Journal of Machine Learning Research 4 (2003) 773-818 Submitted 5/03; Published 10/03

Path Kernels and Multiplicative Updates

Eiji Takimoto * T2@ECELTOHOKU.AC.JP
Graduate School of Information Sciences
Tohoku University, Sendai, 980-8579, Japan

Manfred K. Warmuth MANFRED@CSEUCSC.EDU
Computer Science Department

University of California, Santa Cruz

CA 95064, USA

Editors: Ralf Herbrich and Thore Graepel

Abstract

Kernels are typically applied to linear algorithms whose weight vector is a linear combination
of the feature vectors of the examples. On-line versions of these algorithms are sometimes called
“additive updates” because they add a multiple of the last feature vector to the current weight vector.

In this paper we have found a way to use special convolution kernels to efficiently implement
“multiplicative” updates. The kernels are defined by a directed graph. Each edge contributes an
input. The inputs along a path form a product feature and all such products build the feature vector
associated with the inputs. We also have a set of probabilities on the edges so that the outflow from
each vertex is one. We then discuss multiplicative updates on these graphs where the prediction is
essentially a kernel computation and the update contributes a factor to each edge. After adding the
factors to the edges, the total outflow out of each vertex is not one any more. However some clever
algorithms re-normalize the weights on the paths so that the total outflow out of each vertex is one
again. Finally, we show that if the digraph is built from a regular expressions, then this can be used
for speeding up the kernel and re-normalization computations.

We reformulate a large number of multiplicative update algorithms using path kernels and
characterize the applicability of our method. The examples include efficient algorithms for learning
disjunctions and a recent algorithm that predicts as well as the best pruning of a series parallel
digraphs.

Keywords: Kernels, Multiplicative Updates, On-Line Algorithms, Series Parallel Digraphs.

1. Introduction

There is a large class of linear algorithms, such as the Linear Least Squares algorithm and Support
Vector Machines, whose weight vector is a linear combination of the input vectors. Related on-line
algorithms, such as the Perceptron algorithm and the Widrow Hoff algorithm, maintain a weight
vector that is a linear combination of the past input vectors. The on-line weight update of these
algorithm isadditivein that a multiple of the last instance is added to the current weight vector.

The linear models are greatly enhanced by mapping the input vectofeature vectore(x).
The features may be non-linear, and the number of features is typically much larger than the input
dimension. Now the above algorithms all use a linear model in feature space defined by a weight
vectorW of feature weights that is a linear combination of the expanded inp(tg) (1 < g <t)

x. Part of this work was done while Eiji Takimoto visited the University of California at Santa Cruz.
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of the training examples. Given an input veckothe linear predictioWV - ®(x) can be computed
via the dot productsP(xy) - ®(x) and these dot products can often be computed efficiently via an
associated kernel functid(xq,X) = ®(Xq) - P(X).

In this paper we give kernel methods fowltiplicative algorithms. Now the componentwise
logarithm of the feature weight vectdV is constant plus a linear combination of the expanded
instances. In the on-line versions of these updates, the feature weights are multiplied by factors
and then the weight vector is renormalized. This second family of algorithms is motivated by
using an entropic regularization on the feature weights (Kivinen and Warmuth, 1997) rather than
the square Euclidean distance used for the additive update algofitifngeneral theory based
on Mercer’s theorem has been developed that characterizes kernels usable for additive algorithms
(see e.g. Cristianini and Shawe-Taylor 2000). The kernels usable for multiplicative algorithms are
much more restrictive. In particular, the features must be products. We will show that multiplicative
updates mesh nicely with path kernels. These kernels are defined by a directed graph. There is one
feature per source to sink path and the weight/feature associated with a path is the product of the
weights of the edges along the path. The number of paths is typically exponential in the number of
edges. The algorithms can easily be described by “direct” algorithms that maintain exponentially
many path-weights. The algorithms are then simulated by “indirect” algorithms that maintain only
one weight per edge. More precisely, the weight vedtbon the paths is represented @sw),
wherew are the weights on the edges ah@) is the feature map associated with the path kernel.
Thus the indirect algorithm updateg instead of directly updating the feature weighits The
prediction and the update of the edge weights become efficient kernel computations.

There is a lot of precedent for simulating inefficient direct algorithms (Helmbold and Schapire,
1997, Maass and Warmuth, 1998, Helmbold, Panizza, and Warmuth, 2002, Takimoto and Warmuth,
2002) by efficient indirect algorithms. In this paper we hope to give a unifying view and make the
connection to path kernels. The key requirement will be that the loss of a path decomposes into
a sum of the loss of the edges of the path. We will re-express many of the previously developed
indirect algorithms using our methods.

As discussed before, for additive algorithms the vector of feature weights has th&\ferm
S 4-10q®P(Xq), where theoq are the linear coefficients of the expanded instances. In the case of
Support Vector Machines, optimizing thg, for a batch of examples is a non-negative quadratic
optimization problem. Various algorithms can be used for finding the optimum coefficients. For
example, Cristianini et al. (1999) does this using multiplicative updates (motivated in terms of an
entropic distance function on tig, instead of the feature weights). An alternate “multiplicative”
update algorithm for optimizing the, (not motivated by an entropic regularization) is given by Shu
et al. (2003). In contrast, in this paper we discuss multiplicative algorithms of the feature weights,
i.e. the logarithm of the feature weights is a constant plus a linear combination of the expanded
instances (see Kivinen et al. 1997 for more discussion).

Paper outline: In the next section we define path kernels and discuss how to compute them for
general directed graphs. One method is to solve a system of equations. In Appendix A we show that
the system has a unique solution if some minimal assumptions hold. We then give a simple hierar-
chically constructed digraph in Section 3, whose associated kernel initiated this research. In Section
4, we generalize this example and define path sets for a family of hierarchically constructed digraphs
corresponding to regular expressions. We show how the hierarchical construction facilitates the ker-

1. See Kivinen et al. (1997) for a geometric characterization of the additive algorithms based on a rotation invariance.
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nel computation (Sections 4.1 and 4.2). In Section 5, we discuss how path kernels can be used to
represent probabilistic weights and how the predictions of the algorithms can be expressed as kernel
computations. In Section 5.1, we give some key properties of the probabilistic edge weights that we
would like to maintain. In particular, the total outflow from each vertex (other than the sink) should
be one and the weightte of each patlP must be the product of its edge weights, We.= [ecp We.

We show in Appendix B that the edge weights fulfilling these properties are unique. The updates
we consider in this paper always have the following form: Each edge is multiplied by a factor and
then the total path weight is renormalized. We show in Section 5.2 that this form of the updates ap-
pears in multiplicative updates when the loss of a path decomposes into a sum over the edges of the
path. We then introduce the Weight Pushing algorithm of Mehryar Mohri (1998) in Section 6 which
re-establishes the properties of the edge weights after each edge received an update factor. Efficient
implementation of this algorithm can make use of the hierarchical construction of the graphs (see
Appendix C).

We then apply our methods to a dynamic routing problem (Section 7) and to an on-line shortest
path problem (Section 8). We prove bounds for our algorithm that decay with the length of the
longest path in the graph. However, we also show that for the hierarchically constructed digraph
given in Section 3, the longest path does not enter into the bound. In Section 9, we discuss how
the set of paths associated with this graph can be used to motivate the Binary Exponentiated Gradi-
ent (BEG) algorithm for learning disjunctions (Helmbold et al., 2002) and show how this efficient
algorithm for learning disjunctions becomes a special case of our methods. Finally, we rewrite the
algorithms for predicting as well as the best pruning of a series parallel digraph using our methods
(Section 10) and conclude with some open problems (Section 11).

Relationship to previous work: Our main contribution is the use of kernels for implementing
multiplicative updates of the feature weights. The path kernels we use are similar to previous kernels
introduced by Haussler (1999) and Watkins (1998)ere we focus on the efficient computation of
the path kernels based on the corresponding regular expressions or syntax trees. Our key new idea
is to use the path kernels to implicitly represent exponentially many probabilistic weights on the
features/paths by only maintaining weights on the edges. Multiplicative updates are ideally suited
for updating the path weights since they contribute factors to the edge weights. We characterize
exactly the requirements for such algorithms. Also a key insight is the use of Weight Pushing
algorithm for maintaining probabilistic weights on the edges. We show how to efficiently implement
this algorithm on syntax trees. The applications to the dynamic routing and on-line shortest path
problem are new. The sections on learning disjunctions and on-line algorithms for predicting as
well as the best pruning of the series parallel digraph are mainly rewritings of previously existing
algorithms in terms of the new common framework of path kernels.

2. Path Kernels

Assume we have a directed gra@lwith a source and a sink vertices. The source may have incom-

ing edges but the sink does not have outgoing edges. Inputs to the edges are specified by a vector
x € R", wheren is the number of inputs and is fixed. If edgeeceives inpuk;, then we denote

this asxe = X;. So this notation hides a fixed assignment from the ed@g€& of the graphG to the

input indices{1,...,n}. The assignment is fixed for each graph. Sdi§ a second input vector and

Xe = X, thenx; = X as well. Edges may also receive constants as inputs, denotge-ak In that

2. Our kernels are also special cases of the “rational kernels” recently introduced by Cortes et al. (2002).
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sink

Figure 1: An example digraph. Edg® receives inputs. The input vectorx = (Xi,...,Xg)
is expanded to the feature vectd¥(x) = (XoX7,X1X5Xg, X2X3X5Xg, X1 X4X5Xg, X1 X5X6X7,
XoX3XaX5Xg, XoX3X5X6X7, X1X4XaX5Xg, X1X5X6X3X5Xg, - ..). The order of the features is arbi-
trary but fixed.

casex, = 1 as well. The number of inputsmay be less than the number of edges, i.e. edges may
share inputs. But in the simplest case (for example in Figure £)|E(G)| and edges receives
inputx;.

The input vecto is expanded to a feature vector that has one feature for each source-to-sink
path. The featurXp associated with patR is the product of the inputs of its edges, Xg.= [ecp Xe
(see Figure 1). (Throughout the paper, we use upper case letters for the product features and lower
case letters for inputs.) We l€t(x) be the vector of all path features. Given a second input vector
X' on the edges, we define thath kernelof a directed graph as follows:

K(x,X) =®(x) - d(X) = Zegxex’e

Similar related kernels that are built from regular expressions or pair-HMMs were introduced by Haus-
sler (1999), Watkins (1999) for the purpose of characterizing the similarity between strings.

We would like to have efficient algorithms for computing kernels. For this reason we first
generalize the definition to sums over all paths starting at any fixed vertex rather than the source.
For any vertexy, let P (u) denote the set of paths from the verteso the sink. Assume there are
two input vectors< andx’ to the edges. Then for any vertaxlet

KU(X’X,) - Peg(u)(!;l’xeel;!’xé - PGZ(U)(!;LXex(,E'

Clearly Ksource (X, X') gives the dot produab(x) - ®(X') that is associated with the whole gra@h
For any vertexu other than the sink we have:

KixX)=" 5 Xuuw)Xuuw)Ke(X.X). (2.1)
u':(uu)eE(G)

The computation oK depends on the complexity of the grahlf G is acyclic, then the functions
Ku(x,X') can be recursively calculated in a bottom up order using (2.1) and

Ksink(xaxl) =1 (2.2)
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Clearly this takes time linear in the number of edges.

WhenG is an arbitrary digraph (with cycles and infinite path sets), then (2.1) and (2.2) form a
system of linear equations which can be solved by a standard method, e.g. Gaussian elimination.
In this paper we only need the case when all inputs to the edges are non-negatiéxangis
finite. For that case we show in Appendix A that the solution is unique. Alternatkiglgan
be computed via dynamic programming using essentially the Floyd-Warshal all-pairs shortest path
algorithm (Mohri, 1998). The cost of these algorithms is essentially cubic in the number of vertices
of G. Speed-ups are possible for sparse graphs. A more efficient method is given later in Section 4.1
for the case when the graph, viewed as a DFA, has a concise regular expression.

3. A Hierarchically Constructed Digraph That Motivates the Subset Kernel

In this section we discuss the kernel associated with the digraph given in Figure 2 and use it as a
motivating example for what is to follow in great detail in the next section. This kernel was the
initial focal point of our research.

