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Abstract
Kernels are typically applied to linear algorithms whose weight vector is a linear combination

of the feature vectors of the examples. On-line versions of these algorithms are sometimes called
“additive updates” because they add a multiple of the last feature vector to the current weight vector.

In this paper we have found a way to use special convolution kernels to efficiently implement
“multiplicative” updates. The kernels are defined by a directed graph. Each edge contributes an
input. The inputs along a path form a product feature and all such products build the feature vector
associated with the inputs. We also have a set of probabilities on the edges so that the outflow from
each vertex is one. We then discuss multiplicative updates on these graphs where the prediction is
essentially a kernel computation and the update contributes a factor to each edge. After adding the
factors to the edges, the total outflow out of each vertex is not one any more. However some clever
algorithms re-normalize the weights on the paths so that the total outflow out of each vertex is one
again. Finally, we show that if the digraph is built from a regular expressions, then this can be used
for speeding up the kernel and re-normalization computations.

We reformulate a large number of multiplicative update algorithms using path kernels and
characterize the applicability of our method. The examples include efficient algorithms for learning
disjunctions and a recent algorithm that predicts as well as the best pruning of a series parallel
digraphs.
Keywords: Kernels, Multiplicative Updates, On-Line Algorithms, Series Parallel Digraphs.

1. Introduction

There is a large class of linear algorithms, such as the Linear Least Squares algorithm and Support
Vector Machines, whose weight vector is a linear combination of the input vectors. Related on-line
algorithms, such as the Perceptron algorithm and the Widrow Hoff algorithm, maintain a weight
vector that is a linear combination of the past input vectors. The on-line weight update of these
algorithm isadditivein that a multiple of the last instance is added to the current weight vector.

The linear models are greatly enhanced by mapping the input vectorsx to feature vectorsΦ(x).
The features may be non-linear, and the number of features is typically much larger than the input
dimension. Now the above algorithms all use a linear model in feature space defined by a weight
vectorW of feature weights that is a linear combination of the expanded inputsΦ(xq) (1≤ q≤ t)

∗. Part of this work was done while Eiji Takimoto visited the University of California at Santa Cruz.
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of the training examples. Given an input vectorx, the linear predictionW ·Φ(x) can be computed
via the dot productsΦ(xq) ·Φ(x) and these dot products can often be computed efficiently via an
associated kernel functionK(xq,x) = Φ(xq) ·Φ(x).

In this paper we give kernel methods formultiplicative algorithms. Now the componentwise
logarithm of the feature weight vectorW is constant plus a linear combination of the expanded
instances. In the on-line versions of these updates, the feature weights are multiplied by factors
and then the weight vector is renormalized. This second family of algorithms is motivated by
using an entropic regularization on the feature weights (Kivinen and Warmuth, 1997) rather than
the square Euclidean distance used for the additive update algorithms.1 A general theory based
on Mercer’s theorem has been developed that characterizes kernels usable for additive algorithms
(see e.g. Cristianini and Shawe-Taylor 2000). The kernels usable for multiplicative algorithms are
much more restrictive. In particular, the features must be products. We will show that multiplicative
updates mesh nicely with path kernels. These kernels are defined by a directed graph. There is one
feature per source to sink path and the weight/feature associated with a path is the product of the
weights of the edges along the path. The number of paths is typically exponential in the number of
edges. The algorithms can easily be described by “direct” algorithms that maintain exponentially
many path-weights. The algorithms are then simulated by “indirect” algorithms that maintain only
one weight per edge. More precisely, the weight vectorW on the paths is represented asΦ(w),
wherew are the weights on the edges andΦ(·) is the feature map associated with the path kernel.
Thus the indirect algorithm updatesw, instead of directly updating the feature weightsW. The
prediction and the update of the edge weights become efficient kernel computations.

There is a lot of precedent for simulating inefficient direct algorithms (Helmbold and Schapire,
1997, Maass and Warmuth, 1998, Helmbold, Panizza, and Warmuth, 2002, Takimoto and Warmuth,
2002) by efficient indirect algorithms. In this paper we hope to give a unifying view and make the
connection to path kernels. The key requirement will be that the loss of a path decomposes into
a sum of the loss of the edges of the path. We will re-express many of the previously developed
indirect algorithms using our methods.

As discussed before, for additive algorithms the vector of feature weights has the formW =
∑t

q=1αqΦ(xq), where theαq are the linear coefficients of the expanded instances. In the case of
Support Vector Machines, optimizing theαq for a batch of examples is a non-negative quadratic
optimization problem. Various algorithms can be used for finding the optimum coefficients. For
example, Cristianini et al. (1999) does this using multiplicative updates (motivated in terms of an
entropic distance function on theαq instead of the feature weights). An alternate “multiplicative”
update algorithm for optimizing theαq (not motivated by an entropic regularization) is given by Shu
et al. (2003). In contrast, in this paper we discuss multiplicative algorithms of the feature weights,
i.e. the logarithm of the feature weights is a constant plus a linear combination of the expanded
instances (see Kivinen et al. 1997 for more discussion).

Paper outline: In the next section we define path kernels and discuss how to compute them for
general directed graphs. One method is to solve a system of equations. In Appendix A we show that
the system has a unique solution if some minimal assumptions hold. We then give a simple hierar-
chically constructed digraph in Section 3, whose associated kernel initiated this research. In Section
4, we generalize this example and define path sets for a family of hierarchically constructed digraphs
corresponding to regular expressions. We show how the hierarchical construction facilitates the ker-

1. See Kivinen et al. (1997) for a geometric characterization of the additive algorithms based on a rotation invariance.
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nel computation (Sections 4.1 and 4.2). In Section 5, we discuss how path kernels can be used to
represent probabilistic weights and how the predictions of the algorithms can be expressed as kernel
computations. In Section 5.1, we give some key properties of the probabilistic edge weights that we
would like to maintain. In particular, the total outflow from each vertex (other than the sink) should
be one and the weightWP of each pathP must be the product of its edge weights, i.e.WP = ∏e∈P we.
We show in Appendix B that the edge weights fulfilling these properties are unique. The updates
we consider in this paper always have the following form: Each edge is multiplied by a factor and
then the total path weight is renormalized. We show in Section 5.2 that this form of the updates ap-
pears in multiplicative updates when the loss of a path decomposes into a sum over the edges of the
path. We then introduce the Weight Pushing algorithm of Mehryar Mohri (1998) in Section 6 which
re-establishes the properties of the edge weights after each edge received an update factor. Efficient
implementation of this algorithm can make use of the hierarchical construction of the graphs (see
Appendix C).

We then apply our methods to a dynamic routing problem (Section 7) and to an on-line shortest
path problem (Section 8). We prove bounds for our algorithm that decay with the length of the
longest path in the graph. However, we also show that for the hierarchically constructed digraph
given in Section 3, the longest path does not enter into the bound. In Section 9, we discuss how
the set of paths associated with this graph can be used to motivate the Binary Exponentiated Gradi-
ent (BEG) algorithm for learning disjunctions (Helmbold et al., 2002) and show how this efficient
algorithm for learning disjunctions becomes a special case of our methods. Finally, we rewrite the
algorithms for predicting as well as the best pruning of a series parallel digraph using our methods
(Section 10) and conclude with some open problems (Section 11).

Relationship to previous work: Our main contribution is the use of kernels for implementing
multiplicative updates of the feature weights. The path kernels we use are similar to previous kernels
introduced by Haussler (1999) and Watkins (1999).2 Here we focus on the efficient computation of
the path kernels based on the corresponding regular expressions or syntax trees. Our key new idea
is to use the path kernels to implicitly represent exponentially many probabilistic weights on the
features/paths by only maintaining weights on the edges. Multiplicative updates are ideally suited
for updating the path weights since they contribute factors to the edge weights. We characterize
exactly the requirements for such algorithms. Also a key insight is the use of Weight Pushing
algorithm for maintaining probabilistic weights on the edges. We show how to efficiently implement
this algorithm on syntax trees. The applications to the dynamic routing and on-line shortest path
problem are new. The sections on learning disjunctions and on-line algorithms for predicting as
well as the best pruning of the series parallel digraph are mainly rewritings of previously existing
algorithms in terms of the new common framework of path kernels.

2. Path Kernels

Assume we have a directed graphG with a source and a sink vertices. The source may have incom-
ing edges but the sink does not have outgoing edges. Inputs to the edges are specified by a vector
x ∈ R n, wheren is the number of inputs and is fixed. If edgee receives inputxi , then we denote
this asxe = xi . So this notation hides a fixed assignment from the edgesE(G) of the graphG to the
input indices{1, . . . ,n}. The assignment is fixed for each graph. So ifx′ is a second input vector and
xe = xi , thenx′e = x′i as well. Edges may also receive constants as inputs, denoted asxe = 1. In that

2. Our kernels are also special cases of the “rational kernels” recently introduced by Cortes et al. (2002).
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Figure 1: An example digraph. Edgeei receives inputxi . The input vectorx = (x1, . . . ,x8)
is expanded to the feature vectorΦ(x) = (x2x7,x1x5x8,x2x3x5x8,x1x4x5x8,x1x5x6x7,
x2x3x4x5x8,x2x3x5x6x7, x1x4x4x5x8,x1x5x6x3x5x8, . . .). The order of the features is arbi-
trary but fixed.

case,x′e = 1 as well. The number of inputsn may be less than the number of edges, i.e. edges may
share inputs. But in the simplest case (for example in Figure 1),n = |E(G)| and edgeei receives
input xi .

The input vectorx is expanded to a feature vector that has one feature for each source-to-sink
path. The featureXP associated with pathP is the product of the inputs of its edges, i.e.XP = ∏e∈P xe

(see Figure 1). (Throughout the paper, we use upper case letters for the product features and lower
case letters for inputs.) We letΦ(x) be the vector of all path features. Given a second input vector
x′ on the edges, we define thepath kernelof a directed graph as follows:

K(x,x′) = Φ(x) ·Φ(x′) = ∑
P

∏
e∈P

xex
′
e.

Similar related kernels that are built from regular expressions or pair-HMMs were introduced by Haus-
sler (1999), Watkins (1999) for the purpose of characterizing the similarity between strings.

We would like to have efficient algorithms for computing kernels. For this reason we first
generalize the definition to sums over all paths starting at any fixed vertex rather than the source.
For any vertexu, let P (u) denote the set of paths from the vertexu to the sink. Assume there are
two input vectorsx andx′ to the edges. Then for any vertexu, let

Ku(x,x′) = ∑
P∈P (u)

∏
e∈P

xe∏
e∈P

x′e = ∑
P∈P (u)

∏
e∈P

xex
′
e.

ClearlyKsource(x,x′) gives the dot productΦ(x) ·Φ(x′) that is associated with the whole graphG.
For any vertexu other than the sink we have:

Ku(x,x′) = ∑
u′:(u,u′)∈E(G)

x(u,u′)x
′
(u,u′)Ku′(x,x′). (2.1)

The computation ofK depends on the complexity of the graphG. If G is acyclic, then the functions
Ku(x,x′) can be recursively calculated in a bottom up order using (2.1) and

Ksink(x,x′) = 1. (2.2)
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Clearly this takes time linear in the number of edges.
WhenG is an arbitrary digraph (with cycles and infinite path sets), then (2.1) and (2.2) form a

system of linear equations which can be solved by a standard method, e.g. Gaussian elimination.
In this paper we only need the case when all inputs to the edges are non-negative andK(x,x′) is
finite. For that case we show in Appendix A that the solution is unique. AlternativelyKu can
be computed via dynamic programming using essentially the Floyd-Warshal all-pairs shortest path
algorithm (Mohri, 1998). The cost of these algorithms is essentially cubic in the number of vertices
of G. Speed-ups are possible for sparse graphs. A more efficient method is given later in Section 4.1
for the case when the graph, viewed as a DFA, has a concise regular expression.

3. A Hierarchically Constructed Digraph That Motivates the Subset Kernel

In this section we discuss the kernel associated with the digraph given in Figure 2 and use it as a
motivating example for what is to follow in great detail in the next section. This kernel was the
initial focal point of our research.

First observe that the paths of this graph can be described using the following simple regular
expression

(e1 +en+1)(e2 +en+2) . . . (en +e2n). (3.1)

Assume the bottom edgesei receive input valuexi and all top edgesen+i receive input one. The
featureXP is the product of the inputs along the pathP. SoXP = ∏i∈A xi, whereA is the subset
of indices in{1, . . . ,n} corresponding to the bottom edges inP. If you now consider two input
valuesxi and x′i to the bottom edges, thenΦ(x) and Φ(x′) have one feature for each of the 2n

subsets/monomials overn variables, and the dot product defines a kernel

K(x,x′) = Φ(x) ·Φ(x′) = ∑
A⊆{1,...,n}

∏
i∈A

xix
′
i =

n

∏
i=1

(1+xix
′
i). (3.2)

We call this thesubset kernel.3 This kernel was introduced by Kivinen and Warmuth (1997) and
is also sometimes called themonomial kernel(Khardon et al., 2001). Note that it computes a sum
over 2n subsets inO(n) time and this computation is closely related to the above regular expres-
sion: Replaceei by xix′i , en+i by xn+ix′n+i = 1, the regular+ by the arithmetic+, and the regular
concatenation by the arithmetic multiplication. Also note that the fundamental unit in the graph of
Figure 2 is a pair of vertices connected by a top and bottom edge. The whole graph may be seen as
a “sequential composition” ofn of such units.

We will use this kernel again in Section 9 to motivate an efficient algorithm for learning disjunc-
tions. In the next section we discuss general schemes for building graphs and kernels from regular
expressions.

