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Path integral treatment of the deformed Schiöberg-
type potential for some diatomic molecules
Assia Amrouche, Ahmed Diaf, and Mohammed Hachama

Abstract: The bound state solution of the Feynman propagator with the deformed generalized Schiöberg potential is
determined using an approximation of the centrifugal term. The energy eigenvalue expression is computed using Duru-
Kleinert space-time transformation for both positive and negative deformation parameters of diatomic molecules. Besides,
the rotation-vibration energy eigenvalues are numerically calculated for some diatomic molecules and compared with
those given in the literature. The obtained results are in agreement with those given by state-of-the-art approximate and
numerical methods.

Key words: Path integral, deformed Schiöberg-type potential, l−states.

1. Introduction
The study of analytical solutions for empirical potential func-

tions of diatomic molecules has been the object of many inves-
tigations for several reasons. For instance, in chemical physics
[1], an accurate potential energy curve is needed in the evalua-
tion of spectroscopic constants and reactive scattering theoreti-
cal studies. In addition, accurate vibrational energies and wave
functions are required in studies such as the vibrational exci-
tation of electron-molecule collision which involves molecular
vibrational excitation process.

Several potential functions has been proposed in the litera-
ture. A first simple empirical analytical potential function was
proposed by Morse [2] and has been employed in a wide va-
riety of problems in chemical physics such as in molecular
spectroscopy [3] and in molecular dynamics simulation [4].
Another famous hyperbolic type potential is the Schiöberg po-
tential [5] which includes the Morse, Kratzer and Coulomb
potentials as special cases. More general potential functions
have been constructed by Eğrifes et al. [10, 11, 12], based on
the deformed hyperbolic functions [9], and which are identi-
cal to the Tietz potential model for diatomic molecules [13,
14]. These q-deformed potentials have been widely used in
different applications such as the quantum statistical theory
[15], the conformal field theory [16, 17], the nuclear structures
[18], and the chemical physics [19]. For the above potentials,
the Schrödinger’s equation has been exactly solved for the s-
states. For ` 6= 0 states, several approximate techniques have
been proposed. We can cite the Nikiforov-Uvarov method [6],
the function analysis [7], the asymptotic iteration [8], and the
Feynman path integrals [24, 25, 26]. In recent papers, some
q-deformed empirical potentials have been addressed, such as
Woods-Saxon [20], the four-parametric deformed Schiöberg
type [21, 22] and the q-deformed hyperbolic Poschl-Teller po-
tential [23].

Recently, Mustafa introduced a four-parametric deformed
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Schiöberg-type potential for diatomic molecules [21]. He com-
puted the energy spectrum of the `−states using the super-
symmetric quantization in the Schrödinger framework. In this
paper, we use the Feymann path integral formalism to solve
this potential. In Section 2, we discuss the deformed Schiöberg-
type potential and show some properties. In Section 3, the Feyn-
man propagator is investigated using the Duru-Kleinert method
to obtain the energy eigenvalues. In Section 4, numerical re-
sults for some diatomic molecules are given and compared
with previous ones [21, 27]. Finally, some concluding remarks
are given in Section 5.

2. The Schiöberg-type potential
Based on the original expression of the Schiöberg potential

[5], Mustafa [21] has proposed the four-parametric deformed
Schiöberg-type potential:

U(r) = A [B + tanhq(αr)]
2
, (1)

where the q−deformation of the usual hyperbolic functions are
defined by the following expressions:

tanhq(αr) =
sinhq(αr)

coshq(αr)
,

sinhq(αr) =
eαr − qe−αr

2
, (2)

coshq(αr) =
eαr + qe−αr

2
,

On the other hand, empirical potential functions for diatomic
molecules satisfy the following Varchni’s conditions [28]:

dU(r)

dr

∣∣∣∣
r=re

= 0, (3)

U(∞)− U(re) = De, (4)
d2U(r)

dr2

∣∣∣∣
r=re

= Ke ≡ (2πc)2µω2
e , (5)

whereDe is the dissociation energy, re is the equilibrium bond
length, c is the speed of light, µ is the reduced mass, and ωe is
the equilibrium harmonic oscillator vibrational frequency.
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Using Varshni’s conditions (3) and (4), we can rewrite the
potential (1) in the following form:

U(r) = De

[
1− e2αre + q

e2αr + q

]2

. (6)

This improved Tietz potential has also been obtained for di-
atomic molecules in [29]. The analytical solutions of the Schrödinger
equation with this potential have been investigated [30, 31].