First observe that the paths of this graph can be described using the following simple regular
expression

(é1+€nt1)(€2+€ny2)... (€n+En). (3.1)

Assume the bottom edges receive input value; and all top edges,.; receive input one. The
featureXp is the product of the inputs along the pah SoXp = []icaXi, WhereA is the subset
of indices in{1,...,n} corresponding to the bottom edgesHn If you now consider two input
valuesx; and X to the bottom edges, thed(x) and ®(x’) have one feature for each of thé 2
subsets/monomials ovarvariables, and the dot product defines a kernel

n

T =[], (3.2)

1.

K(x,X) = ®(x) - ®(X) =
(X X) = B(x) - B(X) Agz

We call this thesubset kernel This kernel was introduced by Kivinen and Warmuth (1997) and
is also sometimes called tmeonomial kerne(Khardon et al., 2001). Note that it computes a sum
over 2' subsets irD(n) time and this computation is closely related to the above regular expres-
sion: Replaces by XX, eni by X1iX,,; = 1, the regular- by the arithmetict, and the regular
concatenation by the arithmetic multiplication. Also note that the fundamental unit in the graph of
Figure 2 is a pair of vertices connected by a top and bottom edge. The whole graph may be seen as
a “sequential composition” af of such units.

We will use this kernel again in Section 9 to motivate an efficient algorithm for learning disjunc-
tions. In the next section we discuss general schemes for building graphs and kernels from regular
expressions.

4. Regular Expressions for Digraphs

Generalizing the above example, we consider a digraph as an automaton by identifying the source
and the sink with the start and the accept state, respectively. The set of all source-sink paths is a

3. If the top edges receive inpuss;i andx,,;, respectively, therK(x,X') = Yac1,..ny MicaXiX MigaXn+iXn i =
[ (60X + X041 4)-
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€nr1 €n+2 €2n
V V \ ot _/ V
€1 € €n

Figure 2: The digraph that defines the subset kernel: The top edges receive input one and function
ase edges.

regular language and can be expressed as a regular expression. For example the set of paths of the
digraph given in Figure 1 is expressed as

exe; + (e1 + exe3)€)es(ese3€)e5) " (65 + s€y).

We assume in this paper that each edge symbol identifies a single edge and thus there is never any
confusion about how words map to paths. Note that in the above regular expression some symbols
appear more than once. So when we convert multiple occurrences of the same symbol to edges we
use differently named edges for each occurrence but assign all of them the same input.

Since path features are products, the edgésat are always assigned the constant one (i.e.

Xe = 1) function as the symbol in the regular expression. On the other hand, as we will see later,
when we consider probabilistic weights on edgesdges are not always assigned weight one.

The convolution kernel based on regular expressions was introduced by Haussler (1999). We
will show that computing regular expression kernels is linear in the size of the regular expression
that represents the given digra@h Recall that the methods for computing kernels introduced in
Section 2 také(n?) time, wheren is the number of vertices @. So there is a speed-up when there
is a regular expression of siggn®). Even though the size of the smallest regular expression can be
exponential im, we will see that there are small regular expressions for many practical kernels.

For the sake of simplicity we assume throughout the paper that the source has no incoming and
the sink no outgoing edges (One can always add new source and sink vertices and connect them to
the old ones via edges).

4.1 Series Parallel Digraphs

First let us consider the simple case where regular expressions do not havepbetion. In this
case the prescribed graphs (corresponding to regular expressions with the operations uaiah (
concatenationd)) areseries parallel digraph¢SP digraphs, for short) (Valdes et al., 1982).

For a regular expressiod, let H denote the SP digraph theit represents. Furthermore, we
sometimes writdH (s, t) to explicitly specify the source and the sinkc. Now we clarify how
a regular expression with operationsand o recursively defines a SP digraph (see Figure 3 for
a schematic description). A symbeldefines the SP digrapH(s,t) consisting of a single edge
with label g, initial vertex s and terminal vertex. Let Hy,... Hx be regular expressions and
Hj(s1,t1),..., Hk(sk, tk) be the corresponding SP digraphs, respectively. The concatenation of
regular expressionds, ..., Hk, denoted byH = Hj o --- o Hk, corresponds to aeries composition
of the SP digraph$ly(s1,t1),...,Hk(sk, tk). We denote this series compositionlégs,t). The
sources and sinkt of this graph are identified wits; andty, respectively, and foranydi <k-—1,
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e Q_e,o

(a) A symbol corresponds to a single edge.

o

/\ CKH1{)EH2>O"'Oin

Hi Hz <+ Hg

\CB/

(b) Concatenation corresponds to the series composition.

I,
+ H>

T T T
Hl H2 M Hk .
H

(c) Union corresponds to the parallel composition.

Figure 3: Regular expressions (as syntax trees on the left) and their corresponding SP digraphs
(right).

the sinkt; and the sourcej, 1 are merged into one internal vertex. Finally, the union of the regu-
lar expressiorHy, ..., Hy, denoted byH = Hi + - -- + Hy, corresponds to thparallel composition
H(s,t) of the corresponding SP digrapHs(s1,t1),..., Hk(sk, tk), where all sources are merged
into the source and all sinks are merged into the sitikin Figure 4 we give an example SP digraph
with its regular expression (represented by a syntax tree).

The syntax tree is used to compute the dot pro@ya - P(x'). We represent the feature vector
®(x) by the syntax tree where the leaweare replaced by their assignmengs The feature vector
®(X) is the same except now the assignmerjtare used. For computing the dot product, we
replace the leaves labeled edgby the input produckex;, the union+ by the arithmetic plust+
and the concatenation by the arithmetic multiplicationx. Now the value of the dot product is
computed by a postorder traversal of the tree. This takes time linear in the size of the tree (number
of edges). See Figure 5 for an example. For this figgreceives inpuk; andx;, respectively.

In general, letHy denote the given regular expression. Note that each internal Haafethe
syntax tree foHy corresponds to a regular expresstdriwe use the same symbol for both mean-
ings) and this in turn represents a comporiérdf the entire SP digraphly. For an internal node
H that represents a compondiits,t), let PH denote the set of all paths fromto t in H. In
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Figure 4: An example of a SP digraph and its syntax tree.

+ + +

X1 ¢} X1 ¢} X1Xy X
A /\/ A /
+ X7 + X5 + X7X,

/\ J A/ = /\ /

o X6 o Xs X Xe

A A 4 /+\ + A
Xo X3 Xa Xs X, X5 X3 o Xg XoX5 X3Xg XaXy X5Xs

Figure 5: The computation of dot produ®(x) - ®(X'): The trees on the left represent the feature
vectors®(x) and®(x'), respectively; the tree on the right represents the computation of
the dot product, where the regular unigris replaced by the arithmetie and the regular
concatenatior becomes the arithmetic multiplication.

other wordsP " is the language generated by the regular expressionBurthermore, we define
the kernel associated with as

KHxX) = oM (x)- o) = § rL)%’
PePH ec

where®" (x) is the feature vector defined by a regular expresbionith leaf assignments. Now
it is straightforward to see that this kernel is recursively calculated as follows:

rlik:]_KHi (X,X’) if H= Hlo...on'

Hix o XeXe if H = efor some edge symbel
K™ (x,x) =
Zrzl KHi(x,x') if H=Hy+--+Hy.

Although SP digraphs seem a very restricted class of acyclic digraphs, they can define some
important kernels such as the polynomial kern®ix) - ®(x') = (1+x-x)¥, for some degreé.
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£ + + T
1 1 1 1

AN S e = /N /N /N /N
X2 X2 X2 X2 1 X3 X 1 X1 X 1 X1 X 1 X3 X

Figure 6: Some inputs to distinct edges might be the same. The feature vectdx)is=
(1,4xq, 4%, 6X2, 12%1 X0, 6X3, 4X3, 12X2 X0, 12X1 X3, 4X3, X1, x50, BX2X3, 4%1%3,%5). This de-
fines the polynomial kernéd (x,x) = (1+ x-x)%.

(6]
+ + +
31 Cl Cl A A A
1 X1 1 Xo 1 X3

Figure 7: One feature per subset {df,2,3}: ®(x) = (1,X1,X2,X3, X1 X2, X1X3, X2X3, X1X2X3). This
defines the subset kern€(x,x') = 13 (1+xX).

This is the path kernel defined by the regular expression

(eLo+e€r1+-+ein)(€o+e€ 1+ +€n) - (Bo+1++&n),

where all edges, o receive input one, and all edges (with i > 1) receive inputs; andx/, respec-
tively. The tree in Figure 6 represents the feature vedtor) for the polynomial kernel witin = 2
andk = 4.

A related example is given in Figure 2 which is the digraph associated with the subset kernel
(3.2). Now the bottom edges receive input values; andx/, respectively, and the top edges.i
always receive input one (see Figure 7: left). In this c@$e) has one feature for each of th& 2
subsets/monomials overvariables. The syntax diagram representip(x) is given in Figure 7:
right.

Since the inputs to the edges might not be distinct (see example in Figure 6), we can use short-
hands for the union and concatenation of identical subgraphs that receive the same assignment.
Specifically, letd(™)H (x) andd(™)H (x) denote the feature vectors defined by thield concate-
nation and the-fold union ofH, respectively, with the same assignmeris its leaves (see Figure 8
for an example). Clearly,

KMH(x,x) = ®MH (x) . @MIH (x) = (KH (x,X))"
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4o

1 X3 X
Figure 8: Shorthand for identical subgraphs. This defines the same feature vector as in Figure 6.

and
KR (x,X) = oMM (x) - oM (x) = nk (x, X).

In the table below we summarize the correspondence between regular operators and arithmetic
operations.

\ regular \ arithmetic \
o  concatenation x  multiplication
+ union + sum
no n-fold concatenation " powern
n+ n-fold union xn timesn

4.2 Allowing x-operations

Now we consider the general case where regular expressions‘mperations. First let us clarify
how the digraph is defined by-operations. LefH;(s1,t1) be any digraph that is defined by a
regular expressiohl;. Then we define the digraph fét = Hy as in Figure 9: add a new sourse
an internal vertexjy and a new sink;, and connect witls-edges frome to ug, from t; to ug, from

Up to t and fromug to s;. For convenience we call them, €, €3 andey, respectively. The last
edgeey is called therepeat edgeof H and will play an important role. Note that tlseedges are
newly introduced and there are no such symbols in the given regular expressidfy. Actually
we can eliminate the-edges by merging the five verticesug, s1, t1 andt into one vertex. We
introduce the dummgy-edges for the following three reasons.

€2

&1 €H
Hy

€3

Figure 9: The digraph defined b= H;. s; andt are the source and the sinkI{, respectively.
A new internal vertexyy is introduced. The edggy is called the repeat edge Bf
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1. The properties that has no incoming edges amcdas no outgoing edges are preserved.

2. There remains a one-to-one correspondence between the set of paths in the coffigomknt
the language that the regular expresdibproduces. In particular, the trajectory of a p&th
in H excludinge transitions forms a symbol sequence tHaproduces.

3. As we will see later, the kernel computation and weight updatedfean be made indepen-
dent of the larger component.

The kernelKH (x,x') = Y pePH [ecp XeXe Can be calculated as before by traversing the syntax
tree (now with operations-, o andx) in postorder. The local operation done when completing the
traversal of a--node is as follows: WheHhl = H; for some regular expressidty, then

X X, XesXe,
xg, KM (x, X = 2
Xgl)(s z XSH X82)(€) X83)(€ 1- XSHXSHX€2X€2KH1(X X/)

if Xe, XE,, Xe, X6, KM (X, X') < 1 andKH (x,X') = o otherwise.