4. Regular Expressions for Digraphs

Generalizing the above example, we consider a digraph as an automaton by identifying the source
and the sink with the start and the accept state, respectively. The set of all source-sink paths is a

3. If the top edges receive inputsxn+i and x′n+i , respectively, thenK(x,x′) = ∑A⊆{1,...,n}∏i∈A xix′i ∏i /∈A xn+ix′n+i =
∏n

i=1(xix′i +xn+i x′n+i).

777



TAKIMOTO AND WARMUTH

en+1

e1 e2

en+2
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Figure 2: The digraph that defines the subset kernel: The top edges receive input one and function
asε edges.

regular language and can be expressed as a regular expression. For example the set of paths of the
digraph given in Figure 1 is expressed as

e2e7 +(e1 +e2e3)e∗4e5(e6e3e∗4e5)∗(e8 +e6e7).

We assume in this paper that each edge symbol identifies a single edge and thus there is never any
confusion about how words map to paths. Note that in the above regular expression some symbols
appear more than once. So when we convert multiple occurrences of the same symbol to edges we
use differently named edges for each occurrence but assign all of them the same input.

Since path features are products, the edgese that are always assigned the constant one (i.e.
xe = 1) function as theε symbol in the regular expression. On the other hand, as we will see later,
when we consider probabilistic weights on edges,ε edges are not always assigned weight one.

The convolution kernel based on regular expressions was introduced by Haussler (1999). We
will show that computing regular expression kernels is linear in the size of the regular expression
that represents the given digraphG. Recall that the methods for computing kernels introduced in
Section 2 takeO(n3) time, wheren is the number of vertices ofG. So there is a speed-up when there
is a regular expression of sizeO(n3). Even though the size of the smallest regular expression can be
exponential inn, we will see that there are small regular expressions for many practical kernels.

For the sake of simplicity we assume throughout the paper that the source has no incoming and
the sink no outgoing edges (One can always add new source and sink vertices and connect them to
the old ones viaε edges).

4.1 Series Parallel Digraphs

First let us consider the simple case where regular expressions do not have the∗-operation. In this
case the prescribed graphs (corresponding to regular expressions with the operations union (+) and
concatenation (◦)) areseries parallel digraphs(SP digraphs, for short) (Valdes et al., 1982).

For a regular expressionH, let H denote the SP digraph thatH represents. Furthermore, we
sometimes writeH(s,t) to explicitly specify the sources and the sinkt. Now we clarify how
a regular expression with operations+ and◦ recursively defines a SP digraph (see Figure 3 for
a schematic description). A symbole defines the SP digraphH(s,t) consisting of a single edge
with label e, initial vertex s and terminal vertext. Let H1, . . . ,Hk be regular expressions and
H1(s1,t1), . . . ,Hk(sk,tk) be the corresponding SP digraphs, respectively. The concatenation of
regular expressionsH1, . . . ,Hk, denoted byH = H1 ◦ · · · ◦Hk, corresponds to aseries composition
of the SP digraphsH1(s1,t1), . . . ,Hk(sk,tk). We denote this series composition asH(s,t). The
sources and sinkt of this graph are identified withs1 andtk, respectively, and for any 1≤ i ≤ k−1,
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e e

(a) A symbol corresponds to a single edge.

H1 H2

◦

Hk

H1 H2 Hk

(b) Concatenation corresponds to the series composition.

H2

+

H1 Hk

Hk

H1

H2

(c) Union corresponds to the parallel composition.

Figure 3: Regular expressions (as syntax trees on the left) and their corresponding SP digraphs
(right).

the sinkti and the sourcesi+1 are merged into one internal vertex. Finally, the union of the regu-
lar expressionH1, . . . ,Hk, denoted byH = H1 + · · ·+ Hk, corresponds to theparallel composition
H(s,t) of the corresponding SP digraphsH1(s1,t1), . . . ,Hk(sk,tk), where all sources are merged
into the sources and all sinks are merged into the sinkt. In Figure 4 we give an example SP digraph
with its regular expression (represented by a syntax tree).

The syntax tree is used to compute the dot productΦ(x) ·Φ(x′). We represent the feature vector
Φ(x) by the syntax tree where the leavese are replaced by their assignmentsxe. The feature vector
Φ(x′) is the same except now the assignmentsx′e are used. For computing the dot product, we
replace the leaves labeled edgee by the input productxex′e, the union+ by the arithmetic plus+
and the concatenation◦ by the arithmetic multiplication×. Now the value of the dot product is
computed by a postorder traversal of the tree. This takes time linear in the size of the tree (number
of edges). See Figure 5 for an example. For this figure,ei receives inputxi andx′i , respectively.

In general, letH0 denote the given regular expression. Note that each internal nodeH of the
syntax tree forH0 corresponds to a regular expressionH (we use the same symbol for both mean-
ings) and this in turn represents a componentH of the entire SP digraphH0. For an internal node
H that represents a componentH(s,t), let P H denote the set of all paths froms to t in H. In
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e2

e1

e7

e2
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e1

+ e7

e6

e3 e4 e5

◦

◦

Figure 4: An example of a SP digraph and its syntax tree.

x2

+

x1 ◦

+ x7

x6◦

+ +

x3 x5

=

x4

+

x2x′2

x1x′1

x7x′7+

× x6x′6

+

x5x′5x3x′3 x4x′4

+

×

x′2 x′3 x′4 x′5

++

◦ x′6

x′7+

x′1 ◦

+

Figure 5: The computation of dot productΦ(x) ·Φ(x′): The trees on the left represent the feature
vectorsΦ(x) andΦ(x′), respectively; the tree on the right represents the computation of
the dot product, where the regular union+ is replaced by the arithmetic+ and the regular
concatenation◦ becomes the arithmetic multiplication×.

other words,P H is the language generated by the regular expressionsH. Furthermore, we define
the kernel associated withH as

KH(x,x′) = ΦH(x) ·ΦH(x′) = ∑
P∈P H

∏
e∈P

xex
′
e,

whereΦH(x) is the feature vector defined by a regular expressionH with leaf assignmentsx. Now
it is straightforward to see that this kernel is recursively calculated as follows:

KH(x,x′) =




xex′e if H = e for some edge symbole,
∏k

i=1 KHi (x,x′) if H = H1◦ · · · ◦Hk,
∑k

i=1 KHi (x,x′) if H = H1+ · · ·+Hk.

Although SP digraphs seem a very restricted class of acyclic digraphs, they can define some
important kernels such as the polynomial kernel:Φ(x) ·Φ(x′) = (1+ x · x′)k, for some degreek.
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+
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+
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Figure 6: Some inputs to distinct edges might be the same. The feature vector isΦ(x) =
(1,4x1,4x2,6x2

1,12x1x2,6x2
2,4x3

1,12x2
1x2,12x1x2

2,4x3
2,x

4
1,4x3

1x2,6x2
1x2

2,4x1x3
2,x

4
2). This de-

fines the polynomial kernelK(x,x′) = (1+x·x′)4.

1

x2

1

x3

1

x1

+

1 x1

+

1

+

1 x3x2

◦

Figure 7: One feature per subset of{1,2,3}: Φ(x) = (1,x1,x2,x3,x1x2,x1x3,x2x3,x1x2x3). This
defines the subset kernelK(x,x′) = ∏3

i=1(1+xix′i).

This is the path kernel defined by the regular expression

(e1,0 +e1,1 + · · ·+e1,n)(e2,0 +e2,1 + · · ·+e2,n) · · · (ek,0 +ek,1 + · · ·+ek,n),

where all edgese∗,0 receive input one, and all edgese∗,i (with i ≥ 1) receive inputsxi andx′i , respec-
tively. The tree in Figure 6 represents the feature vectorΦ(x) for the polynomial kernel withn = 2
andk = 4.

A related example is given in Figure 2 which is the digraph associated with the subset kernel
(3.2). Now the bottom edgesei receive input valuesxi andx′i , respectively, and the top edgesen+i

always receive input one (see Figure 7: left). In this caseΦ(x) has one feature for each of the 2n

subsets/monomials overn variables. The syntax diagram representingΦ(x) is given in Figure 7:
right.

Since the inputs to the edges might not be distinct (see example in Figure 6), we can use short-
hands for the union and concatenation of identical subgraphs that receive the same assignment.
Specifically, letΦ(n◦)H(x) andΦ(n+)H(x) denote the feature vectors defined by then-fold concate-
nation and then-fold union ofH, respectively, with the same assignmentsx to its leaves (see Figure 8
for an example). Clearly,

K(n◦)H(x,x′) = Φ(n◦)H(x) ·Φ(n◦)H(x′) =
(
KH(x,x′)

)n
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+

x21 x1

4◦

Figure 8: Shorthand for identical subgraphs. This defines the same feature vector as in Figure 6.

and
K(n+)H(x,x′) = Φ(n+)H(x) ·Φ(n+)H(x′) = nKH(x,x′).

In the table below we summarize the correspondence between regular operators and arithmetic
operations.

regular arithmetic

◦ concatenation × multiplication
+ union + sum
n◦ n-fold concatenation ∧n powern
n+ n-fold union ×n timesn

4.2 Allowing ∗-operations

Now we consider the general case where regular expressions have∗-operations. First let us clarify
how the digraph is defined by∗-operations. LetH1(s1,t1) be any digraph that is defined by a
regular expressionH1. Then we define the digraph forH = H∗

1 as in Figure 9: add a new sources,
an internal vertexu0 and a new sinkt, and connect withε-edges froms to u0, from t1 to u0, from
u0 to t and fromu0 to s1. For convenience we call themε1, ε2, ε3 andεH , respectively. The last
edgeεH is called therepeat edgeof H and will play an important role. Note that theε-edges are
newly introduced and there are no such symbols in the given regular expressionH = H∗

1. Actually
we can eliminate theε-edges by merging the five verticess, u0, s1, t1 andt into one vertex. We
introduce the dummyε-edges for the following three reasons.

∗

H1

H1

ε1

u0 s1

ε3

t1 ts

ε2

εH

Figure 9: The digraph defined byH = H∗
1. s1 andt1 are the source and the sink ofH1, respectively.

A new internal vertexu0 is introduced. The edgeεH is called the repeat edge ofH.

782



PATH KERNELS AND MULTIPLICATIVE UPDATES

1. The properties thats has no incoming edges andt has no outgoing edges are preserved.

2. There remains a one-to-one correspondence between the set of paths in the componentH and
the language that the regular expressionH produces. In particular, the trajectory of a pathP
in H excludingε transitions forms a symbol sequence thatH produces.

3. As we will see later, the kernel computation and weight updates forH1 can be made indepen-
dent of the larger component.

The kernelKH(x,x′) = ∑P∈P H ∏e∈Pxex′e can be calculated as before by traversing the syntax
tree (now with operations+, ◦ and∗) in postorder. The local operation done when completing the
traversal of a∗-node is as follows: WhenH = H∗

1 for some regular expressionH1, then

KH(x,x′) = xε1x
′
ε1

∞

∑
k=0

(
xεH x′εH

KH1(x,x′)xε2x
′
ε2

)k
xε3x

′
ε3

=
xε1x

′
ε1

xε3x
′
ε3

1−xεH x′εH
xε2x

′
ε2

KH1(x,x′)

if xεH x′εH
xε2x

′
ε2

KH1(x,x′) < 1 andKH(x,x′) = ∞ otherwise.

5. Using Path Kernels to Represent Weights

In this paper we describe algorithms that use the path weights as linear weights. Thedirect represen-
tation of the weights is the weight vectorW which has one componentWP per pathP. The indirect
representation of the weights is a weight vectorw on the edges for whichW = Φ(w). If the graph
has cycles, then the dimension ofW is countably infinite, and in the acyclic case the dimension of
W is typically exponential in the dimension ofw.

The predictions of the algorithms are determined by kernel computations. In the simplest case
there is a set of inputsxe to the edges and pathP predicts withXP = ∏e∈Pxe. The algorithm
combines the predictions of the paths by predicting with the weighted average of the predictions of
the paths or with a squashing function applied on top of this average. A typical squashing function
is a threshold function or a sigmoid function. The weighted average becomes the following dot
product:

∑
P

WPXP = ∑
P

(
∏
e∈P

we

)(
∏
e∈P

xe

)
= Φ(w) ·Φ(x) = K(w,x).

In a slightly more involved case, the prediction of pathP is the sum of the predictions of its edges,
i.e. ∑e∈P xe. Now the weighted average can be rewritten as

∑
P

WP ∑
e∈P

xe = ∑
P

∑
e∈P

(
∏
e′∈P

we′

)
xe = ∑

e∈E(G)
xe∑

P

(
∏
e′∈P

we′

)
I(e∈ P), (5.1)

whereI(true) = 1 andI(false) = 0. For edgee, let ue be edge weights defined as

ue
e′ =

{
1 if e′ 6= e,
0 if e′ = e.

Then, we can see that
I(e∈ P) = 1− ∏

e′∈P

ue
e′ .
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By plugging this into the r.h.s. of (5.1) we can again rewrite the weighted average using kernel
computations:

∑
P

WP ∑
e∈P

xe = ∑
e∈E(G)

xe∑
P

(
∏
e′∈P

we′ − ∏
e′∈P

we′u
e
e′

)
= ∑

e∈E(G)
xe(K(w,1)−K(w,ue)) , (5.2)

where 1 denotes the vector whose components are all 1. As before, the prediction of the algorithm
might be a squashed version of this average.

5.1 Probabilistic Weights

We will use the path kernel to represent a probabilistic weight vector on the paths, i.e.W = Φ(w) is
a probability vector. Thus we want three properties for the weights on the set of paths (by default,
all weights in this paper are non-negative):

P1 The weights should be inproduct form. That is,

WP = ∏
e∈P

we,

wherewe are edge weights.