Furthermore, applying Varshni’s condition (5) gives:

q = −
(

1− 2α

β

)
e2αre , (7)

= − η e2αre , (8)

with β =
√

Ke

2De
and η =

(
1− 2α

β

)
.

On the other hand, the Tietz-Hua oscillator potential [27] is
given by:

U(r) = De

[
1− e−bh(r−re)

1− che−bh(r−re)

]2

; (9)

where ch is an optimization parameter and bh = β(1 − ch).
This potential is equivalent to the deformed Schiöberg poten-
tial (6) where η = ch and 2α = bh as shown in [21]. In
next Section, we will take advantage of this equivalence when
solving the potential (6) with the Feynman path integral tech-
nique by using the spectroscopic parameters of the diatomic
molecules given in Table 1.

3. Solving the Schiöberg-type potential with
the path integral method

The basic idea for solving the studied potential with the path
integral method is to find an appropriate space-time transfor-
mation to reformulate the initial problem in terms of a well-
known and already solved problem. Actually, many unknown
path integrals have been solved by using their relation to known
ones. This method has been discussed in detail in other papers
(See references [24, 25, 26]). We present here a brief summary
of the essential steps involved.

Let’s consider a spherically symmetric effective potential
Ueff defined by the following:

Ueff (rj , `) = U(rj) +
`(`+ 1)~2

2µr2
. (10)

The propagator for a particle of mass µ in the potential Ueff
can be developed into a sum of partial waves of the form:

k(r”, t”; r
′
, t

′
) =

1

4πr′′r′

∞∑
`=0

(2`+ 1)K`(r
”, t”; r

′
, t′)P`(cos θ), (11)

where P`(cos θ) is the Legendre polynomial and the partial
propagator K` is defined by

K`(r
”, t”; r

′
, t

′
) =

lim
N→∞

∫ N∏
j=1

exp

[
i

~
Sj

] N∏
j=1

[ µ

2πi~ε

] 1
2
N−1∏
j=1

drj , (12)

with Sj = µ
2ε (∆rj)

2 − εUeff (rj , `), ∆rj = rj − rj−1 , ε =
tj − tj−1, t

′ = t0 and t′′ = tN .
This path integral (12) is not solvable for nonzero angular

momentum states (` 6= 0). To overcome this difficulty, we use
an approximation for 1

r2 centrifugal, given by

r2
e

r2
= C0 +

C1

(e2αr + q)
+

C2

(e2αr + q)
2 . (13)

The constantsCi can be obtained using a factorization recipe
as done in [32, 33]:

C1 = 1−
(

1− η
u

)2 [
4u

1− η
− (3 + u)

]
, (14)

C2 = 2eu(1− η)

[
3

(
1− η
u

)
− (3 + u)

(
1− η
u

)2
]
,

C2 =
e2u

u2
(1− η)4

[
(3 + u)− 2u

1− η

]
.

From Table 1, we note that η can take positive or negative
values and so is q = −ηe2αre . Consequently, the effective po-
tential given in (10) can be put in the following form:

Ueff (rj , `) = P̃1 +
P̃2

(e2αrj + q)
+

P̃3

(e2αrj + q)2
, (15)

with

γ =
`(`+ 1)~2

2µr2
e

, b = 2α,

P1 = De , P2 = −2De

(
e2αre + q

)
,

P3 = De

(
e2αre + q

)2
,

P̃1 = P1 + γC1 , P̃2 = P2 + γC2 , P̃3 = P3 + γC3.

Depending on the sign of η, we will consider two cases in
the following. We will show that these cases correspond to the
deformed Manning-Rosen and the deformed Rosen-Morse po-
tentials. Such a discussion has also been made previously for
the particular case of the standard Manning-Rosen and Rosen-
Morse potentials in [34].