5. Using Path Kernels to Represent Weights

In this paper we describe algorithms that use the path weights as linear weightiretheepresen-
tation of the weights is the weight vectdf which has one componew per pathP. Theindirect
representation of the weights is a weight veatoon the edges for whictW = ®(w). If the graph
has cycles, then the dimension\Wfis countably infinite, and in the acyclic case the dimension of
W is typically exponential in the dimension of

The predictions of the algorithms are determined by kernel computations. In the simplest case
there is a set of inputge to the edges and path predicts withXp = [TecpXe. The algorithm
combines the predictions of the paths by predicting with the weighted average of the predictions of
the paths or with a squashing function applied on top of this average. A typical squashing function
is a threshold function or a sigmoid function. The weighted average becomes the following dot
product:

AT (e@w> (egxe> = (W) - P(x) = K(W.X).

In a slightly more involved case, the prediction of p&tfs the sum of the predictions of its edges,
I.e. S ecpXe. NOW the weighted average can be rewritten as

ZVVPe;Xe:Ze;<eE|PWe’>Xe— &Z(eﬂ ) (eeP), (5.1)

wherel (true) = 1 andl (false) = 0. For edgee, let u® be edge weights defined as

e [1 ife#e
€710 ifd=e

l(ee P):l—eﬂ us.
epP
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By plugging this into the r.h.s. of (5.1) we can again rewrite the weighted average using kernel
computations:

Z\Npegpxe = eeEz(G)er (J]Pwe/ B erWeUE«) = %EZ(G)Xe(K(W, 1) —K(w,u%), (5.2)

where 1 denotes the vector whose components are all 1. As before, the prediction of the algorithm
might be a squashed version of this average.

5.1 Probabilistic Weights

We will use the path kernel to represent a probabilistic weight vector on the path¥,+eb(w) is
a probability vector. Thus we want three properties for the weights on the set of paths (by default,
all weights in this paper are non-negative):

P1 The weights should be product form That is,

We = eI;LWea

wherew, are edge weights.
P2 The outflow from each vertexshould be one. That is, for any vertexf G,

W(u’u/) = 1,
u':(uu)eE(G)

whereE(G) denotes the set of edges®f

P3 The total path weight is one. That is,

ZVszl.

Note that the sum of Property P3 is over all path§&sdfom the source to the sink. The three prop-
erties make it trivial to generate random paths: Start at the source and iteratively pick an outgoing
edge from the current vertex according to the prescribed edge probabilities until the sink is reached.
Property P3 guarantees that any random walk eventually goes to the sink. In other words, any vertex
u that is reachable from the source via a (partial) path of non-zero probability must also reach the
sink via such a path.

Note that our use of kernels (from this section onward) is highly unusual. When we used the
notation ®(x) - (x') before in Sections 2—4, thenand X’ were always the same type of object
(input vectors corresponding to two different examples). In particular, the underlying assignment
of inputs to edges was the same for bathnd X’ (see discussion at the beginning of Section 2).
However now, when we writd(w) - ®(x), then®d(.) is still the same feature map defined by a fixed
digraph, but the vectors andx are not the same type of object any more. Heig a vector of edge
weights and a vector of edge inputs, and their dot product might be the prediction of an algorithm.
Also, the Properties P1-3 hold fer, but not necessarily fox. For the rest of this paper, we will
use this type of “asymmetric” dot products between feature vectors. From now on, the wectors
andx always have dimension equal to the number of edges of the underlying graph and there is no
common assignment to inputs.
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5.2 Decomposable Multiplicative Updates

In this paper we restrict ourselves to updates that multiply each edge weight by a factor and then the
total weight of all paths is renormalized. L\ be the old weight for patP andWs the updated
weight. Assume that the old weights are in product form We = [Tecp We and lethe be the update

factor for edgee. Then updates must have the following form:

V’VP: VVPHeePbe — HeePWebe
SPWe[lecp e  P(W)- ®(b)

The normalization needs to be non-zero and finite. That is, we need the following property on the
edge factorde:

(5.3)

P4 The edge factotts, are non-negative and

0< ZWpeELbe < 00,

Typically, the edge factors satisfyQbe < 1, and in this case Property P4 is satisfied.

Note that the updated weights are not in product form any more. In the next section we will
give an algorithm that translates the above update (5.3) into an update of the edge weights so that
the new weights again have the product form and satisfy Properties P1-3 again. In this section we
discuss (at a high level) general update families that give rise to updates of the above form.

Consider the following update on the path weights

o Wbexp(—ntp)
= S o Weexp—n(e)’

wheren is a non-negative learning rate afjis the loss of patl® in the current trial. This is known
as thdoss updatef the expert framework for on-line learning, where the paths are the experts. One
weight is maintained per expert/path and the weight of each expert decays exponentially with the
loss of the expert. The Bayes Update can be seen as a special case, when the loss is the log loss
(DeSantis et al., 1988). Another special case is the Weighted Majority algorithm (Littlestone and
Warmuth, 1994) (discrete loss). General loss functions were first discussed in the seminal work of
Vovk (1990). See Kivinen and Warmuth (1999) for an overview.

The loss update has the required form (5.3Ypiflecomposes into a sum over the loskkesf
the edges oP, i.e.

(5.4)

lp = Zble andbe = exp(—nle). (5.5)
ec

For maintaining Property P4, it is sufficient to assume that for all pathbe lossedp are both
upper and lower bounded. The applications of Sections 7, 8 and 10 use the loss update, where the
loss of a path decomposes into a sum. In many cases, however, the loss does not decompose into a
sum. In Section 9, we discuss this issue in the context of learning disjunctions.

The loss update is a special case of the Exponentiated Gradient (EG) update (Kivinen and War-
muth, 1997), which is of the form

W :\Npexp(—n %) z, (5.6)
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whereA is the current loss of the algorithm (which depends on the welghtandZ renormalizes
the weights to one. IA = 3pWp/p, then% = ¢p, and the EG update becomes the loss update
(5.4).

So to obtain EG updates of the required form (5.3), we want the gradient of the loss to decom-
pose into a sum over the edges. The canonical case is the following. Assume thax emgugsven
to the edges, the prediction of a pdelis § .p Xe, and the prediction of the algorithm is given by

y=0(4), wherea'= ZWP bee (5.7)

ando(.) is a differentiable squashing function (Recall that we showed in (5.2) how to write the
weighted path predictiom 4s a sum of kernel computations.) Assume the fosseasures the
discrepancy between the predictiparid a target label. That is,A = £(y,V), where/ is a function

R xR — R-q that is differentiable in the second argument. (A typical example is the square loss,
i.e. A= £(y,y) = (y—¥)? = (y— o(4))2.) With this form of the loss, the EG update becomes

Wb = Wb exp <—n7\’ pre> /Z, (5.8)

where
7\/ — 0€(y, G(a))
Jda

a=a

For example, in the case of the square thsge have’ = 20/(4)(y —y). Since the derivativa’
is constant with respect tB, the exponent decomposes into a sum over the edges. Thus in this
canonical case, the EG update (5.8) has the required form (5.3), where the edge factors are

be = exp(—NA\'Xe) . (5.9)

In Section 9 we will use this form of the EG update for designing efficient disjunction learning
algorithms. The discrete loss for disjunctions does not decompose into a sum. However by using a
prediction of the form (5.7) and an appropriate loss function for our algorithm, we are in the lucky
situation where the gradient of this loss decomposes into a sum and our efficient methods are again
applicable.

The term “multiplicative update” is an informal term where each updated weight is proportional
to the corresponding previous weight times a factor. A more precise definition is in terms of the
regularization function used to derive the updatdsiltiplicative updatesnust be derivable with a
relative entropy or an unnormalized relative entropy as the regularization (see Kivinen and Warmuth
1997 for a discussion, where these update are called EG and EGU updates, respectively). The
Unnormalized Exponentiated Gradient (EGU) update has the same form as the EG update (5.6)
except that the weights are not normalized.

Note that for the methodology of this paper, the update must have form (5.3), and if the algorithm
uses a prediction, then it must be efficiently computable via for example kernel computations.

4. The update can be used in slightly more general contexts wher( this not differentiable and(.,.) is not differ-
entiable in its second argument. For example in Section 9, we will use a threshold function and the hinge loss.
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6. Weight Pushing Algorithm

The additional factorb on the edges (from the multiplicative update (5.3)) mess up the three Prop-
erties P1-3. However there is an algorithm that rearranges the weights on the edges so that the
relative weights on the path remain unchanged but again have the three properties. This algorithm is
called theWeight Pushing algorithrdeveloped by Mehryar Mohri (1998) in the context of speech
recognition.

The generalized path kerndfg will be used to re-normalize the path weights with the Weight
Pushing algorithm. Assume that the edge weighdsand the path weightéw fulfill the three
Properties P1-3. Our goal is to find new edge weightsothat the three properties are maintained.

A straightforward way to normalize the edge weights would be to divide the weights of the edges
leaving a vertex by the total weight of all edges leaving that vertex. However this usually does not
give the correct path weights (5.3) unless the product of the normalization factors along different
paths is the same. Instead, the Weight Pushing algorithm (Mohri, 1998) assigns the following new
weight to the edge = (u,u):

~ WebeKy (W, b)
€7 Ku(w,b)

Below we show that the three properties are maintained for the updated Wtghtsiw,.

(6.1)

Theorem 1 Assume that the path weights W and the edge weights w fulfill the three Properties P1,
P2 and P3. Le¥\k be the updated path weight given b~y (5.3) @nde the new edge weights given

by (6.1). Here we assume that Property P4 holds. TWemndw fulfill the three Properties P1, P2

and P3.

Proof Property P3 follows from the definition (5.3)\06. Here Property P4 is needed to assure that
the normalization is positive. From (2.1), it is easy to see that the new weigt#tee hormalized,
i.e. Property P2 holds for any non-sink verigx

W) = 1
u':(uu)eE(G)

Finally, Property P1 is proven as follows: LBt= {(up,us),(Uz,Us),...,(Uk_1,Ux)} be any path
from the sourceyg to the sinkux. Then by starting from (5.3) we get

X VVP HeeP be
Wp = —rllecpDe
> pWe [Necp be
[Necp Webe

Ksource (W7 b)

[Necp WebeKsink (W, b)
Ksource (W, b)

_ K W(ui,l,ui)b(ui,l,ui)Kui (W7 b)
il:l Kuifl (W7 b)

— rLWe
ec
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Recall that in Section 4 we showed how to speed-up the kernel computation when the digraph
is represented as a regular expression. In Appendix C we will implement the Weight Pushing
algorithm on syntax diagrams for regular expression. The first algorithm is linear in the size of the
regular expression. We then give sub linear algorithms for computing the dot pr@dutt d(x)
when most of the are one, and for implementing the Weight Pushing algorithm when most of the
factorsbe are one.

Before we begin with applications of our methods in the next section, we describe the Weight
Pushing algorithm for the subset kernel given in Section 3: See regular expression (3.1) and the
digraph of Figure 2. This example might give an idea how the Weight Pushing algorithm can be
implemented on regular expressions. Assume that the faatorsare all one. By Property P2 we
havews,,, = 1—Wg. So each pair of edges ande,,; contributes a factor & wg + Wgbg in the
kernel computation (see the footnote of p. 777). More generally,if the vertex at which the-th
pair is starting, then

n

KUJ(W,b): Z I_LWebe:I_I(l_WQ +Waba)
PePTu;) e i=]

With this we see that the ratio of kernels in (6.1) cancel, except for the factor belonging jtatthe
pair, and

Wej = Wej bej/(l—Wej +Wej bej) and\/\'iaprj == (l—Wej)/(l—Wej +Wej bej). (62)

This re-normalization of the weights will be used in the BEG algorithm for learning disjunctions
(Section 9).

7. A Dynamic Routing Problem

In the subsequent sections we show various applications of our method. In particular, in this and
the next sections we discuss two on-line network routing problems. Assume that we want to send
packets from the source to the sink (destination) of a given digraph (network). For eathvisal
assign transition probabilities; ¢ to the edges that define a probabilistic routing. Starting from the
source we choose a random p&tto the sink according to the transition probabilities and try to send

the packet along the path. But some edges (links) may be very slow due to network congestion. The
goal is to find a protocol that is competitive with the optimal static routing chosen in the hindsight.
Note that we make no assumptions on how the traffic changes in time. In other words we seek
guarantees that hold for arbitrary network traffic. There are several ways to define the “resistance”
of an edge as well as the throughput of a protocol. In this section, the resistance is the success
probability of transferring the packet along the edge, and the throughput of a protocol is measured
by the total success probability of sending all packets from the source to the sink. In the next section,
the resistance and the throughput are defined in terms of the time it takes for a packet to traverse a
link rather than the success probability.