P2 The outflow from each vertexu should be one. That is, for any vertexu of G,

∑
u′:(u,u′)∈E(G)

w(u,u′) = 1,

whereE(G) denotes the set of edges ofG.

P3 The total path weight is one. That is,

∑
P

WP = 1.

Note that the sum of Property P3 is over all paths ofG from the source to the sink. The three prop-
erties make it trivial to generate random paths: Start at the source and iteratively pick an outgoing
edge from the current vertex according to the prescribed edge probabilities until the sink is reached.
Property P3 guarantees that any random walk eventually goes to the sink. In other words, any vertex
u that is reachable from the source via a (partial) path of non-zero probability must also reach the
sink via such a path.

Note that our use of kernels (from this section onward) is highly unusual. When we used the
notationΦ(x) ·Φ(x′) before in Sections 2–4, thenx and x′ were always the same type of object
(input vectors corresponding to two different examples). In particular, the underlying assignment
of inputs to edges was the same for bothx andx′ (see discussion at the beginning of Section 2).
However now, when we writeΦ(w) ·Φ(x), thenΦ(.) is still the same feature map defined by a fixed
digraph, but the vectorsw andx are not the same type of object any more. Herew is a vector of edge
weights andx a vector of edge inputs, and their dot product might be the prediction of an algorithm.
Also, the Properties P1–3 hold forw, but not necessarily forx. For the rest of this paper, we will
use this type of “asymmetric” dot products between feature vectors. From now on, the vectorsw
andx always have dimension equal to the number of edges of the underlying graph and there is no
common assignment to inputs.
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5.2 Decomposable Multiplicative Updates

In this paper we restrict ourselves to updates that multiply each edge weight by a factor and then the
total weight of all paths is renormalized. LetWP be the old weight for pathP andW̃P the updated
weight. Assume that the old weights are in product form, i.e.WP = ∏e∈P we and letbe be the update
factor for edgee. Then updates must have the following form:

W̃P =
WP ∏e∈P be

∑PWP ∏e∈P be
= ∏e∈P webe

Φ(w) ·Φ(b)
. (5.3)

The normalization needs to be non-zero and finite. That is, we need the following property on the
edge factorsbe:

P4 The edge factorsbe are non-negative and

0 < ∑
P

WP ∏
e∈P

be < ∞.

Typically, the edge factors satisfy 0< be < 1, and in this case Property P4 is satisfied.
Note that the updated weights are not in product form any more. In the next section we will

give an algorithm that translates the above update (5.3) into an update of the edge weights so that
the new weights again have the product form and satisfy Properties P1–3 again. In this section we
discuss (at a high level) general update families that give rise to updates of the above form.

Consider the following update on the path weights

W̃P =
WPexp(−η`P)

∑PWP exp(−η`P)
, (5.4)

whereη is a non-negative learning rate and`P is the loss of pathP in the current trial. This is known
as theloss updateof the expert framework for on-line learning, where the paths are the experts. One
weight is maintained per expert/path and the weight of each expert decays exponentially with the
loss of the expert. The Bayes Update can be seen as a special case, when the loss is the log loss
(DeSantis et al., 1988). Another special case is the Weighted Majority algorithm (Littlestone and
Warmuth, 1994) (discrete loss). General loss functions were first discussed in the seminal work of
Vovk (1990). See Kivinen and Warmuth (1999) for an overview.

The loss update has the required form (5.3), if`P decomposes into a sum over the lossesle of
the edges ofP, i.e.

`P = ∑
e∈P

le andbe = exp(−ηle). (5.5)

For maintaining Property P4, it is sufficient to assume that for all pathsP, the losses̀ P are both
upper and lower bounded. The applications of Sections 7, 8 and 10 use the loss update, where the
loss of a path decomposes into a sum. In many cases, however, the loss does not decompose into a
sum. In Section 9, we discuss this issue in the context of learning disjunctions.

The loss update is a special case of the Exponentiated Gradient (EG) update (Kivinen and War-
muth, 1997), which is of the form

W̃P = WPexp

(
−η

∂λ
∂WP

)
/Z, (5.6)
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whereλ is the current loss of the algorithm (which depends on the weightsW) andZ renormalizes
the weights to one. Ifλ = ∑PWP`P, then ∂λ

∂WP
= `P, and the EG update becomes the loss update

(5.4).
So to obtain EG updates of the required form (5.3), we want the gradient of the loss to decom-

pose into a sum over the edges. The canonical case is the following. Assume that inputsx are given
to the edges, the prediction of a pathP is ∑e∈P xe, and the prediction of the algorithm is given by

ŷ = σ(â), whereâ = ∑
P

WP ∑
e∈P

xe (5.7)

and σ(.) is a differentiable squashing function (Recall that we showed in (5.2) how to write the
weighted path prediction ˆa as a sum of kernel computations.) Assume the lossλ measures the
discrepancy between the prediction ˆy and a target labely. That is,λ = `(y, ŷ), where` is a function
R ×R → R≥0 that is differentiable in the second argument. (A typical example is the square loss,
i.e. λ = `(y, ŷ) = (y− ŷ)2 = (y−σ(â))2.) With this form of the loss, the EG update becomes

W̃P = WP exp

(
−ηλ′ ∑

e∈P

xe

)
/Z, (5.8)

where

λ′ =
∂`(y,σ(a))

∂a

∣∣∣∣
a=â

.

For example, in the case of the square loss,4 we haveλ′ = 2σ′(â)(ŷ− y). Since the derivativeλ′
is constant with respect toP, the exponent decomposes into a sum over the edges. Thus in this
canonical case, the EG update (5.8) has the required form (5.3), where the edge factors are

be = exp
(−ηλ′xe

)
. (5.9)

In Section 9 we will use this form of the EG update for designing efficient disjunction learning
algorithms. The discrete loss for disjunctions does not decompose into a sum. However by using a
prediction of the form (5.7) and an appropriate loss function for our algorithm, we are in the lucky
situation where the gradient of this loss decomposes into a sum and our efficient methods are again
applicable.

The term “multiplicative update” is an informal term where each updated weight is proportional
to the corresponding previous weight times a factor. A more precise definition is in terms of the
regularization function used to derive the updates:Multiplicative updatesmust be derivable with a
relative entropy or an unnormalized relative entropy as the regularization (see Kivinen and Warmuth
1997 for a discussion, where these update are called EG and EGU updates, respectively). The
Unnormalized Exponentiated Gradient (EGU) update has the same form as the EG update (5.6)
except that the weights are not normalized.

Note that for the methodology of this paper, the update must have form (5.3), and if the algorithm
uses a prediction, then it must be efficiently computable via for example kernel computations.

4. The update can be used in slightly more general contexts when theσ(.) is not differentiable and̀(., .) is not differ-
entiable in its second argument. For example in Section 9, we will use a threshold function and the hinge loss.
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6. Weight Pushing Algorithm

The additional factorsb on the edges (from the multiplicative update (5.3)) mess up the three Prop-
erties P1–3. However there is an algorithm that rearranges the weights on the edges so that the
relative weights on the path remain unchanged but again have the three properties. This algorithm is
called theWeight Pushing algorithmdeveloped by Mehryar Mohri (1998) in the context of speech
recognition.

The generalized path kernelsKu will be used to re-normalize the path weights with the Weight
Pushing algorithm. Assume that the edge weightswe and the path weightsWP fulfill the three
Properties P1–3. Our goal is to find new edge weights ˜we so that the three properties are maintained.

A straightforward way to normalize the edge weights would be to divide the weights of the edges
leaving a vertex by the total weight of all edges leaving that vertex. However this usually does not
give the correct path weights (5.3) unless the product of the normalization factors along different
paths is the same. Instead, the Weight Pushing algorithm (Mohri, 1998) assigns the following new
weight to the edgee= (u,u′):

w̃e =
webeKu′(w,b)

Ku(w,b)
. (6.1)

Below we show that the three properties are maintained for the updated weightsW̃P andw̃e.

Theorem 1 Assume that the path weights W and the edge weights w fulfill the three Properties P1,
P2 and P3. LetW̃P be the updated path weight given by (5.3) andw̃e be the new edge weights given
by (6.1). Here we assume that Property P4 holds. Then,W̃ andw̃ fulfill the three Properties P1, P2
and P3.

Proof Property P3 follows from the definition (5.3) ofW̃P. Here Property P4 is needed to assure that
the normalization is positive. From (2.1), it is easy to see that the new weights ˜we are normalized,
i.e. Property P2 holds for any non-sink vertexu,

∑
u′:(u,u′)∈E(G)

w̃(u,u′) = 1.

Finally, Property P1 is proven as follows: LetP = {(u0,u1),(u2,u3), . . . ,(uk−1,uk)} be any path
from the sourceu0 to the sinkuk. Then by starting from (5.3) we get

W̃P =
WP ∏e∈P be

∑PWP ∏e∈P be

= ∏e∈Pwebe

Ksource(w,b)

= ∏e∈P webeKsink(w,b)
Ksource(w,b)

=
k

∏
i=1

w(ui−1,ui )b(ui−1,ui)Kui (w,b)
Kui−1(w,b)

= ∏
e∈P

w̃e.
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Recall that in Section 4 we showed how to speed-up the kernel computation when the digraph
is represented as a regular expression. In Appendix C we will implement the Weight Pushing
algorithm on syntax diagrams for regular expression. The first algorithm is linear in the size of the
regular expression. We then give sub linear algorithms for computing the dot productΦ(w) ·Φ(x)
when most of thexe are one, and for implementing the Weight Pushing algorithm when most of the
factorsbe are one.

Before we begin with applications of our methods in the next section, we describe the Weight
Pushing algorithm for the subset kernel given in Section 3: See regular expression (3.1) and the
digraph of Figure 2. This example might give an idea how the Weight Pushing algorithm can be
implemented on regular expressions. Assume that the factorsben+i are all one. By Property P2 we
havewen+i = 1−wei . So each pair of edgesei anden+i contributes a factor 1−wei + wei bei in the
kernel computation (see the footnote of p. 777). More generally, ifuj is the vertex at which thej-th
pair is starting, then

Kuj (w,b) = ∑
P∈P (uj )

∏
e∈P

webe =
n

∏
i= j

(1−wei +wei bei ) .

With this we see that the ratio of kernels in (6.1) cancel, except for the factor belonging to thej-th
pair, and

w̃ej = wej bej /(1−wej +wej bej ) andw̃en+ j = (1−wej )/(1−wej +wej bej ). (6.2)

This re-normalization of the weights will be used in the BEG algorithm for learning disjunctions
(Section 9).

7. A Dynamic Routing Problem

In the subsequent sections we show various applications of our method. In particular, in this and
the next sections we discuss two on-line network routing problems. Assume that we want to send
packets from the source to the sink (destination) of a given digraph (network). For each trialt, we
assign transition probabilitieswt,e to the edges that define a probabilistic routing. Starting from the
source we choose a random pathP to the sink according to the transition probabilities and try to send
the packet along the path. But some edges (links) may be very slow due to network congestion. The
goal is to find a protocol that is competitive with the optimal static routing chosen in the hindsight.
Note that we make no assumptions on how the traffic changes in time. In other words we seek
guarantees that hold for arbitrary network traffic. There are several ways to define the “resistance”
of an edge as well as the throughput of a protocol. In this section, the resistance is the success
probability of transferring the packet along the edge, and the throughput of a protocol is measured
by the total success probability of sending all packets from the source to the sink. In the next section,
the resistance and the throughput are defined in terms of the time it takes for a packet to traverse a
link rather than the success probability.

There is a large body of research on competitive routing. Typically, edges have limited capacities
and the problem is to find an “efficient” routing protocol subject to the capacity constraints. In most
cases, a reliable network is assumed in the sense that the network parameters do not adaptively
change (see e.g. Leonardi 1998, Awerbuch et al. 2001, Aiello et al. 2003). So some aspects of
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our model are new and may be more appropriate for networks operating in a strongly adversarial
environment. Below we give the problem formally.

In each trialt = 1,2, . . . ,T, the following happens:

1. At the beginning of the trial, the algorithm has transition probabilitieswt,e∈ [0,1] for all edges
e, such that Properties P1–3 hold.

2. Conductancesdt,e ∈ [0,1] for all edges are given. LetXt denote the event that the current
packet is successfully sent from the source to the sink. Assuming independence between con-
ductances of individual edges, the probability that the current packet is sent along a particular
pathP becomes

Pr(Xt | X1, . . . ,Xt−1,P) = ∏
e∈P

dt,e. (7.1)

3. A random pathP is chosen with probabilityWt,P = ∏e∈P wt,e. The success probability at this
trial is

at = ∑
P

Wt,P Pr(Xt | X1, . . . ,Xt−1,P) = Φ(wt) ·Φ(dt).

4. The path weightsWt,P are updated indirectly toWt+1,P by updating the edge weightswt,e to
wt+1,e, while maintaining Properties P1–3.

The goal is to make the total success probability∏T
t=1at as large as possible.

In the feature space we can employ the Bayes algorithm. The initial weights are interpreted
as a prior for pathP, i.e. Pr(P) = W1,P = ∏e∈Pw1,e. We assume that the initial edge weights
w1,e are chosen so that Properties P1–3 are satisfied andW1,P > 0 for all pathsP. Then the Bayes
algorithm sets the weightWt+1,P as a posterior ofP given the input packetsX1, . . . ,Xt observed so
far. Specifically, assumingWt,P = Pr(P | X1 . . .Xt−1), then the Bayes algorithm updates the path
weights as

Wt+1,P = Pr(P | X1, . . . ,Xt)

=
Wt,P Pr(Xt | X1, . . . ,Xt−1,P)

∑PWt,P Pr(Xt | X1, . . . ,Xt−1,P)

=
Wt,P ∏e∈P dt,e

∑PWt,P ∏e∈P dt,e
. (7.2)

Here we assume that at least one static routingP has positive success probability, i.e., Pr(X1, . . . ,XT |
P) > 0. This assumption implies that Property P4 holds and the denominator of (7.2) is always
positive. Note that this update has the required form (5.3), where thedt,e function as update factors
to the edges. Thus the Weight Pushing algorithm can be used to update the edge weightswt,e to
wt+1,e. Below we show that the Bayes algorithm achieves the best possible competitive ratio against
the optimal static routing.