3.1. Case η < 0 (q > 0)
The potential (15) can be written as

Ueff (rj , `) = A tanhq(αrj)−
B(`)

cosh2
q(αrj)

+ C(`), (16)

2
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Molecule η µ/10−23(g) α(Å−1) re(Å) De(cm−1)

NO(X2Πr) 0.013727 1.249 1.357795 1.151 53341
O2(X3Σ−

g ) 0.027262 1.377 1.295515 1.207 42041
O+

2 (X2Πg) −0.019445 1.377 1.434935 1.116 54688
N2(X1Σ+

g ) −0.032325 1.171 1.392925 1.097 79885
H2(X1Σ+

g ) 0.170066 0.084 0.80945 0.741 38318
HF (X1Σ+) 0.127772 0.160 0.971035 0.917 49382

Table 1. Spectroscopic molecular parameters for diatomic molecules.

where

A = − P̃2

2q
− P̃3

2q2
, B(`) =

P̃3

4q
, C(`) = P̃1+

P̃2

2q
+
P̃3

2q2
. (17)

Using the translation y = rj − 1
α ln
√
q, we can easily find

the non-deformed potential:

Ueff (rj , `) = A tanh(αy)− B´(`)

cosh2(αy)
+ C(`), (18)

where

A = − P̃2

2q
− P̃3

2q2
, B´(`) =

P̃3

4q2
, C(`) = P̃1 +

P̃2

2q
+
P̃3

2q2
.

(19)

The effective potential given by (18) is solved in [26] by
the Duru-Kleinert method, based on the nonlinear space-time
transformation{

y = f(z)
dt = [f ′(z)]2ds,

(20)

where (z, s) are the new space-time coordinates and

f(z) =
1

α
arctanh

[
2 tanh2 z − 1

]
.

Therefore, we can write the propagator associated to the po-
tential (18) in terms of the modified Pöschl-Teller one which is
solvable and allows us to compute the following energy spec-
trum [26]:

EDSchn,` = −~2α2 (s− 2n− 1)
2

8µ
− 2µA2

~2α2 (s− 2n− 1)
2 +C(`),

(21)

with

s =

√
1 +

8µB́(`)

~2α2
. (22)

3.2. Case η > 0 (q < 0)
In terms of hyperbolic functions, the effective potential (15)

takes the form

Ueff (rj , `) = A cothq(αrj)−
B(`)

sinh2
q(αrj)

+ C(`),

= A coth(αy)− B´(`)

sinh2(αy)
+ C(`), (23)

where y = rj − 1
α ln
√
−q. This potential is similar to the

Manning-Rosen one. To solve it, we use the following trans-
formation, as done in [24, 25]:

y =
1

α
arccoth

[
2 coth2 z − 1

]
. (24)

This leads us to following spectrum

EDSchn,` = −~2α2 (s+ 2n+ 1)
2

8µ
− 2µA2

~2α2 (s+ 2n+ 1)
2 +C(`).

(25)

Results (25) and (30) can be combined into one expression

EDSchn,` = −~2α2 (s± 2n± 1)
2

8µ
− 2µA2

~2α2 (s± 2n± 1)
2 +C(`).

(26)

The positive and the negative signs (±) in (26) correspond
to negative and positive values of q respectively.

4. Numerical results and discussions

We show on Figure 1 the variation of the four parameter po-
tential (6). Clearly, the depth of the potential remains constant
when the parameter q increases from −1 to 1 (for instance).

We evaluated the accuracy of the energy levels expression
(26) for different diatomic molecules:H2(X1Σ+

g ) ,HF (X1Σ+),
N2

(
X1Σ+

g

)
,NO

(
X2Πr

)
,O2

(
X3Σ−g

)
andO+

2

(
X2Πg

)
. We

took here molecules with positive and negative values of q.
We compared our results to those obtained with state-of-the-
art techniques: the numerical method [27] (reference method
providing a ground truth), and the supersymetric quantization
(SSQ) (with the same approximation of the barrier) [21]. Re-
sults are reported in Table 2, 3, and 4.

Surprisingly, our results are almost identical to those cal-
culated by SSQ in most cases. Indeed, although they are fun-
damentally different, the two methods use the same approx-
imation of the centrifugal term. In most of the other cases,
our technique improves on the SSQ results. This is the case
for instance, for the O2(X3Σ−g ) molecule (n = 0, 3, 5 and
` = 10, 15), for the O+

2 (X2Πg) (` = 10 and n = 1, 3, 5; ` =
15, 20), and for the molecules H2(X1Σ+

g ) and HF (X1Σ+).