There is a large body of research on competitive routing. Typically, edges have limited capacities
and the problem is to find an “efficient” routing protocol subject to the capacity constraints. In most
cases, a reliable network is assumed in the sense that the network parameters do not adaptively
change (see e.g. Leonardi 1998, Awerbuch et al. 2001, Aiello et al. 2003). So some aspects of
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our model are new and may be more appropriate for networks operating in a strongly adversarial
environment. Below we give the problem formally.
Ineachtrialt =1,2,...,T, the following happens:

1. Atthe beginning of the trial, the algorithm has transition probabilitiese [0, 1] for all edges
e, such that Properties P1-3 hold.

2. Conductances, ¢ € [0,1] for all edges are given. Lef; denote the event that the current
packet is successfully sent from the source to the sink. Assuming independence between con-
ductances of individual edges, the probability that the current packet is sent along a particular
pathP becomes

Pr(><t ‘ x17 e 7><t*17 P) = |_Ld'[76’ (71)

3. Arandom pathP is chosen with probabilityt p = [Tecp Wt,e. The success probability at this
trial is

& = ZV\LP PriX | Xi,...,%-1,P) = ®(w) - P(dy).

4. The path weight8\ p are updated indirectly té{1 p by updating the edge weightg  to
W 1.e, While maintaining Properties P1-3.

The goal is to make the total success probabiffiy; & as large as possible.

In the feature space we can employ the Bayes algorithm. The initial weights are interpreted
as a prior for pattP, i.e. P(P) =Wy p = [JecpW1e. We assume that the initial edge weights
Wy e are chosen so that Properties P1-3 are satisfied\aad> O for all pathsP. Then the Bayes
algorithm sets the weigt 1 p as a posterior oP given the input packetXy, ..., X observed so
far. Specifically, assumin@f p = Pr(P | X;...X_1), then the Bayes algorithm updates the path
weights as

Wp = Pr(P[Xy,....%)
W_yp PI’(X( | Xl, e 7thl> P)
XPW,P Pr()(t | X17 e 7Xt717 P)
W P HeePdte
= ’ — 7.2
SpPWp[lecpthe (7:2)

Here we assume that at least one static rouRih@s positive success probability, i.e.(CRy,... Xy |

P) > 0. This assumption implies that Property P4 holds and the denominator of (7.2) is always
positive. Note that this update has the required form (5.3), where tenction as update factors

to the edges. Thus the Weight Pushing algorithm can be used to update the edge weigbts
W11 Below we show that the Bayes algorithm achieves the best possible competitive ratio against
the optimal static routing.

Theorem 2 The Bayes algorithm guarantees the following performance.
T
r!at = ZWLP PI’(Xl, ... ,XT | P) > manVVl’p PI’(Xl, ... ,XT | P).
t=
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On the other hand, for any protocol there exist conductances such that
T
r!at < mF?XVVLp PI’(Xl, ... ,XT | P).

Proof First we analyze the throughput of the Bayes algorithm. Repeatedly applying Bayes rule, we

have .
l_l I_lPrXT,L 7’ Zwlpprxl, Xr | P),

which implies the first part of the theorem.
Next we consider a strategy for the adversary. Fix a simple pa#rbitrarily, and for any trial
t, letd e = 1if ec P* andd; ¢ = O otherwise. Then, sincg =W p- for anyt, we have

T T
r!at = r!V\&,p* <Wip = maxihp Pr(Xy,..., X1 | P).

Note that the boung pWy p Pr(Xy,..., X7 | P) for the Bayes algorithm is usually much larger
than that for the static routing with the initial prior, which is expresseq'|§.§,l SpWipPr(X |
Xi,...,%-1,P). For example, consider the conductances used to show the lower bound of the above
theorem. In this case, the Bayes algorithm has constant B&upd whereas the static routing has
exponentially smaller boundp..

Note that in this simple ex7ample, the algorithm did not produce a prediction in each trial. How-
ever, note that the success probability can be expressed as a kernel computation. Also, if we define
the loss of patt at trialt asé; p = — INPr(X; | X1...%_1,P), then by (7.1) this loss decomposes into
a sum over the edges, i.&.p = Sep—In(die). Now, for learning rate) = 1, Bayes rule (7.2) be-
comes an example of a decomposable loss update (5.4), (5.5), where the independence assumption
on the acceptance probabilities of the edges (7.1) caused the negative log likelihood to decompose
into a sum.

8. On-line Shortest Path Problem

In this section we let} ¢ denote the time it takes theth packet to travel along the edge The
throughput of a protocol is measured by the total amount of time it takes to send all packets from
the source to the sink. Equivalently, we can intergkgtas the distance of edgeat trialt. Our
overall goal is to make the total length of travel from the source to the sink not much longer than the
shortest path of the network based on the cumulative distances of all packets for each edge. We call
this problem the on-line shortest path problem. We prove a bound for an algorithm and then return
to the digraph that defines the subset kernel. For this type of graph there is an improved bound. For
our bounds to be applicable, we require in this section that the digbagiérfining the network is
acyclic. This assures that all paths have bounded length.

Ineachtrialt =1,2,...,T, the following happens:

1. Atthe beginning of the trial, the algorithm has transition probabilities< [0, 1] for all edges
g, such that Properties P1-3 hold.
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2. Distances} ¢ € [0,1] for all edges are given.

3. The algorithm incurs a logg which is defined as the expected length of patfoThat is,

At = ZV\LP&,P,

where

bp=") o (8.1)
egp e
is the length of the patR, and this is interpreted as the lossFof

4. The path weight8\ p are updated indirectly tét1p by updating the edge weightg ¢ to
W16, respectively, while maintaining Properties P1-3.

Note that the length p of pathP at each trial is upper bounded by the number of edgPs iretting
D denote the depth (maximum number of edgeB)adf G, we have/; p € [0,D]. Note that the path
P minimizing the total length

T T T
PERPDRPDES

can be interpreted as the shortest path based on the cumulative distances ofy¢dgas: The
goal of the algorithm is to make its total loSg_; A not much larger than the length of the shortest
path.

Considering each pathas an expert, we can view the problem above as a dynamic resource al-
location problem introduced by Freund and Schapire (1997). So we can appli¢agje algorithm
which is a reformulation of th&Veighted Majority algorithn{see WMC and WMR of Littlestone
and Warmuth, 1994). Lébip = [ecp W1e be initial weights for paths/experts. Note that since
the graph is acyclic with a unique sink vertex, the initial weidhMs sum to 1 and Property P3 is
satisfied. At each trial, when given losse§ p € [0, D] for paths/experts, the algorithm incurs loss

At = ZV\(,P&,P
and updates weights according to
W ppte/P
W+17P - zP,W P/BZI,P//D b)) (82)

where 0< 3 < 1 is a parameter. Note that this is the loss update (5.4), where we Uspdhameter

instead of the learning rate parametefandn = (—Inf3)/D). Since the loss (8.1) decomposes,

the update has the required form (5.3), and the Weight Pushing algorithm can be used to update the
edge weights using the update factbys = B%</P. Property P3 for the weighi&t p guarantees the
existence of a path for whiodf p > 0. Since the update factors are all positive, the normalization

in the above update is positive and Property P4 is satisfied. As in the example of the last section,
the Hedge algorithm does not predict. But by (5.2), the lassan be computed using kernel
computations.
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For the rest of this section we discuss bounds that hold for the Hedge algorithm. It is shown
by Littlestone and Warmuth (1994) and Freund and Schapire (1997) that for any sequence of loss
vectors for the experts, the Hedge algorithm guarantees

T
Z At < min
= P

Below we give a proof of (8.3) with a more sophisticated form of the bound.

Fix an arbitrary probability vectdd on the paths. Led(U,W;) = S pUpIn(Up/W p) denote the
relative entropy betweed andW;. Looking at the progresd(U,W;) —d(U,W;.1) for one trial,
we have

1
+—| M) (8.3)

dU,Wy) —d(U,Wiy1) = ZUP IN(W1p/Wp)

B/t p/D

ZUpIn 5 e W pBle /P

_ P ZUP&P—MZW pp/P/P.

Since/; p/D € [0,1] and 0< B < 1, we haveBt?/P <1 (1—B)¢p/D. Plugging this into the
second term, we have

anWPB‘“P/D < In (1—<1—B>Zw7pet,p/o>
= In(1—(1-PB)A;/D)

< —(1-B)A:/D.
Thus
In 1—
dU.W) ~dUWe) = Y .
Summing this over ali's we get
d(U,Wy) >d(U,W1) —d(U,Wr1) > FBZUP Zlﬂtp-i-— Zl)\h

or equivalently,

S 1/B

At < Up Y 4 +—d U,Wy). (8.4)
AR I

If U is the unit vector that attains the minimum of the right hand side, we have (8.3).

5. In the references the losses of experts are upper bounded by one at each trial, while in our case they are upper bounded
by D. So the second term of the loss bound in (8.3) has the fActor
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8.1 Improved Bounds for Hierarchically Constructed Digraphs

Unfortunately, the loss bound (8.4) depends on the dBpthG. Thus for graphs of large depth or
for cyclic graphs, the bound is vacuous. In some cases, however, we can prove bounds where the
depthD is replaced with a much smaller depth than the depth of the entire @aph

Theorem 3 Assume that a graph G is a series composition of acyclic digraphs. HH,. Note
that each component graph; i$ not necessarily a SP digraph. Let D be the maximum depth of a
component. Then, the Hedge algorithm using the update rule (8.2) guarantees that

Lo h@p) o, d D
t;)\t S ?B Zupt;€t7P + rBd(U ,Wl).

Proof We use the convention that (x) denotes the feature vector based on the pathg.oks in
the case of SP digraphs, we have

n

®(w) - D(by) = |‘[¢”i (wg) - @ (),

whereb o = B%</P. Therefore

|nzw7p[3&f’/0 = Ind(w)- d(by)
- i'”q’”%vvt)wHi(bt)

= len S Weppte/P
i=1 pePHi
< Zl—(l—B)Au/D

wherel; = S pcpri W ptt p is the expected length of the partial paths throtfglandA; = S A,
Using the same technique as in the previous proof, we get the theorem. |

For example, let us return to the digraph that defines the subset kernel (Figure 2). The graphis a
series composition af two-vertex graphs, where there are two parallel edges connecting the pairs
of vertices. Note that although the depth of the whole graph éach component graph has depth
constant one. So, the Hedge update (8.2) Witk 1 leads to a bound that does not depend on the
depth of the entire graph.

9. Learning Disjunctions and Conjunctions

In this section we give a high-level discussion of on-line algorithms for learning disjunctions and
conjunctions. All algorithms we present are known. We start with inefficient algorithms that have
excellent mistake bounds. However, we show how upper bounding the discrete loss by a loss that
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decomposes into a sum lets us apply the path kernel methodology introduced in this paper. By
choosing an appropriate digraph for each case, the weight pushing algorithm realizes alekirown
cientalgorithms for learning disjunctions. The price for the gained efficiency is a slight degradation
of the mistake bounds.

At each trial a binary instance vectarc {0,1}" is given to the algorithm. After the algorithm
produces a binary prediction, it receive a binary labe); and incurs discrete log$; —y| (also
binary). The goal is to design algorithms whose loss (or number of prediction mistakes) is not much
worse than the loss of the best conjunction or disjunction of a giverksigkerek is typically much
smaller than the number of variablesThe Winnow algorithm was the first efficient algorithm for
learning disjunction (Littlestone, 1988). Here we motivate two alternate algorithms and also briefly
discuss Winnow. All these algorithms spe@¢h) time to predict and update their weights and their
loss bounds grow linearly ik and logarithmic im.