Theorem 2 The Bayes algorithm guarantees the following performance.

T

∏
t=1

at = ∑
P

W1,P Pr(X1, . . . ,XT | P)≥max
P

W1,P Pr(X1, . . . ,XT | P).
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On the other hand, for any protocol there exist conductances such that

T

∏
t=1

at ≤max
P

W1,P Pr(X1, . . . ,XT | P).

Proof First we analyze the throughput of the Bayes algorithm. Repeatedly applying Bayes rule, we
have

T

∏
t=1

at =
T

∏
t=1

Pr(X1, . . . ,Xt)
Pr(X1, . . . ,Xt−1)

= ∑
P

W1,P Pr(X1, . . . ,XT | P),

which implies the first part of the theorem.
Next we consider a strategy for the adversary. Fix a simple pathP∗ arbitrarily, and for any trial

t, let dt,e = 1 if e∈ P∗ anddt,e = 0 otherwise. Then, sinceat = Wt,P∗ for anyt, we have

T

∏
t=1

at =
T

∏
t=1

Wt,P∗ ≤W1,P∗ = max
P

W1,P Pr(X1, . . . ,XT | P).

Note that the bound∑PW1,P Pr(X1, . . . ,XT | P) for the Bayes algorithm is usually much larger
than that for the static routing with the initial prior, which is expressed as∏T

t=1 ∑PW1,P Pr(Xt |
X1, . . . ,Xt−1,P). For example, consider the conductances used to show the lower bound of the above
theorem. In this case, the Bayes algorithm has constant boundW1,P∗ , whereas the static routing has
exponentially smaller boundWT

1,P∗ .
Note that in this simple example, the algorithm did not produce a prediction in each trial. How-

ever, note that the success probability can be expressed as a kernel computation. Also, if we define
the loss of pathP at trial t as`t,P =− lnPr(Xt |X1 . . .Xt−1,P), then by (7.1) this loss decomposes into
a sum over the edges, i.e.`t,P = ∑e∈P− ln(dt,e). Now, for learning rateη = 1, Bayes rule (7.2) be-
comes an example of a decomposable loss update (5.4), (5.5), where the independence assumption
on the acceptance probabilities of the edges (7.1) caused the negative log likelihood to decompose
into a sum.

8. On-line Shortest Path Problem

In this section we letdt,e denote the time it takes thet-th packet to travel along the edgee. The
throughput of a protocol is measured by the total amount of time it takes to send all packets from
the source to the sink. Equivalently, we can interpretdt,e as the distance of edgee at trial t. Our
overall goal is to make the total length of travel from the source to the sink not much longer than the
shortest path of the network based on the cumulative distances of all packets for each edge. We call
this problem the on-line shortest path problem. We prove a bound for an algorithm and then return
to the digraph that defines the subset kernel. For this type of graph there is an improved bound. For
our bounds to be applicable, we require in this section that the digraphG defining the network is
acyclic. This assures that all paths have bounded length.

In each trialt = 1,2, . . . ,T, the following happens:

1. At the beginning of the trial, the algorithm has transition probabilitieswt,e∈ [0,1] for all edges
e, such that Properties P1–3 hold.
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2. Distancesdt,e∈ [0,1] for all edges are given.

3. The algorithm incurs a lossλt which is defined as the expected length of path ofG. That is,

λt = ∑
P

Wt,P`t,P,

where
`t,P = ∑

e∈P

dt,e (8.1)

is the length of the pathP, and this is interpreted as the loss ofP.

4. The path weightsWt,P are updated indirectly toWt+1,P by updating the edge weightswt,e to
wt+1,e, respectively, while maintaining Properties P1–3.

Note that the length̀t,P of pathP at each trial is upper bounded by the number of edges inP. Letting
D denote the depth (maximum number of edges ofP) of G, we havè t,P ∈ [0,D]. Note that the path
P minimizing the total length

T

∑
t=1

`t,P =
T

∑
t=1

∑
e∈P

dt,e = ∑
e∈P

T

∑
t=1

dt,e

can be interpreted as the shortest path based on the cumulative distances of edges:∑T
t=1 dt,e. The

goal of the algorithm is to make its total loss∑T
t=1λt not much larger than the length of the shortest

path.
Considering each pathP as an expert, we can view the problem above as a dynamic resource al-

location problem introduced by Freund and Schapire (1997). So we can apply theirHedge algorithm
which is a reformulation of theWeighted Majority algorithm(see WMC and WMR of Littlestone
and Warmuth, 1994). LetW1,P = ∏e∈P w1,e be initial weights for paths/experts. Note that since
the graph is acyclic with a unique sink vertex, the initial weightsW1,P sum to 1 and Property P3 is
satisfied. At each trialt, when given losses̀t,P ∈ [0,D] for paths/experts, the algorithm incurs loss

λt = ∑
P

Wt,P`t,P

and updates weights according to

Wt+1,P =
Wt,Pβ`t,P/D

∑P′Wt,P′β`t,P′/D
, (8.2)

where 0≤ β < 1 is a parameter. Note that this is the loss update (5.4), where we use theβ parameter
instead of the learning rate parameterη (andη = (− lnβ)/D). Since the loss (8.1) decomposes,
the update has the required form (5.3), and the Weight Pushing algorithm can be used to update the
edge weights using the update factorsbt,e = βdt,e/D. Property P3 for the weightsWt,P guarantees the
existence of a path for whichWt,P > 0. Since the update factors are all positive, the normalization
in the above update is positive and Property P4 is satisfied. As in the example of the last section,
the Hedge algorithm does not predict. But by (5.2), the lossλt can be computed using kernel
computations.
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For the rest of this section we discuss bounds that hold for the Hedge algorithm. It is shown
by Littlestone and Warmuth (1994) and Freund and Schapire (1997) that for any sequence of loss
vectors for the experts, the Hedge algorithm guarantees5 that

T

∑
t=1

λt ≤min
P

(
ln(1/β)
1−β

T

∑
t=1

`t,P +
D

1−β
ln

1
W1,P

)
. (8.3)

Below we give a proof of (8.3) with a more sophisticated form of the bound.
Fix an arbitrary probability vectorU on the paths. Letd(U ,Wt) = ∑PUP ln(UP/Wt,P) denote the

relative entropy betweenU andWt . Looking at the progressd(U ,Wt)−d(U ,Wt+1) for one trial,
we have

d(U ,Wt)−d(U ,Wt+1) = ∑
P

UP ln(Wt+1,P/Wt,P)

= ∑
P

UP ln
β`t,P/D

∑P′Wt,P′β`t,P′/D

=
lnβ
D ∑

P

UP`t,P− ln∑
P

Wt,Pβ`t,P/D.

Since`t,P/D ∈ [0,1] and 0≤ β < 1, we haveβ`t,P/D ≤ 1− (1− β)`t,P/D. Plugging this into the
second term, we have

ln∑
P

Wt,Pβ`t,P/D ≤ ln

(
1− (1−β)∑

P

Wt,P`t,P/D

)

= ln(1− (1−β)λt/D)
≤ −(1−β)λt/D.

Thus

d(U ,Wt)−d(U ,Wt+1)≥ lnβ
D ∑

P
UP`t,P +

1−β
D

λt .

Summing this over allt’s we get

d(U ,W1)≥ d(U ,W1)−d(U ,WT+1)≥ lnβ
D ∑

P
UP

T

∑
t=1

`t,P +
1−β

D

T

∑
t=1

λt ,

or equivalently,
T

∑
t=1

λt ≤ ln(1/β)
1−β ∑

P

UP

T

∑
t=1

`t,P +
D

1−β
d(U ,W1). (8.4)

If U is the unit vector that attains the minimum of the right hand side, we have (8.3).

5. In the references the losses of experts are upper bounded by one at each trial, while in our case they are upper bounded
by D. So the second term of the loss bound in (8.3) has the factorD.
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8.1 Improved Bounds for Hierarchically Constructed Digraphs

Unfortunately, the loss bound (8.4) depends on the depthD of G. Thus for graphs of large depth or
for cyclic graphs, the bound is vacuous. In some cases, however, we can prove bounds where the
depthD is replaced with a much smaller depth than the depth of the entire graphG.

Theorem 3 Assume that a graph G is a series composition of acyclic digraphs H1, . . . ,Hn. Note
that each component graph Hi is not necessarily a SP digraph. Let D be the maximum depth of a
component. Then, the Hedge algorithm using the update rule (8.2) guarantees that

T

∑
t=1

λt ≤ ln(1/β)
1−β ∑

P

UP

T

∑
t=1

`t,P +
D

1−β
d(U ,W1).

Proof We use the convention thatΦHi (x) denotes the feature vector based on the paths ofHi. As in
the case of SP digraphs, we have

Φ(wt) ·Φ(bt) =
n

∏
i=1

ΦHi (wt) ·ΦHi (bt),

wherebt,e = βdt,e/D. Therefore

ln∑
P

Wt,Pβ`t,P/D = lnΦ(wt) ·Φ(bt)

=
n

∑
i=1

lnΦHi (wt) ·ΦHi (bt)

=
n

∑
i=1

ln ∑
P∈P Hi

Wt,Pβ`t,P/D

≤
n

∑
i=1

−(1−β)λt,i/D

= −(1−β)λt/D,

whereλt,i = ∑P∈P Hi Wt,P`t,P is the expected length of the partial paths throughHi andλt = ∑n
i=1λt,i .

Using the same technique as in the previous proof, we get the theorem.

For example, let us return to the digraph that defines the subset kernel (Figure 2). The graph is a
series composition ofn two-vertex graphs, where there are two parallel edges connecting the pairs
of vertices. Note that although the depth of the whole graph isn, each component graph has depth
constant one. So, the Hedge update (8.2) withD = 1 leads to a bound that does not depend on the
depth of the entire graph.

9. Learning Disjunctions and Conjunctions

In this section we give a high-level discussion of on-line algorithms for learning disjunctions and
conjunctions. All algorithms we present are known. We start with inefficient algorithms that have
excellent mistake bounds. However, we show how upper bounding the discrete loss by a loss that
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decomposes into a sum lets us apply the path kernel methodology introduced in this paper. By
choosing an appropriate digraph for each case, the weight pushing algorithm realizes all knowneffi-
cientalgorithms for learning disjunctions. The price for the gained efficiency is a slight degradation
of the mistake bounds.

At each trial a binary instance vectorxt ∈ {0,1}n is given to the algorithm. After the algorithm
produces a binary prediction ˆyt , it receive a binary labelyt and incurs discrete loss|ŷt − y| (also
binary). The goal is to design algorithms whose loss (or number of prediction mistakes) is not much
worse than the loss of the best conjunction or disjunction of a given sizek, wherek is typically much
smaller than the number of variablesn. The Winnow algorithm was the first efficient algorithm for
learning disjunction (Littlestone, 1988). Here we motivate two alternate algorithms and also briefly
discuss Winnow. All these algorithms spendO(n) time to predict and update their weights and their
loss bounds grow linearly ink and logarithmic inn.

We begin by discussing an algorithm for learning conjunctions. Recall the subset kernel of
Kivinen and Warmuth (1997) introduced in Section 3 (the path kernel associated with Figure 2).
Assume that the bottom edgeei receive inputxt,i and the top edgesen+i all receive input one and
function asε edges. Each path featureXt,P is the product over the inputs along the path. More
precisely,Xt,P = Xt,A = ∏i∈Axt,i , whereA is the subset of indices in{1, . . . ,n} corresponding to the
bottom edges ofP. So the subset featureXt,A predicts as the conjunction over the variables with
indices inA and|y−Xt,A| is the discrete loss of conjunctionA on the example(xt ,yt).

One approach is to maintain a weightWt,A per subsetA and predict with ˆyt = σθ(at), where
at = ∑AWt,AXt,A andσθ(.) is the{0,1}-valued threshold function with thresholdθ. Here we choose
θ = 1/2. Assume the weights are updated multiplicatively using the loss update, i.e.

Wt+1,A =
Wt,A exp(−η|yt −Xt,A|))

Zt
, whereZt normalizes the total weight to 1.

Since the loss function is the discrete loss, this is an application of the Weighted Majority algo-
rithm (Littlestone and Warmuth, 1994). Using methods similar to what was used in Section 8, it is
easy to prove6 a mistake bound ofO(k lnn+ m∗), wherem∗ is the number of mistakes of the best
conjunction of sizek.

Unfortunately, the algorithm is inefficient since it maintains 2n weights. Moreover, it was es-
sentially shown by Khardon, Roth, and Servedio (2001) that computing the predictions for this type
of update7 is #P-hard. Our efficient methods do not apply because the discrete loss|yt −∏i∈Axt,i |
does not decompose into a sum.

So how do we obtain an efficient learning algorithm for conjunctions? One way is to use additive
algorithms such as the Perceptron algorithm together with the subset kernel. The additive algorithms
for solving the same problem are efficient, but the bounds are much weaker (linear inn instead of
logarithmic) (see discussion by Kivinen and Warmuth 1997, Kivinen et al. 1997, Khardon et al.
2001).