3

Page 3 of 7

https://mc06.manuscriptcentral.com/cjp-pubs

Canadian Journal of Physics



For Review
 O

nly
Fig. 1. Variation of the Schiöberg-type potential given in Equation (6) as a function of r for the HF (left) and H2 (right) diatomic
molecule with three different values of q.

5. Conclusion
In this work, we presented and improved expression for the

q−deformed Schiöberg potential energy function using Feyn-
man path integral method and the equivalence between the
studied potential and the Tietz-Hua oscillator potential [21].
We applied this method to calculate the spectrum associated to
six diatomic moleculesH2

(
X1Σ+

g

)
,HF

(
X1Σ+

)
,N2

(
X1Σ+

g

)
, NO

(
X2Πr

)
, O2

(
X3Σ−g

)
and O+

2

(
X2Πg

)
. Taking the ex-

perimental values for the spectroscopic parameters (De, re, η
and α) as inputs, we calculated the numerical values of the
energies associated to different n and `. The obtained eigen-
values are in very good agreement with those given by the
supersymmetric and the numerical method which proves the
efficiency of our method in solving this type of potentials. In
the future, we plan to apply this method to solve the Dirac and
the Klein-Gorden equations for more general exponential-type
potentials.

References
1. W., Sun and H., Feng 1999 J. Phys. B : Mol. Opt. Phys. 32 5109
2. P-M., Morse 1929 Phys. Rev. 34 57
3. Z., Rong, H-G., Kjaergaard and M-L., Sage 2003 Mol. Phys. 101

22 85
4. J., Welker and F-J., Giessibl 2012 Science. 336 444
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Table 2. Ro-vibrational energies En,l(cm
−1) (1 cm−1 = 1.239841930 × 10−4eV ) for two diatomic molecules NO(X2Πr) and

O2(X3Σ−
g ) with n = 0, 3, 5 and different value of l.

NO(X2Πr) O2(X3Σ−
g )

n l GPS[27] SSQ [21] Our results GPS[27] SSQ [21] Our results
0 0 947.759 947.756 947.757 774.984 775.089 775.090

1 951.123 951.121 951.120 777.848 777.863 777.860
2 957.849 957.847 957.847 783.394 783.410 783.411
3 967.937 967.937 791.731 791.734
4 981.390 981.390 802.823 802.823
5 998.205 998.204 816.688 816.682
10 1132.686 1132.686 1132.686 927.562 927.578 927.574
15 1351.069 1351.072 1351.072 1107.634 1107.654 1107.648
20 1653.146 1653.153 1653.153 1356.714 1356.739 1356.744

3 0 6453.267 6453.239 6453.240 5269.581 5269.672 5269.673
1 6456.510 6456.484 6456.483 5272.250 5272.343 5272.339
2 6462.995 6462.971 6462.972 5277.588 5277.684 5277.684
3 6472.703 6472.702 5285.694 5285.697
4 6485.677 6485.677 5296.374 5296.373
5 6501.894 6501.894 5309.722 5309.715
10 6631.552 6631.592 6631.593 5416.325 5416.479 5416.474
15 6842.080 6842.207 6842.206 5589.607 5589.837 5589.828
20 7133.275 7133.526 7133.525 5829.279 5829.619 5829.623

5 0 9951.736 9951.693 9951.693 8118.378 8118.516 8118.516
1 9954.898 9954.857 9954.858 8120.977 8121.118 8121.113
2 9961.220 9961.188 9961.187 8126.175 8126.321 8126.323
3 9970.679 9970.679 8134.126 8134.127
4 9983.335 9983.335 8144.530 8144.529
5 9999.155 9999.154 8157.535 8157.530
10 10125.542 10125.669 10125.670 8261.257 8261.546 8261.543
15 10330.775 10331.112 10331.112 8429.966 8430.441 8430.433
20 10614.632 10615.269 10615.269 8663.303 8664.046 8664.049
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Table 3. Ro-vibrational energies En,l(cm
−1) (1 cm−1 = 1.239841930 × 10−4eV ) for two diatomic molecules O+

2 (X2Πg) and
N2(X1Σ+

g ) with n = 0,3,5 and different value of l.