We begin by discussing an algorithm for learning conjunctions. Recall the subset kernel of
Kivinen and Warmuth (1997) introduced in Section 3 (the path kernel associated with Figure 2).
Assume that the bottom edgereceive inputx; and the top edges,; all receive input one and
function ase edges. Each path featukgp is the product over the inputs along the path. More
precisely,X p = X A = [TieaX%.i, WhereA is the subset of indices ifi, ..., n} corresponding to the
bottom edges oP. So the subset featudg A predicts as the conjunction over the variables with
indices inA and|y — X a| is the discrete loss of conjunctighion the exampléx;, yt).

One approach is to maintain a weighta per subsefA and predict withy,”= og(a;), where
a = Y AW aX A andog(.) is the{0, 1}-valued threshold function with threshadd Here we choose
0 = 1/2. Assume the weights are updated multiplicatively using the loss update, i.e.

WA= WaSXp( =N = Xeal)) , whereZ; normalizes the total weight to 1.

Z

Since the loss function is the discrete loss, this is an application of the Weighted Majority algo-
rithm (Littlestone and Warmuth, 1994). Using methods similar to what was used in Section 8, it is
easy to prov&a mistake bound o®(klnn+m,), wherem, is the number of mistakes of the best
conjunction of sizek.

Unfortunately, the algorithm is inefficient since it maintaifsveights. Moreover, it was es-
sentially shown by Khardon, Roth, and Servedio (2001) that computing the predictions for this type
of updaté is #P-hard. Our efficient methods do not apply because the discret@yos$]ica X
does not decompose into a sum.

So how do we obtain an efficient learning algorithm for conjunctions? One way is to use additive
algorithms such as the Perceptron algorithm together with the subset kernel. The additive algorithms
for solving the same problem are efficient, but the bounds are much weaker (linearstead of
logarithmic) (see discussion by Kivinen and Warmuth 1997, Kivinen et al. 1997, Khardon et al.
2001).

We now develop efficient multiplicative algorithms. For convenience, let us switch to learning
disjunctions (Because of de Morgan’s law, the learning problems for conjunctions and disjunctions

6. Choose the pridiV a so that for each size, the total weight of all conjunction of that siz¢/is 1

7. Khardon, Roth, and Servedio (2001) call the subset kernel the “monomial kernel”. Hardness was shown for comput-
ing the predictions of Winnow when there is one weight per conjunction. This is essentially an unnormalized version
of the update discussed here.
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QJ)V

6 6

QJ)V

y=0 2Qy=1

Figure 10: The hinge loss= |y — 0g(4)| |6 — &| as functions o&.”

are equivalent.) Now the loss of disjunctigron examplgx;,y:) becomes

ba= Iy —10) % > 1),

wherel (true) = 1 andl (false) = 0. Again, this discrete loss does not decompose and we cannot
implement the loss update efficiently.

However, we now modify our setup. We let each disjunction predict Wjth X ; instead of
[(SicaX.,i > 1). The weighted average prediction is naw=$ W A SicaX%. and the algorithm
predicts withy; = 0g(4& ), where the thresholfl is suitably chosen. For a moment let us assign the
following loss to the algorithm

A= |yt —0o(&)] 10— & = L(%, )-

So wheny{ = y;, then this loss is zero. But whegn+# ¥, it is linear ing. This is thelinear hinge
lossused for motivating Support Vector Machines (Cristianini and Shawe-Taylor, 2000, Gentile
and Warmuth, 1998). See Figure 10 to see how the hinge loss behaves with respect to the linear
activationg;. Note that the weighted average predict@grarid the hinge loss; are of the canonical

form we discussed in Section 5.2. So the deriva% = A{ YieaX,i decomposes into a sum with

At = 0£(yt,06(8)/08]5_4 = %t — W (See Figure 10), and the EG update (5.8) has the required form
(5.3), withby ¢ = exp(—n (% — Yt)%.e). Now we can indirectly represent the weight veddr for

the 2' subsets by maintaining a weight vectaron the 21 edges, so thal/; = ®(w;) where®(.) is

the feature map of the subset kernel. We efficiently update the weighising the Weight Pushing
algorithm on the digraph of Figure 2 (See update (6.2) and discussion at the end of Section 6). The
weighted average; tan be expressed in term of kernel computations (5.2). However, for the the
special case of the subset kernel it follows from (5.1) that §iw o - %;. Hence the prediction

y: is easy to compute. The algorithm described above is called the Binary Exponentiated Gradient
algorithm (BEG algorithm, for short) for learning disjunctions (Bylander, 1997, Helmbold, Panizza,
and Warmuth, 2002).

Recall that the mistake bounds provable for the inefficient disjunction learning algorithm are
linear inm,, the minimum number of mistakes of akyiteral disjunction. All efficient disjunction
learning algorithm are linear ia, instead, where., is the minimum number of bits/attributes that
have to be flipped in all examplé,y;), so that there is a disjunction of sikehat agrees with alll
labelsy;. More precisely the mistake bound of the efficient disjunction learning algorithm all have

795



TAKIMOTO AND WARMUTH

the formO(kInn+a.). This includes BEG when the thresholds and learning rate is appropriately
chosen (see Theorem 5 of Helmbold et al. 2002). Noteahatight be up to a factor dk larger
thanm,. So there is a price we have to pay for moving from the discrete loss to the decomposable
hinge loss which leads to the more efficient algorithms.

The hinge loss can also be used to derive the normalized Winnow algdtithowever now a
slightly different kernel must be used corresponding to the regular expression

(er1+e€2+...en)(e1+e2+...€5n)...(En1+E2+...€nn),

where the edges, ; receive inputx; (i.e. Xe,, = %). A pathP = {eyj,,€,,...,€nj,} corresponds

to the disjunction with index se{il,iz,...,yin}. Note that now many paths represent the same
disjunction. We follow the same derivation as for BEG. Instead of letting pPafitedict with

I (SecpX.e > 1) and using the discrete loss

bp=y—1() %e>1),
2

we use a different prediction and the hinge loss. We let thePatiedict withy g_p X ¢, and use the
loss

At = |yt — Og(&)| |6 — &|, wherea; = ZW,P prt,e-
ec

Again the loss decomposes. Assume that all eégeare assigned the same initial weighte,;, =
1/n. Then, since for any tridlall edgese, ; receive the same factbe , = exp(—n(y—y)x,), the
Weight Pushing algorithm keeps their weighits., . the same. Letv ; denote these weights. Now
the Weight Pushing algorithm updates the weights as follows:

W oy

Werli = oh o

, Wherebyj = exp(—n(y—y)%.,i) -

Also the prediction simplifies to the following:

n-1
& = n) Wi (Z‘M,j) (9.1)

J
= nZWt,iXt,ia

becaus€& ;W ; = 1 for Normalized Winnow. The constanttan be incorporated into the threshold.

See Theorem 9 of Helmbold et al. (2002) for the settings of the learning rate and threshold that lead
to theO(klogn+ a.) bound for Normalized Winnow, whe, is as before the minimum number

of bits/attributes that have to be flipped in all exampbesy: ), so that there is a disjunction of size

k that agrees with all labels.

The Winnow algorithm can also be derived using the hinge loss and the same kernel as Normal-
ized Winnow. The only difference is that the weights are not normalized and the Weight Pushing
algorithm is not needed. However now, we do not know how to motivate the prediction of the
Winnow algorithm because (9.1) does not simplify (sifyg@x ; might not be one).

8. This algorithm is due to Nick Littlestone and was discussed for the first time with the authors in 1995.
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The weights of the BEG algorithm have a probabilistic interpretation as represerntidgpen-
dent Bernoulli coins. Similarly, normalized Winnow corresponds tom &id multinomial distribu-
tions. No probabilistic interpretation is known for the original Winfoisee Helmbold et al. 2002
for a discussion).

Finally, for most of this section we focused on efficient algorithms for learning disjunctions
of monotone literals. Going from the discrete loss to the hinge loss allowed us to use one weight
per literal instead of one weight per disjunction. When the base functions are conjunctions instead
of single literals then the same motivation leads to algorithms for learning Boolean functions in
Disjunctive Normal Form (DNF). Now going from the discrete loss to the hinge loss allows us to use
one weight per conjunctions instead of one weight per DNF formula. For example, the algorithm
we started with in this section with its threshold moved®te % now becomes the Normalized
Winnow algorithm for learning monotone DNF formulas with upktterms. Its mistake bound is
O(kn+a.), but it maintains 2 weights. See Maass and Warmuth (1998), Khardon et al. (2001) for
related discussions.

10. Predicting Nearly as Well as the Best Pruning

One of the main representations of Machine Learning is decision trees. Frequently a large tree
is produced initially and then this tree is pruned for the purpose of obtaining a better predictor.
A pruning is produced by deleting some vertices in the tree and with them all their successors.
Although there are exponentially many prunings, a recent method developed in coding theory and
machine learning makes it possible to maintain one weight per pruning. In particular, Helmbold and
Schapire (1997) use this method to design an elegant multiplicative algorithm that is guaranteed
to predict nearly as well as the best pruning of a decision tree in the on-line prediction setting.
Recently, the authors (Takimoto and Warmuth, 2002) generalize the pruning problem to the much
more general class of acyclic planar digraphs. The key property of planar digeaphsis used in
the previous paper is the following: There is a dual digr@Shsuch that prunings of the origin@
are paths in the du&@P and vice versa. In particular, for SP digraphs (a subclass of planar digraphs),
the dual digraphs are easily obtained by swapping the union and the concatenation operations in the
syntax tree. In this section we restate this result in terms of path kernels on SP digraphs.

A pruning of a SP digrapls is a minimal set of edges (a cut) that interrupts all paths from the
source to the sink. More precisely, a pruniRgf G is a set of edges d& such thatR intersects
with any pathP € P (G) at exactly one edgB N R (see Figure 11). In the example of Figure 4, all
the prunings of the graph afe;, e, e3,65}, {€1,€4,65,€5}, {€1,€7}. In general, we leR (G) be the
set of all prunings oR. Now we give the problem formally. In the following we fix a loss function
¢:10,1] x [0,1] — [0, 0], say, the square logsy,y) = (y— ).

Ineachtrialt =1,2,...,T, the following happens:

1. Prediction valueg ¢ € [0,1] are given to the edgesof a single pattR € P (G) called the
prediction path Typically this path is generated by some decision process that passes down
the graph. Here we do not need to be concerned with how the predictioR patipenerated.

2. Each pruningR € R (G) is assumed to predict as the edge that cuts the Ratfihat is,R
predictsx pRr-

9. Winnow belongs to the family of Unnormalized Exponentiated Gradient algorithms (Kivinen and Warmuth, 1997).
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source

sink

Figure 11: Any pruningr of the digraph intersects with path at exactly one edge, denoted by
RNR

3. The algorithm maintains a weight per pruning and makes its own predigtiof0;1] based
on the weighted average of the predictions of all prunings (details are given below).

4. An outcomey; € [0,1] is observed.
5. The algorithm incurs loss = 4(w, ¥t). Similarly a pruningRincurs losslt g = £(Vt, % RrR)-

The goal is to make the total loss of the algorithm not much larger than the total loss of the best
pruning.

First we describe an algorithm that works on the feature space. The algorithm is based on the
Weighted Averaging algorithm (the WA algorithm, for short). The WA algorithm maintains a weight
W r per pruningR. (Here we use the upper case leif¢ir to denote the weights of prunings. In
a moment we will see that these weights become product features.) In eadhttr@kalgorithm
predicts with the weighted average of the predictions of the prunings. That is,

Vi = ZW,RXI,P{OR-

After the outcomey; is observed, the weights on the prunings are updated using the familiar loss
update

W rexp(—Nn#4Rr)
SRW REXP(—N&R)’
wheren is a non-negative learning rate. The WA algorithm guarantees the following performance
(Kivinen and Warmuth, 1999): Assume that for any fixed [0, 1], the functionfy : [0,1] — [0, 1]
defined as

Wiir=

fy(X) = exp(—n£(y,x)) (10.1)
is concave. Then, it holds that

T T 1
At <min br+(1/n)In——mA
tZi =R (tzi bR /) WlR)
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Figure 12: The dual SP digrag®P of G of Figure 4 and its syntax tre& is represented by open
circles and solid lines, an@P is by closed circles and dashed lines. Observe that each
edge ofGP intersects with exactly one edge Gf We use the same symbol for these
edges. The syntax tree GP is obtained by swapping the ando in the syntax tree of
G.

whereW, R is the initial weight forR. Note that the condition on the concavity of the functions
(10.1) is satisfied by many convex loss functions for an appropriate choige &0or example,

the square loss satisfies the condition wijtk 1/2. The higher the learning ratg the better the
bound. Higher learning rates are permissible with the fancier prediction functions developed by
Vovk (1990). Here we only discuss the simplest case of predicting with the weighted average (see
Kivinen and Warmuth (1999) for an overview). More sophisticated version of the above bound
using relative entropies (as done in Section 8) are easily obtainable.