We now develop efficient multiplicative algorithms. For convenience, let us switch to learning
disjunctions (Because of de Morgan’s law, the learning problems for conjunctions and disjunctions

6. Choose the priorW1,A so that for each size, the total weight of all conjunction of that size is 1/n.
7. Khardon, Roth, and Servedio (2001) call the subset kernel the “monomial kernel”. Hardness was shown for comput-

ing the predictions of Winnow when there is one weight per conjunction. This is essentially an unnormalized version
of the update discussed here.
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ââ

(1) y = 0 (2)y = 1

θ θ

Figure 10: The hinge lossλ = |y−σθ(â)| |θ− â| as functions of ˆa.

are equivalent.) Now the loss of disjunctionA on example(xt ,yt) becomes

`t,A = |yt − I(∑
i∈A

xt,i ≥ 1)|,

whereI(true) = 1 andI(false) = 0. Again, this discrete loss does not decompose and we cannot
implement the loss update efficiently.

However, we now modify our setup. We let each disjunction predict with∑i∈Axt,i instead of
I(∑i∈A xt,i ≥ 1). The weighted average prediction is now ˆat = ∑AWt,A ∑i∈A xt,i and the algorithm
predicts with ˆyt = σθ(ât), where the thresholdθ is suitably chosen. For a moment let us assign the
following loss to the algorithm

λt = |yt −σθ(ât)| |θ− ât |= `(yt , ŷt).

So when ˆyt = yt , then this loss is zero. But whenyt 6= ŷt , it is linear in ât . This is thelinear hinge
loss used for motivating Support Vector Machines (Cristianini and Shawe-Taylor, 2000, Gentile
and Warmuth, 1998). See Figure 10 to see how the hinge loss behaves with respect to the linear
activationât . Note that the weighted average prediction ˆat and the hinge lossλt are of the canonical
form we discussed in Section 5.2. So the derivative∂λt

∂Wt,A
= λ′t ∑i∈A xt,i decomposes into a sum with

λ′t = ∂`(yt ,σθ(â)/∂â|â=ât
= ŷt − yt (see Figure 10), and the EG update (5.8) has the required form

(5.3), with bt,e = exp(−η(ŷt − yt)xt,e). Now we can indirectly represent the weight vectorWt for
the 2n subsets by maintaining a weight vectorwt on the 2n edges, so thatWt = Φ(wt) whereΦ(.) is
the feature map of the subset kernel. We efficiently update the weightswt using the Weight Pushing
algorithm on the digraph of Figure 2 (See update (6.2) and discussion at the end of Section 6). The
weighted average ˆat can be expressed in term of kernel computations (5.2). However, for the the
special case of the subset kernel it follows from (5.1) that ˆat = ∑i wt,ei · xt,i . Hence the prediction
ŷt is easy to compute. The algorithm described above is called the Binary Exponentiated Gradient
algorithm (BEG algorithm, for short) for learning disjunctions (Bylander, 1997, Helmbold, Panizza,
and Warmuth, 2002).

Recall that the mistake bounds provable for the inefficient disjunction learning algorithm are
linear inm∗, the minimum number of mistakes of anyk-literal disjunction. All efficient disjunction
learning algorithm are linear ina∗ instead, wherea∗ is the minimum number of bits/attributes that
have to be flipped in all examples(xt ,yt), so that there is a disjunction of sizek that agrees with all
labelsyt . More precisely the mistake bound of the efficient disjunction learning algorithm all have
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the formO(k lnn+ a∗). This includes BEG when the thresholds and learning rate is appropriately
chosen (see Theorem 5 of Helmbold et al. 2002). Note thata∗ might be up to a factor ofk larger
thanm∗. So there is a price we have to pay for moving from the discrete loss to the decomposable
hinge loss which leads to the more efficient algorithms.

The hinge loss can also be used to derive the normalized Winnow algorithm.8 However now a
slightly different kernel must be used corresponding to the regular expression

(e1,1 +e1,2 + . . .e1,n)(e2,1 +e2,2 + . . .e2,n) . . . (en,1 +en,2 + . . .en,n),

where the edgese∗,i receive inputxi (i.e. xe∗,i = xi). A pathP = {e1,i1 ,e2,i2, . . . ,en,in} corresponds
to the disjunction with index set{i1, i2, . . . , in}. Note that now many paths represent the same
disjunction. We follow the same derivation as for BEG. Instead of letting pathP predict with
I(∑e∈P xt,e≥ 1) and using the discrete loss

`t,P = |yt − I(∑
e∈P

xt,e≥ 1)|,

we use a different prediction and the hinge loss. We let the pathP predict with∑n
e∈P xt,e, and use the

loss
λt = |yt −σθ(ât)| |θ− ât |, whereât = ∑

P

Wt,P ∑
e∈P

xt,e.

Again the loss decomposes. Assume that all edgesej,i are assigned the same initial weightw1,ej,i =
1/n. Then, since for any trialt all edgese∗,i receive the same factorbt,e∗,i = exp(−η(ŷ−y)xt,i), the
Weight Pushing algorithm keeps their weightswt,e∗,i the same. Letwt,i denote these weights. Now
the Weight Pushing algorithm updates the weights as follows:

wt+1,i =
wt,ibt,i

∑n
j=1wt, j bt, j

, wherebt,i = exp(−η(ŷ−y)xt,i) .

Also the prediction simplifies to the following:

ât = n∑
i


wt,ixt,i

(
∑

j

wt, j

)n−1

 (9.1)

= n∑
i

wt,ixt,i ,

because∑ j wt, j = 1 for Normalized Winnow. The constantn can be incorporated into the threshold.
See Theorem 9 of Helmbold et al. (2002) for the settings of the learning rate and threshold that lead
to theO(k logn+ a∗) bound for Normalized Winnow, wherea∗ is as before the minimum number
of bits/attributes that have to be flipped in all examples(xt ,yt), so that there is a disjunction of size
k that agrees with all labelsyt .

The Winnow algorithm can also be derived using the hinge loss and the same kernel as Normal-
ized Winnow. The only difference is that the weights are not normalized and the Weight Pushing
algorithm is not needed. However now, we do not know how to motivate the prediction of the
Winnow algorithm because (9.1) does not simplify (since∑i wt,i might not be one).

8. This algorithm is due to Nick Littlestone and was discussed for the first time with the authors in 1995.
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The weights of the BEG algorithm have a probabilistic interpretation as representingn indepen-
dent Bernoulli coins. Similarly, normalized Winnow corresponds to ann fold multinomial distribu-
tions. No probabilistic interpretation is known for the original Winnow9 (see Helmbold et al. 2002
for a discussion).

Finally, for most of this section we focused on efficient algorithms for learning disjunctions
of monotone literals. Going from the discrete loss to the hinge loss allowed us to use one weight
per literal instead of one weight per disjunction. When the base functions are conjunctions instead
of single literals then the same motivation leads to algorithms for learning Boolean functions in
Disjunctive Normal Form (DNF). Now going from the discrete loss to the hinge loss allows us to use
one weight per conjunctions instead of one weight per DNF formula. For example, the algorithm
we started with in this section with its threshold moved toθ = 1

k now becomes the Normalized
Winnow algorithm for learning monotone DNF formulas with up tok terms. Its mistake bound is
O(kn+a∗), but it maintains 2n weights. See Maass and Warmuth (1998), Khardon et al. (2001) for
related discussions.

10. Predicting Nearly as Well as the Best Pruning

One of the main representations of Machine Learning is decision trees. Frequently a large tree
is produced initially and then this tree is pruned for the purpose of obtaining a better predictor.
A pruning is produced by deleting some vertices in the tree and with them all their successors.
Although there are exponentially many prunings, a recent method developed in coding theory and
machine learning makes it possible to maintain one weight per pruning. In particular, Helmbold and
Schapire (1997) use this method to design an elegant multiplicative algorithm that is guaranteed
to predict nearly as well as the best pruning of a decision tree in the on-line prediction setting.
Recently, the authors (Takimoto and Warmuth, 2002) generalize the pruning problem to the much
more general class of acyclic planar digraphs. The key property of planar digraphsG that is used in
the previous paper is the following: There is a dual digraphGD such that prunings of the originalG
are paths in the dualGD and vice versa. In particular, for SP digraphs (a subclass of planar digraphs),
the dual digraphs are easily obtained by swapping the union and the concatenation operations in the
syntax tree. In this section we restate this result in terms of path kernels on SP digraphs.

A pruning of a SP digraphG is a minimal set of edges (a cut) that interrupts all paths from the
source to the sink. More precisely, a pruningR of G is a set of edges ofG such thatR intersects
with any pathP∈ P (G) at exactly one edgeP∩R (see Figure 11). In the example of Figure 4, all
the prunings of the graph are{e1,e2,e3,e6}, {e1,e4,e5,e6}, {e1,e7}. In general, we letR (G) be the
set of all prunings ofR. Now we give the problem formally. In the following we fix a loss function
` : [0,1]× [0,1] → [0,∞], say, the square loss`(y, ŷ) = (y− ŷ)2.

In each trialt = 1,2, . . . ,T, the following happens:

1. Prediction valuesxt,e ∈ [0,1] are given to the edgese of a single pathPt ∈ P (G) called the
prediction path. Typically this path is generated by some decision process that passes down
the graph. Here we do not need to be concerned with how the prediction pathPt is generated.

2. Each pruningR∈ R (G) is assumed to predict as the edge that cuts the pathPt . That is,R
predictsxt,Pt∩R.

9. Winnow belongs to the family of Unnormalized Exponentiated Gradient algorithms (Kivinen and Warmuth, 1997).
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SP digraph

R

Pt

sink

Pt∩R

source

Figure 11: Any pruningR of the digraph intersects with pathPt at exactly one edge, denoted by
Pt ∩R.

3. The algorithm maintains a weight per pruning and makes its own prediction ˆyt ∈ [0,1] based
on the weighted average of the predictions of all prunings (details are given below).

4. An outcomeyt ∈ [0,1] is observed.

5. The algorithm incurs lossλt = `(yt , ŷt). Similarly a pruningR incurs loss̀ t,R = `(yt ,xt,Pt∩R).

The goal is to make the total loss of the algorithm not much larger than the total loss of the best
pruning.

First we describe an algorithm that works on the feature space. The algorithm is based on the
Weighted Averaging algorithm (the WA algorithm, for short). The WA algorithm maintains a weight
Wt,R per pruningR. (Here we use the upper case letterWt,R to denote the weights of prunings. In
a moment we will see that these weights become product features.) In each trialt, the algorithm
predicts with the weighted average of the predictions of the prunings. That is,

ŷt = ∑
R

Wt,Rxt,Pt∩R.

After the outcomeyt is observed, the weights on the prunings are updated using the familiar loss
update

Wt+1,R =
Wt,Rexp(−η`t,R)

∑RWt,Rexp(−η`t,R)
,

whereη is a non-negative learning rate. The WA algorithm guarantees the following performance
(Kivinen and Warmuth, 1999): Assume that for any fixedy∈ [0,1], the function fy : [0,1] → [0,1]
defined as

fy(x) = exp(−η`(y,x)) (10.1)

is concave. Then, it holds that

T

∑
t=1

λt ≤min
R

(
T

∑
t=1

`t,R+(1/η) ln
1

W1,R

)
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Figure 12: The dual SP digraphGD of G of Figure 4 and its syntax tree.G is represented by open
circles and solid lines, andGD is by closed circles and dashed lines. Observe that each
edge ofGD intersects with exactly one edge ofG. We use the same symbol for these
edges. The syntax tree ofGD is obtained by swapping the+ and◦ in the syntax tree of
G.

whereW1,R is the initial weight forR. Note that the condition on the concavity of the functions
(10.1) is satisfied by many convex loss functions for an appropriate choice ofη. For example,
the square loss satisfies the condition withη ≤ 1/2. The higher the learning rateη, the better the
bound. Higher learning rates are permissible with the fancier prediction functions developed by
Vovk (1990). Here we only discuss the simplest case of predicting with the weighted average (see
Kivinen and Warmuth (1999) for an overview). More sophisticated version of the above bound
using relative entropies (as done in Section 8) are easily obtainable.

Now we give an efficient implementation of this algorithm in terms of path kernels. Consider
the dual SP digraphGD which is defined by swapping the+ and◦ operations in the syntax tree.
Note that prunings and paths inG are swapped inGD, namely, a pruningR in G is a path inGD and
the pathP in G is a pruning inGD (Takimoto and Warmuth, 2002). See Figure 12 for an example.

The efficient implementation maintains weightswt on the edges ofGD such that the weight of
pathR in GD is Wt,R = ∏e∈Rwt,e. If ΦD(.) is the feature map associated with the path kernel of
GD, then we use this map to indirectly represent the weights on the prunings ofG via weights on
the edges, i.e.Wt = ΦD(wt). We can also represent the predictions of the prunings using the same
feature map. At trialt, the inputsxt,e are assigned only to the edges of pathPt . We extend the inputs
to all edges by lettingxt,e = 1 for e 6∈ Pt and usext to denote the entire input vector over the edges.
Now the value of featureXt,R is its prediction, i.e.

Xt,R = ΦD(xt)R = ∏
e∈R

xt,e = xt,Pt∩R.

So the prediction ˆyt of the algorithm becomes ˆyt = Wt ·Xt = ΦD(wt) ·ΦD(xt), which is efficiently
computed by the path kernel ofGD.

