−λ)Ĥ Âe−λĤeiĤ t/~B̂e−iĤ t/~


,

(14)

where Z is the canonical partition function,

Z = tr


e−βĤ


. (15)

The RPMD method approximates the Kubo-transformed

correlation functions by using the classical ring-polymer

trajectories generated by the dynamics produced by the Hamil-

tonian in Eq. (7). The RPMD approximation is given by49

c̃AB(t) ≈
1

(2π~)9PN ZP

 
dPp0dPr0e−βPHP(p0,r0)

× 1

N

N


i=1

Ai
P(r0)B

i
P(rt), (16)

where ZP is the canonical partition function, and rt indicates

the time evolution at time t of the positions. The functions

AP(ro) and BP(rt) are calculated by taking the average over

the beads of the ring polymer,

AP(r) =
1

P

P


j=1

A(r),BP(r) =
1

P

P


j=1

B(r). (17)

For the calculations in GC-AdResS, the above equation needs

to be written in the formalism of the grand canonical ensemble,

c̃AB(t) ≈
1

ZGC
P



N

1

(2π~)9PNN!


dPp0(N)dP

× r0(N)e−βPHP(N )(p0(N ),r0(N ))−µN

× 1

N ′

N ′


i=1

Ai
P(r0(N))Bi

P(rt(r0(N))), (18)
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FIG. 4. Molecular number density calculated with GC-AdResS for different sizes of quantum subregion. Results are compared with the density obtained in a

full path integral simulation.

where µ is the chemical potential and N ′ is the number of

molecules at time “0” that remain correlated at time “t” (that

is, molecules which remain in the path integral region for

the whole time within the time window considered); ZGC
P

=


N eβµN ZP is the grand-canonical partition function and

HP(N) is the Hamiltonian of the (open) path integral region

with N instantaneous number of molecules. It must be noticed

that the a priori knowledge of µ is not required; actually, in

GC-AdResS, µ is automatically calculated by the equilibration

procedure of the thermodynamic force (see also Ref. 11).

From the technical point of view, we have used the same

calculation procedure as that of Ref. 12, where equilibrium

time correlation functions were calculated in the open subsys-

tems using classical molecular dynamics. Such a principle is

based on the definition of reservoir in the Bergmann-Lebowitz

model, which implies that when a molecule leaves the

system and enters the reservoir, it looses its microscopic iden-

tity and thus the corresponding correlations; thus, if a molecule

which is present at time t0 disappears from the system at time t

(i.e., moves into the reservoir), then the contribution of this

molecule, outside the time window [0, t], to the correlation

function shall not be considered. In our previous work, we

have shown that such a principle is physically consistent on

the basis of results of molecular simulations. Since all the

beads in a ring-polymer are treated as dynamical variables,18

there are no thermostats used in full RPMD simulations.

Thus, the simulations are performed under NVE conditions,

with either starting configurations generated from massively

thermostated PIMD simulations50 or re-sampling of momenta

from Maxwell-Boltzmann distribution after every few pico-

seconds.51 In order to keep the dynamics of the beads New-

tonian in the path-integral subregion of GC-AdResS, we use a
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FIG. 5. Particle number probability distribution of GC-AdResS compared with the equivalent full path integral subsystem for different sizes of the quantum

subregion. The shape of both curves is a Gaussian (reference black continuous curve) in all the three different simulations. The top part of the figure indicates

the extension of the PI region (compared to the rest of the system) where the function is calculated; this representation is equivalent in all subsequent figures.

“local-thermostat” procedure,12,52 where the thermostat is

applied only in the coarse-grained and hybrid region, while

the explicit path-integral region is thermostat-free. This en-

sures that the molecules which are present in the path-integral

subregion are not subject to any perturbation due to the direct

action of the thermostat.

IV. RESULTS

In this section, we report results about the simulation of

liquid water at room conditions. The quantum model for liquid

water used in this work is q-SPC/FW.58 It was shown that the

thermodynamic and dynamical properties calculated using this

water model agree quite well with the experimental data. The

section is divided in two parts, the first where static results

(molecular number density across the system, radial distribu-

tion functions, and probability distribution of the molecules)

are reported, and the second where several equilibrium time

correlation functions are calculated. Few further points must

be mentioned as clarification to this study. The total volume

of the PIMD-GC-AdResS box is the same in all simulations,

while three different sizes of the region at PI resolution are used

and the dimension of the transition region is always kept the

same. The smallest size of the PI region represents the limiting

case of a statistically relevant number of molecules treated with

PI resolution. The largest size instead represents the limiting

case of a reservoir (hybrid plus coarse-grained region) which

is relatively small and thus, it may be expected to not fulfill

the conceptual requirement of being statistically large enough.