Now we give an efficient implementation of this algorithm in terms of path kernels. Consider
the dual SP digrapi&® which is defined by swapping the ando operations in the syntax tree.
Note that prunings and paths@are swapped iG°, namely, a pruningRin G is a path inGP and
the pathP in G is a pruning inGP (Takimoto and Warmuth, 2002). See Figure 12 for an example.

The efficient implementation maintains weightson the edges oBP such that the weight of
pathRin GP is W g = [JecrWe e If ®P(.) is the feature map associated with the path kernel of
GP, then we use this map to indirectly represent the weights on the prunir@wiaf weights on
the edges, i.eW; = ®°(w;). We can also represent the predictions of the prunings using the same
feature map. Attrial, the inputsk ¢ are assigned only to the edges of pgthwe extend the inputs
to all edges by letting; e = 1 for e Z B and usex to denote the entire input vector over the edges.
Now the value of featur¥; r is its prediction, i.e.

Xr=®°(X%)r= rLXt,e =X RnR-
ec

So the predictiory,"of the algorithm becomeg = W, - X; = ®P(w) - ®P(x), which is efficiently
computed by the path kernel GP.

If we define the loss of edgeat trialt asli e = £(Vt, % e), if e€ B, andl; ¢ =0, if e¢ R, then the
loss of pathR decomposes into a sum;r = £(yt,% rnR) = Yecrlte. Thus the above loss update
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has the required form (5.3)

W R[MecREXP(—N T ecrte) _ [ecr Wbt e
SRMREXN(—NYecrlte)  P(W)-P(br)’

whereb ¢ = exp(—nlie), if € € R, and one otherwise. Hence instead of directly maintaining the
weightsW; on the prunings, we can efficiently update the edge weightsing the Weight Pushing
algorithm on the digrapisP.

In Appendix C.3 we give an efficient implementation for computing kernels and the Weight
Pushing algorithm. The algorithm does not maintain a vector of edge weights the given
digraph (hereGP) but instead maintains a vector of edge weightsr the syntax tree of the regular
expressiorHy that describes the path set of the digraph. More precisely, for each uniorthede
Hi+ - - + H of the syntax tree, we maintain weightd for 1 <i < k (Herek is called the degree
of H). These new weights implicitly define a probability vedtéron the path set of the digraph via
the following stochastic process for traversing the syntax treélfoiStart from the root; if we are
at a concatenation node, then we go to all of its children; if we are at a unionHhdtien choose a
child nodeH; with probability i and go toH;; finally all the leaves we visit form a patke P o,
and the weight\k is defined as the probability that the p&is chosen by this process. (Recall that
Ho generates the path set@P that are the pruning set &.) In Appendix C.3 we treat the general
case where-operations are allowed as well.

For a given inpuik to the edges, a nodé of the syntax tree iselevantwith respect tax if H
has a descendant leaf with input not equal one. We will show in the appendix that the algorithm
computes kernels in time linear in the number of relevant nodes and computes the new weights ~
in time linear in the sum of the degrees of relevant union nodes. (Recall that we have probabilistic
weightspf! only for union nodedd. Even if only one child node dfi is relevant, the weightg!
of all children ofH will be affected by the update. This is why the time for updating weights is
proportional to the sum of the degrees of relevant union nodes.)

We now return to the on-line pruning problem of this section. Note that we work on the syntax
tree for the dual grap&P. Recall that for each tridlthe algorithm is given the prediction pahin
G which is a pruning ofzP. We claim that for a given pruning of GP, the sum of the degrees of
relevant union nodes of the syntax tre®i§R |). To show this, we give a proof for the dual version
of the claim, which we hope is easier to understand. Now the claim can be restated as follows: For
a given pathP, of the primal graphG, the sum of the degrees of relevarincatenatiomodes of
the syntax tree fo6 is O(|R|). Without loss of generality we assume that all the inpdtsn the
pathP; (e € R) are not one since this assumption only increases the relevant nodes. For akyy node
of the syntax tree, let d¢bl) denote the sum of the degrees of relevant concatenation nodes of the
subtree rooted a. Furthermore, leP" ¢ PH denote the partial path & that goes through the
component, that is,P" = E(H)NR, whereE (H) denotes the edge setldf Note thatPt becomes
a path ofH. Below we show by induction that for any relevant nddiedegH) < 2|P"| — 2, which
proves the claim. For the base case, whdre- e for some edge symbdd, the claim trivially
holds. IfH = Hy +---+ Hy, then the pattP" is a pathPHi € PH and degH) = degH;) for
someH;. So by the induction hypothesis the claim holds. Finally assbimeH;o--- o Hy. Note
that without loss of generality we assurke> 2. In this case, the patR™ goes through all the
componentdy, ..., Hy and thusP! is of the formPH = PH1U. .. uPH, So all the childrerH; of H
are also relevant. Clearly, dgg)) = k+ YK ; degH;). By the induction hypothesis, this is at most
k+ 3K, (2/PH] —2) = 2|PH| —k < 2|P"| - 2, which completes the claim.

Wiir=
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Figure 13: A tree (left) can be viewed as a SP digr&/lmiddle) by introducing the source and
the sink and merging all leaves into one sink. The syntax tree of theGlia given
(right). Each union node (for examph€) corresponds to an internal edgeu’) of G.

In summary, applying the algorithm given in Appendix C.3 to the on-line pruning problem of
this section, we can compute the prediction vajuand the new weightg 1 in O(|R|) time. This
can be significantly faster than the original Weight Pushing algorithm, especially when the given SP
digraph has a small depth.

Finally we note that any tree can be interpreted as a SP digraph by merging all leaves into one
sink. Moreover, if the given SP digrajghis a tree in this sense, we give an interesting interpretation
for the weightsu (see Figure 13). For simplicity we assume that any vertex other than the root of
the treeG has degree more than one. Then each union Rbd&the syntax tree fo6P has always
two childrenH; andH,. One child,H;, is a leaf labeled with an internal edge u') of G and the
other child,H,, corresponds to the subtree rootedsat The weightp!! can be interpreted as the
probability of pruning the tre& at this edgdu, u’) andug =1- uT as the probability of choosing
a pruning in the subtree below edgeu’). Curiously, the resultant algorithm for trees turns out to
be exactly the same as the one motivated by dynamic programming (Takimoto et al., 2001).

10.1 Pruning for Probabilistic Path Inputs

In this section we extend the on-line pruning problem for SP digraphs to the situation where predic-
tion pathPR is chosen probabilistically. More precisely, in trtathe algorithm observes prediction
valuesx ¢ € [0, 1] assigned to all edges rather than along a single prediction path, together with the
set of edge weights; ¢ € [0, 1] that satisfies Properties P1, P2 and P3. The valués interpreted

as the prediction of edgeat trialt and the edge weightg induce a probability distribution on all
pathsP of G. That is, the probability of prediction pathat trialt is given by®(vt)p = [Tecp Vi e-

Now the predictionX; r of a pruningR becomes a random variable and it takes vadugr with
probability ®(v¢)p. Accordingly, when an outcomsg is presented, the logsr of R at trial t is
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defined as thexpected loss.e.,

br=E[l(y,XR)] = ZQD(Vt)PE(Yt,Xt,PmR) .

Since any path® intersects with the pruninB at exactly one edge, the set of paths that go through
e € Rand the set of paths that go througke R are disjoint ife # €. Therefore, we have

hr = ;ZCD(vt)pé(yt,xt,e)l(ee P)

= Z:(pt,eg(YUXt,e)» (10.2)

where
Pre= Z ®(vi)pl(e€ P)

is the probability that the prediction path goes through the particular eddé¢ote that for any
pruningR,

Pre=1 (10.3)
e; e
Similarly, the expected prediction of prunirgjis

E[XR] = ZCD(Vt)P X PR = ;pt,ext,e- (10.4)

As shown in Section 5p; ¢ can be expressed with kernel computations. That is, letifrige the
edge weights defined as
e — 1 ife+#e
¢ 0 ifd=e

we have

Pre = ZEDPVLG <1— JJPUS,) =K(vg, 1) — K(v, ). (10.5)

Again our goal is to produce predictiogsso that the total Ios§tT:1€(yt,yt) is not much larger than
the lossy_, /4  of the best prunindR.

Recall that a patl® of G is a pruning ofG® and a pruningR of G is a path ofGP. In each trial
t=1,...,T,

1. Prediction value% ¢ € [0,1] and weights); ¢ € [0,1] are given to all edgesof GP, wherev;
fulfills Properties P1, P2 and P3 for the primal graphThe weight vector; on the edges
assigns probability]..p vt ¢ to the prediction patR of G and®(v) represents the probability
vector on all such paths.

2. The algorithm predictg € [0,1].
3. An outcomey; € [0,1] is observed.

4. The algorithm incurs losk = /(y, ;) and each patR of GP incurs los/; g Which is given
by (10.2).
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In this setting we show that a slight modification of the WA algorithm has the same loss bound as
in the deterministic case. It is easy to extent the methods to the fancier predictions given by Vovk
(1990) that give improved bounds (as long as they predict with a function of the weighted average).

The algorithm maintains edge weighg so that they represent weighté g = [JecrW e fOr
pathsR of GP, i.e. W; = ®°(w;). Now the predictiony of the algorithm at triat is the weighted
average of thexpectedredictions (10.4) of paths. That is,

Vi = ZW,RE[XLR] = ZW,RZ PteXe e (10.6)

Using (10.5) and (5.1), the predictigncan be expressed with kernel computations.
When an outcoms is given, the algorithm updates its weights so that

W rexp(—NnkRr)
_ ) ) 10.7
W >RW rEXP(—N{LR) (10.7)
holds for any pruningR. Since/; r decomposes into a sum over edgesjrthis update can be
efficiently simulated using the Weigh Pushing algorithm for updating the edge weiglots the
digraphGP.
The below theorem gives the loss bound for the algorithm.

Theorem 4 Let/: [0,1] x [0,1] — [0, ] be a loss function such thétis convex with respect to the
second argument and the functiopgiven by (10.1) is concave. Then, the algorithm using (10.6)
and (10.7) for prediction and update, respectively, guarantees the following performance: For any
probability vector U on the prunings of the digraph G, it holds that

T T

tZl)\t < ZURt;Et,FH- (1/n)d(U,Wy),

where d is the relative entropy andMsé the initial probability vector on the prunings.

Proof LetU be an arbitrarily probability vector on the prunings®f Looking at the progress
d(U,W;) —d(U,W¢,1) for one trial, we have

War
W r
exp(—NntRr)
= Ugl d
Z R SrRW REXP(—N4&R)

= -n ZUR&,R —In ZV\LReXp(—n&,R)

= -0 ;UR&,R_ In;V\LRexp<—n Z{Q,eﬁ%;&e)) . (10.8)
ec

By the convexity ofL and (10.3), we have

d(U ,Wt) — d(U ,Wt+1) = ZURIn

Z?pt,ee(Ytyxt,e) >L <Yt7 Z?pt,ext,e> = L(W, E[XR])
éc éc
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From this and the concavity of the functidy, it follows that

ZV\&,ReXp<—n Epmeé(yt,&,e)) < ZWReXp(_nL(YtaE[XLR]))
= ;Wﬂfyt(E[Xt,R])

fy, <ZW,RE[XLR]>

= fy (%)
exp(—n¢(y, %))
= exp(—nh).

IN

Plugging this into (10.8), we have

d(U,Wi) —d(U,Wii 1) >n <— ZURELR-FN) .