If we define the loss of edgeeat trial t aslt,e = `(yt ,xt,e), if e∈ Pt , andlt,e = 0, if e /∈ Pt , then the
loss of pathR decomposes into a sum:`t,R = `(yt ,xt,Pt∩R) = ∑e∈Rlt,e. Thus the above loss update
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has the required form (5.3)

Wt+1,R =
Wt,R∏e∈Rexp(−η∑e∈Rlt,e)

∑RWt,Rexp(−η∑e∈Rlt,e)
= ∏e∈Rwt,ebt,e

Φ(wt) ·Φ(bt)
,

wherebt,e = exp(−ηlt,e), if e∈ Pt , and one otherwise. Hence instead of directly maintaining the
weightsWt on the prunings, we can efficiently update the edge weightswt using the Weight Pushing
algorithm on the digraphGD.

In Appendix C.3 we give an efficient implementation for computing kernels and the Weight
Pushing algorithm. The algorithm does not maintain a vector of edge weightsw for the given
digraph (hereGD) but instead maintains a vector of edge weightsµ for the syntax tree of the regular
expressionH0 that describes the path set of the digraph. More precisely, for each union nodeH =
H1 + · · ·+Hk of the syntax tree, we maintain weightsµH

i for 1≤ i ≤ k (Herek is called the degree
of H). These new weights implicitly define a probability vectorW on the path set of the digraph via
the following stochastic process for traversing the syntax tree forH0: Start from the root; if we are
at a concatenation node, then we go to all of its children; if we are at a union nodeH, then choose a
child nodeHi with probability µH

i and go toHi; finally all the leaves we visit form a pathR∈ P H0,
and the weightWR is defined as the probability that the pathR is chosen by this process. (Recall that
H0 generates the path set ofGD that are the pruning set ofG.) In Appendix C.3 we treat the general
case where∗-operations are allowed as well.

For a given inputx to the edges, a nodeH of the syntax tree isrelevantwith respect tox if H
has a descendant leaf with input not equal one. We will show in the appendix that the algorithm
computes kernels in time linear in the number of relevant nodes and computes the new weights ˜µ
in time linear in the sum of the degrees of relevant union nodes. (Recall that we have probabilistic
weightsµH

i only for union nodesH. Even if only one child node ofH is relevant, the weightsµH
i

of all children ofH will be affected by the update. This is why the time for updating weights is
proportional to the sum of the degrees of relevant union nodes.)

We now return to the on-line pruning problem of this section. Note that we work on the syntax
tree for the dual graphGD. Recall that for each trialt the algorithm is given the prediction pathPt in
G which is a pruning ofGD. We claim that for a given pruningPt of GD, the sum of the degrees of
relevant union nodes of the syntax tree isO(|Pt |). To show this, we give a proof for the dual version
of the claim, which we hope is easier to understand. Now the claim can be restated as follows: For
a given pathPt of the primal graphG, the sum of the degrees of relevantconcatenationnodes of
the syntax tree forG is O(|Pt |). Without loss of generality we assume that all the inputsxe on the
pathPt (e∈ Pt) are not one since this assumption only increases the relevant nodes. For any nodeH
of the syntax tree, let deg(H) denote the sum of the degrees of relevant concatenation nodes of the
subtree rooted atH. Furthermore, letPH ∈ P H denote the partial path ofPt that goes through the
componentH, that is,PH = E(H)∩Pt, whereE(H) denotes the edge set ofH. Note thatPH becomes
a path ofH. Below we show by induction that for any relevant nodeH, deg(H)≤ 2|PH |−2, which
proves the claim. For the base case, whereH = e for some edge symbole, the claim trivially
holds. If H = H1 + · · ·+ Hk, then the pathPH is a pathPHi ∈ P Hi and deg(H) = deg(Hi) for
someHi. So by the induction hypothesis the claim holds. Finally assumeH = H1◦ · · · ◦Hk. Note
that without loss of generality we assumek ≥ 2. In this case, the pathPH goes through all the
componentsH1, . . . ,Hk and thusPH is of the formPH = PH1∪·· ·∪PHk. So all the childrenHi of H
are also relevant. Clearly, deg(H) = k+ ∑k

i=1 deg(Hi). By the induction hypothesis, this is at most
k+ ∑k

i=1

(
2|PHi |−2

)
= 2|PH |−k≤ 2|PH |−2, which completes the claim.
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Figure 13: A tree (left) can be viewed as a SP digraphG (middle) by introducing the source and
the sink and merging all leaves into one sink. The syntax tree of the dualGD is given
(right). Each union node (for exampleH) corresponds to an internal edge(u,u′) of G.

In summary, applying the algorithm given in Appendix C.3 to the on-line pruning problem of
this section, we can compute the prediction value ˆyt and the new weightsµt+1 in O(|Pt |) time. This
can be significantly faster than the original Weight Pushing algorithm, especially when the given SP
digraph has a small depth.

Finally we note that any tree can be interpreted as a SP digraph by merging all leaves into one
sink. Moreover, if the given SP digraphG is a tree in this sense, we give an interesting interpretation
for the weightsµ (see Figure 13). For simplicity we assume that any vertex other than the root of
the treeG has degree more than one. Then each union nodeH of the syntax tree forGD has always
two childrenH1 andH2. One child,H1, is a leaf labeled with an internal edge(u,u′) of G and the
other child,H2, corresponds to the subtree rooted atu′. The weightµH

1 can be interpreted as the
probability of pruning the treeG at this edge(u,u′) andµH

2 = 1−µH
1 as the probability of choosing

a pruning in the subtree below edge(u,u′). Curiously, the resultant algorithm for trees turns out to
be exactly the same as the one motivated by dynamic programming (Takimoto et al., 2001).

10.1 Pruning for Probabilistic Path Inputs

In this section we extend the on-line pruning problem for SP digraphs to the situation where predic-
tion pathPt is chosen probabilistically. More precisely, in trialt the algorithm observes prediction
valuesxt,e ∈ [0,1] assigned to all edges rather than along a single prediction path, together with the
set of edge weightsνt,e ∈ [0,1] that satisfies Properties P1, P2 and P3. The valuext,e is interpreted
as the prediction of edgee at trial t and the edge weightsνt induce a probability distribution on all
pathsP of G. That is, the probability of prediction pathP at trial t is given byΦ(νt)P = ∏e∈P νt,e.
Now the predictionXt,R of a pruningR becomes a random variable and it takes valuext,P∩R with
probability Φ(νt)P. Accordingly, when an outcomeyt is presented, the loss̀t,R of R at trial t is
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defined as theexpected loss, i.e.,

`t,R = E [`(yt ,Xt,R)] = ∑
P

Φ(νt)P `(yt ,xt,P∩R) .

Since any pathP intersects with the pruningR at exactly one edge, the set of paths that go through
e∈R and the set of paths that go throughe′ ∈ Rare disjoint ife 6= e′. Therefore, we have

`t,R = ∑
e∈R

∑
P

Φ(νt)P`(yt ,xt,e)I(e∈ P)

= ∑
e∈R

pt,e`(yt ,xt,e), (10.2)

where
pt,e = ∑

P

Φ(νt)PI(e∈ P)

is the probability that the prediction path goes through the particular edgee. Note that for any
pruningR,

∑
e∈R

pt,e = 1. (10.3)

Similarly, the expected prediction of pruningR is

E[Xt,R] = ∑
P

Φ(νt)P xt,P∩R = ∑
e∈R

pt,ext,e. (10.4)

As shown in Section 5,pt,e can be expressed with kernel computations. That is, lettingue be the
edge weights defined as

ue
e′ =

{
1 if e′ 6= e
0 if e′ = e,

we have

pt,e = ∑
P

∏
e′∈P

νt,e′

(
1− ∏

e′∈P

ue
e′

)
= K(νt ,1)−K(νt ,u

e). (10.5)

Again our goal is to produce predictions ˆyt so that the total loss∑T
t=1`(yt , ŷt) is not much larger than

the loss∑T
t=1`t,R of the best pruningR.

Recall that a pathP of G is a pruning ofGD and a pruningR of G is a path ofGD. In each trial
t = 1, . . . ,T,

1. Prediction valuesxt,e∈ [0,1] and weightsνt,e∈ [0,1] are given to all edgeseof GD, whereνt

fulfills Properties P1, P2 and P3 for the primal graphG. The weight vectorνt on the edges
assigns probability∏e∈P νt,e to the prediction pathP of G andΦ(νt) represents the probability
vector on all such paths.

2. The algorithm predicts ˆyt ∈ [0,1].

3. An outcomeyt ∈ [0,1] is observed.

4. The algorithm incurs lossλt = `(yt , ŷt) and each pathR of GD incurs loss̀ t,R which is given
by (10.2).
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In this setting we show that a slight modification of the WA algorithm has the same loss bound as
in the deterministic case. It is easy to extent the methods to the fancier predictions given by Vovk
(1990) that give improved bounds (as long as they predict with a function of the weighted average).

The algorithm maintains edge weightswt so that they represent weightsWt,R = ∏e∈Rwt,e for
pathsR of GD, i.e. Wt = ΦD(wt). Now the prediction ˆyt of the algorithm at trialt is the weighted
average of theexpectedpredictions (10.4) of paths. That is,

ŷt = ∑
R

Wt,RE[Xt,R] = ∑
R

Wt,R∑
e

pt,ext,e. (10.6)

Using (10.5) and (5.1), the prediction ˆyt can be expressed with kernel computations.
When an outcomeyt is given, the algorithm updates its weights so that

Wt+1,R =
Wt,Rexp(−η`t,R)

∑RWt,Rexp(−η`t,R)
(10.7)

holds for any pruningR. Since`t,R decomposes into a sum over edges inR, this update can be
efficiently simulated using the Weigh Pushing algorithm for updating the edge weightswt on the
digraphGD.

The below theorem gives the loss bound for the algorithm.

Theorem 4 Let ` : [0,1]× [0,1]→ [0,∞] be a loss function such that` is convex with respect to the
second argument and the function fy given by (10.1) is concave. Then, the algorithm using (10.6)
and (10.7) for prediction and update, respectively, guarantees the following performance: For any
probability vector U on the prunings of the digraph G, it holds that

T

∑
t=1

λt ≤∑
R

UR

T

∑
t=1

`t,R+(1/η)d(U ,W1),

where d is the relative entropy and W1 is the initial probability vector on the prunings.

Proof Let U be an arbitrarily probability vector on the prunings ofG. Looking at the progress
d(U ,Wt)−d(U ,Wt+1) for one trial, we have

d(U ,Wt)−d(U ,Wt+1) = ∑
R

UR ln
Wt+1,R

Wt,R

= ∑
R

UR ln
exp(−η`t,R)

∑RWt,Rexp(−η`t,R)

= −η∑
R

UR`t,R− ln∑
R

Wt,Rexp(−η`t,R)

= −η∑
R

UR`t,R− ln∑
R

Wt,Rexp

(
−η ∑

e∈R

pt,e`(yt ,xt,e)

)
. (10.8)

By the convexity ofL and (10.3), we have

∑
e∈R

pt,e`(yt ,xt,e)≥ L

(
yt , ∑

e∈R

pt,ext,e

)
= `(yt ,E[Xt,R]).
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From this and the concavity of the functionfy, it follows that

∑
R

Wt,Rexp

(
−η ∑

e∈R

pt,e`(yt ,xt,e)

)
≤ ∑

R

Wt,Rexp
(
−ηL(yt ,E[Xt,R])

)
= ∑

R

Wt,R fyt (E[Xt,R])

≤ fyt

(
∑
R

Wt,RE[Xt,R]

)

= fyt (ŷt)
= exp(−η`(yt , ŷt))
= exp(−ηλt).

Plugging this into (10.8), we have

d(U ,Wt)−d(U ,Wt+1)≥ η

(
−∑

R

UR`t,R+ λt

)
.

Summing this inequality overt = 1, . . . ,T, we immediately have the theorem.

Note that if we takeU as the unit vectors that puts all probability on a single pruningR, then we
obtain the following simpler version of the bound:

T

∑
t=1

λt ≤min
R

(
T

∑
t=1

`t,R+(1/η) ln(1/w1,R)

)
.

11. Conclusion

In this paper we showed that path kernels can be used to indirectly maintain exponentially many
path weights. Multiplicative updates give factors to the edges and the Weight Pushing algorithm
renormalizes the edge weights so that the outflow out of each vertex remains one. We also showed
that it is often convenient to express the path sets as regular expressions, leading to more efficient
implementations of path kernels and the Weight Pushing algorithm. We gave the path kernels that
interpret the BEG and the normalized Winnow algorithms for learning disjunctions as direct algo-
rithms over exponentially many paths. A number of other examples were given for implementing
multiplicative algorithms over exponentially many weights.

In Section 5 we specified the requirements needed for our method of using path kernels: The
weight update must have the form (5.3), and if the algorithm predicts, then its prediction must be
efficiently computable via for example kernel computations. We gave a number of examples of our
methods.

The motivation and analysis of various additive and multiplicative linear threshold algorithms
based on the hinge loss was done before by Gentile and Warmuth (1998). In this paper, we start
with inefficient algorithms (with exponentially many weights) and show that the transition to the
hinge loss leads to multiplicative updates that can be simulated implicitly (because the gradient of
this loss decomposes into a sum).

Multiplicative algorithms belong to the EG family of updates and in this paper we found special
kernels that can be used to efficiently implement updates from that family. A key requirement was
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that the features are products. The question is whether there are special kernels for other families
of updates. Recently updates have been found that interpolate between the EG family and and the
additive updates (Gentile and Littlestone, 1999). These are called thep-norm updates. It is an open
question whether there are kernels that allow us to efficiently implement thep-norm updates over
exponentially many variables.
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Appendix A. On the Uniqueness of the Solution to the Linear Equations for Kernels

Recall that we want to compute

Ku(x,x′) = ∑
P∈P (u)

∏
e∈P

xex
′
e.