We will show that even in these two limiting cases, the method
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FIG. 6. From left to right: (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path

integral AdResS. Such functions are compared with the results obtained for an equivalent subsystem (EX = 0.5 nm) in a full path integral simulation.

is computationally and conceptually robust. A second point to

take into account is that we compare the results of GC-AdResS

for the PI region with the results obtained in a subsystem of a

full PI simulations, such a subsystem is of the same size as in

the GC-AdResS simulation. The subsystem of a large full PI

simulation box is a natural grand canonical ensemble; thus, if

our subsystem of AdResS reproduces the results of a full PI

subsystem, then we can be rather confident that the PI region in

AdResS samples the Grand Canonical distribution sufficiently

well. From the physical point of view, it should be clarified

that the functions calculated in a subsystem must be considered

local in space and time if compared to calculation done over

the whole simulation box of the full PI simulation. Once again,

as the subsystem size increases, the functions go to the value

obtained in a full PI simulation when the full box is considered

(for physical consistency, see checks in Ref. 12). Technical

details of the simulation are reported in the Appendix.

A. Static properties

We use the H1 and H2 PIMD approaches (H1-GC-

AdResS and H2-GC-AdResS, respectively, for the GC-

AdResS simulation), Fig. 4 shows molecular number density.

In all three cases, the agreement is highly satisfactory, the

largest deviation is found for the case with PI region of 0.5 nm

and is below 5%. This is the basic test to show equilibra-

tion and thermodynamic consistency; moreover, following the

mathematical formalization of Ref. 10, is the first order neces-

sary condition in order to have the correct grand canonical

distribution in the PI region. A further confirmation of the
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FIG. 7. From left to right: (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path

integral AdResS. Such functions are compared with the results obtained for an equivalent subsystem (EX = 1.2 nm) in a full path integral simulation.

fact that the method samples the phase space of a subsystem

in a sufficiently correct way is represented by Fig. 5. The

figure shows the particle number probability distribution in

quantum subregion of AdResS and an equivalent subregion

in full path integral simulation. It can be seen that also in

this case, the results are highly satisfactory and the shape of

two curves is a Gaussian, as one should expect. There is a

systematic shift by (at most) two-three particles between the

full path integral results and the adaptive resolution scheme for

particle number distributions; such a shift seems to correlate

with the width of the distribution (i.e., extension of the PI

region). An explanation of the effect is that in AdResS, the

average particle density is not perfectly flat across the box and

for larger PI regions, the frequency in space of small density

fluctuations is larger than for smaller PI regions. This is due to

the fact that we have used an empirical approach to evaluate the

thermodynamic force instead of the standard one, as explained

before. However, the discrepancy is numerically negligible.

The g(r) is an important structural quantity that represents a

two-body correlation function and thus a higher order than the

molecular density of the ensemble many-body distribution;

moreover, it differs considerably when quantum models of

water are used, in particular correlation functions involving

hydrogen atoms.53 We calculated the local bead-bead g(r)’s

in the quantum subregion in GC-AdResS and compared them

with the bead-bead g(r)’s in an equivalent subregion in the full

path-integral simulation. Figs. 6–8 show that the results from

GC-AdResS agree with the results from full PI simulation in

a highly satisfactory way.

We have also verified, for the most relevant case (EX

= 1.2), that also H3 approach gives satisfactory results for the

static properties when employed in GC-AdResS; results are
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FIG. 8. From left to right: (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path

integral AdResS. Such functions are compared with the results obtained for an equivalent subsystem (EX = 2.4 nm) in a full path integral simulation.

reported in Fig. 9. Due to the more empirical calculation of the

thermodynamic force in H3, results are not as accurate as those

of H1 and H2; the density in the hybrid region differs by around

3%, which is anyway numerically negligible (however, the

difference must be reported). However, the number probability

distribution and bead-bead g(r)’s agree quite well in AdResS

and full path-integral simulations. This leads to the conclusion

that also results obtained with H3 are highly satisfactory.