Summing this inequality ovedr=1,..., T, we immediately have the theorem. [ |

Note that if we takdJ as the unit vectors that puts all probability on a single prufnghen we
obtain the following simpler version of the bound:

T T
t;m < min (t;&w (1/n) ln(l/wl,R)> :

11. Conclusion

In this paper we showed that path kernels can be used to indirectly maintain exponentially many
path weights. Multiplicative updates give factors to the edges and the Weight Pushing algorithm
renormalizes the edge weights so that the outflow out of each vertex remains one. We also showed
that it is often convenient to express the path sets as regular expressions, leading to more efficient
implementations of path kernels and the Weight Pushing algorithm. We gave the path kernels that
interpret the BEG and the normalized Winnow algorithms for learning disjunctions as direct algo-
rithms over exponentially many paths. A number of other examples were given for implementing
multiplicative algorithms over exponentially many weights.

In Section 5 we specified the requirements needed for our method of using path kernels: The
weight update must have the form (5.3), and if the algorithm predicts, then its prediction must be
efficiently computable via for example kernel computations. We gave a number of examples of our
methods.

The motivation and analysis of various additive and multiplicative linear threshold algorithms
based on the hinge loss was done before by Gentile and Warmuth (1998). In this paper, we start
with inefficient algorithms (with exponentially many weights) and show that the transition to the
hinge loss leads to multiplicative updates that can be simulated implicitly (because the gradient of
this loss decomposes into a sum).

Multiplicative algorithms belong to the EG family of updates and in this paper we found special
kernels that can be used to efficiently implement updates from that family. A key requirement was
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that the features are products. The question is whether there are special kernels for other families
of updates. Recently updates have been found that interpolate between the EG family and and the
additive updates (Gentile and Littlestone, 1999). These are callgaibem updates. It is an open
guestion whether there are kernels that allow us to efficiently implemerg-tltem updates over
exponentially many variables.
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Appendix A. On the Uniqueness of the Solution to the Linear Equations for Kernels

Recall that we want to compute

LX) = .
K(X ) Pe;u)egxe)(e

Consider the following linear equations:

1 if U= sink,
ku = Z X(U,U')qu,u’)kul if u 75 sink. (Al)

u:(uu)eE(G)

Herek, are the linear variables and cleaky = K,(x,X) is a solution. In this appendix we show
that this solution is essentially uniquexifx' > 0 andK(x,x’) finite.

A vertexu is source-reachabléwith respect toc andx') if there exists a patP from the source
to u such thaff]ecp XeXe > 0. Sink-reachabilityis defined similarly. In other words, a vertexis
sink-reachable, iK,(x,x') > 0 and not sink-reachable i,(x,x’) = 0. To make the solution of the
above equations unique, we use the following additional constraints:

k, = 0,for any vertexu that is not sink-reachable. (A.2)

Theorem 5 Assume that,x’ > 0and K(x,X') < . Let k be a solution to (A.1) and (A.2). Then for
any source-reachable vertex u,

= KU(X’ X/) - Peg(u)elzl’ae'

Proof First we assume that the source is not sink-reachable Ki(& x') = 0. In this case, any
source reachable vertexs also not sink-reachable. So the verteis eliminated and we have the
right solution foru: k, = Ky(x,x') = 0.

Next we assume that the source is sink-reachable. Plugging (A.2) into (A.1) we get a system of
linear equations restricted to the variabkgsvith sink-reachable verticas Letn denote the number
of the sink-reachable vertices and we use integers /n to specify such vertices. We assume that
the source and the sink is the first and the la#t)(vertices, respectively. Lét= (ki,...,ky)" be
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the column vector whosgh component is the solutidg for vertexi, where the prime’) denotes
the transposition. Similarly, leA be then x n matrix whose(i, j) components; j is defined as
g j= x(i,j)x’(i’j) if (i,]) is an edge o6 anda; j = 0 otherwise. Note thad, j = O for all j, since the
sink has no outgoing edges. Now the linear equations (A.1) become

0
K= Ak+ | : (A.3)
0
1
with the condition thaf > 0 andKj(x,X) < c. Lete, = (0,...,0,1). Expanding (A.3) we have

k = Ak+e,
= A(Ak+e)+e

= Z}Asen + A%k,
S=

whereA” = lims_ .., A%. So it suffices to show that the first term coincides viditx, x') = (K1 (x,X),
...,Kn(x,X)" and for any source-reachable vertetheith row of A” is the zero vecto(0, ... ,0).

First we show thaf g o A%, = K(x,X). Letaf; denote thei, j) component oA®. Sincea; ; =0
for all j ands> 1, thenth component of the left hand side is 1. Here we used the fachthiatthe
identity matrix. On the other hand, we hakig(x,X') = 1 by definition. So the equality holds for the
nth component. Far< n, it is easy to see that

i(xX) =
K(X ) PeZ(i)elz!’ae

which clearly coincides with thegh component ofy g, A%ey.

Next we show that for a source-reachable veitend any vertexj, &’ = lims .« aﬁj =0.
Let i be a source-reachable vertex. That is, there exists aHadtiom the source to such that
[MNecr, @ > 0. Fix an arbitraryj # i. Since only sink-reachable vertices remain in the equations,
there exists a patR; from j to the sink such thgllecp, @ > 0. LetP (i, j) denote the set of paths
fromi to j that do not pass the vertgxbefore arriving at, and let

Ki j(%,X) = ; ae.
Pe (i,j)eE!’

Restricting the prefix and the suffix of pathsRg and P;, respectively, we have a subset of all
source-sink paths. This, together with the assumptionkhiat x') < o, implies that

= = (=) ( 3 ne)(n0e)
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) <e|;[oae> <e|;[1ae> K j (%,X).

Since the first two factors are positive, we h#{g(x,x’) < «. Now we observe that

Kij(xx) = PGZ(iJ)eI;Lae

= e
szl PeFIZ(i,j) eEL
P|=s

[ee]
s=1

which is finite. SinceA > 0, it must hold thatai"j’j =0, as required. [ |

Appendix B. On the Uniqueness of Edge Weights

In this section we show that no two distinct edge weights represent the same path weights. More
precisely the claim is described as follows.

Theorem 6 Let w and W be edge weights and W and'\be the corresponding path weights. We
assume that Properties P1-3 hold. That iss W[]ecpWe and W = [ecp W, for any path P;
S (uw) W) = 1and zu,:(u,u,)vx/(u,u,) = 1for any vertex u; ang pWp = 1 and 3 pW5 = 1. Assume
that W=W’. Then for all edges e- (u,u") on paths P for which Wor W}, are positive, we have
We = Wp.

Proof The proof we give below is based on the entropy decomposition argument developed by Singer
and Warmuth (1997). Consider the relative entropy betwWeemdw’: d(W,W') = 3 pWe In(We /W).
We rewrite this relative entropy as follows:

d(W,wW’) ZWP In |_L
Wp In —
PR
We
VVP # (P) In WA
gk PNy
where the second sum is over all edges ag(d #denotes the number of occurrences of edge
in the pathP. If e= (u,U), then the properties assure that the expectation.@)#underW,
denotedEy [#:(P)], is we times the expected number of visits to the vertér the pathP, denoted
Ew[#,(P)]. That is,Ew[#(P)] = weEw [#,(P)]. It follows that
dw,wW) = ZIn pr#e

= z In WEW[#e(P)]

e e
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wherew(, ., and V\/(u,) are the probability distributions over the edges outgoing fromSince
d(W,W’) =0, we must haveyy ) = \l\/(u7_) for anyu such thatEw [#,(P)] > 0. Thatisw(y,) = V\/(u )
for anyu that lies on a patl® for whichWe is positive. ||

Appendix C. Weight Pushing Algorithm on Syntax Trees

Now we give an efficient implementation for the Weight Pushing algorithm that computes (6.1),
namely,
. WebeKy (W, b)
We= ——
Ku(w, b)
for any edgee= (u,U’). The algorithm does a pass over the syntax tree of a given regular expression
Ho and runs in time linear in the size of the regular expression. (A further speedup is given in
Section C.3, where we present an algorithm that is sub linear in the size of the regular expression.)
Recall that each nodéd of the syntax tree corresponds to a regular expredsiavhich represents
a componenH of the entire grapfily. We use the same symbidl for internal nodes of the syntax
tree and the corresponding regular expression.

(C.1)

C.1 Weight Pushing Algorithm for SP Digraphs

First we assume that the given regular expresbigdoes not have-operation. That is, we give an
update rule for edge weights for SP digraphs. The idea is to compute edge weéigtgsufsively

for each componeritl so thatwt is the same as the weights that the Weight Pushing algorithm
would produce when applied dfi. If edgeeis outgoing from the source of the compon&htthen

we calle asource edgef H. For any edge in H, let\Wy be defined recursively as

1 if H = efor some edge symba&
WE = ﬁ:'((v"vvg))wg' if H=H;+---+Hx andeis a source edge dfj, (C.2)
W if H=Hjo0---oHy andeis an edge of;.

Finally the weights on the edges are givervipy="Wt°.

The next theorem shows that this update assures (C.1) for any comfbn&atdescribe this,
we need to extend the kerniél! to the sums over paths starting from an arbitrary veuwéxH as
before. For a componefi(s,t) and a vertexi of H, let P (u) denote the set of all paths froato
t in H. Furthermore, we define the kernel associated withnd vertexu of H as

KH (W, b) - Webe.
- Pe;(u) GE!’

Note thatPH = PH(s) and henc&H (w,b) = K- (w, b).
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Theorem 7 Let Hy be a regular expression that has reoperations. For any component graph
of Hp and any edge e (u,u’) of H, the update rule (C.2) satisfies

n WebeK! (w,b)
T = D)

Proof We show the theorem by an induction on the depth of the syntax tree.

In the case wherél consists of a single edge= (u,u'), then by the above formulal™= 1
as required, because for the sinkof the edgeKg(w,b) = 1, and for the source of the edge,
KS(w, b) = webe.

Consider the case wheke=Hj o---oHy. Assume thae= (u,u’) is an edge oH;. Since any
pathP € PH(u) is a unionP =R U---UR for someP, € P (u) andP; € PHi fori+ 1< j <k, it

follows that )

K& (w,b) = K (w,b) ] K"i(w,b) (C.3)
j=i+1
and similarly
k
K{ (w,b) = K (w,b) ] K"i(w,b). (C.4)
j=it1
So
wE = wh by the definition oft!
K
= Webe“—(w’b) by the induction hypothesis
Ku" (w, b)
_ WebeK{; (w, b)
= W by (C.3) and (C.4),
as required.

Finally consider the case where=H; + - - - + Hy ande= (u,U’) is an edge offj. If uis not the
source offl, then since any path € PH(u) is a path inP Hi (u), it follows thatkK [ (w, b) = K[ (w, b)
and similarlyK"! (w, b) = Kl'f,i (w,b) (which holds wheru is the source). So the same argument as
above shows that the theorem holdsu I§ the source oH, then

n Kif(wb)
W = ng ) by the definition off
KEt (w, b) webeK ' (w, b) : . ,
= by the induction hypothesis
KFwb)  Ki(wb) P
WebeK (W, b)
K (w, b)
_ WebeK; (w, b) _ H UH
= TRKAwb) sinceK; (w,b) = K/' (w,b),

which completes the proof. |

It is not hard to see that the weightscan be calculated in time linear in the size of the regular
expression. Note that a SP digraph is acyclic and so, as shown in Section 2, we already have a linear
time implementation for the Weight Pushing algorithm. But the syntax tree based algorithm can be
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easily extended to a linear time algorithm for the general case wiugerations are allowed (see
the next section). Moreover if the edge factbrsire “sparse” in some sense, the algorithm can skip
the redundant computation and run significantly faster. For details see Section C.3.

C.2 Allowing x-operations

Now we consider the general case whereperation is allowed. That idp is now an arbitrary
regular expression. Again the update rule for the edge weighsscomputed throughvs™. The
definition of W' is the same as (C.2) whethis a concatenation, a union or a single edge. So here
we can restrict ourselves to the case when- H;. Recall how the digrapli is defined by the
x-operation is defined in Figure 9. We can assume that the edge fagforss-edges of that figure
are one. The new weights for edgesdHrare given by:

1 if eis labelede; or &,
H . .
W = W, K71 (W, b) ff e!s labeledey, (C.5)
1—wg, KM (w,b) if eis labeledes,
WEi otherwise.