Consider the following linear equations:

ku =




1 if u = sink,

∑
u′:(u,u′)∈E(G)

x(u,u′)x
′
(u,u′)ku′ if u 6= sink. (A.1)

Hereku are the linear variables and clearlyku = Ku(x,x′) is a solution. In this appendix we show
that this solution is essentially unique, ifx,x′ ≥ 0 andK(x,x′) finite.

A vertexu is source-reachable(with respect tox andx′) if there exists a pathP from the source
to u such that∏e∈Pxex′e > 0. Sink-reachabilityis defined similarly. In other words, a vertexu is
sink-reachable, ifKu(x,x′) > 0 and not sink-reachable ifKu(x,x′) = 0. To make the solution of the
above equations unique, we use the following additional constraints:

ku = 0, for any vertexu that is not sink-reachable. (A.2)

Theorem 5 Assume that x,x′ ≥ 0 and K(x,x′) < ∞. Let k be a solution to (A.1) and (A.2). Then for
any source-reachable vertex u,

ku = Ku(x,x′) = ∑
P∈P (u)

∏
e∈P

ae.

Proof First we assume that the source is not sink-reachable, i.e.,K(x,x′) = 0. In this case, any
source reachable vertexu is also not sink-reachable. So the vertexu is eliminated and we have the
right solution foru: ku = Ku(x,x′) = 0.

Next we assume that the source is sink-reachable. Plugging (A.2) into (A.1) we get a system of
linear equations restricted to the variablesku with sink-reachable verticesu. Letndenote the number
of the sink-reachable vertices and we use integers 1, . . . ,n to specify such vertices. We assume that
the source and the sink is the first and the last (nth) vertices, respectively. Letk = (k1, . . . ,kn)′ be
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the column vector whoseith component is the solutionki for vertex i, where the prime (′) denotes
the transposition. Similarly, letA be then× n matrix whose(i, j) componentai, j is defined as
ai, j = x(i, j)x

′
(i, j) if (i, j) is an edge ofG andai, j = 0 otherwise. Note thatan, j = 0 for all j, since the

sink has no outgoing edges. Now the linear equations (A.1) become

k = Ak+




0
...
0
1


 (A.3)

with the condition thatA≥ 0 andK1(x,x′) < ∞. Let en = (0, . . . ,0,1)′. Expanding (A.3) we have

k = Ak+en

= A(Ak+en)+en

...

=
∞

∑
s=0

Asen+A∞k,

whereA∞ = lims→∞ As. So it suffices to show that the first term coincides withK(x,x′) = (K1(x,x′),
. . . ,Kn(x,x′)′ and for any source-reachable vertexi, theith row ofA∞ is the zero vector(0, . . . ,0).

First we show that∑∞
s=0Asen = K(x,x′). Letas

i, j denote the(i, j) component ofAs. Sinceas
n, j = 0

for all j ands≥ 1, thenth component of the left hand side is 1. Here we used the fact thatA0 is the
identity matrix. On the other hand, we haveKn(x,x′) = 1 by definition. So the equality holds for the
nth component. Fori < n, it is easy to see that

Ki(x,x′) = ∑
P∈P (i)

∏
e∈P

ae

=
∞

∑
s=1

∑
P∈P (i)
|P|=s

∏
e∈P

ae

=
∞

∑
s=1

as
i,n,

which clearly coincides with theith component of∑∞
s=0Asen.

Next we show that for a source-reachable vertexi and any vertexj, a∞
i, j = lims→∞ as

i, j = 0.
Let i be a source-reachable vertex. That is, there exists a pathP0 from the source toi such that
∏e∈P0

ae > 0. Fix an arbitraryj 6= i. Since only sink-reachable vertices remain in the equations,
there exists a pathP1 from j to the sink such that∏e∈P1

ae > 0. Let P (i, j) denote the set of paths
from i to j that do not pass the vertexj before arriving atj, and let

Ki, j(x,x′) = ∑
P∈P (i, j)

∏
e∈P

ae.

Restricting the prefix and the suffix of paths toP0 and P1, respectively, we have a subset of all
source-sink paths. This, together with the assumption thatK1(x,x′) < ∞, implies that

∞ > K1(x,x′) ≥
(

∏
e∈P0

ae

)(
∑

P∈P (i, j)
∏
e∈P

ae

)(
∏
e∈P1

ae

)
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=

(
∏
e∈P0

ae

)(
∏
e∈P1

ae

)
Ki, j(x,x′).

Since the first two factors are positive, we haveKi, j(x,x′) < ∞. Now we observe that

Ki, j(x,x′) = ∑
P∈P (i, j)

∏
e∈P

ae

=
∞

∑
s=1

∑
P∈P (i, j)
|P|=s

∏
e∈P

ae

=
∞

∑
s=1

as
i, j ,

which is finite. SinceA≥ 0, it must hold thata∞
i, j = 0, as required.

Appendix B. On the Uniqueness of Edge Weights

In this section we show that no two distinct edge weights represent the same path weights. More
precisely the claim is described as follows.

Theorem 6 Let w and w′ be edge weights and W and W′ be the corresponding path weights. We
assume that Properties P1–3 hold. That is, WP = ∏e∈P we and W′

P = ∏e∈P w′
e for any path P;

∑u′:(u,u′) w(u,u′) = 1 and∑u′:(u,u′) w′
(u,u′) = 1 for any vertex u; and∑PWP = 1 and∑PW′

P = 1. Assume
that W= W′. Then for all edges e= (u,u′) on paths P for which WP or W′

P are positive, we have
we = w′

e.

Proof The proof we give below is based on the entropy decomposition argument developed by Singer
and Warmuth (1997). Consider the relative entropy betweenW andW′: d(W,W′)= ∑PWP ln(WP/W′

P).
We rewrite this relative entropy as follows:

d(W,W′) = ∑
P

WP ln∏
e∈P

we

w′
e

= ∑
P

WP ∑
e∈P

ln
we

w′
e

= ∑
P

WP∑
e

#e(P) ln
we

w′
e
,

where the second sum is over all edges and #e(P) denotes the number of occurrences of edgee
in the pathP. If e = (u,u′), then the properties assure that the expectation of #e(P) underW,
denotedEW[#e(P)], is we times the expected number of visits to the vertexu in the pathP, denoted
EW[#u(P)]. That is,EW[#e(P)] = weEW[#u(P)]. It follows that

d(W,W′) = ∑
e

ln
we

w′
e
∑
P

WP#e(P)

= ∑
e

ln
we

w′
e
EW[#e(P)]
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= ∑
e=(u,u′)

(
we ln

we

w′
e

)
EW[#u(P)]

= ∑
u

EW[#u(P)]∑
u′

w(u,u′) ln
w(u,u′)

w′
(u,u′)

= ∑
u

EW[#u(P)]d(w(u,·),w′
(u,·)),

wherew(u,·) and w′
(u,·) are the probability distributions over the edges outgoing fromu. Since

d(W,W′) = 0, we must havew(u,·) = w′
(u,·) for anyu such thatEW[#u(P)] > 0. That is,w(u,·) = w′

(u,·)
for anyu that lies on a pathP for whichWP is positive.

Appendix C. Weight Pushing Algorithm on Syntax Trees

Now we give an efficient implementation for the Weight Pushing algorithm that computes (6.1),
namely,

w̃e =
webeKu′(w,b)

Ku(w,b)
(C.1)

for any edgee= (u,u′). The algorithm does a pass over the syntax tree of a given regular expression
H0 and runs in time linear in the size of the regular expression. (A further speedup is given in
Section C.3, where we present an algorithm that is sub linear in the size of the regular expression.)
Recall that each nodeH of the syntax tree corresponds to a regular expressionH which represents
a componentH of the entire graphH0. We use the same symbolH for internal nodes of the syntax
tree and the corresponding regular expression.

C.1 Weight Pushing Algorithm for SP Digraphs

First we assume that the given regular expressionH0 does not have∗-operation. That is, we give an
update rule for edge weights for SP digraphs. The idea is to compute edge weights ˜wH recursively
for each componentH so thatw̃H is the same as the weights that the Weight Pushing algorithm
would produce when applied onH. If edgee is outgoing from the source of the componentH, then
we calleasource edgeof H. For any edgee in H, let w̃H

e be defined recursively as

w̃H
e =




1 if H = e for some edge symbole,
KHi (w,b)
KH (w,b) w̃Hi

e if H = H1+ · · ·+Hk ande is a source edge ofHi ,

w̃Hi
e if H = H1◦ · · · ◦Hk ande is an edge ofHi.

(C.2)

Finally the weights on the edges are given by ˜we = w̃H0
e .

The next theorem shows that this update assures (C.1) for any componentH. To describe this,
we need to extend the kernelKH to the sums over paths starting from an arbitrary vertexu in H as
before. For a componentH(s,t) and a vertexu of H, let P H(u) denote the set of all paths fromu to
t in H. Furthermore, we define the kernel associated withH and vertexu of H as

KH
u (w,b) = ∑

P∈P H(u)
∏
e∈P

webe.

Note thatP H = P H(s) and henceKH(w,b) = KH
s (w,b).
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Theorem 7 Let H0 be a regular expression that has no∗-operations. For any component graphH

of H0 and any edge e= (u,u′) of H, the update rule (C.2) satisfies

w̃H
e =

webeKH
u′ (w,b)

KH
u (w,b)

.

Proof We show the theorem by an induction on the depth of the syntax tree.
In the case whereH consists of a single edgee = (u,u′), then by the above formula ˜wH

e = 1
as required, because for the sinku′ of the edge,Ke

u′(w,b) = 1, and for the sourceu of the edge,
Ke

u(w,b) = webe.
Consider the case whereH = H1◦ · · · ◦Hk. Assume thate= (u,u′) is an edge ofHi. Since any

pathP∈ P H(u) is a unionP = Pi ∪ ·· ·∪Pk for somePi ∈ P Hi (u) andPj ∈ P Hj for i +1≤ j ≤ k, it
follows that

KH
u (w,b) = KHi

u (w,b)
k

∏
j=i+1

KHj (w,b) (C.3)

and similarly

KH
u′ (w,b) = KHi

u′ (w,b)
k

∏
j=i+1

KHj (w,b). (C.4)

So
w̃H

e = w̃Hi
e by the definition of ˜wH

e

=
webeK

Hi
u′ (w,b)

KHi
u (w,b)

by the induction hypothesis

=
webeKH

u′ (w,b)
KH

u (w,b)
by (C.3) and (C.4),

as required.
Finally consider the case whereH = H1+ · · ·+Hk ande= (u,u′) is an edge ofHi . If u is not the

source ofH, then since any pathP∈ P H(u) is a path inP Hi (u), it follows thatKH
u (w,b) = KHi

u (w,b)
and similarlyKH

u′ (w,b) = KHi
u′ (w,b) (which holds whenu is the source). So the same argument as

above shows that the theorem holds. Ifu is the source ofH, then

w̃H
e =

KHi
u (w,b)

KH
u (w,b)

w̃Hi
e by the definition of ˜wH

e

=
KHi

u (w,b)
KH

u (w,b)
webeK

Hi
u′ (w,b)

KHi
u (w,b)

by the induction hypothesis

=
webeK

Hi
u′ (w,b)

KH
u (w,b)

=
webeKH

u′ (w,b)
KH

u (w,b)
sinceKH

u′ (w,b) = KHi
u′ (w,b),

which completes the proof.

It is not hard to see that the weights ˜w can be calculated in time linear in the size of the regular
expression. Note that a SP digraph is acyclic and so, as shown in Section 2, we already have a linear
time implementation for the Weight Pushing algorithm. But the syntax tree based algorithm can be
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easily extended to a linear time algorithm for the general case when∗-operations are allowed (see
the next section). Moreover if the edge factorsbt are “sparse” in some sense, the algorithm can skip
the redundant computation and run significantly faster. For details see Section C.3.

C.2 Allowing ∗-operations

Now we consider the general case where∗-operation is allowed. That is,H0 is now an arbitrary
regular expression. Again the update rule for the edge weightsw is computed through ˜wH

e . The
definition of w̃H

e is the same as (C.2) whenH is a concatenation, a union or a single edge. So here
we can restrict ourselves to the case whenH = H∗

1. Recall how the digraphH is defined by the
∗-operation is defined in Figure 9. We can assume that the edge factorsbe for ε-edges of that figure
are one. The new weights for edges inH are given by:

w̃H
e =




1 if e is labeledε1 or ε2,

wεH KH1(w,b) if e is labeledεH ,

1−wεH KH1(w,b) if e is labeledε3,
w̃H1

e otherwise.

(C.5)

Note that here for someε edgese may havewe 6= 1.
We now show that adding the caseH = H∗

1 with the above update to (C.2) simulates the Weight
Pushing algorithm for any regular expressionH.

Theorem 8 For any regular expression H and any edge e= (u,u′) of H, the update rules (C.2) and
(C.5) establishes

w̃H
e =

webeKH
u′ (w,b)

KH
u (w,b)

.

Proof It suffices to add to the proof of Theorem 7 the induction step for the∗-operation. Assume
thatH = H∗

1 for some regular expressionH1 and the claim holds forH1. The corresponding digraph
is given in Figure 9.

First we notice that
KH(w,b) = wε1K

H
u0

(w,b) (C.6)

and for anyu 6∈ {u0,s},
KH

u (w,b) = KH1
u (w,b)KH

u0
(w,b) (C.7)

If e= ε1 = (s,u0), then (C.6) immediately assures the theorem:

webeKH
u0

(w,b)
KH
s (w,b)

=
wε1K

H
u0

(w,b)
KH(w,b)

= 1 = w̃H
e .