This section essentially shows the ability of PI-GC-

AdResS with all three PIMD techniques to sample basic

(but highly relevant) static properties of a grand canonical

ensemble. In order to prove that a more elaborated sampling is

also satisfactorily made by the method, we report in Sec. IV B

the calculation of equilibrium time correlation functions.

B. Dynamic properties

We report results for the velocity-velocity autocorrelation

function, for the first and second order orientational (molecular

dipole) correlation functions,54,55 and for the reactive flux

correlation function for hydrogen bond dynamics.56,57 This

latter in specific situations may strongly diverge from the

classical case, and thus, it may be a quantity of relevance for

this work. Moreover, the fact that PI-GC-AdResS reproduces

the behaviour of a full PI simulation is of high technical

relevance in perspective (e.g., study of solvation of molecules).

The explicit formulas used for the functions calculated here are

given in Ref. 61. All results shown in this section are highly

satisfactory, either when H2 is used or H3 is used. Thus, the
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FIG. 9. From left to right (top): Particle number density, Particle number probability distribution of GC-AdResS obtained using the H3 approach. From left to

right (bottom): (Bead-bead) oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen partial radial distribution functions calculated with path integral AdResS

using the H3 approach. Such functions are compared with the results obtained for an equivalent subsystem (EX = 1.2 nm) in a full path integral simulation.

PI-GC-AdResS can be certainly considered a robust computa-

tional method for the calculation of quantum-based static and

dynamic properties of liquid water and as a consequence for

simpler systems and for systems where water plays a major

role (at least).

1. Equilibrium time correlation functions

Figures 10–12 show the three correlation functions calcu-

lated in the quantum subregion in GC-AdResS and in an equiv-

alent subregion in RPMD simulation, where the explicit region
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FIG. 10. Kubo-transformed velocity

autocorrelation function for q-SPC/FW

water model calculated in the quan-

tum subregion of GC-AdResS and in an

equivalent subregion in RPMD simula-

tion.

FIG. 11. Kubo-transformed first order

orientational correlation function for q-

SPC/FW water model calculated in the

quantum subregion of GC-AdResS and

in an equivalent subregion in RPMD

simulation. Dipole moment axis is cho-

sen as the inertial axis of molecule.

FIG. 12. Kubo-transformed second

order orientational correlation func-

tion or q-SPC/FW water model calcu-

lated in the quantum subregion of

GC-AdResS and in an equivalent

subregion in RPMD simulation. Dipole

moment axis is chosen as the inertial

axis of molecule.
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FIG. 13. The rate function k(t) (semilogarithmic plot) for q-SPC/FW water

model calculated in the quantum subregion of GC-AdResS and in an equiva-

lent subregion in RPMD simulation.

is 1.2 nm. All the correlation functions are calculated using H2

approach and H3 approach; results confirm the consistency of

the two methods in GC-AdResS. As stated before, these are

the local time correlation functions, calculated in the specific

region of interest, and could differ from the global time corre-

lation functions, calculated over the whole system. However,

it was shown in Ref. 12 that as the size of the explicit region

increases, the local correlation functions converge to the global

correlation functions.

2. Dynamics of hydrogen bonding

In order to investigate the dynamics of hydrogen bond

formation and breaking using RPMD simulations, we calculate

the hydrogen bond population fluctuations in time, which are

characterized by the correlation function,

c(t) = ⟨h(0)h(t)⟩/⟨h⟩, (19)

where h(t) is the hydrogen bond population operator, which

has a value 1, when a particular pair is bonded, and zero

otherwise. One can then calculate the rate of relaxation as

k(t) = −dc/dt, (20)

where k(t) is the average rate of change of hydrogen-bond

population for those trajectories where the bond is broken at

a time t later. Two water molecules are treated as hydrogen

bonded, if the distance between the center of two oxygen

rings is less than 0.35 nm and, simultaneously, the angle

between the axis defined by the center of two oxygen ring

polymers and the center of one of the oxygen-hydrogen rings

is less than 30◦. Fig. 13 shows k(t) calculated in the quantum

subregion of AdResS and an equivalent subregion in RPMD

simulation.

V. CONCLUSION

We have performed simulations of liquid water at room

conditions using PIMD in three different technical approaches.