Note that here for someedges may havewe # 1.
We now show that adding the calde= H; with the above update to (C.2) simulates the Weight
Pushing algorithm for any regular expresstén

Theorem 8 For any regular expression H and any edge-€u, u’) of H, the update rules (C.2) and
(C.5) establishes
W WebeK ! (W, b)
€ KH(w,b)
Proof It suffices to add to the proof of Theorem 7 the induction step fortbperation. Assume
thatH = H; for some regular expressidfy and the claim holds far;. The corresponding digraph
is given in Figure 9.
First we notice that
K™ (w, b) = we, K (w, b) (C.6)

and for anyu ¢ {up, s},
KH (w,b) = Ki (w,b)KH (w, b) C.7)

If e=¢€1 = (s,Up), then (C.6) immediately assures the theorem:

WebeKEé (W, b) . WS]_KL'J_('J (W7 b) _ 1 _ WH
KH(w,b) — KHwb) ~ ¢

If e = gy, then the theorem trivially holds. Next assume thatey = (Ug,s1). It follows that

WE = weKM(w,b) by the update rule (C.5) fow,
= WeK!(w,b)
— WebLHl(W’b) by (C.7) withu=
= KH(') (W, b) Yy . = 81,
as required. Note that we used the fact thatadblges receive factdy = 1. It is trivial that the
claim holds fore = €3 because the Weight Pushing algorithm guarantees@ai: 1- vT/EHH.
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Finally consider the case wheee= (u,U) is an edge oHj. In this case, since bothandu’ are
not in{s,up}, we have

wE = Wit by the update rule
beK (W, b N .
= WeeH“—(W) by the induction hypothesis
KUl(Wvb)

) webiKg,' (w,0)/Kg (WD) o 7y
K& (w, b) /K& (w, b)
WebeKE/| (W7 b)

KiH(w,b)

which completes the proof. [ |

C.3 Further Speedup of the Weight Pushing Algorithm

In this section we give another implementation for computing kernels and the weight pushing al-
gorithm. It turns out that if inputg and update factors are “sparse” in the sense that most edges
receive inputke = 1 and factobe = 1, then the new algorithm runs significantly faster. For the loss
update,be, = 1 for all edgese with loss zero at this trial (see (5.5) and preceding discussion). For
the EG updatebe = 1 for all edgese for which xe = 0 (see (5.9) and preceding discussion). This
kind of sparseness may naturally happen in many applications. For example, in the dynamic routing
problem discussed in Section 7, this corresponds to a reliable network where most edges accepts
the packet with probability 1. Another example is an on-line pruning problem where only the edges
along a single path are relevant, which is discussed in Section 10.

We now describe the speedup of this section in a precise form. Assume that a regular expression
Ho is given. We consider inputsto be given to the leaves (edge symbols) of the syntax trelddor
rather than to the edges of the digrdfih. If a nodeH of the syntax tree has a leaf with laleein
its descendants such that# 1 (equivalently, if the compone contains an edgewith xe # 1),
then we say that the nod¢ is relevant with respect to.x_etV(x) denote the set of all union and
star nodes (concatenation nodes and leaves are not counted) that are relevant with respect to
the new implementation, we no longer maintain edge weights§ the digraphHp but maintain
weights, denotegl, for the edges of the syntax tree fidp, so thaty implicitly represents the path
weightsW. That is,W = W(u), whereW is the new feature map described in the next subsection.
So far the dot product is computed in terms of the keka@l,x) by maintaining weightsv such
thatW = ®(w). But now the dot product is computed in terms of a functionuaind x which is
defined as

K (1) = W) ©00 = 3 We [T

We call this thepseudo-kernednd give an algorithm for computir§ (i, x) in time linear in|V (x)|.
Moreover, we give an algorithm that, when given edge fadiovhich are now assigned to the leaves
of the syntax tree oHo, updates weightg so that the new weightg represents the updated path
weights:W = W({i). The update algorithm runs in time linearJmy oy ) degH), where de¢H ) is

the degree (number of children) of noddn the syntax tree. Note that this sum is not always linear
in [V(b)|.
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Traversefd)
{
if H=e, thenP = {e};
else ifH = Hq +--- + Hy, then
chooseH; with probability
P = Travers¢H;);
else ifH =Hjo0---oHg, then
P = Travers¢Hi) U--- U TraverséHy);
else ifH = Hj, then
P=0;
repeat
{ 1 with probability ™,
letc= . I H.
0 with probability 1— p™;
if c=1thenP = PUTraversé¢H,);
until c=0;
returnp;

Figure 14: Algorithm Traverse: return a p&he P with probability W'

C.3.1 FEATURE MAP W

Here we consider a path as a sequence of edge symbols that the regular exptgpsamuces. In
other words paths do not contairedge symbols. For an internal nodeof the syntax tree, IR
now denote the language (words over the edge symbols except for epsilon edgelspitbdtces.
In the following we assume thslY is a probability vector on the paths .

First we show how the edge weightdor the syntax tree (rooted &ly) implicitly represent the
path weight®V. Specifically, for each union nodé¢ = H; + - - - + Hy of the syntax tree, we maintain
weightsp!' € [0,1] for each edgéH, H;) so thats X ; ' = 1, and for each star nod¢ = H;, we
maintainy € [0,1). The weightsu implicitly specify the path weight8V in the way described
below.

Consider the following stochastic process for traversing the syntax tree. From the weitpets
process produces a random pBtl PHo. That is, it defines a probabilistic m&gpfrom p to the set
of probability vectors o "o: Start from the root; if we are at a concatenation node, then we go to
all of its children; if we are at a union nodt, then choose a child nod#; with probability (i and
go toH;; If we are at a star nodd = H7, then repeat the following: with probability” traverseH,
and with probability - ™ exit the repeat statement. Finally all the leaves we visit form a Path
and the weight\p is defined as the probability that the pdtlis chosen by this process. For more
detail, see algorithm Traverse in Figure 14. It is easy to see that Trad@ns(rns a patt® in PH.
LetW! denote the probability that Traversg)returnsP. In particular, letp :WFf|0 for the given
regular expressiohlp. The construction immediately shows that the welyfit of a pathP < PH
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can be computed recursively as follows.

(1 if H = e (thusP = {e}),
HIWG' if H=H;+---+HgandP € PH,
We' =k, wi if H=Hyo---oHcandP=P,U---URwith  (C.8)

PePHfor1<i<k,
N, (pHWF',ﬂl) (1—pH) ifH=H; andP=P,U---URwith P € P
for 1 <i < kfor somek > 0.

Obviously the weightsvH are probabilistic, that is,

W = 1.
PePH
Actually, it can by shown that the range of the mapp#Q@) consists of all probability vectoi/
that fulfill Properties P1-3 (which is also the rangefgf)). Also W¥(.) is injective as well (For the
mapping®(.), this was shown in Appendix B).

C.3.2 @MMPUTING THE PSEUDO-KERNEL K (1, X)

In this section we give an algorithm for computing the pseudo-kdfneAs in the case of the kernel
K, we define the pseudo-kernel associated with each Hoae

Kt =5 w ere (C.9)
PePH ec
and comput (u,x) = K Ho( x) recursively. The recursion is given as follows.
( Xe if H=e¢,
k
leiHKHi(p,x) if H=Hy+--+H,
i=
KR(ux) =4 k C.10
() rlKHi(p.,X) if H=Hqo- - oH, ( )
= H
1y L
| T PR () if H=H].

Lemma 9 The functiorK " (i, x) defined recursively (C.10) is the pseudo-kernel defined in (C.9).

Proof We show the lemma by the induction on the depth of the syntax tree. For the base case where
H = efor some edge symba@ the lemma clearly holds. For the case whidre- Hy + - - - 4 Hy,

k
KP(wx) =Y WK™ (px)
:

H _ . . :
= W WE" [1X% by the induction hypothesis
k

= 2 Y W]e vy
i=1pcPHi ec

= 5 W ere
PePH ec
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For the case wherld = Hjo--- o Hy,

k
KH(p'?X) = uKHi(lJ,,X)

k
= I‘! z W' ere by the induction hypothesis
PcPHi ec
k

— Wi Xe>

PleZPHl PkeZPHkiu< " el;l'l
= 5 W ere by (C.8).

PePH

Finally consider the case wheke= H;. In this case, by using the formulad (1L — a) = &+ al +
a’+---, we have

1— H
KM@Y = 5

k
= (1-p™ > (p” Wt ere> by the induction hypothesis
PcPH1 ec

which completes the proof. |

If H is irrelevant (that isxe = 1 for all leavese of H), thenK H (1, x) = KH (1, 1) = S pepr WE =
1. Therefore, the recursions (C.10) can be computed by traversing the relevant nodes only. More
precisely, ifH = Hjo---oHy, then

Kfwx)= 1 KM(ux)

H;i: relevant

and ifH = Hi +---+ Hyg, then
k
KM (wx) = ZM‘HKHi(H,X)

_ Hp Hi H
= Z b K (%) Z ¥
H;: relevant HI irrelevant

- K H .
» Ze ' (1- K" ()

vant

Clearly, we geK H (i, x) for all relevant node#i in time linear in the number of relevant nodes.
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C.3.3 WPDATE RULE FOR

Next we consider how to update Assume that edge factobsare given. For union nodds, the
new weightgi! are simply calculated by

- _ WK (W b)

For star nodes!, the new weightst* are given by
i = WK ™ (wb). (C.12)

Recall that ifH is irrelevant, therkH (u,b) = KM (i, 1) = 1. Moreover ifH is irrelevant, then its
childrenH; are also irrelevant. So for any union node# V (b), fi* = p! for all childrenH; of H,
and for any star nodel ¢V (b), fi' = p™. This implies that we do not need to update weights for
all irrelevant nodeH ¢ V (b). Note that ifH = Hy + - - - + Hy is a relevant union node, then we have
to calculate new weightg™ for all 1 <i < k even if only one child is relevant. This is why the
updating takes time® (Y ey ) degH)).

Now we show that this update rule simulates the multiplicative update (5.3) for path weights.

Lemma 10 Assume that edge factors b~ are given. fidie the new weights obtained by the rule
(C.11) and (C.12). Then the path weightts= W(f1) satisfy

i — WE Mecpbe  _ WE' [ecp e
ZPGPH\/\/F';| [ecp be KH(LJ.,b)

for any node H of the syntax tree and any patl PH.

I?roof L~etV~\/H be defined recursively as in (C.8) witibeing replaced by."Note that by definition
WHo =W = W({i). We show the theorem by an induction on the depth of the syntax tree.
For the base case wherke= e, sincePH consists of a single edggeit follows that

WH — 1— WE' Mecpbe
S peptt W' Mecp be

for anyP ¢ PH.
Consider the case wheke= H; + - --+ Hy andP € P, Then it follows that

We' = e by (C.8)
_ HiniK I(uﬂb)
— KA (D) by (C.11)

WK () WE Mecp be N .
= }EH(H’ b) K™ (1Lb) by the induction hypothesis
_ W' Mecpbe

= KH(Lb) by (C.8).

815



TAKIMOTO AND WARMUTH

For the case wherld =Hjo---oHgandP=P,U---UPRwith B e PHi for 1 <i <k,

k
WH = _r!wg,ji by (C.8)
IT( H b
W i
- T % by the induction hypothesis
W' ecpbe
= KH(ub) by (C.8) and (C.10).
Finally consider the case whefe=H; andP =P, U---Bcwith B € PHifor1<i<k
~H S B (i H
W = - 1 () by (C.8)
i=
k HKH Hi
MK (W, D)WE™ [Mecr be . . .
= (1—-p"KM(ub ' ! by (C.12) and the induction hypothesis
(L-wK™ ) K (Lb) y (C.12) yp
A=) (W Mlecr Be) 10
T KTmp V(€20
— WE'[Mecpbe
- Ken by (C.8).
|
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