If e= ε2, then the theorem trivially holds. Next assume thate= εH = (u0,s1). It follows that

w̃H
e = weK

H1(w,b) by the update rule (C.5) forwεH

= weK
H1
s1

(w,b)

=
webeKH

s1
(w,b)

KH
u0

(w,b)
by (C.7) withu = s1,

as required. Note that we used the fact that allε edges receive factorbe = 1. It is trivial that the
claim holds fore= ε3 because the Weight Pushing algorithm guarantees that ˜wH

ε3
= 1− w̃H

εH
.
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Finally consider the case wheree= (u,u′) is an edge ofH1. In this case, since bothu andu′ are
not in{s,u0}, we have

w̃H
e = w̃H1

e by the update rule

=
webeK

H1
u′ (w,b)

KH1
u (w,b)

by the induction hypothesis

=
webeKH

u′ (w,b)/KH
u0

(w,b)
KH

u (w,b)/KH
u0

(w,b)
by (C.7)

=
webeKH

u′ (w,b)
KH

u (w,b)
,

which completes the proof.

C.3 Further Speedup of the Weight Pushing Algorithm

In this section we give another implementation for computing kernels and the weight pushing al-
gorithm. It turns out that if inputsx and update factorsb are “sparse” in the sense that most edges
receive inputxe = 1 and factorbe = 1, then the new algorithm runs significantly faster. For the loss
update,be = 1 for all edgese with loss zero at this trial (see (5.5) and preceding discussion). For
the EG update,be = 1 for all edgese for which xe = 0 (see (5.9) and preceding discussion). This
kind of sparseness may naturally happen in many applications. For example, in the dynamic routing
problem discussed in Section 7, this corresponds to a reliable network where most edges accepts
the packet with probability 1. Another example is an on-line pruning problem where only the edges
along a single path are relevant, which is discussed in Section 10.

We now describe the speedup of this section in a precise form. Assume that a regular expression
H0 is given. We consider inputsx to be given to the leaves (edge symbols) of the syntax tree forH0,
rather than to the edges of the digraphH0. If a nodeH of the syntax tree has a leaf with labele in
its descendants such thatxe 6= 1 (equivalently, if the componentH contains an edgee with xe 6= 1),
then we say that the nodeH is relevant with respect to x. Let V(x) denote the set of all union and
star nodes (concatenation nodes and leaves are not counted) that are relevant with respect tox. In
the new implementation, we no longer maintain edge weightsw of the digraphH0 but maintain
weights, denotedµ, for the edges of the syntax tree forH0, so thatµ implicitly represents the path
weightsW. That is,W = Ψ(µ), whereΨ is the new feature map described in the next subsection.
So far the dot product is computed in terms of the kernelK(w,x) by maintaining weightsw such
thatW = Φ(w). But now the dot product is computed in terms of a function ofµ andx which is
defined as

K (µ,x) = Ψ(µ) ·Φ(x) = ∑
P

WP ∏
e∈P

xe.

We call this thepseudo-kerneland give an algorithm for computingK (µ,x) in time linear in|V(x)|.
Moreover, we give an algorithm that, when given edge factorsb which are now assigned to the leaves
of the syntax tree ofH0, updates weightsµ so that the new weights ˜µ represents the updated path
weights:W̃ = Ψ(µ̃). The update algorithm runs in time linear in∑H∈V(b) deg(H), where deg(H) is
the degree (number of children) of nodeH in the syntax tree. Note that this sum is not always linear
in |V(b)|.
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Traverse(H)
{

if H = e, thenP = {e};
else ifH = H1+ · · ·+Hk, then

chooseHi with probabilityµH
i ;

P = Traverse(Hi);
else ifH = H1◦ · · · ◦Hk, then

P = Traverse(H1)∪ ·· ·∪Traverse(Hk);
else ifH = H∗

1, then
P = /0;
repeat

let c =
{

1 with probabilityµH ,
0 with probability 1−µH ;

if c = 1 thenP = P∪Traverse(H1);
until c = 0;

returnP;
}

Figure 14: Algorithm Traverse: return a pathP∈ P H with probabilityWH
P .

C.3.1 FEATURE MAP Ψ

Here we consider a path as a sequence of edge symbols that the regular expressionH0 produces. In
other words paths do not containε-edge symbols. For an internal nodeH of the syntax tree, letP H

now denote the language (words over the edge symbols except for epsilon edges) thatH produces.
In the following we assume thatW is a probability vector on the paths inP H0.

First we show how the edge weightsµ for the syntax tree (rooted atH0) implicitly represent the
path weightsW. Specifically, for each union nodeH = H1+ · · ·+Hk of the syntax tree, we maintain
weightsµH

i ∈ [0,1] for each edge(H,Hi) so that∑k
i=1 µH

i = 1, and for each star nodeH = H∗
1, we

maintainµH ∈ [0,1). The weightsµ implicitly specify the path weightsW in the way described
below.

Consider the following stochastic process for traversing the syntax tree. From the weightsµ, the
process produces a random pathP∈ P H0. That is, it defines a probabilistic mapΨ from µ to the set
of probability vectors onP H0: Start from the root; if we are at a concatenation node, then we go to
all of its children; if we are at a union nodeH, then choose a child nodeHi with probabilityµH

i and
go toHi; If we are at a star nodeH = H∗

1, then repeat the following: with probabilityµH traverseH1

and with probability 1−µH exit the repeat statement. Finally all the leaves we visit form a pathP,
and the weightWP is defined as the probability that the pathP is chosen by this process. For more
detail, see algorithm Traverse in Figure 14. It is easy to see that Traverse(H) returns a pathP in P H .
LetWH

P denote the probability that Traverse(H) returnsP. In particular, letWP = WH0
P for the given

regular expressionH0. The construction immediately shows that the weightWH
P of a pathP∈ P H
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can be computed recursively as follows.

WH
P =




1 if H = e (thusP = {e}),
µH

i WHi
P if H = H1 + · · ·+Hk andP∈ P Hi ,

∏k
i=1WHi

Pi
if H = H1◦ · · · ◦Hk andP = P1∪·· ·∪Pk with
Pi ∈ P Hi for 1≤ i ≤ k,

∏k
i=1

(
µHWH1

Pi

)
(1−µH) if H = H∗

1 andP = P1∪·· ·∪Pk with Pi ∈ P H1

for 1≤ i ≤ k for somek≥ 0.

(C.8)

Obviously the weightsWH are probabilistic, that is,

∑
P∈P H

WH
P = 1.

Actually, it can by shown that the range of the mappingΨ(.) consists of all probability vectorsW
that fulfill Properties P1–3 (which is also the range ofΦ(.)). Also Ψ(.) is injective as well (For the
mappingΦ(.), this was shown in Appendix B).

C.3.2 COMPUTING THE PSEUDO-KERNEL K (µ,x)

In this section we give an algorithm for computing the pseudo-kernelK . As in the case of the kernel
K, we define the pseudo-kernel associated with each nodeH as

K H(µ,x) = ∑
P∈P H

WH
P ∏

e∈P

xe (C.9)

and computeK (µ,x) = K H0(µ,x) recursively. The recursion is given as follows.

K H(µ,x) =




xe if H = e,
k

∑
i=1

µH
i K Hi (µ,x) if H = H1+ · · ·+Hk,

k

∏
i=1

K Hi (µ,x) if H = H1◦ · · · ◦Hk,

1−µH

1−µHK H1(µ,x)
if H = H∗

1.

(C.10)

Lemma 9 The functionK H(µ,x) defined recursively (C.10) is the pseudo-kernel defined in (C.9).

Proof We show the lemma by the induction on the depth of the syntax tree. For the base case where
H = e for some edge symbole, the lemma clearly holds. For the case whereH = H1+ · · ·+Hk,

K H(µ,x) =
k

∑
i=1

µH
i K Hi (µ,x)

=
k

∑
i=1

µH
i ∑

P∈P Hi

WHi
P ∏

e∈P
xe by the induction hypothesis

=
k

∑
i=1

∑
P∈P Hi

WH
P ∏

e∈P
xe by (C.8)

= ∑
P∈P H

WH
P ∏

e∈P

xe.
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For the case whereH = H1◦ · · · ◦Hk,

K H(µ,x) =
k

∏
i=1

K Hi (µ,x)

=
k

∏
i=1

∑
P∈P Hi

WHi
P ∏

e∈P
xe by the induction hypothesis

= ∑
P1∈P H1

· · · ∑
Pk∈P Hk

k

∏
i=1

(
WHi

Pi ∏
e∈Pi

xe

)

= ∑
P∈P H

WH
P ∏

e∈P
xe by (C.8).

Finally consider the case whereH = H∗
1. In this case, by using the formula 1/(1−a) = a0 + a1 +

a2 + · · ·, we have

K H(µ,x) =
1−µH

1−µHK H1(µ,x)

= (1−µH)
∞

∑
k=0

(
µHK H1(µ,x)

)k

= (1−µH)
∞

∑
k=0

(
µH ∑

P∈P H1

WH1
P ∏

e∈P
xe

)k

by the induction hypothesis

= (1−µH)
∞

∑
k=0

∑
P1∈P H1

· · · ∑
Pk∈P H1

k

∏
i=1

(
µHWH1

Pi ∏
e∈Pi

xe

)

=
∞

∑
k=0

∑
P∈(P H1)k

WH
P ∏

e∈P

xe by (C.8)

= ∑
P∈P H

WH
P ∏

e∈P
xe

which completes the proof.

If H is irrelevant (that is,xe = 1 for all leaveseof H), thenK H(µ,x) = K H(µ,1) = ∑P∈P H WH
P =

1. Therefore, the recursions (C.10) can be computed by traversing the relevant nodes only. More
precisely, ifH = H1◦ · · · ◦Hk, then

K H(µ,x) = ∏
Hi : relevant

K Hi (µ,x)

and ifH = H1 + · · ·+Hk, then

K H(µ,x) =
k

∑
i=1

µH
i K Hi (µ,x)

= ∑
Hi : relevant

µH
i K Hi (µ,x)+ ∑

Hi : irrelevant

µH
i

= 1− ∑
Hi : relevant

µH
i

(
1−K Hi (µ,x)

)
.

Clearly, we getK H(µ,x) for all relevant nodesH in time linear in the number of relevant nodes.
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C.3.3 UPDATE RULE FOR µ

Next we consider how to updateµ. Assume that edge factorsb are given. For union nodesH, the
new weights ˜µH

i are simply calculated by

µ̃H
i =

µH
i K Hi (µ,b)
K H(µ,b)

. (C.11)

For star nodesH, the new weights ˜µH are given by

µ̃H = µHK H1(µ,b). (C.12)

Recall that ifH is irrelevant, thenKH(µ,b) = KH(µ,1) = 1. Moreover ifH is irrelevant, then its
childrenHi are also irrelevant. So for any union nodeH /∈V(b), µ̃H

i = µH
i for all childrenHi of H,

and for any star nodeH /∈V(b), µ̃H = µH . This implies that we do not need to update weights for
all irrelevant nodeH /∈V(b). Note that ifH = H1+ · · ·+Hk is a relevant union node, then we have
to calculate new weights ˜µH

i for all 1≤ i ≤ k even if only one child is relevant. This is why the
updating takes timeO

(
∑H∈V(b) deg(H)

)
.

Now we show that this update rule simulates the multiplicative update (5.3) for path weights.

Lemma 10 Assume that edge factors b are given. Letµ̃ be the new weights obtained by the rule
(C.11) and (C.12). Then the path weightsW̃ = Ψ(µ̃) satisfy

W̃H
P =

WH
P ∏e∈P be

∑P∈P H WH
P ∏e∈P be

=
WH

P ∏e∈Pbe

K H(µ,b)

for any node H of the syntax tree and any path P∈ P H.

Proof LetW̃H be defined recursively as in (C.8) withµ being replaced by ˜µ. Note that by definition
W̃H0 = W̃ = Ψ(µ̃). We show the theorem by an induction on the depth of the syntax tree.

For the base case whereH = e, sinceP H consists of a single edgee, it follows that

W̃H
P = 1 =

WH
P ∏e∈Pbe

∑P∈P H WH
P ∏e∈Pbe

for anyP∈ P H .
Consider the case whereH = H1+ · · ·+Hk andP∈ P Hi . Then it follows that

W̃H
P = µ̃H

i W̃Hi
P by (C.8)

=
µH

i W̃Hi
P K Hi (µ,b)

K H(µ,b)
by (C.11)

=
µH

i K Hi (µ,b)
K H(µ,b)

WHi
P ∏e∈Pbe

K Hi (µ,b)
by the induction hypothesis

=
WH

P ∏e∈Pbe

K H(µ,b)
by (C.8).
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For the case whereH = H1◦ · · · ◦Hk andP = P1∪ ·· ·∪Pk with Pi ∈ P Hi for 1≤ i ≤ k,

W̃H
P =

k

∏
i=1

W̃Hi
Pi

by (C.8)

=
k

∏
i=1

WHi
Pi

∏e∈Pi
be

K Hi (µ,b)
by the induction hypothesis

=
WH

P ∏e∈Pbe

K H(µ,b)
by (C.8) and (C.10).

Finally consider the case whereH = H∗
1 andP = P1∪ ·· ·Pk with Pi ∈ P H1 for 1≤ i ≤ k.

W̃H
P = (1− µ̃H)

k

∏
i=1

(
µ̃HW̃H1

Pi

)
by (C.8)

=
(
1−µHK H1(µ,b)

) k

∏
i=1

µHK H1(µ,b)WH1
Pi

∏e∈Pi
be

K H1(µ,b)
by (C.12) and the induction hypothesis

=
(1−µH)∏k

i=1

(
µHWH1

Pi
∏e∈Pi

be

)
K H(µ,b)

by (C.10)

=
WH

P ∏e∈P be

K H(µ,b)
by (C.8).
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