Each of these approaches was embedded in GC-AdResS so that

a PIMD for open systems in contact with a generic reservoir

is realized. The results regarding static and dynamic quan-

tities are highly satisfactory and qualify PI-GC-AdResS as a

robust method for simulations of systems which currently are

prohibitive for full PIMD simulations; for example, the already

mentioned solvation problem. One can define a high resolution

region at PI resolution around the solute and surround the

solvation region with a reservoir as that constructed in GC-

AdResS. The static and dynamic properties of the hydrogen

bonding network can be analyzed and, by comparing results

with those of classical systems, one may conclude about the

importance of quantum effects due to hydrogen spatial delocal-

ization. This approach can introduce not only a technical inno-

vation regarding the computational efficiency but, by varying

the size of the high resolution region, could also be used as

a tool of analysis to identify the essential degrees of freedom

required by a certain physical process. In this perspective,

here we have shown that PI-GC-AdResS is a robust method

for linking the microscopic to macroscopic scale in a truly

multiscale fashion.
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APPENDIX: TECHNICAL DETAILS

1. Energetic contribution of the coupling term

The ith molecule (at position, ri) in the EX (PI) region is

characterized by w(ri) = 1. It follows that the force acting on

the ith molecule can be separated in two parts: (i) the force

generated by the interaction of molecule i with molecules of

the EX region,

Fi, j = F
PI
i, j,∀ j ∈ EX (A1)

and (ii) the force generated by the interaction with molecules

in the rest of the system,

Fi, j = w(r j)F
PI
i, j + [1 − w(r j)]F

CG
i, j ,∀ j ∈ HY + CG. (A2)

From Eq. (A1), it follows

Fi =


j,i

F
PI
i, j =



j,i

∇ jU
i j

PI
, (A3)
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where ∇i is the gradient with respect to molecule i and U
i j

PI
is

a compact form to indicate the proper bead-bead interaction

of atoms of molecule i with those of molecule j. Eq. (A2)

represents instead the coupling force between molecules of

HY + CG region and molecule i, that is an external force. At

this point, we argue that the non-integrable part of the dy-

namics in the HY region is a numerically negligible boundary

effect. In fact, Eq. (A2) can be rewritten as

Fi =


j ∈HY+CG

[w(r j)F
PI
i, j + [1 − w(r j)]F

CG
i, j ]

=


j ∈HY+CG

[w(r j)∇iU i j

PI
+ [1 − w(r j)]∇iUCG]. (A4)

It follows that the energy of the ith molecule at a certain time

t associated with the force of Eq. (A4) is given by

W i
PI−Res(t) =



j ∈HY+CG

[w(r j)U
i j

PI
+ [1 − w(r j)]U

i j

CG
], (A5)

where the Res = HY + CG. The total energy of coupling at

time t is then defined as

WPI−Res(t) =


i∈PI

W i
PI−Res(t). (A6)

In order to understand whether or not the quantity of Eq. (A6)

is numerically negligible, one should compare it to the amount

of energy, WPI−PI, corresponding to the interaction between

molecules of the PI region only: WPI−PI(t) =


i< j U
i j

PI
; i, j

∈ PI. If

|WPI−PI(t)| − |WPI−Res(t)|

|WPI−PI(t)|
≈ 1;∀t, (A7)

then it seems reasonable to approximate the total energy of

the PI region by the Hamiltonian of the PI region; thus, the

Hamiltonian formalism is numerically justified in PI-AdResS.

Fig. 14 shows that the difference in energy is at least of one

order of magnitude and that condition (A7) holds in all simu-

lations we have presented in this work. Moreover, it should

be noticed that on purpose, we have performed simulations

where the technical conditions are not optimal (the size of each

region of the system is much smaller than the size prescribed by

the theory); thus, Eq. (A7) would certainly hold in simulations

with standard technical conditions.

2. Simulation setup

a. Static properties

All path integral simulations are performed by home-

modified GROMACS,59 and the thermodynamic force in GC-

AdResS simulations is calculated using VOTCA.60 The num-

ber of water molecules in system is 1320, and the box dimen-

sions are 5.8 × 2.6 × 2.6 nm3, corresponding to a density

990 kg m−3. In AdResS simulations, the resolution of the

molecules changes along x-axis, as depicted in Figure 1.