O+
2 (X2Πg) N2(X1Σ+

g )

n l GPS[27] SSQ[21] Our results GPS[27] SSQ [21] Our results
0 0 934.601 934.614 934.612 1174.916 1174.927 1174.927

1 937.848 937.862 937.860 1178.870 1178.882 1178.879
2 944.341 944.353 944.354 1186.778 1186.789 1186.788
3 954.094 954.095 1198.651 1198.649
4 967.079 967.072 1214.466 1214.465
5 983.310 983.306 1234.234 1234.240
10 1113.112 1113.127 1113.136 1392.325 1392.338 1392.337
15 1323.924 1323.940 1323.932 1649.087 1649.103 1649.107
20 1615.541 1615.563 1615.544 2004.288 2004.306 2004.305

3 0 6376.545 6376.615 6376.612 8047.8758 8047.9316 8047.9313
1 6379.684 6379.756 6379.755 8051.7163 8051.7736 8051.7718
2 6385.962 6386.035 6386.034 8059.3972 8059.4558 8059.4546
3 6395.455 6395.456 8070.9804 8070.9783
4 6408.015 6408.008 8086.3444 8086.3428
5 6423.713 6423.708 8105.5492 8105.5556
10 6549.135 6549.270 6549.277 8259.0350 8259.1477 8259.1462
15 6752.948 6753.159 6753.151 8508.4072 8508.5904 8508.5949
20 7034.867 7035.194 7035.186 8853.3707 8853.6563 8853.6550

5 0 9845.984 9846.089 9846.089 12460.466 12460.549 12460.549
1 9849.051 9849.159 9849.158 12464.229 12464.316 12464.313
2 9855.183 9855.296 9855.294 12471.756 12471.847 12471.845
3 9864.503 9864.502 12483.146 12483.143
4 9876.778 9876.771 12498.208 12498.206
5 9892.120 9892.117 12517.037 12517.042
10 10014.566 10014.830 10014.839 12667.396 12667.620 12667.618
15 10213.639 10214.091 10214.084 12911.769 12912.164 12912.167
20 10488.989 10489.719 10489.708 13249.806 13250.446 13250.444
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Table 4. Ro-vibrational energies En,l(cm
−1) (1 cm−1 = 1.239841930 × 10−4eV ) for two diatomic molecules H2(X1Σ+

g ) and
HF (X1Σ+) with n = 0, 3, 5 and different value of l.

H2(X1Σ+
g ) HF (X1Σ+)

n l GPS[27] SSQ[21] Our results GPS[27] SSQ [21] Our results
0 0 2171.618 2171.661 2171.660 2047.581 2047.549 2047.548

1 2289.372 2289.430 2289.427 2088.368 2088.338 2088.338
2 2523.795 2523.908 2523.907 2169.893 2169.866 2169.865
3 2873.012 2873.012 2292.033 2292.033
4 3333.687 3333.686 2454.691 2454.690
5 3902.003 3902.002 2657.640 2657.640

10 8173.796 8173.795 4266.461 4266.460
15 14184.547 14257.421 14257.418 6824.964 6825.606 6825.605
20 21121.346 21406.290 21406.287 10257.292 10259.247 10259.246

3 0 13641.123 13641.356 13641.357 13298.712 13298.514 13298.513
1 13738.726 13740.204 13740.202 13334.713 13334.578 13334.577
2 13932.924 13937.042 13937.041 13406.668 13406.661 13406.659
3 14230.181 14230.179 13514.670 13514.669
4 14617.148 14617.144 13658.467 13658.465
5 15094.757 15094.756 13837.868 13837.867

10 18693.126 18693.125 15259.392 15259.390
15 23846.083 23846.079 17518.249 17518.247
20 29951.340 29951.338 20544.186 20544.184

5 0 19915.723 19916.031 19916.031 19860.703 19860.423 19860.421
1 20000.399 20003.596 20003.592 19893.600 19893.479 19893.478
2 20168.807 20177.985 20177.984 19959.350 19959.547 19959.545
3 20437.737 20437.735 20058.539 20058.538
4 20780.713 20780.708 20190.325 20190.323
5 21204.160 21204.157 20354.730 20354.728

10 24399.460 24399.458 21656.962 21656.960
15 28992.500 28992.498 23724.509 23724.507
20 34465.676 34465.674 26490.600 26490.599
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