Three different AdResS simulations are performed, each with

a different size of quantum subregion. The different sizes

of the quantum subregion treated in this work are 0.5 × 2.6

× 2.6 nm3, 1.2 × 2.6 × 2.6 nm3, and 2.4 × 2.6 × 2.6 nm3. The

transition region, which has dimensions 2.8 × 2.6 × 2.6 nm3,

is fixed in all the three cases. The remaining system contains

FIG. 14. Main figure: WPI−PI(t) compared to WPI−Res(t). Inset: The relative

amount of the interaction between the PI region and the rest of the system

along the trajectory:
|WPI−PI(t )|−|WPI−Res(t )|

|WPI−PI(t )|
; the contribution is, at most, of

10%. Calculations are done within the H1 and H2 approaches (top) and H3

(bottom).

coarse-grained particles, which interact via generic WCA

(Weeks-Chandler-Andersen) potential of the form

U(r) = 4ϵ

(
σ

r

)12

−
(

σ

r

)6
+ ϵ,r ≤ 21/6σ. (A8)

The parameters σ and ϵ in the current simulations are 0.30 nm

and 0.65 kJ/mol, respectively. Thirty two ring polymer beads

are used in all the simulations, which is sufficient to obtain

the converged results for both static and dynamical properties.

Reaction field method is used to compute the electrostatic

properties with dielectric constant for water equal to 80. The

cutoff for both van der Waals and electrostatic interactions is

1.2 nm. All the static properties are computed from 250 ps long

trajectories. The simulations using H1 and H2 formalisms are

performed at 298 K, while the simulations using H3 formalism

are performed at 9536 K. The time step used in all the simula-

tions is 0.1 fs. In the calculation of the thermodynamic force,

a single iteration consists of a 200 ps long trajectory which is

used to compute the density profile. A total of 20 such iterations

is sufficient to obtain a flat density profile and a converged

thermodynamic force.

b. Dynamic properties

The system details are kept same as in Subsection 2 a of the

Appendix. A 200 ps long PIMD simulation is performed and
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along the trajectory, configurations are taken after every 8 ps

to perform RPMD simulations. Thus, a total of 25 trajectories

each of length 25 ps is generated. For the first 5 ps, we keep

the thermostat switched on, in order to adjust the velocities

as masses are different in PIMD and RPMD methods. After

this initial equilibration run, the thermostat is switched off, and

the NVE trajectories generated are used to compute various

time correlation functions. We use the same strategy for

AdResS simulations, where a 200 ps long fully thermostated

GC-AdResS PIMD simulation is performed, and 25 initial

configurations are taken along this trajectory to perform GC-

AdResS RPMD simulations. For the first 5 ps, the thermostat

acts in the explicit as well as the hybrid and coarse-grained

regions. After the short equilibration run, the thermostat is

switched off in the explicit region, while the hybrid and coarse-

grained regions are kept under the action of the thermostat.

The dynamic properties are calculated in the explicit region

in the last 20 ps, i.e., excluding the equilibration run. The

velocity auto-correlation function is calculated for 1 ps, while

the orientational correlation functions and reactive flux corre-

lation functions for hydrogen bond dynamics are calculated for

10 ps in one single trajectory and then averaged over all the

trajectories.

3. Thermostat issue

It is well known that massive thermosetting is needed in

the path integral simulations, as the forces arising due to the

high frequencies in the polymer ring and the forces due to the

potential U(x) are weakly coupled. Tuckerman et al.16 coupled

each normal mode variable to separate Nose-Hoover chains,

thereby ensuring proper ergodic sampling of the phase space.

Manolopoulos et al.19 developed specific Langevin equations

for thermostat that are tuned to sample all the internal modes

of the ring polymer quite efficiently. However, in this work,

we chose the standard Langevin equations of thermostat with

time scale 0.1 ps, which is strong enough for sampling the

phase space effectively, though it may not be the most efficient

choice. The reason is that in the initial stage of validating GC

AdResS for path integral simulations, we need to show that the

properties obtained in the full PI simulations are reproduced

exactly in AdResS. Since we use the same thermostat in both

the simulations, there should not be any discrepancy arising

due to the thermostat. However, the comparison of static prop-

erties calculated in our reference PIMD simulation with those

available in the literature (referring to the approaches above)

is highly satisfactory.
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